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Abstract
Fine-tuning well-aligned large language mod-001
els on new domains often degrades their safety002
alignment, even when using benign datasets.003
Existing safety alignment techniques primarily004
focus on pretraining, leaving fine-tuned models005
vulnerable to behavioral shifts. In this work, we006
introduce safety token regularization (STR), a007
lightweight method designed to preserve safety008
properties during fine-tuning. Our approach009
identifies salient tokens from rejection tem-010
plates of well-aligned models and constrains011
their associated logits during training, prevent-012
ing the loss of critical safety behaviors. Un-013
like reinforcement learning or preference opti-014
mization methods, STR requires minimal ad-015
ditional computation and seamlessly integrates016
with parameter-efficient fine-tuning techniques017
such as LoRA. Comprehensive experiments018
demonstrate that our approach achieves safety019
performance on par with state-of-the-art meth-020
ods, while preserving task-specific utility and021
requiring minimal implementation overhead.022
Furthermore, we show that safety token regu-023
larization enhances training stability and over-024
all performance beyond safety considerations025
alone. This work offers a practical and readily026
deployable strategy for continual safety align-027
ment in fine-tuned LLMs.028

1 Introduction029

The rapid integration of Large Language Mod-030

els (LLMs) into real-world applications, partic-031

ularly in sensitive areas like healthcare, educa-032

tion, and law, demands that LLMs remain safe and033

aligned with human values, especially when fine-034

tuned for specific tasks (Bommasani et al., 2021;035

Thirunavukarasu et al., 2023; Hager et al., 2024;036

Wei et al., 2022). While pre-training of frontier037

LLMs attempts to instill fundamental safety be-038

haviors, it is concerning that fine-tuning, even on039

benign and useful datasets, can inadvertently erode040

this crucial pre-trained safety alignment (Zhao041

et al., 2023).042

Pretrained model

"I'm sorry",
"I apologize",
"I'm just",
"I'm an",
"I cannot",
"I would advise",

Safety words
selection {I, cannot}

Tokenization

Regularize safe
tokensSafe tokens

Tuning logits Based logits

B

LoRA

Rejected templates

{"role": "user", "content": "# Instruction 1"},
 
{"role": "assistant", "content": "# Targeted Assistance
Response 1"}

A

... ...

Figure 1: STR architecture overview. Our method
identifies “safety words” from the rejected templates of
well-aligned models. These words are then tokenized to
generate a set of “safe tokens”, which are used to con-
strain the model’s behavior in the logits space, ensuring
that the fine-tuned model remains consistent with the
pretrained model’s safety standards.

Existing approaches to safety alignment, such 043

as Reinforcement Learning from Human Feed- 044

back (Bai et al., 2022; Sun et al., 2023) and Di- 045

rect Preference Optimization (Rafailov et al., 2023; 046

Meng et al., 2025b), have primarily focused on pre- 047

training and initial alignment. While Parameter- 048

Efficient Fine-Tuning (PEFT) techniques like 049

LoRA (Hu et al., 2021) offer efficient adaptation, 050

they often lack explicit mechanisms to preserve 051

pre-trained safety during task-specific fine-tuning. 052

Recent research has begun to address this critical 053

gap, exploring methods to extract and maintain 054

safety patterns during fine-tuning (Hu et al., 2024; 055

Zhao et al., 2023; Hsu et al., 2024; Peng et al., 056
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2024; Qi et al., 2024). However, a need remains057

