
Graph-Based Vector Search: An Experimental Evaluation of the State-of-the-Art

Ilias Azizi 1 Karima Echihabi 2 Themis Palpanas 3 Vassilis Christophides 1

Abstract
Vector data is prevalent across business and sci-
entific applications, and its popularity is growing
with the proliferation of learned embeddings. Vec-
tor data collections often reach billions of vectors
with thousands of dimensions, thus, increasing the
complexity of their analysis. Vector search is the
backbone of many critical analytical tasks, and
graph-based methods have become the best choice
for analytical tasks that do not require guarantees
on the quality of the answers. Although several
paradigms (seed selection, incremental insertion,
neighborhood propagation, neighborhood diversi-
fication, and divide-and-conquer) have been em-
ployed to design in-memory graph-based vector
search algorithms, a systematic comparison of
the key algorithmic advances is still missing. We
conduct an exhaustive experimental evaluation of
twelve state-of-the-art methods on seven real data
collections, with sizes up to 1 billion vectors. We
share key insights about the strengths and limita-
tions of these methods; e.g., the best approaches
are typically based on incremental insertion and
neighborhood diversification, and the choice of
the base graph can hurt scalability. Finally, we dis-
cuss open research directions, such as the impor-
tance of devising more sophisticated data adaptive
seed selection and diversification strategies. An
extended version of this work appeared in ACM
SIGMOD 2025.

1. Introduction
Vector data is common in various scientific and business
domains, and its prevalence is expected to grow in the fu-
ture with the proliferation of learned embeddings. The

1ETIS UMR-8051 Laboratory, CY Cergy Paris Université,
ENSEA, CNRS, France 2College of Computer Science, Univer-
sity Mohammed VI Polytechnic, Morocco 3LIPADE, Université
Paris Cité - IUF, France. Correspondence to: Ilias Azizi <il-
ias.azizi@ensea.fr>.

Proceedings of the 1 st Workshop on Vector Databases at Interna-
tional Conference on Machine Learning, 2025. Copyright 2025 by
the author(s).

volume and dimensionality of this data, which can exceed
multiple terabytes and thousands of dimensions, make its
analysis very challenging. A critical component of these
data analysis tasks is vector search (Echihabi et al., 2021;
Palpanas, 2015). It supports recommendation (Wang et al.,
2018), information retrieval (Williams et al., 2014), cluster-
ing (Bubeck & von Luxburg, 2009), classification (Petitjean
et al., 2014), entity resolution (Christophides et al., 2020),
outlier detection (Boniol & Palpanas, 2020) and AI explain-
ability (Kaneko, 2023) in many fields including bioinfor-
matics, computer vision, finance. More recently, vector
search has been playing a crucial role in improving the per-
formance and interpretability of Large Language Models
and reducing their hallucinations (Blattmann et al., 2022;
Karpukhin et al., 2020).

As these applications scale to ever-larger datasets, often ter-
abytes in size and thousands of dimensions, vector search
becomes not only a computational bottleneck, but also a sig-
nificant contributor to system latency and energy consump-
tion (Huang et al., 2024). In many AI pipelines, especially
those deployed at inference time, similarity search domi-
nates runtime cost (Desislavov et al., 2023). Optimizing
vector search is therefore essential to building applications
that are not only faster and more responsive, but also more
efficient in terms of operational resources and environmental
impact (Chiang et al., 2025).

A vector search algorithm over a dataset S of n d-
dimensional vectors returns answers in S that are similar to
a given input vector VQ. The brute-force approach (a.k.a. a
sequential or serial scan) compares VQ to every single ele-
ment in S, with time complexity O (nd)—which becomes
impractical and energy-intensive for large, high-dimensional
datasets. To address this, state-of-the-art methods reduce
the dimensionality d via compact representations and/or
minimize the number of comparisons n through efficient in-
dexing and pruning strategies. These improvements not only
accelerate search but also reduce memory usage and com-
putational overhead, contributing to more energy-efficient
systems. Some approaches compute exact answers, while
others ϵ- and δ-ϵ-approximate answers, with deterministic
and probabilistic guarantees on the accuracy of the answers,
or ng-approximate answers without any theoretical guaran-
tees, but high accuracy in practice (Echihabi et al., 2019).

