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Abstract

Accurate decoding of emotional EEG signals constitutes a critical challenge for devel-
oping affective brain-computer interfaces. Contemporary methods for cross-subject EEG-
based emotion recognition confront two critical challenges: 1) inadequate investigation of
the distinct affective features of the EEG rhythm; 2) insufficient capability to extract the
various neurophysiological connectivity patterns across subjects in the same experimen-
tal setting. To address these limitations, we propose FG-MSTGNN, a dual-stage adaptive
learning framework comprising the Frequency-guided Multi-period Spatial-temporal Graph
Neural Network. The Feature Learning Stage utilizes a Multi-period Time-Frequency Co-
operative Encoder Module to hierarchically extract cross-frequency rhythmic dynamics.
The Topology Optimization Stage utilizes a Dual-Phase Graph Pooling Module to dynam-
ically generate personalized sparse neurophysiological connectivity patterns. Systematic
evaluation under cross-subject experiments demonstrates the framework achieves average
classification accuracies of 94.67% and 85.28% on SEED and SEED-IV respectively, show-
ing statistically distinctive improvements over state-of-the-art EEG emotion recognition
methods. The proposed framework reveals that both functional brain network topology
and EEG spectral dynamics varies from different emotional states.

Keywords: EEG; Emotion recognition; Graph Neural Network; Multi-period rhythmic
dynamics

1. Introduction

Emotion recognition, a pivotal research domain in neuroscience, psychology, and brain-
computer interfaces (BCIs), holds substantial clinical and technological value across mental
health diagnostics, affective computing systems, and personalized human-computer inter-
action paradigms. Current methods in emotion recognition are broadly classified into two
categories: non-physiological signal based techniques and physiological signal based meth-
ods. Among all physiological modalities, electroencephalography (EEG) has emerged as a
principal investigative tool for emotion computation and neurologic disease research, ow-
ing to its millisecond-level temporal resolution and low susceptibility to artifacts during
emotional state characterization Geng et al. (2024).
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Electroencephalogram (EEG)-based emotion recognition, which captures direct electro-
physiological responses from the central nervous system, has become a vital approach for
decoding emotional and cognitive processes. Early studies largely relied on handcrafted
features, yet these often proved insufficient in capturing the non-stationary nature and
cross-subject variability of EEG signals. Recent research has focused on two key dimen-
sions: emotion-relevant feature extraction and optimized deep learning architectures. The
former involves time-frequency analysis, nonlinear dynamics, or brain network topology to
identify emotion-related patterns, while the latter leverages deep neural networks to auto-
matically learn temporal, spectral, and spatial representations from EEG. A growing trend
is toward feature embedding, model optimization, and multi-domain fusion of temporal,
frequency, and spatial information, aiming to enhance the practicality and robustness of
EEG-based emotion recognition in real-world applications.

To capture neural oscillatory patterns with temporal stability for EEG emotion recogni-
tion, researchers have proposed a variety of deep learning methods. Temporal Convolutional
Network (TCN) Yang et al. (2023) captures long-range dependencies through expansive con-
volution. Recurrent Neural Network (RNN) and its improvement methods Tao et al. (2023),
use gating mechanism to model sequence dynamics, and TSception Ding et al. (2023) com-
bines multi-scale convolution to improve temporal-frequency feature extraction. Although
the methods above can effectively model local temporal relations, they still lack the abil-
ity to extract individual cross-period rhythmic features by combining frequency domain
information, which is slightly insufficient in exploring the physiological significance.

Although traditional time-series models can extract high temporal resolution features
from EEG signals, it is difficult to effectively characterize the non-Euclidean topology. In
this regard, Graph Neural Network (GNN) shows unique advantages.

