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Abstract

Fine-tuning well-aligned large language mod-
els on new domains often degrades their safety
alignment, even when using benign datasets.
Existing safety alignment techniques primarily
focus on pretraining, leaving fine-tuned models
vulnerable to behavioral shifts. In this work, we
introduce safety token regularization (STR), a
lightweight method designed to preserve safety
properties during fine-tuning. Our approach
identifies salient tokens from rejection tem-
plates of well-aligned models and constrains
their associated logits during training, prevent-
ing the loss of critical safety behaviors. Un-
like reinforcement learning or preference opti-
mization methods, STR requires minimal ad-
ditional computation and seamlessly integrates
with parameter-efficient fine-tuning techniques
such as LoRA. Comprehensive experiments
demonstrate that our approach achieves safety
performance on par with state-of-the-art meth-
ods, while preserving task-specific utility and
requiring minimal implementation overhead.
Furthermore, we show that safety token regu-
larization enhances training stability and over-
all performance beyond safety considerations
alone. This work offers a practical and readily
deployable strategy for continual safety align-
ment in fine-tuned LLMs.

1 Introduction

The rapid integration of Large Language Mod-
els (LLMs) into real-world applications, partic-
ularly in sensitive areas like healthcare, educa-
tion, and law, demands that LLMs remain safe and
aligned with human values, especially when fine-
tuned for specific tasks (Bommasani et al., 2021;
Thirunavukarasu et al., 2023; Hager et al., 2024;
Wei et al., 2022). While pre-training of frontier
LLMs attempts to instill fundamental safety be-
haviors, it is concerning that fine-tuning, even on
benign and useful datasets, can inadvertently erode
this crucial pre-trained safety alignment (Zhao
et al., 2023).
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Figure 1: STR architecture overview. Our method
identifies “safety words” from the rejected templates of
well-aligned models. These words are then tokenized to
generate a set of “safe tokens”, which are used to con-
strain the model’s behavior in the logits space, ensuring
that the fine-tuned model remains consistent with the
pretrained model’s safety standards.

Existing approaches to safety alignment, such
as Reinforcement Learning from Human Feed-
back (Bai et al., 2022; Sun et al., 2023) and Di-
rect Preference Optimization (Rafailov et al., 2023;
Meng et al., 2025b), have primarily focused on pre-
training and initial alignment. While Parameter-
Efficient Fine-Tuning (PEFT) techniques like
LoRA (Hu et al., 2021) offer efficient adaptation,
they often lack explicit mechanisms to preserve
pre-trained safety during task-specific fine-tuning.
Recent research has begun to address this critical
gap, exploring methods to extract and maintain
safety patterns during fine-tuning (Hu et al., 2024;
Zhao et al., 2023; Hsu et al., 2024; Peng et al.,



2024; Qi et al., 2024). However, a need remains
for simple, effective, and readily deployable tech-
niques that can robustly preserve pre-trained safety
without compromising task performance.

In this work, we introduce safety token regu-
larization (STR), a novel approach to continual
safety alignment during fine-tuning. Our core in-
sight is that pre-trained models exhibit distinct pat-
terns in their responses to safety-critical prompts,
often manifested through specific safety-indicative
tokens. We propose a method to identify these
tokens by analyzing the pre-trained model’s behav-
ior and then introduce a regularization term during
fine-tuning that constrains the logits of these tokens.
This constraint ensures that the fine-tuned model
retains its sensitivity to safety signals, mirroring
the pre-trained model’s behavior in safety-relevant
contexts. See Fig. 1 for model architecture.

We present extensive experimental evaluations
on benchmark datasets, comparing our method
against state-of-the-art safety fine-tuning tech-
niques. Our results demonstrate that safety to-
ken regularization achieves safety performance on
par with, or exceeding, current methods, while
maintaining or even improving performance on
target tasks. Moreover, we analyze the impact
of key hyperparameters and provide insights into
the mechanism by which our method effectively
preserves safety. Our findings suggest that while
token-level constraints alone may be insufficient
for comprehensive safety alignment, they can serve
as a lightweight regularization strategy to improve
safety retention in continually fine-tuned LLMs.