1

Graph-Based Vector Search: An Experimental Evaluation of the State-of-the-Art

A large body of work has been dedicated to approximate vec-
tor search, which trades off accuracy for efficiency. These
approaches are based on scans (Weber et al., 1998; Fer-
hatosmanoglu et al., 2000), trees (Camerra et al., 2014;
Wang et al., 2025), graphs (Malkov & Yashunin, 2020;
Subramanya et al., 2019; Munoz et al., 2019), inverted in-
dexes (Jégou et al., 2011; Babenko & Lempitsky, 2015),
hashing (Sun et al., 2014a;b), or a combination of these
data structures (Chen et al., 2018; Azizi et al., 2023). Over
the last decade, graph-based techniques have emerged as
the method of choice for vector search in many real appli-
cations that can relax theoretical guarantees to achieve a
query latency of a few milliseconds on terabyte-scale col-
lections (Song et al., 2020; Johnson et al., 2019).

Graph-based methods typically represent a dataset S as a
proximity graph G(V,E), where V is the set of vertices
corresponding to the n data points, and E is the set of edges
connecting similar points. Query answering for a given
query node VQ usually involves running an ng-approximate
beam search, starting with an initial set of seed nodes to
warm up the candidate priority queue, followed by a greedy
graph traversal expanding promising candidates. State-of-
the-art (SotA) graph-based methods share this beam-search
approach but differ mainly in their graph construction strate-
gies and seed selection mechanisms.

Although several paradigms (seed selection, incremental
insertion, neighborhood propagation, neighborhood diver-
sification, and divide-and-conquer) have been employed to
design in-memory graph-based vector search algorithms, a
systematic comparison of the key algorithmic advances is
still missing. The only empirical study dedicated entirely
to this family of techniques is (Wang et al., 2021) with-
out providing conclusive results due to the small scale of
datasets used in experiments, not exceeding 1M vectors.
As we will show in Section 3 that trends change as dataset
size increases. Moreover, existing benchmarks (Aumüller
et al., 2017; Simhadri et al., 2022) for evaluating vector
search methods do not focus on graph-based approaches,
and thus, do not shed light on why the best methods have
superior query performance. To the best of our knowledge,
our work is the first proposing a taxonomy of algorithmic
advances grounded in the actual indexing and search design
principles, rather than on abstract graph categories. This
enables new insights into how key design choices impact
the indexing and search performance across varying dataset
sizes, addressing limitations in prior studies.

In this paper, we make the following contributions1:

•We identify five core paradigms underlying graph-based
vector search: Seed Selection (SS), Neighborhood Propaga-
tion (NP), Incremental Insertion (II), Neighborhood Diver-

1Full paper appeared as (Azizi et al., 2025).

sification (ND), and Divide-and-Conquer (DC). We briefly
overview these paradigms and focus deeply on SS and ND,
due to their significant impact on performance.

•We propose a taxonomy categorizing existing methods ac-
cording to these paradigms, highlighting their chronological
evolution and influence.

• We briefly survey state-of-the-art methods, discussing
their design principles, strengths, and limitations.

• We conduct an extensive evaluation of twelve state-of-
the-art methods on synthetic and real-world datasets (up to
1 billion vectors). Our experiments validate conventional
wisdom, such as the superiority of incremental insertion
methods in query performance and scalability (Azizi et al.,
2023; Wang et al., 2021). However, we also find differences
from recent studies (Wang et al., 2021), notably demonstrat-
ing better-than-previously-reported efficiency of SPTAG-
BKT (Chen et al., 2018) on small datasets and superior
indexing efficiency of HNSW (Malkov & Yashunin, 2020).
Contrary to prior findings (Azizi et al., 2023), we also show
that Vamana (Subramanya et al., 2019) is competitive on
large scale datasets.