for simple, effective, and readily deployable tech-058

niques that can robustly preserve pre-trained safety059

without compromising task performance.060

In this work, we introduce safety token regu-061

larization (STR), a novel approach to continual062

safety alignment during fine-tuning. Our core in-063

sight is that pre-trained models exhibit distinct pat-064

terns in their responses to safety-critical prompts,065

often manifested through specific safety-indicative066

tokens. We propose a method to identify these067

tokens by analyzing the pre-trained model’s behav-068

ior and then introduce a regularization term during069

fine-tuning that constrains the logits of these tokens.070

This constraint ensures that the fine-tuned model071

retains its sensitivity to safety signals, mirroring072

the pre-trained model’s behavior in safety-relevant073

contexts. See Fig. 1 for model architecture.074

We present extensive experimental evaluations075

on benchmark datasets, comparing our method076

against state-of-the-art safety fine-tuning tech-077

niques. Our results demonstrate that safety to-078

ken regularization achieves safety performance on079

par with, or exceeding, current methods, while080

maintaining or even improving performance on081

target tasks. Moreover, we analyze the impact082

of key hyperparameters and provide insights into083

the mechanism by which our method effectively084

preserves safety. Our findings suggest that while085

token-level constraints alone may be insufficient086

for comprehensive safety alignment, they can serve087

as a lightweight regularization strategy to improve088

safety retention in continually fine-tuned LLMs.089

Thus our approach offers several key advan-090

tages: it is conceptually simple and easily inte-091

grated into existing PEFT frameworks, demonstra-092

bly preserves pre-trained safety alignment, main-093

tains competitive task-specific performance, and,094

surprisingly, can even enhance post-training stabil-095

ity and overall model utility. Our main contribu-096

tions are:097

>We introduce safety token regularization (STR),098

a token-level safety preservation method that en-099

hances fine-tuning without the need for additional100

preference modeling or adversarial training.101

>We conduct extensive experiments on multi-102

ple benchmarks, demonstrating that STR reduces103

harmful response rates in fine-tuned models while104

maintaining competitive utility.105

>Further experiments show that, beyond improv-106

ing safety, token regularization enhances the stabil-107

ity and overall performance of PEFT models.108

2 Related works 109

Parameter-efficient fine-tuning in LLMs. As 110

models scale from millions to trillions of parame- 111

ters, full fine-tuning becomes increasingly challeng- 112

ing and intractable for most researchers. Conse- 113

quently, efficient fine-tuning methods have become 114

crucial. Several approaches have emerged in this 115

space, including prefix-tuning (Li and Liang, 2021; 116

Jia et al., 2022; Liu et al., 2024a; Zhou et al., 2022), 117

representation editing (Wu et al., 2025; Li et al., 118

2024; Hernandez et al., 2023; Xu et al., 2025), and 119

Low-Rank Adaptation (LoRA) (Hu et al., 2021; 120

Dettmers et al., 2023). Among these, LoRA has 121

gained widespread adoption due to its memory 122

efficiency and its ability to achieve performance 123

comparable to full fine-tuning across various con- 124

ditions. Recent research has explored ways to en- 125

hance LoRA and address its limitations from dif- 126

ferent aspects. Work by (Liu et al., 2024b) decom- 127

posed pretrained weights into magnitude and di- 128

rection components, using LoRA to fine-tune only 129

the directions, further reducing trainable parame- 130

ters. Besides, (Dettmers et al., 2023) introduced a 131

quantization approach for LoRA, optimizing both 132

training time and memory efficiency. On the other 133

hand, (Meng et al., 2025a) proposed initialization 134

techniques based on singular values to accelerate 135

LoRA’s convergence. In this work, we adopt LoRA 136

as our baseline and incorporate safety regulariza- 137

tion within the PEFT framework, integrating it into 138

both the training and evaluation phases. 139

Safety alignment. Aligning LLMs to follow hu- 140

man rules is crucial for their deployment in real 141

applications. RLHF, the pioneering approach in 142

this direction, utilizes reinforcement learning and 143

human preferences to teach models to follow hu- 144

man values (Bai et al., 2022; Dai et al., 2023). DPO 145

(Rafailov et al., 2023) further enhances RLHF by 146

introducing reward-free optimization mechanisms 147

that reduce alignment costs and ensure procedu- 148

ral stability. Subsequently, extensive research has 149

emerged aimed at enhancing the alignment process 150

through cost reduction (Meng et al., 2025b; Huang 151

et al., 2024b; Ji et al., 2025), robustness improve- 152

ment (Ramesh et al., 2024; Tang et al., 2024; Zheng 153

et al., 2023), and increased sample efficiency (Sun 154

et al., 2023; Zhou et al., 2024). Given their impres- 155

sive results and successful alignment with human 156

values, these approaches were primarily adopted 157

during pre-training rather than fine-tuning. How- 158

ever, this creates a new safety risk when fine-tuning 159
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these models on new data, as first demonstrated in160