From the perspective of cognitive neuroscience, cognitive processing in the brain involves
dynamic information interaction and coordination across different brain regions, with func-
tional connectivity between these regions changing in a task-dependent manner Li et al.
(2024). Graph Neural Networks (GNNs) automatically learn node features through neigh-
borhood aggregation mechanisms, yet their classification performance is highly dependent
on the quality of the graph topology. While fully-connected graphs may introduce re-
dundant or noisy edges—increasing the risk of overfitting—random pruning can disrupt
the physiological meaningfulness of functional connections. To address this, graph pooling
methods have been incorporated into GNNs with the goal of providing optimized topologies
that align with physiological constraints, thereby improving both model performance and
computational efficiency in handling complex network data. However, conventional graph
pooling operations often fail to adequately adapt to emotion-related brain networks derived
from EEG, which limits their applicability and effectiveness in emotion recognition tasks.

In the current study, we propose a Frequency-guided Multi-period Spatial-Temporal
Graph Neural Network (FG-MSTGNN) framework for cross-subject analysis, comprising
two stages: 1) Feature Learning Stage. This stage is implemented through the Multi-period
Time-Frequency Cooperative Encoder (MTFCE), which transforms 1D EEG signals into
2D temporal-frequency representations, while simultaneously capturing both intra-rhythmic
fine-grained patterns reflecting localized spectral dynamics and inter-rhythmic interactions
that characterize cross-period coupling relationships. 2) Structure optimization phase. This
phase is implemented by the Dual-Phase Graph Pooling Module (DPGPM), which optimizes
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the initial graph using a dual graph pooling operation to generate a sparse EEG topology,
thereby reducing the noisy computational complexity while preserving neurophysiological
plausibility. Finally, the optimized sparse graph is fed into GIN encoder model for non-linear
feature aggregation and emotion classification.

Contributions of this work include:

• Proposing FG-MSTGNN, a dual-stage adaptive learning framework that integrates
graph-theory principles with multi-period rhythmic dynamics to achieve robust cross-
subject EEG emotion recognition.

• Proposing two core components. The MTFCE extracts both intra-rhythmic fine-
grained patterns and inter-rhythmic interactions, while the DPGPM eliminates re-
dundant neuro-physiological connections.

• Cross-validation experiments on SEED and SEED-IV demonstrate that the proposed
framework achieves average accuracies of 94.67% and 85.28% respectively in cross-
subject emotion recognition, significantly outperforming existing state-of-the-art (SOTA)
methods.

2. Related work

2.1. Temporal Feature Extraction

In scientific practice, many researchers focus on the trend of EEG signals over time,
mainly due to the fact that dynamic time series can not only reveal the characteristics of
signal cycle fluctuation and continuous change, but also effectively represent the potential
pattern of change, which provides multi-dimensional data features for the construction of
accurate emotion recognition models.

Deep learning solves the bottleneck of traditional methods that rely on handcrafted fea-
tures by providing an end-to-end feature learning capability that extracts high-dimensional,
abstract feature representations from raw data through multilayered nonlinear transforma-
tions. Liang et al. (2021) proposed EEGFuseNet, which uses unsupervised training of
a convolutional recurrent hybrid generative adversarial network with an encoder-decoder
structure to automatically extract spatial-temporal dynamic features from EEG signals,
improving classification accuracy by 12% over traditional methods in emotion recognition
tasks. In order to better capture the temporal dependency, Zhang et al. (2024b) combined
local GCN and global BiGRU to design the time-aware TAS-Net, which effectively solved
the feature redundancy problem.

2.2. Spatial Features Extraction

For the construction of brain topology, previous studies have combined it with convolu-
tion for the extraction of correlation information within channels and between short-range
electrodes. Although 1D convolution can capture some shorter time series features through
dimensional transformations, its fixed receptive fields are difficult to capture the long-range
brain connectivity, which may ignore global spatial relationships, and destroy the spatial
correlation of EEG signals.