•We provide novel insights, such as (i) identifying the most
effective ND technique for large datasets, and (ii) analyzing
the impact of different SS methods on query and indexing
performance on various dataset scales.

• Finally, we highlight promising research directions, in-
cluding developing scalable NP and ND graph structures,
data-adaptive seed selection techniques, theoretical analy-
sis of ND methods, and tailored strategies (e.g., clustering,
diversification) for DC-based approaches.

2. Graph-Based Vector Search
We now present an overview of the main SotA graph-based
ng-approximate vector search methods. We outline the base
data structures and algorithms in this field, and identify five
main paradigms exploited by the SotA approaches. We
propose a new taxonomy that categorizes these approaches
along the five paradigms, highlighting also their chronologi-
cal development and influence map.

2.1. A Primer

A proximity graph is a graph G (V,E) in which two ver-
tices Vi and Vj are connected by an edge if and only if they
satisfy particular geometric requirements, namely the neigh-
borhood criterion (Shamos & Hoey, 1975). A proximity
graph can be constructed using different distances such as
the dot product (Morozov & Babenko, 2018), nevertheless
the Euclidean distance remains the most popular one (Edels-
brunner, 2012). One of the earliest proximity graphs in the
literature is the Delaunay Graph (DG). It is a planar dual

2

Graph-Based Vector Search: An Experimental Evaluation of the State-of-the-Art

Algorithm 1 Beam Search (G, q, s, k, l)

1: Input: Graph G, query vector q, initial seeds s, result
size k, beam width l ≥ k

2: Output: k approximate nearest neighbors to q
3: Initialize candidate set C ← s
4: Initialize visited list V ← ∅
5: while C \ V ̸= ∅ do
6: p∗ ← argminxi∈C\V dist(q, xi)
7: C ← C ∪Nout(p

∗)
8: V ← V ∪ {p∗}
9: if |C| > l then

10: Retain only the closest L points in C to q
11: end if
12: end while
13: Return the closest k candidates in C to q

graph for the Voronoi Diagram (Fortune, 1995), where each
vertex is the center of its own voronoi cell, and two ver-
tices are linked if and only if their corresponding voronoi
cells share at least one edge. A DG satisfies the Delau-
nay Triangulation :∀q, p, r ∈ V, (q, p) , (q, r) , (r, p) ∈ E
if the circumcircle of the triangle q, p, r is empty (Auren-
hammer et al., 2013). A beam search (Reddy et al., 1977)
(Algorithm 1) on a DG can find the exact nearest neigh-
bors (Dobkin et al., 1990) when the dataset has a high di-
mensionality or the beam search uses a large beam width.
However, using a DG in high dimensions is impractical,
because the graph becomes almost fully connected as the
dimensionality d grows (Dobkin et al., 1990). Thus, SotA
methods build alternative graph structures and use beam
search to support efficient query answering (Gabriel &
Sokal, 1969; Matula & Sokal, 1980; Toussaint, 2002).

2.2. Main Paradigms

We provide a brief overview of the five main paradigms
exploited by SotA methods. Then, we describe in more
detail the two paradigms that have the greatest impact on
query performance (as will be demonstrated in Section 3).

Seed Selection (SS) chooses initial nodes to visit during
search. It is also used during index building by approaches
that exploit a beam search during the construction of the
index to decide which edges to build. Some methods sim-
ply select one or more seed(s) randomly, while others use
special data structures, e.g., a K-D Tree.

Neighborhood Propagation (NP) refines a pre-existing
graph following a user-defined number of iterations, a.k.a.
NNDescent (Dong et al., 2011). During each iteration, the
potential neighbors of a given node are sourced both from
its immediate neighbors and the neighbors of its neighbors.
Then, the node only keeps the m closest neighbors, where
m is a user-parameter. The pre-existing graph could be a

random graph or some other type of graph.