(Qi et al., 2023). Consequently, ensuring safety161

during fine-tuning has gained increased attention162

(Hsu et al., 2024; Li et al., 2025; Zhao et al., 2023;163

Hu et al., 2024; He et al., 2024). Research by (Hu164

et al., 2024) filters high-risk samples based on gra-165

dient norms, while (Zhao et al., 2023) demonstrates166

that models tend to forget unsafe samples more167

readily than benign ones. Additionally, (Huang168

et al., 2024a) proposes robust training techniques169

to prevent harmful behavior. From a PEFT per-170

spective, (Hsu et al., 2024) and (Li et al., 2025)171

extract safety patterns from pretrained models and172

introduce mechanisms to preserve these beneficial173

patterns during the fine-tuning process.174

3 Method175

In this section, we describe our light-weight safety-176

preserving fine-tuning approach, which can be177

seamlessly integrated into parameter-efficient fine-178

tuning (PEFT) frameworks. Our method enforces179

logit constraints on a predefined set of “safety to-180

kens”, ensuring that fine-tuned models preserve181

their pretrained refusal behavior while maintaining182

task-specific performance.183

3.1 Preliminaries184

We consider a fine-tuning dataset D consisting185

of N sequence pairs, D = {(x(n)1:Tn
, y

(n)
1:Tn

)}Nn=1,186

where x(n)1:Tn
is the input tokens (prompt or partially187

observed sequence); y(n)1:Tn
is the target tokens to be188

predicted autoregressively; and Tn is the sequence189

length of the n-th example. This dataset D is used190

to fine-tune the pre-trained language model using191

our proposed safety token regularization approach.192

3.2 Identifying safety tokens193

We define a set of safety tokens, {tk}Kk=1 as those194

words or subwords associated with disallowed con-195

tent, hate speech, or other high-risk categories.196

One way to identify these tokens is through a197

vocabulary-based analysis of harmful expressions.198

However, these do not necessarily refect how the199

base models handle the tokens.200

Our work adopts a more direct approach by an-201

alyzing how aligned models respond to harmful202

queries. That is, we identify safety-indicative to-203

kens – those that are strongly associated with the204

pre-trained model’s safety-oriented behavior. Our205

hypothesis, illustrated conceptually in Fig. 1, is that206

well-aligned pre-trained models exhibit consistent207

patterns in their responses when confronted with 208

potentially harmful or inappropriate queries. These 209

patterns often manifest in the form of specific re- 210

jection templates, which aligned models employ to 211

gracefully refuse or deflect such requests. 212

Based on this observation, we selected com- 213

mon words from these rejection templates as safety 214

words. To demonstrate our method in experiments, 215

we used three common words: {‘I,’ ‘cannot,’ and 216

‘can’t’}. These words were then tokenized to deter- 217

mine the corresponding safety tokens. Our experi- 218

mental results in the next section will demonstrate 219

that preserving the logits of these safety tokens 220

during fine-tuning maintains the model’s safety be- 221

havior while stabilizing the learning process. 222

3.3 PEFT loss 223

For clarity, consider a training instance 224(
x
(n)
1:Tn

, y
(n)
1:Tn

)
. we define a composite loss 225

function comprising two key components: Au- 226

toregressive cross-entropy and Safety token 227

regularization. 228

Autoregressive cross-entropy. We adopt the 229

standard cross-entropy for autoregressive language 230

modeling: 231

L(n)CE = − 1

Tn

Tn∑
t=1

logP
(
y
(n)
t | x(n)1:t−1; ΘPEFT

)
,

(1) 232

where ΘPEFT denotes the trainable PEFT parame- 233

ters (e.g., using LoRA of (Hu et al., 2021)), while 234

the base model parameters Θbase remain frozen. 235

This loss encourages predictions to match the 236

ground-truth tokens. As PEFT does not explicitly 237

preserve safety alignment, we introduce safety to- 238

ken regularization, constraining the model’s logits 239

on critical safety tokens. 240

Safety token regularization. To preserve safe 241

behavior the pre-trained model during fine-tuning, 242

we introduce a safety token regularization (STR) 243

term. This term penalizes deviations in the logits 244

of pre-defined “safety token” between the base pre- 245

trained model and the PEFT-adapted model. The 246

logits are particulary informative about the corre- 247

sponding tokens in relative preferences to other 248

tokens in the vocabulary in the same context, in- 249

dicative of the confidence in generating the tokens 250

as well as semantic relationships between tokens. 251

Let ℓbase
t,k and ℓPEFT

t,k denote the logits of the k- 252

th safety token at time step t under the base model 253
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Algorithm 1 Safety-Aware PEFT Fine-Tuning

Require: Θbase: Frozen pretrained model
ΘPEFT: Trainable PEFT params

1: D: Training set of sequences {tk}Kk=1:
Safety tokens λ: Frobenius norm weight
η: Learning rate

Ensure: ΘPEFT (updated)
2: Initialize ΘPEFT; Freeze Θbase
3: for each training iteration do
4: Sample batch {(x1:T , y1:T )} from D
5: Base Model Get ℓbase

t,k for safety tokens
6: PEFT Forward: Get ℓPEFT

t,k and compute

P
(
yt |x1:t−1; ΘPEFT

)
7: Losses: Compute LCE, LF and

L = LCE + λLF

8: Update ΘPEFT:

ΘPEFT ← ΘPEFT − η∇ΘPEFTL

9: end for

(Θbase) and the PEFT-adapted model (ΘPEFT), re-254

spectively. We deviations in the logits can be cap-255

tured via a square loss:256

L(n)F =
1

Tn

Tn∑
t=1

K∑
k=1

(
ℓbase
t,k − ℓPEFT

t,k

)2
. (2)257

Minimizing this term constrains the PEFT-updated258

logits for safety tokens to remain close to those of259

the base model, effectively preserving its original260

safety-oriented behavior in the logit space.261

Combined loss. We form the total loss for the262

n-th example by:263

L(n) = L(n)CE + λL(n)F , (3)264

where λ > 0 controls the trade-off between model-265

ing accuracy and safety-token consistency.266

The loss for the full fine-tuning dataset D of N267

instances is simply the averaging of the instance268

losses. See Algorithm 1 for a pseudocode for the269

entire fine-tuning process.270

4 Experiments271

4.1 Experimental setup272

To comprehensively evaluate the effectiveness of273

our proposed safety token regularization method,274

we conducted experiments across a diverse set 275

of benchmarks, focusing on both safety and util- 276

ity aspects of fine-tuned LLMs. We utilized 277

two prominent LLM architectures: LLaMA-2-7b- 278

chat and LLaMA-3-8b-instruct, representing mod- 279

els of varying scales and pre-training paradigms. 280

For parameter-efficient fine-tuning, we employed 281

LoRA, a widely adopted technique known for its 282

efficiency and performance. 283

The regularization weight λ in Eq. (3) was se- 284

lected via validation. Generally, we use larger λ 285

values (more constraints) for high-risk datasets and 286

smaller values for benign data. Notably, we found 287

that commonsense reasoning tasks (Hu et al., 2023) 288

require a small λ value (0.1 in our setting), aligning 289

with recent findings that improved reasoning ca- 290

pacity correlates with safer model behavior (Guan 291

et al., 2024). 292

4.2 Evaluation datasets and metrics 293

Our evaluation encompassed three distinct experi- 294

mental settings, each designed to assess different 295

facets of safety and utility: 296

Alpaca dataset for safety evaluation when fine- 297

tuning on benign data: This instruction-following 298

dataset (Taori et al., 2023), containing over 50,000 299

samples, is widely used to assess the safety preser- 300

vation in a more general fine-tuning scenario. Fol- 301

lowing (Li et al., 2025), we trained models for one 302

