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ABSTRACT

Although softmax attention drives state-of-the-art performance for sequence mod-
els, its quadratic complexity limits scalability, motivating linear alternatives such
as state space models (SSMs). While these alternatives improve efficiency, their
fundamental differences in information processing remain poorly understood. In
this work, we leverage the recently proposed dynamical systems framework to
represent softmax, norm and linear attention as dynamical systems, enabling a
structured comparison with SSMs by analyzing their respective eigenvalue spec-
tra. Since eigenvalues capture essential aspects of dynamical system behavior,
we conduct an extensive empirical analysis across diverse sequence models and
benchmarks. We first show that eigenvalues influence essential aspects of mem-
ory and long-range dependency modeling, revealing spectral signatures that align
with task requirements. Building on these insights, we then investigate how archi-
tectural modifications in sequence models impact both eigenvalue spectra and task
performance. This correspondence further strengthens the position of eigenvalue
analysis as a principled metric for interpreting, understanding, and ultimately im-
proving the capabilities of sequence models.

1 INTRODUCTION

Deep sequence models have emerged as the backbone of modern artificial intelligence applications,
demonstrating remarkable capabilities through their ability to learn complex patterns in large-scale
datasets (Bommasani et al., 2021). The transformer (Vaswani et al., 2017), with softmax attention
as its backbone, has been the dominant paradigm driving these advances. However, its quadratic
complexity with respect to sequence length represents a critical bottleneck, limiting the practical
deployment of these models for long-context applications (Tay et al., 2021). To address this limita-
tion, numerous linear attention variants, including state space models (SSMs), have been proposed,
which achieve linear complexity while attempting to preserve the expressive capabilities of softmax
attention (Katharopoulos et al., 2020; Gu et al., 2022; Smith et al., 2023; Orvieto et al., 2023b;
Dao & Gu, 2024; Beck et al., 2024; Schlag et al., 2021). Despite these advances, a fundamental
question remains: how do different model classes process and retain information? The recently
proposed dynamical systems framework (DSF) (Sieber et al., 2024) provides a unified perspective
for analyzing masked attention and its linear alternatives as dynamical systems. This framework
builds the foundation for this paper, enabling the investigation of the sequence model eigenvalues.
This is motivated by the fact that eigenvalues are known to govern the stability, memory retention,
and information flow within dynamical systems, yet their empirical behavior in sequence models re-
mains unexplored. While the eigenvalues of the state transition matrix in SSMs are often explicitly
constrained during model design, attention-based models do not impose spectral constraints. Under-
standing whether characteristic eigenvalue patterns still emerge can reveal (a) fundamental insights
into how different sequence models balance stability, expressiveness, and long-range dependency
modeling, and (b) whether the transition of eigenvalues from initialization to the fully trained model
aligns with the demands of the task. To achieve this, we leverage the DSF to (i) conduct a compre-
hensive empirical analysis of eigenvalue spectra across different attention mechanisms and SSMs
over a variety of tasks, and (ii) introduce design choices informed by our findings from (i). We then
analyze their influence on performance, as well as the corresponding eigenvalue spectra. As a result
of the conducted studies, we reveal a link between the eigenvalue distribution and good performance
on tasks with specific memory requirements. Specifically, we observe a high concentration of eigen-
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values close to one when long memory is important, and similar peaks close to zero when memory
selectiveness is required by the task. These insights highlight the potential of the proposed metric as
a tool for understanding sequence model behavior and guiding architectural decisions.

Notation: We denote withN the hidden state size, with d the model size, and with L the sequence
length. We use subscripts, e.g., ·i, to denote the time index (or input dependency). Specifically, vi
represents the value of vector v at time i, and |vi|∞ its infinity norm. We use ui to denote the i-th
input and use bold notation to indicate sequences, i.e., vi = [v1, . . . , vi], the identity matrix of size
Rn×n is denoted as In, and λ(A) denotes all n eigenvalues of a matrix A ∈ Rn×n.

2 RELATED WORK

The challenge of modeling long-range dependencies has been a central theme in sequence modeling
across recurrent, state space, and attention-based approaches. To better understand the strengths
and limitations of each model class from the linear system point of view, researchers have so far
employed two primary analytical tools: eigenvalue spectra and memory functions.

Eigenvalue-based analyses. Eigenvalue spectra provide a principled way to characterize stabil-
ity, and the relationship between remembering and forgetting, i.e., memory retention, and informa-
tion decay in dynamical systems. This perspective has a long history in recurrent neural networks
(RNNs), where eigenvalue normalization was introduced to mitigate vanishing gradients while pre-
serving controlled memory decay (Helfrich & Ye, 2019). Later analyses investigated how different
eigenvalue spectra encode solutions to temporal tasks, revealing that seemingly diverse eigenvalue
distributions can correspond to functionally equivalent memory behaviors (Jarne, 2022). More re-
cently, similar ideas have been extended to SSMs, where the eigenvalues of the transition matrix
are shown to govern stability and memory. Early works on SSMs studied how careful initialization,
motivated by the eigenvalue placement, can provide models with long-range dependency, enabling
them to compete with RNNs and transformers on synthetic benchmarks (Gu et al., 2020; Fu et al.,
2023). Beyond initialization, subsequent works focused on structural re-parameterizations. In par-
ticular, the eigenvalues of the transition matrix have been shown to play a crucial role in governing
the stability and memory length of SSMs (Wang & Li, 2024; Grazzi et al., 2025). This perspective
directly connects to earlier analyses of RNNs, where eigenvalue spectra determine the decay rates
of information.