Incremental Insertion (II) refers to building a graph by
inserting one vertex at a time. Each vertex is connected
using bi-directional edges to its nearest neighbors and some
distant vertices. The neighbors are selected using a beam
search on the already inserted portion of the graph. At
the end of graph construction, some vertices retain early
connections which act as long-range links. This approach
was first proposed in the object-based peer-to-peer overlay
network VoroNet (Beaumont et al., 2007a), with the idea
of adding long-range links being inspired from Kleinberg’s
small-world model (Kleinberg, 2000; Kleinberg et al., 2002),
with the difference that the latter selects the long-range links
randomly.

Neighborhood Diversification (ND) was first introduced by
the Relative Neighborhood Graph (RNG) (Toussaint, 1980).
It aims to sparsify the graph by pruning unnecessary edges
while preserving connectivity. For each node, ND exploits
the geometrical properties of the graph to remove edges to
neighbors that lead to redundant regions or directions. This
indirectly causes the creation of long-range links allowing
nodes to maintain diversified neighborhood lists, which
reduces the number of comparisons during search.

Divide-and-Conquer (DC) is a strategy that splits a dataset
into multiple, possibly overlapping, partitions, then builds
a separate graph on each partition. Some approaches such
as SPTAG (Chen et al., 2018) and HCNNG (Munoz et al.,
2019) combine the individual graphs into one large graph,
on which a beam search is performed, while ELPIS (Azizi
et al., 2023) maintains the graphs separate and searches
them in parallel.

2.3. Seed Selection

While state-of-the-art graph-based vector search meth-
ods vary in graph construction strategies, nearly all rely
on beam search (Algorithm 1) for query answering, as
it efficiently retrieves good answers in well-connected
graphs. However, the choice of initial nodes—referred to
as seeds—significantly impacts search efficiency: better
seeds lead to fewer visited nodes and faster searches. Typi-
cally, an entry node or multiple candidate entry nodes are
used to warm the beam search’s priority queue; in the case
of multiple seeds, the search picks the one closest to the
query as the initial node, retaining others in the priority
queue. While several methods propose additional indexes
built on data samples to facilitate seed selection, none pro-
vide comprehensive evidence supporting their effectiveness.
In this paper, we systematically examine the seed-selection
techniques proposed in the literature:

(1) Stacked-NSW (SN): HNSW (Malkov & Yashunin,
2020), inspired by skip lists (Pugh, 1990), builds hierar-

3

Graph-Based Vector Search: An Experimental Evaluation of the State-of-the-Art

chical NSW graphs by sampling nodes from lower layers.
Nodes are assigned a top layer L = − ln(ξ)/ ln(M/2), with
ξ ∼ U(0, 1) and out-degree M . Queries descend greedily
from a fixed top-layer entry point, returning the closest
sampled node to the query as entry point.

(2) K-D Trees (KD): Constructs a single or multiple K-D
Tree(s) (Beis & Lowe, 1997) on a dataset sample. During
search,retrieves the set of seed points is retrieved through
depth-first search traversal on the K-D Tree structure(s).

(3) LSH: Constructs an LSH index on a sample of the
dataset to retrieve the seeds during search.

(4) Medoid (MD): Uses medoid node as seed and entry
point during query answering.

(5) Single Fixed Random Entry Point (SF): A random
node is selected and fixed as the entry point for all searches.

(6) K-Sampled Random Seeds (KS): For each query, k
random nodes are selected as seed points.

(7) Balanced K-means Trees (KM): Constructs Balanced
K-means Trees (BKT) (Malinen & Fränti, 2014) on a
dataset sample. During search, seed points are retrieved
via depth-first search on the BKT structure(s).