In contrast, GNN, due to its superior graph embedding ability to explicitly define elec-
trode nodes and functionally connected edges, better preserve the deep topology Klepl
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et al. (2024). The static graph convolution proposed by Wang et al. (2019) and the dy-
namic graph convolution (DGCNN) proposed by Song et al. (2020) achieve classification
accuracies of 78.23% and 81.91% on SEED, confirming the advantage of dynamic adjacency
matrices in characterizing the time-varying properties of emotion-related brain networks.
Qiu et al. (2023) apply the idea of residual connectivity to the underlying GCN structure
using a two-layer multi-head residual graph convolution network (MRGCN). Nevertheless,
fully connected graphs lead to the problem of excessive smoothing of node features, and real
brain networks follow small-worldness, while fully connected graphs are inconsistent with
the spatial distribution pattern of cortical white matter fibre tracts Bullmore and Sporns
(2009). To address this problem, GLFANet, a global-to-local feature aggregation network
developed by Liu et al. (2023), nnovatively introduces global topological constraints so
that the fully connected graph avoids the problem of excessive smoothing while preserving
interactions between different brain regions.

In order to better explore the connection between emotional cognitive mechanisms and
EEG signals, researchers have begun to integrate GNN with brain science theories and de-
veloped a series of graph models based on physiological prior knowledge Guo et al. (2024).
To explore the long-range dependence of the cerebral cortex. Jin et al. (2024) proposed
PGCN, a model that implements feature aggregation at three levels: local, mesoscope, and
global, with good robustness in EEG-based emotion recognition. Li et al. (2025) used a
cognitively-inspired graph-learning neural network model, BF-GCN, that contains three
graph branches, which combines data-driven and cognition- inspired strategies in order to
automatically learn emotional cognitive graph patterns from emotional EEG signals, achiev-
ing 92.72% on SEED and 82.03% on SEED-IV results in subject-independent experiments.

3. Methodology

3.1. Bandpass filter bank data processing layer

In order to optimize the feature extraction process and more accurately capture the
EEG activity features associated with changes in emotional states, we extracts the α, β,
γ, δ, and θ bands of the original EEG signal x using a band-pass filter bank based on the
characteristics of the EEG signals and performs a sliding window on each band in order to
extract the DE features, which defined as:

DE(X) = −
∫ ∞

−∞

1√
2πσ2

e
(x−µ)2

2σ2 log2

(
1√
2πσ2

e
−(x−t)2

2σ2

)
=

1

2
log2(2πe) + log2(σ) (1)

where x ∼ N (µ, σ2) and e and π are constants. Assume that the DE feature of the
computed EEG signals areXD ∈ RC×N×L. Feature extraction and processing are performed
separately for each frequency band of the data X1D = {x11D, x21D, . . . , xn1D} (e.g. the
SEED dataset represents having the original data divided into 5 frequency bands), where
xn1D ∈ RC×L denotes the feature in the nth band, C denotes the number of EEG electrode
channels, N denotes the number of bands, and L denotes the dimension of the feature.
Finally, the DE features are fed into the FG-MSTGNN model, band by band.
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3.2. Frequency-guided Multi-period Spatial-Temporal Graph Neural Network

3.2.1. Multi-period Time-Frequency Cooperative Encoder Module

Figure 1: The proposed Frequency-guided Multi-period Spatial-Temporal Graph Neural
Network.

1) Data Transformation layer
EEG frequency features Response rhythm dynamic characteristics. This layer uses the

Fast Fourier Transform (FFT) to transform the input signal X1D in the frequency domain
and to find the variation between periods, revealing the strength of its frequency compo-
nents. Specifically, a 1D FFT operation is performed for each time step:

Xf = FFT (X1D) (2)

Next, the mean value of the signal amplitude at each frequency in the frequency domain
is calculated channel by channel:

Af = Avg(Amp(Xf )) (3)
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In Eq.(3), Amp(•) is used to calculate the amplitude values for each frequency Xf ,
and is averaged using Avg(•) to obtain an amplitude average Af for each frequency. In
particular, the DC component is set to zero.

