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Abstract

Class expression learning deals with learning description logic concepts from an
RDF knowledge base and input examples. The goal is to learn a concept that
covers all positive examples, while not covering any negative examples. Although
state-of-the-art models have been successfully applied to tackle this problem,
their large-scale applications have been severely hindered due to their impractical
runtimes. Arguably, this limitation stems from their needs for exploring numerous
concepts. Here, we investigate a remedy for this limitation. We formulate the class
expression learning problem in a fashion akin to multi-label classification problem
and propose a permutation-invariant neural embedding model (NERO) to reduce
the rate of exploration. NERO accurately predicts quality scores for pre-selected
concepts for given input example sets. Through ranking concepts in descending
order of predicted quality scores, the standard search procedures of state-of-the-art
models can start in multiple advantageous regions of the quasi-ordered search
space, than starting in the most general concept ⊤. Hence, NERO can be used to
initialize a search tree of a state-of-the-art model to accelerate its search process.
Our experiments on 5 benchmark datasets with 770 learning problems suggest that
using NERO led to significant improvements (p-value < 1%) in the number of
explored expressions and the total runtime time.

1 Introduction

It is well established that a lack of transparency and explainability in AI-driven systems reduces
the trust in and the verifiability of their decisions [14, 26, 27]. Class Expression Learning (CEL)
[21] is a form of explainable AI of increasing importance on the Web, as a learned description
logic concepts are interpretable, e.g., through available verbalisation techniques [22, 30]. Improving
upon CEL thus has the potential of easing the use of explainable AI in real-life applications at Web
scale along with contributing to the corresponding societal advantages tied to explainability [5].
Although state-of-the-art based models have been successfully applied to tackle the CEL problem,
their large-scale applications have been severely hindered due to their impractical runtimes.

In this work, we propose to forge state-of-the-art CEL models with a neural embedding model
to reduce their impractical runtimes. The formal setting for CEL is as follows: Given an RDF
Knowledge Base (KB) K over a Description Logic (DL), a set of positive examples E+, and a set of
negative examples E−, a CEL algorithm aims to learn a DL concept H such that ∀p ∈ E+ K |= H(p)
and ∀n ∈ E− K ̸|= H(n) [7, 9, 15, 21]. Most CEL algorithms attempt to find a H by reformulating
the CEL problem as a search problem in an infinite quasi-ordered state space (S,⪯) [4, 9, 20, 31].
The search for a H is steered by optimizing a pre-defined heuristic function [19, 25]. A CEL algorithm
explores S to find a H through iteratively refining states assigned with top heuristic values at a time
(see Section 3 for more details). Expectedly, as the size of K increases, exploring S becomes a
computational bottleneck [28]. To accelerate CEL, we formulate it as a multi-label classification
problem and propose NERO (a neural permutation-invariant neural model) that maps two input sets
of examples to F1 quality scores of pre-selected DL concepts. For instance, a given learning problem
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(K, E+, E−) as illustrated in Figure 1, NERO accurately predicts F1 quality scores over Person,
Place, Organisation and Person ⊓ ∃hasSibling.⊤. By this, we can select top ranked concepts and
add them in the search tree of state-of-the-art CEL model. State-of-the-art CEL model is therefore
allowed to start its search in more advantages stage than ⊤. Our experiments on in 770 CEL problems
suggest that using NERO with a state-of-the-art CEL consistently leads better results, i.e., finding
accurate expressions, while significantly reducing the computational time as well as the number of
explored concepts. The results of Wilcoxon signed rank tests confirm that the superior performance
of NERO is statistical significant (p-value < 1%).

E+ = {Female individuals having a sister }
E− = {Individuals having no sister} ⊤

Person . . . Place . . . Organisation

Person ⊓ ∃hasSibling.⊤

Male ⊓ ∃hasSibling.⊤ . . . Female ⊓ ∃hasSibling.Female

Figure 1: Illustration of traversing a quasi-ordered search space S. Green filled boxes represent a
sequence of ALC expressions terminating in a goal expression.

2 Related Work

A plethora of works have investigated learning in Description Logics [4, 8, 9, 25, 28]. We refer to [2,
1, 12, 16] for an introduction. One of the major differences between most CEL approaches is the
design of heuristic functions and the refinement operators [3, 10, 11, 15, 21]. The problem of finding
a DL concept H satisfying Equation (1) w.r.t. input examples E+ and E−. is considered as a search
problem in an infinite quasi-ordered state space (S,⪯) [4, 9, 20, 31]. The search for a H is steered by
optimizing a pre-defined heuristic function [19, 25, 3, 19, 21]. Figure 1 visualizes this search process.