Thus our approach offers several key advan-
tages: it is conceptually simple and easily inte-
grated into existing PEFT frameworks, demonstra-
bly preserves pre-trained safety alignment, main-
tains competitive task-specific performance, and,
surprisingly, can even enhance post-training stabil-
ity and overall model utility. Our main contribu-
tions are:

>We introduce safety token regularization (STR),
a token-level safety preservation method that en-
hances fine-tuning without the need for additional
preference modeling or adversarial training.

>We conduct extensive experiments on multi-
ple benchmarks, demonstrating that STR reduces
harmful response rates in fine-tuned models while
maintaining competitive utility.

>Further experiments show that, beyond improv-
ing safety, token regularization enhances the stabil-
ity and overall performance of PEFT models.

2 Related works

Parameter-efficient fine-tuning in LLMs. As
models scale from millions to trillions of parame-
ters, full fine-tuning becomes increasingly challeng-
ing and intractable for most researchers. Conse-
quently, efficient fine-tuning methods have become
crucial. Several approaches have emerged in this
space, including prefix-tuning (Li and Liang, 2021;
Jiaet al., 2022; Liu et al., 2024a; Zhou et al., 2022),
representation editing (Wu et al., 2025; Li et al.,
2024; Hernandez et al., 2023; Xu et al., 2025), and
Low-Rank Adaptation (LoRA) (Hu et al., 2021;
Dettmers et al., 2023). Among these, LoRA has
gained widespread adoption due to its memory
efficiency and its ability to achieve performance
comparable to full fine-tuning across various con-
ditions. Recent research has explored ways to en-
hance LoRA and address its limitations from dif-
ferent aspects. Work by (Liu et al., 2024b) decom-
posed pretrained weights into magnitude and di-
rection components, using LoRA to fine-tune only
the directions, further reducing trainable parame-
ters. Besides, (Dettmers et al., 2023) introduced a
quantization approach for LoRA, optimizing both
training time and memory efficiency. On the other
hand, (Meng et al., 2025a) proposed initialization
techniques based on singular values to accelerate
LoRA’s convergence. In this work, we adopt LoRA
as our baseline and incorporate safety regulariza-
tion within the PEFT framework, integrating it into
both the training and evaluation phases.

Safety alignment. Aligning LLMs to follow hu-
man rules is crucial for their deployment in real
applications. RLHF, the pioneering approach in
this direction, utilizes reinforcement learning and
human preferences to teach models to follow hu-
man values (Bai et al., 2022; Dai et al., 2023). DPO
(Rafailov et al., 2023) further enhances RLHF by
introducing reward-free optimization mechanisms
that reduce alignment costs and ensure procedu-
ral stability. Subsequently, extensive research has
emerged aimed at enhancing the alignment process
through cost reduction (Meng et al., 2025b; Huang
et al., 2024b; Ji et al., 2025), robustness improve-
ment (Ramesh et al., 2024; Tang et al., 2024; Zheng
et al., 2023), and increased sample efficiency (Sun
et al., 2023; Zhou et al., 2024). Given their impres-
sive results and successful alignment with human
values, these approaches were primarily adopted
during pre-training rather than fine-tuning. How-
ever, this creates a new safety risk when fine-tuning



these models on new data, as first demonstrated in
(Qi et al., 2023). Consequently, ensuring safety
during fine-tuning has gained increased attention
(Hsu et al., 2024; Li et al., 2025; Zhao et al., 2023;
Hu et al., 2024; He et al., 2024). Research by (Hu
et al., 2024) filters high-risk samples based on gra-
dient norms, while (Zhao et al., 2023) demonstrates
that models tend to forget unsafe samples more
readily than benign ones. Additionally, (Huang
et al., 2024a) proposes robust training techniques
to prevent harmful behavior. From a PEFT per-
spective, (Hsu et al., 2024) and (Li et al., 2025)
extract safety patterns from pretrained models and
introduce mechanisms to preserve these beneficial
patterns during the fine-tuning process.

3 Method

In this section, we describe our light-weight safety-
preserving fine-tuning approach, which can be
seamlessly integrated into parameter-efficient fine-
tuning (PEFT) frameworks. Our method enforces
logit constraints on a predefined set of “safety to-
kens”, ensuring that fine-tuned models preserve
their pretrained refusal behavior while maintaining
task-specific performance.