Memory function analyses. A complementary line of work analyzes long-term dependency
through the lens of memory functions (Oppenheim et al., 1997), which have a strong relation to
the eigenvalues of the system. These functions quantify how much influence past inputs have on
current outputs, typically formalized via norms of system response functions or spectral measures.
For SSMs, memory functions provide a principled way to characterize expressivity and effective
memory horizons (Wang & Xue, 2023). For RNNs, memory functions are used to prevent rapid
decay of state memory (Su & Kuo, 2019).

In attention-based architectures, however, analyses have largely focused on mechanisms for extend-
ing memory. Early work demonstrated that even simple feed-forward architectures equipped with
attention can solve long-memory tasks, outperforming classical recurrent networks (Raffel & Ellis,
2016). Later, augmenting self-attention with persistent memory slots was proposed as a way to ex-
tend the memory context (Sukhbaatar et al., 2019). Other works analyze the statistical properties of
the attention score matrices themselves (Bao et al., 2024; Bhojanapalli et al., 2021), revealing cer-
tain regularities in how attention distributes over inputs. While insightful, these approaches remain
tied to the score-matrix formulation and do not naturally translate into a framework that allows sys-
tematic comparison with SSMs. By contrast, memory functions have been successfully applied to
RNNs and SSMs, but they require architecture-specific design choices and do not generalize easily
to linear parameter-varying (LPV) systems, such as attention-based models and Mamba (Dao & Gu,
2024). The recently proposed DSF addresses this gap by recasting masked attention itself as a dy-
namical system, thereby making eigenvalue analysis applicable. This unifying perspective enables
systematic cross-architectural comparisons of memory behavior, which is leveraged in this work to
provide the first comprehensive eigenvalue-based analysis of attention mechanisms, enabling a di-
rect comparison with SSMs. Moreover, casting all these models into the eigenvalue perspective not
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only unifies their study, but also makes it possible to draw on the vast body of results from linear
system theory to analyze and interpret their behavior in order to guide the model design choices.

3 PRELIMINARIES

Before presenting our analysis, we detail how the DSF allows for eigenvalue computations of both
attention and state space models, and then review the connection between eigenvalues and memory
in dynamical systems.

3.1 THE DYNAMICAL SYSTEMS FRAMEWORK

The dynamical systems framework (Sieber et al., 2024) represents causal (i.e., masked) attention-
based models or SSMs as dynamical systems. A discrete-time dynamical system models how an
output yi ∈ Rd is achieved given inputs ui ∈ Rd through an internal hidden state hi ∈ RN , which
evolves over time according to a difference equation. In particular, the DSF formulates a sequence
model as a discrete-time LPV dynamical system, i.e.,

hi = Λihi−1 +Biui, yi = Cihi +Diui, (1)
where hi is initialized with h−1 = 0, Λi ∈ RN×N is a diagonal or diagonal plus low rank state
transition matrix, Bi ∈ RN×d and Ci ∈ Rd×N are the input and output matrices, respectively, and
Di ∈ Rd×d is a scaled skip connection. In this formulation, Λi, Bi, Ci can be input-dependent, e.g.,
Λi = f(ui).

All SSMs investigated in this paper are natively written in the DSF and we can directly analyze
their eigenvalues λ(Λi). For attention, we follow the reformulation provided in (Sieber et al., 2024),
which uses the convolutional representation of equation 1, i.e., y = Φu, where the convolutional
kernel Φ is defined in Appendix A. Note that Φ has the same interpretation as the attention matrix,
i.e., softmax(qk⊤) for softmax attention. Hence, defining qi = WQui ∈ Rm, kj = WKuj ∈ Rm,
with WQ ∈ Rm×d, WK ∈ Rm×d, and WV ∈ Rd×d, and rewriting the latter in the form

yi =

i∑
j=0

ϕ(qi)
⊤ψ(kj)

η(qi,ki)
WV uj , (2)

where ϕ(·) : Rm → Rn, ψ(·) : Rm → Rn, and η(·, ·) : Rm × Rm×(i+1) → R, it has been shown
that the transition dynamics Λi are solely governed by a scalar defined through the normalization
terms and can be computed exactly using:

Λi =
η(qi−1,ki−1)

η(qi,ki)
IN ∈ RN×N . (3)

This normalization term then follows as η(qi,ki) = (elu(qi) + 1)
∑i

j=0(elu(kj) + 1) for linear
attention (Katharopoulos et al., 2020) and as η(qi,ki) =

∑i
j=0 exp(qik

⊤
j ) for softmax attention. In

both cases, the normalization depends explicitly on the queries and keys. In contrast, norm attention
resolves this dependence: its normalization can be defined directly as a general nonlinear function
of u, for which we adopt the softplus function in our formulation. Interested readers are referred to
(Sieber et al., 2024) for a more detailed discussion of the framework and Appendix A for a more
detailed derivation.