Based on the calculated mean frequency values, the frequency indexes of the top-k most
significant values were selected.

fi = argTopk(Af ) (4)

where fi is the set of frequency corresponding to the first k largest values. Assuming that
each selected frequency is {f1, f2, . . . , fk} where i ∈ {1, . . . , k}, the period pi (i ∈ {1, . . . , k})
of each frequency can be calculated by the following equation:

pi =

⌈
L

fi

⌉
(5)

where pi is the period corresponding to the frequency fi, indicates the repetition pattern
of the signal in the time domain, and L is the length of the time series.

According to the conjugate nature of the frequency domain, only the frequencies within{
1, . . . , L2

}
are considered in the calculation process, so the X1D time series can be recon-

structed into multiple X2D tensors as shown in Eq.(6):

Xi
2D = Reshapepi,fi(Padding(X1D)), i ∈ {1, . . . , k} (6)

For the period corresponding to each of the most important frequency components,
zero-padding is performed along the time dimension by the Padding(•) operation so that
its length is a multiple of the period, facilitating transformation in 2D space, and reshape
the filled data into 2D form using the Reshape(•) operation to obtain Xi

2D. In which, pi, fi
is the period of each frequency component.

2) Dynamic multi-scale feature extraction layer
The dynamic multi-scale feature extraction layer uses the multi-scale 1D convolution to

extract features from the 2D tensor Xi
2D and learn its rich temporal information.

X̃i
2D = AvgPool(LeakyReLU (Conv1D(Xi

2D, (1, t)))), i ∈ {1, . . . , k} (7)

As in Eq.(7), dynamic features are obtained by 1D convolution kernels of different sizes
to the samples one by one. Where Xi

2D is the input sample, and Conv1D(•) is the 1D
convolution operation with a convolution kernel of (1, t) and the step size of (1, 1) applied to
the input sample. Secondly, an activation function LeakyReLU (•) is used in the convolution
operation and the feature map is downsampled by an average pooling function AvgPool(•).

Finally, the learned 2D tensor X̃i
2D is transformed back into the 1D space X̃i

1D for
dimensional reduction and reshaping, which is defined as:

X̃i
1D = Trunc

(
Reshape1,(pi×fi)

(
X̃i

2D

))
, i ∈ {1, . . . , k} (8)

In this case, the length is truncated to the original length using the Trunc(•) operation.
During the process of data conversion, the shape of the 2D tensor obtained will be different
due to the different periods.

3) Adaptive feature aggregation layer
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This layer takes the output of the feature extraction layer, fuses k 1D representations{
X̃1

1D, . . . , X̃
k
1D

}
.The amplitudes Af computed in the data transformation layer reflect

the selected significance frequencies and the relative importance of the corresponding cycles.

Figure 2: The proposed Multi-period Time-Frequency Cooperative Encoder Module.

Therefore, the Softmax (•) function is applied to each frequency, followed by multiplying
it by the corresponding xi1D and summing it. This is defined as:

X̃1D =
k∑

i=1

Softmax (Af )× X̃i
1D (9)

In the equation above, period weights are applied to the output of each period. The
outputs of all periods are then adaptively aggregated.

3.2.2. Dual-Phase Graph Pooling Module

1) Initial graph topology construction layer

Each electrode of the input signal is considered as a single node in the constructed brain
network. The dynamic time-frequency representation of the learned individual electrodes
is considered as a node attribute. The global connectivity of the initial graph is defined by
the relationships between electrode nodes. Neuroscience studies have shown that activation
of a specific brain region tends to activate bundles of neurons within that region to carry
out higher cognitive processes.

We reflect the relationship between electrode nodes by calculating the dot product be-
tween the features of electrode nodes within each frequency band. It is worth noting that the
similarity adjacency matrix is dynamic and instance-specific. Assume that the adjacency
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matrix Ainitial ∈ RC×C of the Initial-graph as:

Ainitial =

h1 · h1 · · · h1 · hC
...