epoch, reserving 200 samples for evaluation. 303

PureBad dataset for harmfulness evaluation: 304

This dataset–constructed from 100 highly harm- 305

ful prompts extracted from (Qi et al., 2023)–was 306

used to evaluate the method’s ability to preserve 307

safety behavior under adversarial conditions. Fine- 308

tuning on this dataset serves as a stress test, reveal- 309

ing the model’s robustness against safety degrada- 310

tion when exposed to exclusively harmful content. 311

We applied LoRA with rank 8 to both LLaMA- 312

2 and LLaMA-3 models using a learning rate 313

of 0.0005. The fine-tuning ran for 5 epochs on 314

LLaMA-2, while LLaMA-3 needed longer train- 315

ing of 30 epochs (we extended the training time 316

because LLaMA-3 stayed safe after 5 epochs, and 317

we wanted to test its behavioral limits, similar to 318

what (Li et al., 2025) observed). 319

Commonsense-15k dataset for utility evalu- 320

ation: To assess the impact on utility, particu- 321

larly in reasoning capabilities, we fine-tuned on 322

the Commonsense-15k dataset (Liu et al., 2024b). 323

We evaluated performance on eight diverse com- 324

monsense reasoning benchmarks: BoolQ, SIQA, 325
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Llama-2-chat-7B Llama-3.1-Instruct-8B

Before Fine-tuning 0.0% 1.4%
Rank for PEFT Training 16 32 16 32

Base PEFT
LORA 23.7% 31.7% 13.8% 14.5%
PiSSA 31.7% 35.7% 13.8% 14.5%
DORA 23.7% 25.3% 10.1% 9.4%

LoRA w. post-hoc alignment
LORA w. IA 13.5% 23.7% 7.7% 5.8%
LORA w. Vac 20.2% 25.3% 41.1% 38.3%
Safe LoRA 15.7% 14.5% 8.5% 6.7%
SaLoRA 3.5% 4.4% 2.9% 1.4%

Ours (I) 2.9% 0.0% 3.1% 1.5%
Ours (cannot) 3.4% 0.6% 3.5% 1.5%

Table 1: Harmful Response Rate (HRR) on Aplaca dataset. Overall, our method achieves results on par
with current state-of-the-art methods across different settings. Notably, under the LLaMA-2 setup, our approach
outperforms competing methods, and matches the safety performance of pretrained models on rank 32.

Models Method HRR(↓)

LM2-Chat

Pretrained 0.0%
LoRA 62.3%
Ours (I) 0.0%
Ours (cannot) 0.0%

LM3-Instruct

Pretrained 12.7%
LoRA 47.3%
Ours (I) 13.5%
Ours (cannot) 7.7%
Ours (I cannot) 4.0%

Table 2: Harmful Response Rate (HRR) on PureBad
dataset. Our approach preserves safety behavior in
LLaMA-2 and even surpasses the safety performance
of the pretrained LLaMA-3 models. These findings
suggest that our method can learn beyond the baseline
safety provided by the pretrained model.