3.2 RELATIONSHIP OF EIGENVALUES AND MEMORY

In linear system theory (Kailath, 1980), the eigenvalues of a system’s dynamics matrix are
fundamental to understanding the behavior of the system. For a linear system of the form
hi = Λihi−1 +Biui, the eigenvalues encode crucial information about the system’s memory char-
acteristics. Eigenvalues near zero induce rapid forgetting, i.e., features decay quickly and have mini-
mal influence on future states. Conversely, eigenvalues close to the unit circle of the complex plane1

enable long-term memory retention, allowing information to persist across many time steps. The
placement of eigenvalues thus directly determines whether a model favors short-term or long-term
memory retention.

1A discrete-time dynamical system is stable if its eigenvalues are within the unit circle, i.e., |λ(Λi)|∞ ≤ 1.
To avoid numerical issues during training, SSMs thus constrain the eigenvalues to the unit circle.
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4 EMPIRICAL STUDY

To investigate model- and task-specific patterns in the respective eigenvalue distributions, we con-
duct an ablation study spanning multiple benchmarks. In the DSF, we analyze eigenvalue distribu-
tions across different models, tasks, layers, and heads, and investigate whether particular spectral
signatures align with the type of memory and processing required, or the performance obtained.

4.1 METHODOLOGY

Task selection: We select five tasks designed to probe distinct model capabilities. Specifically,
we use a subset of the Long Range Arena (LRA) benchmarks (Tay et al., 2021), consisting of
(i) Long ListOps, which tests reasoning over deeply nested structures where every token in the
input sequence is essential; (ii) Byte-level text classification (IMDb), which evaluates compositional
generalization and the ability to process long natural-language sequences with sparse informative
signals; and (iii) Image classification from pixel sequences (CIFAR-10), which emphasizes learning
sparse local and global spatial relationships. In addition, we include (iv) the MQAR task (Arora et al.,
2023), which requires associative recall, stressing a model’s ability to retain and retrieve specific
elements of the input sequence with high fidelity, as well as (v) the next token prediction task on
WikiText-103 (Merity et al., 2016) dataset, which underscores the models capabilities relevant for
natural language processing. Together, these tasks capture a spectrum of challenges: long-context
reasoning, compositionality, spatial structure learning, and selective memory.

Model selection: We evaluate six representative architectures: two linear time-invariant (LTI)
SSMs (S4 (Gu et al., 2021) and LRU (Orvieto et al., 2023a)), one LPV SSM (Mamba-2 (Dao &
Gu, 2024)), and three causal attention mechanisms (softmax attention (Vaswani et al., 2017), norm
attention (Sieber et al., 2024) and linear attention (Katharopoulos et al., 2020)). To ensure a fair
comparison, for each task we fix the overall architecture and tune the remaining hyperparameters to
achieve competitive performance relative to the best known baselines. The complete training details
are provided in Appendix B.

4.2 RESULTS AND DISCUSSION

Task performance and the corresponding eigenvalue distributions for all models are shown in Fig-
ure 1 (for complex eigenvalues, magnitudes are reported). Since the eigenvalues of Mamba-2 and
attention-based models depend on the input, we compute them over a batch of test data and report
the batch-averaged distributions (for task-specific batch sizes, see Appendix B). For multi-headed
models, we present results from a single head; remaining heads and additional random seeds are
reported in Appendix C. Based on our observations, we make the following statement:

Eigenvalues capture essential aspects of stability, memory, and long-range dependency mod-
eling, not only for LTI SSMs, but also LPV models and attention mechanisms. In other
words, downstream task requirements are reflected in spectral signatures of eigenvalues.

This claim is supported by the conducted ablation study, which shows that task-dependent eigenvalue
distributions reveal distinct memory retention and gating behaviors. When long-term memory is
critical, we consistently observe a strong concentration of eigenvalues near one, whereas tasks that
require selective forgetting exhibit peaks near zero. This aligns with results derived for LTI SSMs
using memory functions (Wang & Xue, 2023) and our assumption rooted in linear system theory,
that eigenvalues close to zero induce rapid forgetting, and eigenvalues close to one are responsible
for long-term memory. On LRA tasks, which require long-term memory, all well-performing models
not only avoid placing eigenvalues close to zero, but show prominent peaks around one, at least in
the first layer and often across all layers. By contrast, attention models distribute eigenvalues both
near zero and well above one, which can be interpreted as gating, with low eigenvalues inducing
selective forgetting, possibly contributing to poor performance on all LRA tasks. The existence
of eigenvalues larger than one could potentially be problematic, as it causes unstable discrete-time
dynamics of LPV systems. This might further contribute to the shortcomings of attention on LRA
benchmarks. Softmax attention is especially affected: across all spectra, it shows a nearly balanced
mix of very low and very high eigenvalues, which can be detrimental, particularly on CIFAR-10, and
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Figure 1: Eigenvalue distributions for one head, across models, selected layers, and tasks. Bars show the
percentage of eigenvalues within discretized ranges (chosen to emphasize eigenvalues near zero and near one).
Light and dark bars indicate the distribution at initialization and after training, respectively. Error bars denote
standard deviation across input sequences. Model performance, measured as perplexity for WikiText (lower is
better) and percentage of correct output sequences for the other tasks (higher is better), is indicated in paren-
theses. Complete plots for all layers, heads and multiple seeds are provided in Appendix C.