The DL-Learner framework including several state-of-the-art CEL algorithms (e.g. OCEL, ELTL,
and CELOE) is one of the most commonly used framework to tackle the CEL problem [3, 18, 19, 20].
OCEL computes heuristic values based on the horizontal expansion penalty that introduces a dynamic
upper-bound on the length of possible refinements. ELTL is based on a refinement operator for the
DL EL and replaces the horizontal expansion penalty with a penalty for the length of an expression.
CELOE builds on OCEL and applies a more sophisticated heuristic function that favors syntactically
shorter expressions (see Section 3 for more details). CELOE is currently the best class expression
learning algorithm available within DL-Learner and often outperforms many state-of-the-art models
including OCEL and ELTL in terms of the quality of learned expression as well as number of explored
expressions [17]. This finding is corroborated by our experiments, wherein we also observe that
CELOE often found more accurate expressions than ELTL, while exploring less. The aforementioned
approaches apply redundancy elimination and expression simplification rules to reduce the number of
explored expressions. Although applying redundancy elimination and expression simplification rules
often reduce the number of explored expressions, long runtimes still prohibit large scale applications
of state-of-the-art models [6, 13].

In this work, we evaluate NERO against OCEL, ELTL, and CELOE models provided in DL-Learner
framework for two reasons: (1) the DL-Learner framework is regarded as the most mature and recent
system for CEL [28] and (2) most recently developed models are often evaluated w.r.t. the quality
of expressions as well as runtimes. Yet, not counting the number of explored expressions does not
permit us to quantify whether possible improvements through NERO may stem from our novel idea
or our implementation. Consequently, in our experiments, we mainly compare NERO against CELOE
in terms of number of explored expressions, quality of learned expressions as well as runtimes.
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3 Background & Notation

Description Logics. A DL is a decidable fragment of first-order predicate logic that uses only unary
and binary predicates [2]. The set of unary predicates, binary predicates and constants correspond to
the set of named concepts NC , roles NR, and individuals NI of the DLs respectively.

Knowledge Bases. A KB K over DL (say ALC) is a pair K = (Tbox,Abox). Let A, B ∈ NC be
two named concepts, r ∈ NR be a role, and a, b ∈ NI be individuals providing in K. Tbox contains
terminological axioms between concepts in the form subsumption A ⊑ B or equivalence A ≡ B. Abox
contains assertions describing relationships between concepts and individuals in the form membership
A(a) or between individuals in the form r(a, b). Most KBs on the Web provide a large collections of
facts in the form of assertions [24]. Yet, they often lack well-structured ontologies [23, 29].

Class Expression Learning and Heuristics. Let K over ALC , the set E+ of positive examples,
and the set E− of negative examples be given, where E+, E− ⊂ NI and E+ ∩ E− = ∅. The goal
of CEL is to find an ALC concept H s.t.

∀p ∈ E+,∀n ∈ E−(K |= H(p)) ∧ (K ̸|= H(n)
)
. (1)

The CEL problem is transformed into a search problem within a quasi-ordered state space (S,⪯) [4,
9, 11, 21, 20, 31], where each state is an ALC concept. Traversing in S is commonly conducted via
top-down (also called downward) refinement operators, which are defined as ρ : S → 2S with

∀A ∈ S : ρ(A) ⊆ {B ∈ S | B ⪯ A}. (2)

State-of-the-art CEL models begin their search towards a H after a search tree is initialized with
the most general expression (⊤) as a root node. This search tree is iteratively built by selecting a
node containing a quasi-ordered expression with the highest heuristic value and adding its qualifying
refinements as its children into a search tree [20]. The key to an efficient search in S is a heuristic
function steering the search towards a H [21]. To introduce an example of a state-of-the-art heuristic
function as well as a quality function, we must first define a retrieval function. Let C, NI be all valid
ALC class expressions and the set of individuals occurring in K, respectively. We define the retrieval
function RK : C → 2NI . R maps a class expression A to the set of its individuals under Open World
Assumption (OWA) or Close World Assumption (CWA). Given A ∈ S and one of its downward
refinements B ∈ ρ(A), CELOE computes heuristic values as

ϕCELOE(A, B) = Q(B) + λ ·
[
Q(B)− Q(A)

]
− β · |B|, (3)

where β > λ ≥ 0 and Q(·) denotes a quality function (e.g. F1 score, accuracy). Through Q(·) and
| · |, the search is steered towards more accurate and syntactically shorter concepts. F1 score of an
concept A is computed as

F1(A) =
|E+ ∩Rkb(A)|

|E+ ∩Rkb(A)|+ 0.5(| E− ∩Rkb(A)|+ | E+ \ Rkb(A)|)
. (4)

Note that maximizing Equation (4) is more restrictive than satisfying Equation (1).