2.4. Neighborhood Diversification

Neighborhood Diversification (ND) builds sparse graphs by
selectively pruning edges to balance short and long-range
connections, thus reducing redundant comparisons. Initially
proposed by RNG (Toussaint, 1980; 2002), ND was adapted
for approximate vector search by several graph-based meth-
ods. Three main ND strategies exist: Relative Neighborhood
Diversification (RND) used by HNSW (Malkov & Yashunin,
2020), NSG (Fu et al., 2019), SPTAG (Chen et al., 2018)
and ELPIS (Azizi et al., 2023); Relaxed RND (RRND) intro-
duced by Vamana (Subramanya et al., 2019); and Maximum-
Oriented ND (MOND), proposed by DPG (Li et al., 2019)
and NSSG (Fu et al., 2021). RND connects node Xq to
candidate Xj only if no current neighbor Xi is closer to
Xj . RRND relaxes this condition by factor α ≥ 1, reducing
pruning and increasing edges. MOND selects edges based
on an angle threshold θ ≥ 60◦, favoring diverse edge orien-
tations. RRND and MOND prune fewer edges than RND,
thus resulting in denser graphs (cf. Figure 1). Note that
any nodes pruned by RRND and MOND will eventually be
pruned by RND, but not vice versa. Refer to (url, 2025) for
a detailed proof.

2.5. A Taxonomy

Figure 2 depicts the SotA graph-based approaches, classi-
fied based on the five design paradigms: SS, NP, II, ND,
and DC. The taxonomy also reflects the chronological de-
velopment of the methods. Directed arrows indicate the

(a) RND (b) RRND (c) MOND

Figure 1. Neighborhood diversification approaches

influence of one method on another. Within the ND cate-
gory, distinctions are made between different strategies, i.e.,
No Neighborhood Diversification (NoND), RND, RRND,
and MOND (cf. Section 2.4). We identify the SS strategy
of each method: KS, KD, SN, MD, LSH, and KM (SF is
not used by any SotA method, but we consider it as an
alternative strategy).

Additionally, some methods use more than one strategy (e.g.
NSG and VAMANA use KS and MD), or offer the flexibil-
ity to use different strategies (e.g., SPTAG can use either
KD or KM). Note that a method can exploit one or more
paradigms; e.g., HNSW uses incremental node insertion
and prunes each node’s neighbors using the RND approach,
thereby being classified as both II and ND. KGraph (Dong,
2022) was the first to use NP to approximate the exact
k-NN graph (k-NNG) (with quadratic complexity), and in-
fluenced numerous subsequent methods, including IEH (Jin
et al., 2014) and EFANNA (Fu & Cai, 2016). In parallel,
NSW (Ponomarenko et al., 2011) introduced the II strategy
for graph construction.

HNSW (Malkov & Yashunin, 2020) and DPG (Li et al.,
2019) leveraged ND to enhance NSW and KGraph, respec-
tively. The good performance of HNSW and DPG encour-
aged more methods to adopt the ND paradigm, including
NGT (Yahoo Japan Corporation, 2022), NSG (Fu et al.,
2019) and SSG (Fu et al., 2021), which apply ND on the
NP-based graph EFANNA. SPTAG (Chen et al., 2018) com-
bined DC with ND.

Vamana (Subramanya et al., 2019) adopts NSG’s idea of
constructing the graph through beam search and ND. How-
ever, Vamana constructs its graph by refining an initial base
random graph in two rounds of pruning, using RRND and
RND. Inspired by HNSW, Vamana and NGT proposed vari-
ants that support incremental graph building (Croft et al.,
2021; Yahoo Japan Corporation, 2022), but we classify them
as ND-based per the ideas proposed in the original papers.
HCNNG (Munoz et al., 2019) was influenced by SPTAG
and adopted a DC approach for constructing the graph with-
out adopting ND. ELPIS (Azizi et al., 2023) also adopted a
DC strategy but leveraged both II and ND. HVS (Lu et al.,
2021) and LSHAPG (Zhao et al., 2023) both propose new
seed selection structures for HNSW, with the latter addition-

4

Graph-Based Vector Search: An Experimental Evaluation of the State-of-the-Art

Figure 2. Graph-based ANN indexing paradigms

ally adopting a new probabilistic rooting approach. Note
that earlier approaches, except from NSW, were mainly
NP-based; however, recent studies have focused on devis-
ing methods that leverage the ND, II, and DC paradigms
because they lead to superior performance (cf. Section 3).