to a lesser degree on IMDb, where the gating effect is less pronounced. An extreme example of an
LRA task is ListOps, where every token is crucial. Here, we find that all models, including attention,
avoid placing eigenvalues close to zero. It is interesting that this behavior extends to attention
models, despite the fact that their eigenvalues are not explicitly designed but instead emerge from
learned weight matrices and can hence take any value. The fact that attention still avoids near-zero
eigenvalues in this setting reinforces our hypothesis linking small eigenvalues to selective forgetting:
when forgetting is harmful, the model tries not to, albeit imperfectly. In contrast, Mamba-2, as an
LPV SSM, occupies a middle ground: its eigenvalue distribution avoids excessive gating, while
still allowing selective placement near zero, enabling competitive performance not only on LRA
benchmarks but also on MQAR and WikiText. There, selective forgetting proves beneficial, since
only highly specific information needs to be retained. LTI SSMs, by comparison, rarely place any
eigenvalues close to zero, and consistently underperform attention on both of these tasks.

In LTI SSMs, eigenvalue placement is known to influence training stability (Orvieto et al., 2023a;
Gu et al., 2020), yet our analysis suggests that the initial eigenvalue configuration is not preserved
during training and therefore cannot fully explain the final eigenvalue distributions. For instance,
S4 is initialized with eigenvalues having the magnitude primarily in the range (0.5, 1), but this
distribution consistently shifts towards a sharp concentration around 1 across tasks and layers. LRU,
though also initialized close to 1, often drifts away from the initialization, most notably on ListOps
and CIFAR-10. A similar departure from initialization is observed in both Mamba-2 and softmax
attention, where the resulting eigenvalue spectra differ substantially from the starting distributions.
In contrast, linear attention largely retains the overall shape of its initialization, raising the question
of the potential importance of a task-dependent initialization.

5 ARCHITECTURAL MODIFICATIONS AND THEIR SPECTRAL IMPACT

In this section, we study how architectural modifications shape the eigenvalue spectrum and how
these changes correlate with model performance. In particular, we consider five architectural varia-
tions: gating, convolution, varying the number of layers, an LTI-inspired version of Mamba-2, and
alternative normalization functions in norm attention. In the remainder of this section, we provide
details for each modification and the conclusions we draw after investigating its eigenvalue spectra,
which can be summarized in the following:

Architectural changes are reflected not only in model performance but also in the eigenvalue
spectra of trained models. Such modifications alleviate specific challenges in the underlying
dynamical system, freeing capacity for other aspects of sequence modeling, i.e., selective
forgetting when convolution is introduced, and memory retention when gating is added.

5.1 GATING

As discussed in Section 4, we observe a correlation between the gating behavior of a model and
the selective-memory demands of the task. For example, in ListOps, where all input information
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Figure 2: Comparison of the effects of gating and convolution on the eigenvalue spectra for one head, across
selected tasks, models, and layers. Complete plots for all layers and tasks are provided in Appendix C.

is essential, models tend not to perform gating, whereas on other tasks, they exhibit diverse gating
strategies with varying success. Motivated by this, we investigate how attention models behave
when equipped with an explicit gating mechanism. Following Yang et al. (2024), we augment each
layer with a gating mechanism: the input to each layer is linearly projected, passed through a SiLU
activation, and used to multiplicatively gate the layer’s output. This introduces a learnable, input-
dependent modulation that can adaptively control the contribution of each layer to the forward pass.

Figure 2 illustrates that introducing an explicit gating mechanism alleviates the need for the dy-
namical system to implement gating implicitly, while still allowing it when beneficial. This effect
is particularly pronounced on IMDb, where the eigenvalue distribution shifts away from zero, in-
dicating that the dynamical system is primarily leveraged for memory preservation and state space
expansion once gating is explicitly handled. Viewed through the lens of our novel metric, this shift
reflects a redistribution of eigenvalues away from the selectivity regime (near zero) toward the mem-
ory regime (near one). An exception arises on ListOps, which does not exhibit low eigenvalues prior
to gating but develops them once gating is introduced (see e.g., softmax attention layer 1). This
behavior may stem from the task’s unique requirement to preserve all input information without
selective suppression, causing explicit gating to interact with the dynamics in an atypical way. An-
other possibility is that the eigenvalues of the gated model have little influence on performance and
can therefore drift freely. The precise mechanism behind this effect remains unclear, and we leave
a deeper investigation of this phenomenon to future work. Additionally, as reported in Section 4,
models that perform extensive gating exhibit decreased performance on CIFAR-10, an effect that is
also observed when softmax and linear attention models are augmented with gating in Appendix C.

5.2 CONVOLUTION

Motivated by the strong performance of Mamba-2 on LRA, MQAR, and WikiText, we adapt at-
tention models to more closely mirror its architecture. Specifically, we prepend each layer with a
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1D convolution along the sequence dimension, applied to all hidden channels with kernel size dconv
and appropriate padding to preserve length. This lightweight operation introduces local interac-
tions among neighboring tokens prior to the main transformation, thereby enriching the input with
short-range contextual information.