3.1 Preliminaries

We consider a fine-tuning dataset D consisting
of N sequence pairs, D = {(:cg"%n,ygn%n) N,

where xgn%n is the input tokens (prompt or partially

observed sequence); ygn},ﬂ is the target tokens to be
predicted autoregressively; and T, is the sequence
length of the n-th example. This dataset D is used
to fine-tune the pre-trained language model using

our proposed safety token regularization approach.

3.2 Identifying safety tokens

We define a set of safety tokens, {t;}1_, as those
words or subwords associated with disallowed con-
tent, hate speech, or other high-risk categories.
One way to identify these tokens is through a
vocabulary-based analysis of harmful expressions.
However, these do not necessarily refect how the
base models handle the tokens.

Our work adopts a more direct approach by an-
alyzing how aligned models respond to harmful
queries. That is, we identify safety-indicative to-
kens — those that are strongly associated with the
pre-trained model’s safety-oriented behavior. Our
hypothesis, illustrated conceptually in Fig. 1, is that
well-aligned pre-trained models exhibit consistent

patterns in their responses when confronted with
potentially harmful or inappropriate queries. These
patterns often manifest in the form of specific re-
jection templates, which aligned models employ to
gracefully refuse or deflect such requests.

Based on this observation, we selected com-
mon words from these rejection templates as safety
words. To demonstrate our method in experiments,
we used three common words: {‘I,” ‘cannot,” and
‘can’t’}. These words were then tokenized to deter-
mine the corresponding safety tokens. Our experi-
mental results in the next section will demonstrate
that preserving the logits of these safety tokens
during fine-tuning maintains the model’s safety be-
havior while stabilizing the learning process.

3.3 PEFT loss

For clarity, consider a training instance
(mgn%n,y§n%n) we define a composite loss

function comprising two key components: Au-
toregressive cross-entropy and Safety token
regularization.

Autoregressive cross-entropy. We adopt the
standard cross-entropy for autoregressive language
modeling:

T,
n 1 = n n
L(CE) =7 ZlogP(yf a2l OPEFT) ;
" o=1
(1

where Opgpr denotes the trainable PEFT parame-
ters (e.g., using LoRA of (Hu et al., 2021)), while
the base model parameters O, remain frozen.
This loss encourages predictions to match the
ground-truth tokens. As PEFT does not explicitly
preserve safety alignment, we introduce safety to-
ken regularization, constraining the model’s logits
on critical safety tokens.

Safety token regularization. To preserve safe
behavior the pre-trained model during fine-tuning,
we introduce a safety token regularization (STR)
term. This term penalizes deviations in the logits
of pre-defined “safety token” between the base pre-
trained model and the PEFT-adapted model. The
logits are particulary informative about the corre-
sponding tokens in relative preferences to other
tokens in the vocabulary in the same context, in-
dicative of the confidence in generating the tokens
as well as semantic relationships between tokens.
Let E';"}Se and EE%FT denote the logits of the k-
th safety’ token at time step ¢ under the base model



Algorithm 1 Safety-Aware PEFT Fine-Tuning

Require: Opyge: Frozen pretrained model
Opgrr: Trainable PEFT params
1: D: Training set of sequences
Safety tokens
n: Learning rate
Ensure: Opgpr (updated)
2: Initialize Opgpr; Freeze Opase
3: for each training iteration do
4: Sample batch {(x1.7, y1.7)} from D
s: Base Model Get (}%° for safety tokens
6:  PEFT Forward: Get ({;"" and compute

{tehisy:
A: Frobenius norm weight

P(y¢|21:4-1; OpEFT)
7: Losses: Compute Lcg, L and
L=Lcg+ LR
8: Update Opgpr:
OpgrT < OPEFT — 1 Vo £

9: end for

(Opase) and the PEFT-adapted model (Opgrr), re-
spectively. We deviations in the logits can be cap-
tured via a square loss:

T, K
D 99 I (s Es ) R
=1 k=1
Minimizing this term constrains the PEFT-updated
logits for safety tokens to remain close to those of
the base model, effectively preserving its original
safety-oriented behavior in the logit space.

Combined loss. We form the total loss for the

n-th example by:
£ =gl e, 3)

where A > 0 controls the trade-off between model-
ing accuracy and safety-token consistency.