. . .
...

hC · h1 · · · hC · hC

 (10)

where (•) is the dot product, and hi, where i ∈ {1, 2, . . . , C} is the vector generated for
each node after the MTFCE.

2) Initial graph edge embedding construction layer

The node embeddings are first updated using the message-passing process of Graph
Isomorphism Network (GIN), refer to Eq.(13).

Each node feature hi in the graph is updated based on the information of its neighbour
nodes Nv and itself. Assuming that the embeddings of the source and target nodes are ob-
tained as hs and hi respectively, the embedding est is obtained by cascading the embeddings
of the source and target nodes:

est = g(Concat(hs, ht)) (11)

i.e., the learned node features x̃v = hv are concatenated to create embedded edge features
x̃st = [x̃s; x̃t] ∈ R2d . Here the aggregation function g(·) uses a multi-layer perceptron MLP,
which consists of a linear layer with trainable weights W3 ∈ R2d×2d, b3 ∈ R1×2d, a ReLU
activation function σReLU, and a weight W4 ∈ R2d×1, b4 ∈ R , and converts the result to the
range (0,1) using a Sigmoid function:

est = σSigmoid

(
σReLU

(
x̃⊤stW3 + b3

)
W4 + b4

)
(12)

3.2.3. GIN Encoder Module

For advanced graphs T = {V,AT , X̃1D, ET } , an effective graph representation is ob-
tained by learning the complex relationships between individual electrode nodes and aggre-
gating their spatial features by means of GIN. The message passing process can be referred
to the following equation:

h(k)v = MLP (k)

(
h(k−1)
v +

∑
u∈Nv

h(k−1)
u euv

)
(13)

Thus, for the k-th layer in GIN, h
(k)
v corresponding to a node v in the k-th layer of the

graph is updated based on the information of its neighbouring nodes u ∈ Nv and itself,

resulting in a more globally informative representation of the node, h
(0)
v = x̃v.

3.2.4. Dual-Phase Graph Pooling Module

We proposed a dual graph pooling method aimed at optimizing the representation and
processing of EEG brain network graphs. The method consists of two steps, edge pooling
and node pooling, and improves the performance of emotion recognition tasks by effectively
simplifying the network structure and retaining key information.
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1) Edge pruning graph pooling layer
Let G = (V,Ainitial, X̃1D, E) denotes the graph constructed based on EEG data, where

V = {vi : v = 1, 2, . . . , C} denotes the set of nodes. Ainitial = [ast : s, t ∈ V ] ∈ {0, 1}C×C is
the adjacency matrix describing their connectivity information, and ast = 1 indicates the
existence of edges between the nodes, otherwise there is no connection. X̃1D = {x̃v : v ∈ V }
is the set of node attributes denoting the attributes corresponding to each node vi. E =
{est : s, t ∈ V } ∈ RC×C is the set of edge weights denoting the strength of node-to-node
connectivity, and C denotes the number of EEG electrode channels.

The edges in the graph are pruned using either the Pulliam or Kruskal algorithms to
construct a minimum spanning tree(MST) and to implement edge graph pooling operations.
The process reduces the complexity of the graph by optimising the choice of edges while
preserving important topologies.

To compute the MST for the graph G, the goal is to find a subgraph that contains all
nodes in such a way that the subgraph is connected and the sum of the weights of the
edges is minimum. Thus, to find a subgraph T = {V,AT , X̃1D, ET } that is compatible with
the following conditions: 1) connectivity, where all nodes in the graph T are connected, 2)
acyclicity, where the graph T does not contain any loops, and 3) minimum weight, the sum
of weights of edges in the graph T is minimum. In this paper, the minimum spanning tree
constructed contains 62 nodes and 61 edges.

2) Node clustering graph pooling layer
Specifically, an importance score is calculated for each node, for node vi, the importance

score si can be expressed by the following equation:

s1i = σSigmoid (α log(deg(vi) + ε) + β) (14)

s2i = σSigmoid

(
MLP(H(k))

)
(15)

s3i = σSigmoid (Pagerank(vi)) (16)

Eq.(14) calculates the node degree centrality score, Eq.(15) calculates the node feature
importance score, and Eq.(16) calculates the node’s PageRank score.