Introduction of convolution causes a shift in the eigenvalue spectrum, with eigenvalues occurring
more frequently near zero and less frequently near one (see e.g., softmax attention on IMDb in
Figure 2). Since, according to linear system theory, eigenvalues close to one correspond to slowly
decaying modes that preserve information, while those near zero correspond to rapidly vanishing
modes, this change in spectral distribution indicates that convolution alleviates the task of maintain-
ing long-term memory in the recurrent dynamics by providing local context directly. Consequently,
the dynamical system allocates a larger portion of its capacity to selective processing. This change
in the eigenvalues aligns with consistent performance gains on tasks requiring selective memory, un-
derscoring a link between introducing convolution, spectral structure, and task-level outcomes. The
only exceptions arise in linear attention and the LISTOPS task, where exhaustive memory preserva-
tion remains critical and the benefits of selectivity diminish.

5.3 VARYING THE NUMBER OF LAYERS

with conv 
 (>99.0)

without conv 
 (<1.5)

0
25
50
75

100 layer 1
MQAR Mamba-2

with conv 
 (>99.0)

without conv 
 (<1.5)

layer 1
MQAR Sm Att

Figure 3: Eigenvalue distribution comparison for single-layer Mamba-2 and softmax attention models with
and without convolution on MQAR. Results for one out of four heads are shown.

Given the observation suggesting that a layer-dependent task division for softmax attention is present
in Figure 1), we investigate the effect of varying the number of layers on MQAR task. Specifically,
when using two layers, the second layer exhibits clear gating-like behavior, following a first layer
characterized by stronger memory retention. Prior work (Okpekpe & Orvieto, 2025) hypothesizes
that, in single-layer models, attention undergoes a phase transition where it attempts to form in-
duction heads, but the model lacks sufficient expressivity to fully exploit this mechanism, requiring
greater depth to do so (Sanford et al., 2024). Adding convolution in that study alleviates this limita-
tion and enables task completion.

Building on this insight and our observation that adding convolution relieves the dynamical model
of the task of memory retention, we aim to explain these phenomena by analyzing the corresponding
eigenvalue spectra shown in Figure 3. These provide a quantitative view of memory retention and
gating dynamics. As expected, with convolution offloading memory retention, both single-layer
softmax attention and Mamba-2 successfully learn the task, despite not being able to do it with one
layer otherwise. In this setting, the sole role assumed by the dynamical system is gating, highlighting
how architectural modifications can reallocate functional responsibilities across layers and how this
is directly reflected in the eigenvalue distributions.

5.4 NORMALIZATION OF NORM ATTENTION

In the norm attention model, we systematically replace the normalization function to test its influ-
ence on the distribution of the eigenvalues, and whether the incurred changes affect the model perfor-
mance, according to the findings in Section 4. Specifically, for norm attention with explicit convo-
lution, we substitute the original softplus normalization with two alternatives: exponential
and sigmoid, as each choice affects the range of the normalized values differently.

As illustrated by Figure 4, different normalization functions lead to different eigenvalue distribu-
tions, reflecting trade-offs between memory and selectivity. Exponential normalization places eigen-
values that promote selectivity, sigmoid keeps them close to one, emphasizing memory retention,
and softplus exhibits an intermediate pattern combining both regimes. While these distributions

8
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Figure 4: Eigenvalue distributions on CIFAR-10 and ListOps for one of the heads for: (left, with white back-
ground) norm attention with convolution and different normalization functions; (right, with grey background)
Mamba-2 as LTI. Complete plots for all layers and tasks are provided in Appendix C.

are generally maintained during training, certain tasks, e.g., ListOps, show that exponential nor-
malization can converge to a configuration that implies memory retention. Furthermore, the gating
behavior induced by exponential normalization on CIFAR-10 results in a substantial performance
drop, consistent with our observation in Section 4 that this task is adversely affected by gating.

5.5 MAMBA-2 AS A PSEUDO-LTI

Motivated by the strong performance of SSMs with LTI structure on LRA tasks, and by the high vari-
ance observed in input-dependent eigenvalues (particularly pronounced in Mamba-2 on ListOps), we
construct a pseudo-LTI variant of Mamba-2. Concretely, we modify the discretization step so that the
state matrix Λ is computed with respect to a fixed sampling interval, rather than an input-dependent
one. This ensures that Λ remains constant across inputs, while allowing input-dependencies to be
absorbed into the input matrix B.

According to Figure 4, this modification of Mamba-2 yields a behavior analogous to S4, both in
performance on ListOps and eigenvalue distribution, with all eigenvalues remaining close to one,
while the time-varying dynamics are assumed to be captured through the input matrix B. More
fine-grained plots are provided in Appendix C, revealing that eigenvalues still shift from their initial
distribution, though only within a narrow range.

6 CONCLUSION

Across diverse sequence modeling benchmarks, we leveraged a unified dynamical systems represen-
tation of SSMs and attention to conduct an extensive empirical analysis of eigenvalue distributions.
This study revealed characteristic eigenvalue distributions distinguishing attention models from their
linear counterparts and demonstrated the efficacy of eigenvalues in capturing essential aspects of se-
lectivity and memory retention. We also identified correlations between spectral properties and task
requirements or model selection. Furthermore, we highlighted how architectural modifications, such
as gating, convolution, and layer variations, manifest in the eigenvalue spectrum. Taken together,
our results show that eigenvalue analysis may serve as a systematic method for understanding the ca-
pabilities of sequence models on a given task, opening up new possibilities for initialization schemes
and architectural design choices that encourage spectral properties well-suited to particular tasks.