PIQA, HellaSwag, WinoGrande, ARC-e, ARC-c,326

and OBQA.327

Evaluation metrics. For safety, we report the328

Harmful Response Rate (HRR), calculated as the329

percentage of generated responses flagged as harm-330

ful by an automated safety classifier (Llama Team,331

2024), following the evaluation protocol of (Li332

et al., 2025). Another key metric for safety is333

the Attack Success Rate (ASR), which is evalu-334

ated using keyword matching, following (Qi et al.,335

2023). For utility, we report Average Accuracy336

across these tasks as the primary utility metric. 337

4.3 Safety on Alpaca dataset 338

We compared our method against current state-of- 339

the-art approaches presented in (Li et al., 2025), in- 340

cluding PEFT baselines—LoRA (Hu et al., 2021), 341

DoRA (Liu et al., 2024b), and PiSSA (Meng et al., 342

2025a)—and LoRA combined with post-hoc align- 343

ment methods: InferAligner (IA) (Wang et al., 344

2024), and Vaccine (Vac) (Huang et al., 2024a). 345

As shown in Table 1, our method achieves com- 346

petitive results compared to current state-of-the-art 347

approaches. On LLaMA-2, our models establish 348

new state-of-the-art performance, matching pre- 349

trained model safety levels at rank r = 32. For 350

LLaMA-3, our approach achieves comparable re- 351

sults to existing methods. Consistent with previ- 352

ous findings in (Li et al., 2025), larger LLaMA-3 353

models demonstrate greater robustness during fine- 354

tuning compared to their smaller counterparts. 355

4.4 Safety on PureBad dataset 356

Table 2 presents the Harmful Response Rate (HRR) 357

on the PureBad dataset for LLaMA-2-7b-chat 358

and LLaMA-3-8b-instruct models fine-tuned us- 359

ing LoRA and our safety token regularization 360

method, across LoRA ranks of 16 and 32. As 361

shown, standard LoRA fine-tuning significantly 362

degrades safety, resulting in HRRs of 62.3% and 363

47.3% for LLaMA-2-7b-chat and LLaMA-3-8b- 364

instruct, respectively. In stark contrast, our safety 365

token regularization method effectively mitigates 366
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Method BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg. Acc ASR
r=16

LoRA 65.7% 75.4% 70.1% 53.9% 66.0% 76.3% 61.2% 66.0% 66.8% 0.19%
DoRA 64.8% 75.8% 74.2% 42.0% 64.9% 82.5% 66.0% 76.0% 68.3% 0.19%
Ours 65.2% 77.3% 67.1% 46.8% 67.9% 78.4% 64.3% 75.5 67.8% 0.19%

r=32

LoRA 62.4% 75.7% 42.4% 27.7% 63.7% 50.0% 41.0% 43.8% 50.8% 0.19%
DoRA 63.1% 62.6% 31.4% 31.1% 62.1% 43.9% 32.8% 42.3% 46.2% 0.19%
Ours 58.5 71.2% 71.0% 45.4% 67.2% 82.3% 67.5% 76.7% 67.5% 0.0%

r=64

LoRA 61.9% 58.9% 49.7% 39.5% 56.3% 64.0% 51.5% 56.5% 54.8% 0.19%
DoRA 63.1% 73.6% 48.3% 39.2% 60.5% 36.9% 31.3% 36.0% 48.6% 0.0%
Ours 59.7% 77.4% 73.2% 56.3% 72.2% 82.5% 68.2% 76.8% 70.8% 0.0%

Table 3: Accuracy and ASR Comparison. The table summarizes the performance of LoRA, DoRA, and our
method when fine-tuning the Commonsense-15K dataset and evaluating across five commonsense reasoning tasks
in terms of accuracy and Attack Success Rate (ASR). At a low rank (r=16), all methods exhibit stable performance,
with our approach trailing DoRA slightly. However, as the rank increases, LoRA and DoRA become unstable and
degrade significantly, whereas our method remains robust and outperforms both baselines by a substantial margin.
From a safety perspective, all methods demonstrate high safety capacity, likely due to the focus on reasoning data
during fine-tuning.