Particularly, deg(vi) denotes the degree centrality of the node vi. α, β, ε is the constant,
and H(k) is the node representation matrix of the k-th layer.

These scores are combined into a vector s to get the scores of all nodes, w1, w2, w3 are
trainable weights:

s = σSigmoid

(
w1s1i + w2s2i + w3s3i

)
(17)

Based on the score s, the nodes in the graph are first reordered, and then the top-ranked
nodes is selected. The ratio of nodes selected by pooling is r, i.e., r×C nodes are retained:

idx = top-rank
(
p,
⌈
r ∗ nk

i

⌉)
(18)

H̃k+1
i = Hk

i (idx, :) (19)

Ak+1
i = Ak

i (idx, idx) (20)

top-rank(·) denotes the function that returns the index of the top nk+1
i =

⌈
r ∗ nk

i

⌉
,

and Hk
i (idx, :) and Ak

i (idx, idx) denote the rows or columns extracted to form the node

representation matrix and the adjacency matrix of the subgraph. Finally, and H̃k+1
i and

Ak+1
i denote the node features and graph structure information of the next layer.
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3.2.5. Classification Module

The output corresponding to each frequency band is aggregated and fed to the fully
connected layer to obtain the final classification result:

Output = Linear(Dropout(σReLU(H̃
k+1
i ))) (21)

Where Dropout(•) is to randomly set the outputs of some neurons to zero during the
training process. Linear(•) is the fully-connected layer, which obtains the final prediction.

4. Experiments

4.1. Datasets

The SEED dataset included 15 healthy subjects exposed to three discrete emotion cat-
egories (positive, neutral, negative) induced through standardized film clips. The stimulus
set included 15 emotionally film excerpts, with five clips systematically allocated to each
affective category. Subjects participated in three experimental sessions spaced one week
apart, with each session comprising 15 trials. EEG signals were acquired using an ESNeuro
62-electrode system with initial sampling at 1000Hz, subsequently downsampled to 200Hz.
Data preprocessing involved band-pass filtering (0.5-70 Hz), baseline correction, and ocular
artifact removal via Independent Component Analysis (ICA).

The SEED-IV dataset, utilizing identical acquisition equipment to SEED, incorporates
four discrete emotion categories: happiness, sadness, fear, and neutrality. Fifteen par-
ticipants viewed 24 emotionally film stimuli, systematically grouped into six excerpts per
affective category. Each subject participated in three experimental sessions on separate
days, comprising 24 trials per session.

4.2. Results

4.2.1. Performance on SEED and SEED-IV

To evaluate the overall performance of the proposed FG-MSTGNN, we conducted Leave-
One-Subject-Out (LOSO) cross-validation experiments on the public datasets SEED and
SEED-IV. The results are shown in Table 1, which contains the classification performance
metrics for each subject, including the accuracy (ACC), F1-score and AUC values. The
experiment involved all 15 subjects, and the results for each subject are listed with the final
mean and standard deviation (Std) calculated.

As can be seen from Table 1, the SEED shows distinctive advantages in all three core
metrics, with a mean value of accuracy of 94.67%. More than 93% of the subjects (14
subjects) had an ACC of more than 90%, indicating that the model performs excellently in
classification tasks. The average of the F1-score values can be up to 93.74%, from which
it can be concluded that the overall model has a better performance in dealing with the
unbalanced category. The feature discriminative index AUC is particularly outstanding
with a mean value of 98.76%±1.39%, and the AUC of all subjects is higher than 94.52%,
which confirms the high separability of the EEG affective features in the three-classification
task.
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Table 1: Accuracy of subject-independent experiments of the FG-MSTGNN model on the
SEED and SEED-IV (%).