Limitations: While analyzing the eigenvalues of the state space interpretation reflects effects of
several architectural changes, other components of these models also shape their behavior, and a
complete understanding requires further investigation. Additionally, we analyze eigenvalue magni-
tudes within predefined bins, but finer-grained analyses may provide supplementary insights. Ex-
tending these analyses to capture the full complexity of model dynamics, as well as other choices,
such as positional embeddings, represents an important direction for future research.

9
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REPRODUCIBILITY STATEMENT

We have made efforts to ensure the reproducibility of our results. The eigenvalue computations
follow the procedure described in the DSF paper (Sieber et al., 2024), with full derivation and com-
putation details referenced therein. In Appendix B, we provide training configurations, hyperparam-
eter choices, and experimental settings, together with additional clarifications of our methodology.
Furthermore, all datasets used are standard benchmarks, and are also described in Appendix B.
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APPENDIX

A ADDITIONAL DETAILS ON THE DSF

The LPV dynamics equation 1 can also be written in a convolutional representation, i.e., y = Φu,
where the kernel Φ is defined as

Φ =


C0B0 +D0

C1Λ1B0 C1B1 +D1

...
. . . . . .

CL

∏L
k=1 ΛkB0 . . . CLΛLBL−1 CLBL +DL

 . (4)

Note that the kernel Φ has the same dimensions as the attention matrix, i.e., softmax(qk⊤) for soft-
max attention, and that the two matrices are equivalent, up to a scaling factor WV . Using Lemma 1
in Sieber et al. (2024), all considered masked attention can be written in the form given by equation 1
as

Λi =
η(qi−1,ki−1)

η(qi,ki)
IN ∈ RN×N , (5a)

Bi =

(
1

η(qi−1,ki−1)
Id ⊗ ψ(kj)

)
WV ∈ RN×d, (5b)

Ci = Id ⊗ ϕ(qi)
⊤ ∈ Rd×N , (5c)

where ⊗ denotes the Kronecker product and the transition dynamics Λi are solely governed by
a scalar defined through normalization terms in equation 5a. The detailed derivation of softmax
attention as an LPV system are provided in (Sieber et al., 2024, Appendix B).

B EXPERIMENTAL DETAILS

This section contains details about experimental results provided in Section 4. The experiments were
performed on the long range arena (LRA) benchmark (Tay et al., 2021), the multi-query associative
recall (MQAR) benchmark (Arora et al., 2023) and the WikiText benchmark (Merity et al., 2016).
To obtain these results, we combined the LRA2 and Zoology3 code bases.

Model Details We evaluate the following three architecture classes on all tasks:

1. Attention: softmax attention (Vaswani et al., 2017), linear attention (Katharopoulos et al.,
2020) and norm-attention (Sieber et al., 2024). In all three settings, we employ a standard
GPT-2–style multi-headed Transformer, where the attention block is replaced by the re-
spective attention mechanism. Each attention block is followed by a task-dependent multi-
layer perceptron. For fairness, all three variants share the same overall architecture and
hyperparameters, differing only in the attention function, learning rate, dropout, and batch
size. Furthermore, softmax and linear attention use learnable positional token embeddings,
while norm attention does not.

2. Linear parameter-varying state space models: Mamba-2 (Dao & Gu, 2024). We use the
same GPT-2 style multi-headed Transformer backbone with learnable token embeddings
but no positional encoding, substituting the attention block with the SSD block, where we
additionally apply a 1D short-convolution, with a filter of dimension 4 across sequence
length to the input of each layer. The implementation follows the official codebase.4

3. Linear time-invariant state space models: S4 (Gu et al., 2021) and LRU (Orvieto et al.,
2023a). We use one-hot encoding of the input, followed by a stacked encoder model archi-
tecture, which consists of a linear encoder followed by SSM blocks corresponding to the

2https://github.com/google-research/long-range-arena
3https://github.com/HazyResearch/zoology
4https://github.com/state-spaces/mamba
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specific model. We adapt the S45 and unofficial LRU6 code bases and integrate them into
our framework. To ensure a fair comparison, we keep the architecture and all hyperparam-
eters of both models constant, except for the learning rate, dropout and batch size.

All models are trained and evaluated over five different tasks (3 LRA tasks, MQAR and WikiText-
103), while their architectures were fixed for each task (with the architecture details provided in
Table 1), with the aim to keep the models comparable in size. In the remainder of the section, we
provide task-wise details of experiments.

B.1 LRA EXPERIMENTS

Training details As outlined in Section 4.1, we restrict our experiments to a subset of LRA tasks:
CIFAR-10, IMDb, and ListOps. For all LRA experiments, we follow the training protocol below:

• Optimizer and schedule: Linear warmup with cosine annealing and AdamW opti-
mizer (Loshchilov & Hutter, 2019), trained for a constant number of epochs per task, as
indicated in Table 1.

• Position information: Positional embeddings (Brown et al., 2020) are used only for linear
and softmax attention.

• Data: Each model is trained on the subset of standard datasets from the LRA benchmark,
summarized below; full details can be found in (Tay et al., 2021).

1. Long List Operations (ListOps): This benchmark tests a model’s ability to handle
hierarchical dependencies across long input sequences. The task involves predicting
the outcome of mathematical expressions built from nested mean, median, max, and
min operations.7 It is framed as a ten-class classification problem, with input lengths
of up to 2k tokens.