The loss for the full fine-tuning dataset D of N
instances is simply the averaging of the instance
losses. See Algorithm 1 for a pseudocode for the
entire fine-tuning process.

4 [Experiments

4.1 Experimental setup

To comprehensively evaluate the effectiveness of
our proposed safety token regularization method,

we conducted experiments across a diverse set
of benchmarks, focusing on both safety and util-
ity aspects of fine-tuned LLMs. We utilized
two prominent LL.M architectures: LLaMA-2-7b-
chat and LLaMA-3-8b-instruct, representing mod-
els of varying scales and pre-training paradigms.
For parameter-efficient fine-tuning, we employed
LoRA, a widely adopted technique known for its
efficiency and performance.

The regularization weight A in Eq. (3) was se-
lected via validation. Generally, we use larger A
values (more constraints) for high-risk datasets and
smaller values for benign data. Notably, we found
that commonsense reasoning tasks (Hu et al., 2023)
require a small A value (0.1 in our setting), aligning
with recent findings that improved reasoning ca-
pacity correlates with safer model behavior (Guan
et al., 2024).

4.2 Evaluation datasets and metrics

Our evaluation encompassed three distinct experi-
mental settings, each designed to assess different
facets of safety and utility:

Alpaca dataset for safety evaluation when fine-
tuning on benign data: This instruction-following
dataset (Taori et al., 2023), containing over 50,000
samples, is widely used to assess the safety preser-
vation in a more general fine-tuning scenario. Fol-
lowing (Li et al., 2025), we trained models for one
epoch, reserving 200 samples for evaluation.

PureBad dataset for harmfulness evaluation:
This dataset—constructed from 100 highly harm-
ful prompts extracted from (Qi et al., 2023)-was
used to evaluate the method’s ability to preserve
safety behavior under adversarial conditions. Fine-
tuning on this dataset serves as a stress test, reveal-
ing the model’s robustness against safety degrada-
tion when exposed to exclusively harmful content.
We applied LoRA with rank 8 to both LLaMA-
2 and LLaMA-3 models using a learning rate
of 0.0005. The fine-tuning ran for 5 epochs on
LLaMA-2, while LLaMA-3 needed longer train-
ing of 30 epochs (we extended the training time
because LLaMA-3 stayed safe after 5 epochs, and
we wanted to test its behavioral limits, similar to
what (Li et al., 2025) observed).

Commonsense-15k dataset for utility evalu-
ation: To assess the impact on utility, particu-
larly in reasoning capabilities, we fine-tuned on
the Commonsense-15k dataset (Liu et al., 2024b).
We evaluated performance on eight diverse com-
monsense reasoning benchmarks: BoolQ, SIQA,



Llama-2-chat-7B  Llama-3.1-Instruct-8B

Before Fine-tuning 0.0% 1.4%
Rank for PEFT Training 16 32 16 32
Base PEFT
LORA 237% 31.7% 13.8% 14.5%
PiSSA 31.7% 35.7% 13.8% 14.5%
DORA 23.7% 253% 10.1% 9.4%
LoRA w. post-hoc alignment
LORA w. IA 13.5% 23.7%  7.7% 5.8%
LORA w. Vac 202% 253% 41.1% 38.3%
Safe LoRA 157% 14.5%  8.5% 6.7%
SaLoRA 3.5% 4.4% 2.9% 1.4%
Ours (I) 2.9% 0.0% 3.1% 1.5%
Ours (cannot) 3.4% 0.6% 3.5% 1.5%

Table 1: Harmful Response Rate (HRR) on Aplaca dataset. Overall, our method achieves results on par
with current state-of-the-art methods across different settings. Notably, under the LLaMA-2 setup, our approach
outperforms competing methods, and matches the safety performance of pretrained models on rank 32.

across these tasks as the primary utility metric.