3. Experimental Evaluation
We experimentally evaluate twelve state-of-the-art graph-
based vector search methods, based on the two key
paradigms, namely seed selection and neighborhood di-
versification. To single out the effect of each strategy, we
first implement a basic II-based method, where nodes are
inserted incrementally and each node i acquires its list of
candidate neighbors through a beam search on the current
partial graph of already inserted nodes. Then, we implement
each strategy independently on the resulting graph. Finally,
we assess the indexing and query-answering performance
of these methods on a variety of real and synthetic datasets.
All artifacts are available in (url, 2025).

3.1. Framework

Setup. All methods were compiled with GCC 8.2 on Ubuntu
20.04 and run on a 4-socket Intel Xeon Platinum 8276 server
(28 cores/socket, 1 thread/core) with 1.5TB RAM.

Algorithms. We cover the following methods:
HNSW (Malkov & Yashunin, 2020), NSG (Fu et al.,
2019), Vamana (Subramanya et al., 2019), DPG (Li et al.,
2019), EFANNA (Fu & Cai, 2016), HCNNG (Munoz et al.,
2019), KGraph (Dong, 2022), NGT (Yahoo Japan Corpo-
ration, 2022), DPG (Li et al., 2019), and two versions of
SPTAG (Chen et al., 2018) (SPTAG-BKT and SPTAG-KDT,
using BKT and K-D Trees, respectively). We also include
ELPIS (Azizi et al., 2023) and LSHAPG (Zhao et al.,
2023). IEH and FANNG are excluded due to suboptimal
performance (Wang et al., 2021; Fu et al., 2019), and HVS
due to difficulties running the official implementation (Lu,
2023). Euclidean distance is employed as the sole similarity
metric throughout all methods and experiments. We use the
most efficient publicly available C/C++ implementations

for each algorithm, leveraging multithreading and SIMD
vectorization to optimize performance. We also disabled
the optimizations that would lead to an unfair evaluation
such as cache pre-warming and L2-normalized Euclidean
distance. Since all methods except ELPIS and HNSW use a
single priority queue, we modified their original two-queue
implementations (url, 2022; 2019) to use a single queue.
The modified versions are documented in (url, 2025).

Datasets. We use seven real-world datasets from various
domains, including deep network embeddings, computer
vision, neuroscience, and seismology: (i) Deep (Skoltech
Computer Vision, 2018) contains 1 billion 96-dimensional
vectors extracted from the final layers of a convolutional
neural network; (ii) Sift (TEXMEX Research Team, 2018)
consists of 1 billion 128-dimensional SIFT vectors repre-
senting image feature descriptors; (iii) Sald (University,
2018) provides neuroscience MRI data with 200 million
128-dimensional data series; (iv) Seismic (for Seismol-
ogy with Artificial Intelligence, 2018) contains 100 mil-
lion 256-dimensional time series representing earthquake
recordings from seismic stations worldwide; (v) Text-to-
Image (Baranchuk & Babenko, 2021) offers 1 billion 200-
dimensional image embeddings from Se-ResNext-101 along
with 50 million DSSM-embedded text queries for cross-
modal retrieval under domain shifts; (vi) Gist (Jégou et al.,
2011) contains 1 million 960-dimensional vectors, using
GIST descriptors (Oliva & Torralba, 2001) to capture spa-
tial structure and color layout of images; and (vii) Ima-
geNet1M, a new dataset that we generated from the orig-
inal ImageNet (Russakovsky et al., 2015), producing em-
beddings of 1 million original vectors using the ResNet50
model (He et al., 2016), with PCA applied to reduce dimen-
sionality to 256. We select subsets of different sizes from
the Sift, Deep, SALD and Seismic datasets, and we refer
to each subset with the name of the dataset followed by
the subset size in GBs (e.g., Deep25GB). We refer to the
1-million and 1-billion datasets with the 1M and 1B prefixes,
respectively. To test robustness across distributions, we gen-
erate three 25GB synthetic datasets (RandPow0, RandPow5,
RandPow50; 256 dimensions) using power law exponents
0 (uniform), 5, and 50 (high skew). Power law follows
Y = kXa, with skewness increasing with exponent a.