Subjects
SEED SEED-IV

ACC F1 AUC ACC F1 AUC

Sub01 91.11 91.32 97.56 86.11 86.15 95.58
Sub02 95.56 95.62 99.19 79.17 79.48 95.01
Sub03 97.78 97.78 99.85 81.94 81.95 95.99
Sub04 80.00 79.37 94.52 88.89 88.70 96.86
Sub05 91.11 91.07 97.93 87.50 87.58 98.25
Sub06 97.78 97.78 99.48 87.50 87.40 97.81
Sub07 100.00 97.78 100.00 83.33 83.47 96.76
Sub08 95.56 95.55 99.26 91.67 91.45 98.66
Sub09 95.56 93.32 97.63 84.72 84.66 96.14
Sub10 93.33 93.14 98.30 88.89 88.94 97.84
Sub11 95.56 93.25 99.41 80.56 80.55 95.42
Sub12 93.33 91.17 98.89 80.56 80.55 94.06
Sub13 95.56 95.54 99.33 86.11 86.16 98.20
Sub14 97.78 95.62 100.00 84.72 84.66 97.22
Sub15 100.00 97.78 100.00 87.50 87.45 97.87

Avg 94.67 93.74 98.76 85.28 85.28 96.78
Std 4.72 4.51 1.39 3.38 3.38 1.27

For SEED-IV, the mean AUC across all subjects was 96.78%, indicating that the
model was effective in discriminating between different emotional categories for most sub-
jects.The mean value of accuracy reached 85.28%, with a difference of 12.5% between Sub08
(ACC=91.67%, F1=91.45%), which had the best classification effectiveness, and Sub02
(ACC=79.17%, F1=79.48%), which had the lowest classification accuracy.

Overall, the results of the LOSO cross-validation experiments show the excellent per-
formance of the model on both SEED and SEED-IV, indicating that the model is highly
generalisable and robust.

4.2.2. Ablation Experiments

To further explore the effectiveness of each module of the proposed framework, we con-
ducted an ablation study using LOSO experiments on SEED and SEED-IV. Specifically,
as shown in Table 2, we explored the impact of the Feature Learning Stage and the Struc-
ture Optimization Stage, with results corresponding to w/o MTFCE and w/o DPGPM,
respectively.

From Table 2, we can find that the proposed framework achieved the optimal composite
performance in subject-independent experiments. The AUC of the proposed framework in
the SEED dataset was improved by 0.66% and 1.18% compared to the w/o DPGPM and w/o
MTFCE, respectively (w/o MTFCE: AUC=97.58%; w/o DPGPM: AUC=98.10%; Ours:
AUC=98.76%). This advantage is even more distinctive in SEED-IV. The AUC of the pro-
posed framework on SEED-IV is improved by 4.26% and 3.61% compared to w/o DPGPM
and w/o MTFCE, respectively (w/o MTFCE: AUC=95.03%; w/o DPGPM: AUC=93.43%;
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Table 2: Ablation study for subject-independent classification accuracy on SEED and
SEED-IV (%).

Model
SEED SEED-IV

ACC STD F1 STD AUC STD ACC STD F1 STD AUC STD

Ours 94.67 4.72 93.73 4.51 98.76 1.39 85.28 3.38 85.28 3.38 96.78 1.27
w/o DPGPM 93.77 4.82 89.93 4.32 98.10 1.82 81.02 4.01 80.94 4.14 93.43 2.56
w/o MTFCE 92.59 5.48 90.20 6.37 97.58 2.53 81.67 3.83 79.73 4.96 95.03 1.19

Ours: AUC=96.78%). The Std of the proposed complete framework remains lowest in both
datasets (SEED: ACC Std=4.72%, F1 Std=4.51%; SEED-IV: ACC Std=3.38%, F1 Std=
3.38%), which suggests that it fuses the cross-band temporal-frequency features through
the MTFCE.

To quantitatively assess model efficacy, we employed violin plots (Figure 3) to visualize
the classification performance of MTFCE and TAGCM, demonstrating their statistically
significant differences.