Models Method | HRR(})
Pretrained 0.0% 4.3 Safety on Alpaca dataset
LoRA 62.3% We compared our method against current state-of-
LM2-Chat Ours (I) 0.0% the-art approaches presented in (Li et al., 2025), in-
Ours (cannot) 0.0% cluding PEFT baselines—LoRA (Hu et al., 2021),
DoRA (Liu et al., 2024b), and PiSSA (Meng et al.,
Pretrained 12.7% 2025a)—and LoRA combined with post-hoc align-
LoRA 47.3% ment methods: InferAligner (IA) (Wang et al.,
LM3-Instruct Ours (I) 13.5% 2024), and Vaccine (Vac) (Huang et al., 2024a).
Ours (cannot) 77% As shown in Table 1, our method achieves com-
Ours (I cannot) 4.0% petitive results compared to current state-of-the-art

Table 2: Harmful Response Rate (HRR) on PureBad
dataset. Our approach preserves safety behavior in
LLaMA-2 and even surpasses the safety performance
of the pretrained LLaMA-3 models. These findings
suggest that our method can learn beyond the baseline
safety provided by the pretrained model.

PIQA, HellaSwag, WinoGrande, ARC-e, ARC-c,
and OBQA.

Evaluation metrics. For safety, we report the
Harmful Response Rate (HRR), calculated as the
percentage of generated responses flagged as harm-
ful by an automated safety classifier (Llama Team,
2024), following the evaluation protocol of (Li
et al., 2025). Another key metric for safety is
the Attack Success Rate (ASR), which is evalu-
ated using keyword matching, following (Qi et al.,
2023). For utility, we report Average Accuracy

approaches. On LLaMA-2, our models establish
new state-of-the-art performance, matching pre-
trained model safety levels at rank » = 32. For
LLaMA-3, our approach achieves comparable re-
sults to existing methods. Consistent with previ-
ous findings in (Li et al., 2025), larger LLaMA-3
models demonstrate greater robustness during fine-
tuning compared to their smaller counterparts.

4.4 Safety on PureBad dataset

Table 2 presents the Harmful Response Rate (HRR)
on the PureBad dataset for LLaMA-2-7b-chat
and LLaMA-3-8b-instruct models fine-tuned us-
ing LoRA and our safety token regularization
method, across LoRA ranks of 16 and 32. As
shown, standard LoRA fine-tuning significantly
degrades safety, resulting in HRRs of 62.3% and
47.3% for LLaMA-2-7b-chat and LLaMA-3-8b-
instruct, respectively. In stark contrast, our safety
token regularization method effectively mitigates



Method ‘ BoolQ PIQA SIQA  HellaSwag WinoGrande ARC-e ARC-c OBQA ‘ Avg. Acc ASR
r=16

LoRA 65.7% 754%  70.1% 53.9 % 66.0% 76.3% 61.2% 66.0% 66.8% 0.19%

DoRA 64.8% 75.8% 74.2% 42.0% 64.9% 825% 66.0%  76.0% 68.3% 0.19%

Ours 652% 773% 67.1% 46.8% 67.9% 78.4% 64.3% 75.5 67.8% 0.19%
r=32

LoRA 62.4% 757%  42.4% 27.7% 63.7% 50.0% 41.0% 43.8% 50.8% 0.19%

DoRA 63.1% 62.6% 31.4% 31.1% 62.1% 43.9% 32.8% 42.3% 46.2% 0.19%

Ours 58.5 71.2%  71.0% 45.4% 67.2% 823% 67.5% 76.7% 67.5% 0.0%
r=64

LoRA 619% 589%  49.7% 39.5% 56.3% 64.0% 51.5% 56.5% 54.8% 0.19%

DoRA 631% 73.6%  48.3% 39.2% 60.5% 36.9% 31.3% 36.0% 48.6% 0.0%

Ours 59.7% 774% 73.2% 56.3% 72.2% 82.5% 682%  76.8% 70.8% 0.0%

Table 3: Accuracy and ASR Comparison. The table summarizes the performance of LoRA, DoRA, and our
method when fine-tuning the Commonsense-15K dataset and evaluating across five commonsense reasoning tasks
in terms of accuracy and Attack Success Rate (ASR). At a low rank (r=16), all methods exhibit stable performance,
with our approach trailing DoRA slightly. However, as the rank increases, LoORA and DoRA become unstable and
degrade significantly, whereas our method remains robust and outperforms both baselines by a substantial margin.
From a safety perspective, all methods demonstrate high safety capacity, likely due to the focus on reasoning data

during fine-tuning.

this safety degradation, achieving HRRs of 0.0%
for LLaMA-2-7b-chat and 13.5% for LLaMA-
3-8b-instruct. Crucially, for LLaMA-2-7b-chat,
our method restores safety performance to the
level of the pre-trained model (0.0% HRR) and
even surpasses the pre-trained safety of LLaMA-3-
8b-instruct (12.7%H RR), demonstrating its abil-
ity to not only preserve but potentially enhance
pre-existing safety characteristics. These results
strongly indicate the effectiveness of safety to-
ken regularization in maintaining safety robustness,
even when fine-tuning on exclusively harmful data.