4 Methodology

Motivation. The goal in the CEL problem is to find a DL concept A ∈ C satisfying Equation (1)
and ideally maximizing Equation (4). Here, our goal is to find a A without excessive exploration.

NERO. Equation (4) indicates that F1(·) is invariant to the order of individuals in E+, E−, and
R(·). Previously, Zaheer et al. [32] have proven that all functions being invariant to the order in
inputs can be decomposed into

f(x) = ϕ
(∑

x∈x

ψ(x)
)
, (5)

where x = {x1, . . . , xm} ∈ 2X and ϕ(·) and ψ(·) denote a set of input and two parametrized
continuous functions, respectively. This implies that a neural network defined in Equation (5) can
be effectively used to predict F1 score of an ALC concept w.r.t. E+ and E−. Through accurately
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predicting quality of ALC concepts without using F1 and Rkb, we can accelerate the process of
finding a H, i.e., alleviate the need of excessive exploration. Therefore, we define NERO as follows

NERO(E+, E−) =σ

(
ϕ
( ∑

x∈E+

ψ(x)
)
− ϕ

( ∑
x∈E−

ψ(x)
))

, (6)

where ψ(·) : NI → Rm and ϕ : Rm → [0, 1]|T | denote the encoder and the decoder functions,
respectively. T represents the pre-selected target concepts. The result of the translation operation
denoted with z ∈ Rm is normalized via the logistic sigmoid function σ(z) = 1

1+exp(−z) .

Construction of Target Labels & Training Procedure. Target concepts are obtained as T :=
{C | C ∈ ρ(⊤) ∧ |C| ≤ maxlength ∧ 0 < |R(C)|}, where maxlength ∈ N and |T | = d.
maxlength and d can be used to define the size of T . Next, we define the training procedure used
in our experiments. Let D = {(E+

i , E
−
i ,yi)}Ni=1 represent a training dataset, where a training

data point (E+, E−,y) is obtained in four consecutive steps: (i) Sample C from T uniformly at
random, (ii) Sample k individuals E− ⊂ R(C) uniformly at random, (iii) Sample k individuals
E− ⊂ NI \E+ uniformly at random, and (iv) Compute F1 scores y via Equation (4) w.r.t. E+, E−,
for all C ∈ T . For a given data point E+, E−,y and predictions ŷ := σ

(
NERO(E+, E−)

)
, an

incurred binary cross entropy loss is computed as

ℓ(y, ŷ) = − 1

|T |

|T |∑
i=1

y(i)log(ŷ(i)) + (1− y(i))log(1− ŷ(i)). (7)

During training, NERO learns permutation-invariant representations for E+ and E− tailored towards
predicting F1 score of T .

5 Experiments

We followed the commonly used experimental setup providing in DL-Learner [21, 3]. Hence, we
used five benchmark datasets and the respective learning problems provided therein. To perform a
more extensive comparison between models, we also generated additional random learning problems.
In our experiments, we evaluate all models in ALC for CEL on the same hardware. To ensure the
reproducibility of our experiments, we provide all necessary details pertaining to the construction
of T , the training procedure, the hardware setup, hyperparameter selection in the supplemental
material.1

We evaluated models via the F1 score, the runtime and number of tested concepts. The F1 score
is used to measure the quality of the concepts found w.r.t. positive and negative examples, while
the runtime and the number of tested concepts are to measure the efficiency. We measured the full
computation time including the time spent prepossessing time of the input data and tackling the
learning problem. Moreover, we used two standard stopping criteria for state-of-the-art models.
(i) We set the maximum runtime to 10 seconds although models often reach good solutions within
1.5 seconds [20]. (ii) The models are configured to terminate as soon as they found a goal state (i.e., a
state with F1 score = 1.0).