Figure 3: Ablation experiments on SEED and SEED-IV. Three configurations: MTFCE✓
DPGPM×, MTFCE× DPGPM✓, and MTFCE✓ DPGPM✓.

The violin diagram for SEED (Figure 3 a-c) show a clear pattern of narrow-waisted,
high-density peaks indicating that the model predictions are highly stable in this dataset.
while the distribution for SEED-IV (Figure 3 d-f) is more dispersed.And the median line of
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our proposed model (red) is significantly higher than all ablation models (blue, yellow) to
achieve optimal performance.

In summary, the ablation study analysis reveals that the synergistic integration of MT-
FCE and TAGCM drives performance improvements, where MTFCE effectively incorpo-
rates cross-frequency temporal-spectral features while TAGCM captures emotion-relevant
dynamic brain network topology patterns, collectively achieving superior discriminative
characterization of emotional EEG signals.

4.2.3. Comparison Experiment Against SOTA Method

As shown in Table 3, our proposed method achieves superior performance compared
to other deep learning methods on both the SEED and SEED-IV datasets, with notable
improvements in classification accuracy and stability. Entries marked with a dash (-) denote
unreported results from the original studies.

Table 3: Comparison between FG-MSTGNN and SOTA methods on SEED and SEED-IV
datasets using LOSO cross-validation (%).

Method Year
SEED SEED-IV

ACC Std ACC Std

GMSS Li et al. (2023) 2023 86.52 6.22 73.48 7.41
V-IAG Song et al. (2023) 2023 88.38 4.80 - -
GRU-Conv Xu et al. (2023) 2023 87.04 13.35 - -
PGCN Jin et al. (2024) 2024 84.59 8.68 73.69 7.16
BFE-Net Zhang et al. (2024a) 2024 92.29 4.65 79.81 4.11
BF-GCN Li et al. (2025) 2024 92.72 3.90 82.03 8.42
PR-PL Zhou et al. (2024) 2024 93.06 5.12 81.32 8.53
MSS-JDA Chen et al. (2025) 2025 93.78 3.39 78.93 7.39
Ours 2025 94.67 4.88 85.28 3.38

For the SEED, the proposed framework achieves the highest performance with an ac-
curacy of 94.67%, which is an improvement of 0.89% over MSS-JDA, the model with the
best accuracy among the methods compared (ACC=93.78%). The Std of 4.88% indicates
the high stability of the experimental results, which is significantly superior to PGCN
(Std=8.68%) and GRU-Conv (Std=13.35%).

For the SEED-IV, the proposed method continues to maintain its dominance with an
accuracy of 85.83%, an improvement of 3.8% compared to the next best method, BF-
GCN (ACC=82.03%). The performance difference advantage over the domain adaptation
method (MSS-JDA: 78.93%±7.39) and graph neural network (BFE-Net: 79.81%±4.11) is
significant. Notably, the present method has the lowest Std of all compared methods at
3.38%, reducing volatility by 19.7% compared to the suboptimal stable V-IAG (Std=4.80).

Based on the results in the table, the proposed framework effectively mitigates the
problem of ‘accuracy-stability’ trade-off in deep learning, and achieves simultaneous opti-
mization of both metrics. These results show that the proposed method has better feature
characterization ability in the cross-subject EEG emotion recognition task.
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5. Conclusion

We propose FG-MSTGNN, a dual-stage adaptive framework for cross-subject EEG-
based emotion recognition, which enhances affective decoding through systematic integra-
tion of graph-theoretic principles and multi-frequency rhythmic patterns. The proposed
framework reveals a change in emotional state brings corresponding changes in both func-
tional brain network topology and EEG rhythmic dynamics. This framework initiates trans-
formative advances in human-machine collaboration by establishing a neurophysiologically
based architecture, while providing a fundamental interpretable computational structure
for the development of clinically viable personalized affective brain-computer interfaces.
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