4.5 Utility on Commonsense-15k dataset

We followed the experimental settings from (Liu
et al., 2024b) to compare our method’s utility
against common PEFT methods like LoRA and
DoRA. Table 3 and Fig. 2 present the Average
Accuracy and accuracy variations across individ-
ual tasks, respectively, for LoRA, DoRA, and
our method fine-tuned on the Commonsense-15k
dataset. At lower LoRA ranks (e.g., r = 16), all
methods exhibit comparable Average Accuracy,
suggesting that safety token regularization does
not significantly hinder initial learning capacity.
However, as the LoRA rank increases (r = 32,
r = 64), standard LoRA and DoRA demonstrate
increasing instability and performance degradation,
as evidenced by the widening confidence intervals
in Fig. 2 and decreasing Average Accuracy in Ta-
ble 3. In stark contrast, our safety token regulariza-

tion method maintains consistent and robust perfor-
mance even at higher ranks, achieving the highest
Average Accuracy (70.8% at r = 64) and exhibit-
ing significantly reduced accuracy variance across
tasks (Fig. 2). This enhanced stability and sustained
utility at higher ranks suggest that safety token reg-
ularization not only preserves safety but may also
contribute to more robust and reliable fine-tuning,
particularly when increasing model capacity for
complex tasks.

4.6 Continual learning with safe tokens

In addition to the standard evaluation settings, we
also assess safety tokens in continual learning
scenarios. Specifically, we conduct experiments
on five commonsense reasoning tasks—BoolQ,
PIQA, SIQA, WinoGrande, and ARC-c—using
the LLaMA-2-7b-chat model. In this setup, each
task is learned sequentially without access to pre-
vious or future tasks’ data, and we evaluate per-
formance on models trained across all tasks in or-
der. We compare our approach with LoRA and
DoRA under the same experimental conditions de-
scribed by (Liu et al., 2024b), except that we re-
duce the training epochs from three to one. As
shown in Table 4, our method consistently achieves
higher average accuracy across all rank settings
than LoRA and DoRA. In addition to the over-
all performance gain, our method demonstrates
more stable performance—particularly at higher
ranks—mirroring the training behavior observed



Method ‘ BoolQ SIQA PIQA WinoGrande ARC-c | Avg. Accuracy
=32

LoRA 71.2% 802%  79.1% 70.7% 65.3% 73.3%

DoRA 62.8% 78.1% 81.7% 82.9% 61.9% 73.5%

Ours 68.3% 789% 81.2% 80.8% 64.2% 74.6 %
r=64

LoRA 56.0% 76.9%  80.4% 81.8% 63.7% 71.8%

DoRA 62.2% 7.5%  79.3% 77.1% 30.3% 51.3%

Ours 62.2% 78.6% 76.4% 81.4% 61.2% 72.0%
r=128

LoRA 69.7% 48.1% 81.7% 82.7% 64.2% 69.3%

DoRA 672% 73.9% 47.0% 6.2% 23.0% 43.5%

Ours 622%  74.6%  80.8% 81.6% 64.8% 72.8%
r=256

LoRA 62.1% 80.2% 82.5% 83.3% 67.0% 75.0%

DoRA 5.7% 284%  33.8% 14.7% 22.9% 21.1%

Ours 69.6% 79.4% 83.0% 83.8% 66.3% 76.4%

Table 4: Continual Learning Performance.The Table presents the accuracy of LoRA, DoRA, and our method
across various datasets under continual learning conditions. Our method achieves state-of-the-art performance in all
settings. Notably, when the rank is increased, both LoRA and DoRA exhibit instability—mirroring observations
from earlier experiments—whereas our method remains stable at higher ranks, further widening the performance

gap relative to other PEFT approaches.

on the commonsense-15k dataset.