2. Byte-Level Text Classification (IMDb): This task measures a model’s ability to iden-
tify sentiment in long tokenized texts. The dataset is composed of IMDb movie re-
views, each labeled as either positive or negative. It is formulated as a binary classifi-
cation problem with input sequences of up to 4k tokens.

3. Image Classification from Pixel Sequences (CIFAR-10): This benchmark assesses
a model’s capacity to infer 2D spatial structure from linearized pixel sequences. The
dataset contains vectorized images belonging to one of ten categories (e.g., horse, car).
The task is framed as a ten-class classification problem with input sequences of up to
1k tokens.

Performed Experiments We run all six models with task-wise parameters given in Table 1 on the
described subset of LRA tasks for four different random seeds. For each of the runs, we provide the
eigenvalue distributions in the corresponding figures of the main text and Appendix C. Note that we
do not optimize the hyperparameters and we use the comparable model sizes to make comparison
sensible, and therefore the reported accuracies might be lower than in the original LRA paper (Tay
et al., 2021).

B.2 MQAR EXPERIMENTS

Training Details For all MQAR runs, we use the following training protocol:

• Optimizer and schedule: Linear warmup with duration of 10% and cosine annealing, with
AdamW optimizer (Loshchilov & Hutter, 2019). For each run, we sweep the learning rates
in logspace(−4,−2, 4) and train for 40 000 steps with a global batch size of 64. This is
the same setup as in (Arora et al., 2023).

5https://github.com/state-spaces/s4
6https://github.com/NicolasZucchet/minimal-LRU
7For instance, input: max(4, 3, min(2, 3), 1, 0, median(1, 5, 8, 9, 2),

output: 5.

14

https://github.com/state-spaces/s4
https://github.com/NicolasZucchet/minimal-LRU


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

• Position information: Positional embeddings (Brown et al., 2020) are used for linear and
softmax attention models only, and not for the SSM architecture classes. This is the same
setup as in (Arora et al., 2023).

• Data: Each model is trained on an MQAR dataset with 100,000 datapoints and evaluated
on 3,000 datapoints. This is the same setup as in (Arora et al., 2023). The data and its
order are constant for all runs, with the number of key-value pairs equal to 64 and an input
sequence length of 512, corresponding to the most challenging task from (Arora et al.,
2023).

Performed Experiments We run all six models on the above-specified MQAR task, for 4 different
seeds. For each model, we apply the architecture settings in Table 1 and sweep over the learning
rates. We only report the results of the best-performing learning rate in the corresponding figures of
the main text and Appendix C.

B.3 WIKITEXT EXPERIMENTS

Training Details For all WikiText experiments, we use the following training protocol:

• Optimizer and schedule: Linear warmup 3000 steps and cosine annealing, with AdamW
optimizer (Loshchilov & Hutter, 2019). We train for 130 000 steps with a global batch size
of 8.

• Position information: Positional embeddings (Brown et al., 2020) are used for softmax
and linear attention models only.

• Data: We use Wikitext-103, which contains 103 million tokens extracted from the set of
verified articles on Wikipedia. Aside from featuring a large vocabulary, it also retains the
original case, punctuation and numbers. Given the fact that it is composed of full articles,
this dataset is well-suited for evaluating a model’s ability to take advantage of long term
dependencies.

Performed Experiments We run all models on the above-specified WikiText task for four differ-
ent seeds. For each model, we apply the architecture settings in Table 1 and report the results in the
corresponding figures of the main text and Appendix C.

Table 1: Common architectures for different tasks. Eval BSZ corresponds to the size of the batch used for the
computation of eigenvalues of attention models and Mamba-2.

Depth Model dim d State dim N Heads Mixer dim Iterations Eval BSZ

CIFAR-10 6 512 64 4 128 50 epochs 64
IMDb 4 128 64 4 512 30 epochs 32
ListOps 6 128 64 4 256 50 epochs 32

MQAR 2 128 128 1 - 40k steps 64

WikiText 6 512 512 8 512 130k steps 8
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C ADDITIONAL RESULTS

With results in the main text being limited to a single head, we leverage this section to extend our
empirical analysis to further head dimensions of all investigated multi-head models (Mamba-2 and
attention models) and benchmark tasks. Note that since MQAR has been trained with a single head,
no further results are displayed in the following. To further strengthen our empirical investigation,
we subsequently display results for three additional random seeds, all models, and all benchmark
tasks. The overview of all presented results is given below:

• Figure 6: contains all missing layers from Figure 1;
• Figures 7- 9: show remaining heads for the same models from Figure 1 on LRA tasks;
• Figures 10- 11: show remaining heads for the same models from Figure 1 on WikiText

benchmark;
• Figures 12-19: illustrate eigenvalue spectra for one of the heads over three additional seeds

for all models and tasks;
• Figure 20: comparison of attention models with explicit convolution and gating for one of

the heads on LRA tasks (extension of Figure 2);
• Figure 21: comparison of attention models with explicit convolution and gating for one of

the heads on WikiText benchmark (extension of Figure 2)
• Table 2 and Figure 22: summarized performance of nominal models from Figure 1 and the

absolute change in performance after introducing the architectural changes (introduction of
explicit gating and convolution, as well as the change of normalization function for norm
attention);

• Figure 23: comparison of different normalization functions for norm attention models on
all tasks (extension of Figure 4);

• Figure 24: contains eigenvalue distributions for all layers of one of the heads for Mamba-
2 pseudo-LTI variation on all LRA tasks (extension of Figure 4), as well as fine-grained
eigenvalue distribution plots showing that the eigenvalues shift after training, though almost
negligibly.