6 Results

Results on benchmark learning problems. Table 1 suggests that NERO outperforms CELOE and
ELTL in 8 out of 9 and in 5 out of 6 metrics, respectively. On the Family benchmark dataset, NERO
explores on average 67.6× fewer concepts to find more accurate concepts. This rate of efficiency
in terms of exploration results in the fact that NERO consistently requires less computational time.
CELOE and ELTL require at least 14.7× more time than NERO. Similarly, results on Mutagenesis
and Carcinogenesis benchmark dataset indicate that NERO requires at least 38% less time than
CELOE and ELTL, while requiring to explore at least 2.3× fewer concepts. Note that we did not
use any parallel computation in NERO, i.e., the input knowledge base and parameters of NERO are

1The URL of the supplemental material:https://drive.google.com/drive/folders/1_
Mdn6cuVNFIiaveU3Y_spJszixcoRteX?usp=sharing
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reloaded for each learning problem. Table 1 confirms that our hypothesis (see Section 4): through
learning permutation-invariant representation, NERO can effectively predicts quality scores of ALC
concepts.

Table 1: Results on benchmark learning problems provided within DL-Learner. F1, T, and Exp.
denote F1 score, total runtime in seconds, and the number of explored expressions, respectively.
ELTL does not report the Exp. Predictions of NERO are obtained by exploring only at most the
top-100 ranked expressions. Bold entries denote best results.

Dataset NERO CELOE ELTL

F1 T Exp. F1 T Exp. F1 T
Family 0.984 0.68 21 0.980 4.65 1429 0.964 4.12
Mutagenesis 0.704 13.18 100 0.704 23.05 516 0.704 21.04
Carcinogenesis 0.720 26.26 100 0.714 37.18 230 0.719 36.29

Results on random learning problems & Hypothesis Testing. The full respective results on
random learning problems are reported in the supplemental material. Overall, these results suggest
that NERO consistently outperforms CELOE and ELTL in all metrics. On all benchmark datasets,
CELOE requires to explore at least 3.19× more concepts than NERO. This resulted in reducing the
total computation time of NERO by 3− 6× on all benchmark datasets. We conducted the Wilcoxon
signed-rank tests (one and two-sided) on F1 scores, runtimes, and the number of explored expression.
We were able to reject the null hypothesis with a p-value < 1% across all the datasets. Therefore, the
superior performance of NERO is statistically significant.

7 Discussion

Our results uphold our hypothesis: implicit knowledge encoded in (E+, E−) about many ALC
expression can be leveraged to mitigate the need of excessive exploration. Through learning
permutation-invariant representations for a set of individuals, we can effectively predict quality
scores for pre-selected ALC concepts. Throughout our experiments, NERO consistently outperforms
state-of-the-art models w.r.t. the F1 score, the number of expression retrievals and the total compu-
tational time. Our experiments also indicate that the superior performance of NERO is statistically
significant.

It is important to note that it has been proven that CELOE is complete in the CEL problem, i.e.,
for a given learning problem, CELOE finds a goal expression if it exists provided that there are no
upper-bounds on the time and memory requirements [21]. Although these requirements are simply
not practical, being not complete can be considered as a drawback of Hence, we argue that NERO
can be used initialize the search tree of CELOE and using CELOE to conduct the search may be
necessary to fulfill the completeness criterion.

8 Conclusion

We introduced NERO, a novel neural CEL approach to accelerate the problem of learning ALC
concepts. NERO effectively detects adequate ALC concepts without excessive exploration. Our
experiments show that NERO outperforms state-of the art models in 770 CEL problems on 5 bench-
mark datasets w.r.t. the quality of found concepts, number of retrievals and the total computational
time. The results of our statistical tests (one- and two-sided Wilcoxon signed rank tests) confirm the
superior performance of NERO.

We strongly believe that incorporating neural models in class expression learning problems is worth
pursuing further. Here, we focused mainly on learning permutation-embeddings tailored towards
predicting quality of predefined ALC expressions. Yet, learning embeddings tailored towards more
expressive DLs expressions may lead interesting results.

9 Submission of papers to NeurIPS 2022

Please read the instructions below carefully and follow them faithfully.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See the ac ??.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] see Section 7
(c) Did you discuss any potential negative societal impacts of your work? [Yes] see Sec-

tion 7
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes] see section 1
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] see the
supplemental material

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] see the supplemental material

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] see the supplemental material

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

we included our pretrained models
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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