this safety degradation, achieving HRRs of 0.0%367

for LLaMA-2-7b-chat and 13.5% for LLaMA-368

3-8b-instruct. Crucially, for LLaMA-2-7b-chat,369

our method restores safety performance to the370

level of the pre-trained model (0.0% HRR) and371

even surpasses the pre-trained safety of LLaMA-3-372

8b-instruct (12.7%HRR), demonstrating its abil-373

ity to not only preserve but potentially enhance374

pre-existing safety characteristics. These results375

strongly indicate the effectiveness of safety to-376

ken regularization in maintaining safety robustness,377

even when fine-tuning on exclusively harmful data.378

4.5 Utility on Commonsense-15k dataset379

We followed the experimental settings from (Liu380

et al., 2024b) to compare our method’s utility381

against common PEFT methods like LoRA and382

DoRA. Table 3 and Fig. 2 present the Average383

Accuracy and accuracy variations across individ-384

ual tasks, respectively, for LoRA, DoRA, and385

our method fine-tuned on the Commonsense-15k386

dataset. At lower LoRA ranks (e.g., r = 16), all387

methods exhibit comparable Average Accuracy,388

suggesting that safety token regularization does389

not significantly hinder initial learning capacity.390

However, as the LoRA rank increases (r = 32,391

r = 64), standard LoRA and DoRA demonstrate392

increasing instability and performance degradation,393

as evidenced by the widening confidence intervals394

in Fig. 2 and decreasing Average Accuracy in Ta-395

ble 3. In stark contrast, our safety token regulariza-396

tion method maintains consistent and robust perfor- 397

mance even at higher ranks, achieving the highest 398

Average Accuracy (70.8% at r = 64) and exhibit- 399

ing significantly reduced accuracy variance across 400

tasks (Fig. 2). This enhanced stability and sustained 401

utility at higher ranks suggest that safety token reg- 402

ularization not only preserves safety but may also 403

contribute to more robust and reliable fine-tuning, 404

particularly when increasing model capacity for 405

complex tasks. 406

4.6 Continual learning with safe tokens 407

In addition to the standard evaluation settings, we 408

also assess safety tokens in continual learning 409

scenarios. Specifically, we conduct experiments 410

on five commonsense reasoning tasks—BoolQ, 411

PIQA, SIQA, WinoGrande, and ARC-c—using 412

the LLaMA-2-7b-chat model. In this setup, each 413

task is learned sequentially without access to pre- 414

vious or future tasks’ data, and we evaluate per- 415

formance on models trained across all tasks in or- 416

der. We compare our approach with LoRA and 417

DoRA under the same experimental conditions de- 418

scribed by (Liu et al., 2024b), except that we re- 419

duce the training epochs from three to one. As 420

shown in Table 4, our method consistently achieves 421

higher average accuracy across all rank settings 422

than LoRA and DoRA. In addition to the over- 423

all performance gain, our method demonstrates 424

more stable performance—particularly at higher 425

ranks—mirroring the training behavior observed 426

6



Method BoolQ SIQA PIQA WinoGrande ARC-c Avg. Accuracy
r=32

LoRA 71.2% 80.2% 79.1% 70.7% 65.3% 73.3%
DoRA 62.8% 78.1% 81.7% 82.9% 61.9% 73.5%
Ours 68.3% 78.9% 81.2% 80.8% 64.2% 74.6%

r=64

LoRA 56.0% 76.9% 80.4% 81.8% 63.7% 71.8%
DoRA 62.2% 7.5% 79.3% 77.1% 30.3% 51.3%
Ours 62.2% 78.6% 76.4% 81.4% 61.2% 72.0%

r=128

LoRA 69.7% 48.1% 81.7% 82.7% 64.2% 69.3%
DoRA 67.2% 73.9% 47.0% 6.2% 23.0% 43.5%
Ours 62.2% 74.6% 80.8% 81.6% 64.8% 72.8%

r=256

LoRA 62.1% 80.2% 82.5% 83.3% 67.0% 75.0%
DoRA 5.7% 28.4% 33.8% 14.7% 22.9% 21.1%
Ours 69.6% 79.4% 83.0% 83.8% 66.3% 76.4%

Table 4: Continual Learning Performance.The Table presents the accuracy of LoRA, DoRA, and our method
across various datasets under continual learning conditions. Our method achieves state-of-the-art performance in all
settings. Notably, when the rank is increased, both LoRA and DoRA exhibit instability—mirroring observations
from earlier experiments—whereas our method remains stable at higher ranks, further widening the performance
gap relative to other PEFT approaches.