The provided figures showcase the robustness of our conclusions and their extension to different
seeds, model heads, and tasks not directly provided in the main paper.

All figures make use of the same legend as Figure 1, once again displayed in Figure 5, below.
Thereby, bars show the proportion of eigenvalues falling within discretized ranges. Lightly shaded
and darker bars indicate the distribution at initialization and after training, respectively. Error bars
denote standard deviation across input sequences. Model performance, measured as perplexity for
WikiText (lower is better) and percentage of correct output sequences for the other (higher is better),
is indicated in the parentheses.

eigenvalue ranges

initialization

trained

0.0-0.1 0.1-0.5 0.5-0.9 0.9-1 1-10 10-100 > 100

Figure 5: Plot legend of all subsequent figures.
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Figure 6: Eigenvalue distributions for one head, across all models, layers, and tasks (excluding MQAR).
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Figure 7: Eigenvalue distributions across remaining heads and all layers for CIFAR-10.
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Figure 8: Eigenvalue distributions across remaining heads and all layers for ListOps.
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Figure 9: Eigenvalue distributions across remaining heads and all layers for IMDb.
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Figure 10: Eigenvalue distributions across 4 additional heads and all layers for WikiText.
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Figure 11: Eigenvalue distributions across remaining heads and all layers for WikiText.
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Figure 12: Eigenvalue distributions across models, layers, and two out of three additional random seeds for
CIFAR-10.
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Figure 13: Eigenvalue distributions across models, layers, and one remaining additional random seed for
CIFAR-10.
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Figure 14: Eigenvalue distributions across models, layers, and two out of three additional random seeds for
ListOps.
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Figure 15: Eigenvalue distributions across models, layers, and one remaining additional random seed for
ListOps.
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Figure 16: Eigenvalue distributions across models, layers, and three additional random seeds for IMDb.
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Figure 17: Eigenvalue distributions across models, layers, and three additional random seeds for MQAR.
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Figure 18: Eigenvalue distributions across models, layers, and two out of three additional random seeds for
WikiText.
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Figure 19: Eigenvalue distributions across models, layers, and one remaining additional random seed for
WikiText.
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Figure 20: Comparison of the effects of gating and convolution on the eigenvalue spectra for one head, across
CIFAR-10, IMDb, and ListOps, the three investigated attention models, and all layers.
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Figure 21: Comparison of the effects of gating and convolution on the eigenvalue spectra for one head, Wiki-
Text, the three investigated attention models, and all layers.

Table 2: Performance of models across different tasks for the nominal seed shown in Figure 1.

S4 LRU Mamba-2 Lin Att Sm Att Norm Att

CIFAR-10 89.0 68.9 66.6 44.7 32.8 48.7
IMDb 81.5 86.1 86.8 63.7 62.1 66.4
ListOps 55.5 40.1 53.9 40.9 39.7 41.5

MQAR < 1.5 < 1.5 > 99.0 < 1.5 > 99.0 < 1.5

WikiText 74.3 60.9 40.1 39.5 34.4 43.0

Lin Att Norm Att Sm Att
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Figure 22: The absolute change in performance after each architectural change across models and tasks. For
gating and convolution, the difference is computed in comparison to the nominal models shown in Figure 1,
whose performance is summarized in Table 2. For normalization, the difference is computed with respect to the
performance of norm attention with convolution and softplus as normalization function, shown in Figure 23.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

0
25
50
75

100 layer 1

0
25
50
75

100 layer 2

0
25
50
75

100 layer 3

0
25
50
75

100 layer 4

0
25
50
75

100 layer 5

Exponential 
 (27.1)

Sigmoid 
 (64.5)

Softplus 
 (61.9)

0
25
50
75

100 layer 6

CIFAR-10 Norm Att with conv
layer 1

layer 2

layer 3

layer 4

layer 5

Exponential 
 (40.3)

Sigmoid 
 (39.8)

Softplus 
 (40.3)

layer 6

ListOps Norm Att with conv

0
25
50
75

100 layer 1

0
25
50
75

100 layer 2

0
25
50
75

100 layer 3

0
25
50
75

100 layer 4

0
25
50
75

100 layer 5

Exponential 
 (49.6)

Sigmoid 
 (51.0)

Softplus 
 (42.6)

0
25
50
75

100 layer 6

WikiText  Norm Att with conv
layer 1

layer 2

layer 3

Exponential 
 (71.0)

Sigmoid 
 (80.2)

Softplus 
 (80.0)

layer 4

IMDb Norm Att with conv

layer 1

Exponential 
 (<1.5)

Sigmoid 
 (<1.5)

Softplus 
 (76.3)

layer 2

MQAR Norm Att with conv

Figure 23: Eigenvalue distributions for all tasks and one of the heads for norm attention with convolution,
using different normalization functions.
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Figure 24: Eigenvalue spectra of Mamba-2 Pseudo LTI, one head, across all layers and LRA models. Standard
binning is presented in the top row of plots, followed by a more fine-grained visualization around one. The
corresponding legends are provided below the respective plots.
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