4.7 Safety of random tokens

Our investigation extended to using randomly se-
lected tokens for regularization, with results pre-
sented in Fig. 3. We found that random tokens
can also contribute to improved model safety. This
effect can be explained through the lens of con-
tinual learning regularization, where preserving
token-level information from the pretrained model
may help maintain safety properties. However, the
mechanism behind random tokens’ effectiveness
remains uncertain, as these tokens lack explicit
connections to safety concepts. Still, this finding
points to a broader principle: when aiming to pre-
serve specific model behaviors, one can identify
relevant tokens and apply token regularization to
maintain desired characteristics.

4.8 The trade-off between safety and targeted
model adaptation

Prior safety research has largely neglected a criti-
cal consideration: model performance on the tar-
get training data (evaluation loss). While existing
safety enhancement methods improve alignment,
they often sacrifice learning effectiveness on the
original task. As demonstrated in Table 5, our

Tokens | ASR(%) | eval_loss(])
LoRA 16.7 0.79
N1 1 2.9 0.80
cannot 3.1 0.80
1 0.58 0.81
A=2 cannot 1.9 0.81

Table 5: Trade-Off Between Safety and Targeted
Data Performance. The evaluation loss for both the
traditional LoRA approach and our proposed method
remains comparable. Increasing the importance of
the token-loss term effectively suppresses harmful re-
sponses without substantially affecting the evaluation
loss.

method not only improves safety and utility but
also achieves performance comparable to standard
LoRA on the target data. These results demonstrate
that our approach successfully balances safety re-
quirements with task performance, showing that
enhanced safety does not necessitate compromised
learning capabilities on the core task data.

4.9 Analysis of running time

Table 6 compares the per-iteration running times
of LoRA, DoRA, and our proposed method on
the Commonsense-15k dataset using LLaMA-2-7b-
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Figure 2: The figure presents a box plot comparison of LoRA, DoRA, and our method on eight commonsense
datasets at rank 32 when tuning on the Commonsense-15k dataset. Overall, our approach consistently exceeds
the performance of both LoRA and DoRA while exhibiting greater stability across multiple runs. These findings
underscore the robustness and reliability of our method under varied conditions.
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Figure 3: Safe and Random Tokens Performance. We
compare the effects of “safe” versus “random” tokens
on the Alpaca dataset trained using the LLaMA-2 model.
Despite being randomly selected, these tokens still en-
hance the safety of the tuned models.

chat, with a batch size of 16 and a LoRA rank of
32. Our method runs 1.34 times slower than LoRA
but remains 1.25 times faster than DoRA.

5 Conclusion

We have revisited the critical challenge of safety
preserving in LLMs during fine-tuning scenar-
ios—a concern of increasing importance as these
models are widely adapted for sensitive domains.
We introduced safety token regularization (STR),
a lightweight and readily implementable approach
that leverages the inherent safety knowledge en-
coded within pre-trained models. Our extensive
empirical evaluation across diverse benchmarks

Method | Running time (ms)
LoRA 435 (ms)
DoRA 725 (ms)
Ours 581 (ms)

Table 6: The running time (in milliseconds) of our
method compared with LoRA and DoRA.

demonstrates that STR not only effectively pre-
serves pre-trained safety, achieving state-of-the-art
safety performance, but also maintains competitive
task utility and, surprisingly, enhances training sta-
bility. By constraining the logits of salient safety
tokens identified from rejection templates, STR
offers a practical and readily deployable strategy
for continual safety alignment in fine-tuned LL.Ms,
filling a critical gap in current parameter-efficient
fine-tuning methodologies.

Current limitation and future works Despite
demonstrating robust performance, our approach
has some limitations that warrant further investiga-
tion. A key constraint is that our method restricts
fine-tuned models to inherit the safety behavior of
their pretrained counterparts, potentially limiting
flexibility for new safety requirements. Although
certain results suggest that our method can learn
beyond the pretrained model’s safety scope, direct
model regularization remains necessary. Moving
forward, we plan to strengthen safety by both pre-
serving existing knowledge and collecting or ab-
stracting new insights from upcoming data.
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