on the commonsense-15k dataset.427

4.7 Safety of random tokens428

Our investigation extended to using randomly se-429

lected tokens for regularization, with results pre-430

sented in Fig. 3. We found that random tokens431

can also contribute to improved model safety. This432

effect can be explained through the lens of con-433

tinual learning regularization, where preserving434

token-level information from the pretrained model435

may help maintain safety properties. However, the436

mechanism behind random tokens’ effectiveness437

remains uncertain, as these tokens lack explicit438

connections to safety concepts. Still, this finding439

points to a broader principle: when aiming to pre-440

serve specific model behaviors, one can identify441

relevant tokens and apply token regularization to442

maintain desired characteristics.443

4.8 The trade-off between safety and targeted444

model adaptation445

Prior safety research has largely neglected a criti-446

cal consideration: model performance on the tar-447

get training data (evaluation loss). While existing448

safety enhancement methods improve alignment,449

they often sacrifice learning effectiveness on the450

original task. As demonstrated in Table 5, our451

Tokens ASR(%) eval_loss(↓)
LoRA 16.7 0.79

λ = 1
I 2.9 0.80

cannot 3.1 0.80

λ = 2
I 0.58 0.81

cannot 1.9 0.81

Table 5: Trade-Off Between Safety and Targeted
Data Performance. The evaluation loss for both the
traditional LoRA approach and our proposed method
remains comparable. Increasing the importance of
the token-loss term effectively suppresses harmful re-
sponses without substantially affecting the evaluation
loss.

method not only improves safety and utility but 452

also achieves performance comparable to standard 453

LoRA on the target data. These results demonstrate 454

that our approach successfully balances safety re- 455

quirements with task performance, showing that 456

enhanced safety does not necessitate compromised 457

learning capabilities on the core task data. 458

4.9 Analysis of running time 459

Table 6 compares the per-iteration running times 460

of LoRA, DoRA, and our proposed method on 461

the Commonsense-15k dataset using LLaMA-2-7b- 462
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Figure 2: The figure presents a box plot comparison of LoRA, DoRA, and our method on eight commonsense
datasets at rank 32 when tuning on the Commonsense-15k dataset. Overall, our approach consistently exceeds
the performance of both LoRA and DoRA while exhibiting greater stability across multiple runs. These findings
underscore the robustness and reliability of our method under varied conditions.

Figure 3: Safe and Random Tokens Performance. We
compare the effects of “safe” versus “random” tokens
on the Alpaca dataset trained using the LLaMA-2 model.
Despite being randomly selected, these tokens still en-
hance the safety of the tuned models.

chat, with a batch size of 16 and a LoRA rank of463

32. Our method runs 1.34 times slower than LoRA464

but remains 1.25 times faster than DoRA.465

5 Conclusion466

We have revisited the critical challenge of safety467

preserving in LLMs during fine-tuning scenar-468

ios—a concern of increasing importance as these469

models are widely adapted for sensitive domains.470

We introduced safety token regularization (STR),471

a lightweight and readily implementable approach472

that leverages the inherent safety knowledge en-473

coded within pre-trained models. Our extensive474

empirical evaluation across diverse benchmarks475

Method Running time (ms)
LoRA 435 (ms)
DoRA 725 (ms)
Ours 581 (ms)

Table 6: The running time (in milliseconds) of our
method compared with LoRA and DoRA.

demonstrates that STR not only effectively pre- 476

serves pre-trained safety, achieving state-of-the-art 477

safety performance, but also maintains competitive 478

task utility and, surprisingly, enhances training sta- 479

bility. By constraining the logits of salient safety 480

tokens identified from rejection templates, STR 481

offers a practical and readily deployable strategy 482

for continual safety alignment in fine-tuned LLMs, 483

filling a critical gap in current parameter-efficient 484

fine-tuning methodologies. 485

Current limitation and future works Despite 486

demonstrating robust performance, our approach 487

has some limitations that warrant further investiga- 488

tion. A key constraint is that our method restricts 489

fine-tuned models to inherit the safety behavior of 490

their pretrained counterparts, potentially limiting 491

flexibility for new safety requirements. Although 492

certain results suggest that our method can learn 493

beyond the pretrained model’s safety scope, direct 494

model regularization remains necessary. Moving 495

forward, we plan to strengthen safety by both pre- 496

serving existing knowledge and collecting or ab- 497

stracting new insights from upcoming data. 498
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