Dataset Complexity. We measure dataset complexity using
Local Intrinsic Dimensionality (LID) and Local Relative
Contrast (LRC) (He et al., 2012; Aumüller & Ceccarello,
2021), defined respectively as:

LID(x) = −

(
1

k

k∑
i=1

log
disti(x)
distk(x)

)−1

(1)

LRC(x) =
distmean(x)

distk(x)
(2)

5

Graph-Based Vector Search: An Experimental Evaluation of the State-of-the-Art

where disti(x) is the Euclidean distance from x to its i-th
nearest neighbor, distmean(x) is the average distance from
x to all dataset points, and k = 100. Lower LID and higher
LRC values indicate easier search tasks. Figure 3 (computed
on 1M-point dataset samples) confirms consistency between
these metrics, with orange lines indicating dataset mean
values. Pow0, Pow5, Pow50, Seismic, and Text2Img have
the highest LID and lowest LRC (hardest datasets), whereas
Sift, Deep, and ImageNet have the lowest LID and highest
LRC (easiest datasets).

(a) Local intrinsic dim. (b) Local relative contrast

Figure 3. Dataset complexity

Queries. Each query workload consists of 100 vectors
processed sequentially to simulate realistic, unpredictable
query streams (Palpanas & Beckmann, 2019; Gogolou
et al., 2020); results for 1M queries are extrapolated
from these workloads. For Deep, Sift, Gist, and Text-
to-Image(Text2Img), queries are randomly sampled from
their provided workloads; for Sald, ImageNet, and Seis-
mic, queries are randomly selected from datasets and ex-
cluded from index building. Query hardness experiments
use Deep dataset vectors perturbed by Gaussian noise
(µ = 0, variance σ2 from 0.01 to 0.1), labeled as 1%–10%
noise based on the variance (Zoumpatianos et al., 2018).
Queries for power-law datasets follow the original distri-
bution with new random seeds. Unless stated otherwise,
experiments use standard 10-NN queries (Simhadri et al.,
2022; Aumüller et al., 2017), except for dataset complexity
and seed-selection analyses, where 100-NN queries are used
for higher precision and to reflect increased overhead.

Measures. We measure the wall clock time and distance
calculations for both indexing and query answering. We
also measure the accuracy of each k-NN query using Recall
which quantifies the fraction of the true nearest neighbors
that the query SQ successfully returns.

3.2. Neighborhood Diversification

We compare existing ND methods with the baseline NOND
on II-graph (HNSW) (Fig.4). RND consistently ranks first,
slightly ahead of MOND, followed by RRND; NOND per-
forms worst across all scales (see Appendix for full results).

Figure 4. Impact
of ND choice on
query performance
(Deep1B)

(a) Deep25GB (b) Deep1B

Figure 5. Impact of SS choice on query per-
formance

3.3. Seed Selection

We evaluate seed Selection methods on II-graph with RND
pruning across different datasets and scales. Both SN and
KS lead in query performance. KS edges out SN on small
scale (Fig.4a), while SN outperforms at large scale (Fig.4b)
(see full results in appendix).

3.4. Indexing Efficiency

Figure 11 shows II-based methods offer the fastest indexing.
ELPIS leads, being 2.7× faster than HNSW and 4× faster
than NSG on 1M and 25GB. NSG is slowed by its EFANNA
base, while SPTAG variants are 24× slower than ELPIS due
to costly multi-tree construction. Most graph-based meth-
ods fail to scale to large collections; only HNSW, ELPIS,
and Vamana index the 1B scale efficiently. ELPIS remains
fastest, outperforming HNSW and Vamana by 2× and 2.7×,
respectively. We also assess the memory footprint of SOTA
methods; see Appendix for details.

3.5. Query Performance

We evaluate query performance across varying dataset scale
and difficulties (Figure 7). On small, low-LID datasets,
NSG, SSG, and HNSW perform best (Figure 6a). As dataset
complexity increases—e.g., Seismic1M (Figure 6b) and
Deep25GB with 10% noise (Figure 6d)—DC-based meth-
ods like SPTAG and ELPIS outperform others. Several
methods, including NSG, fail to scale due to memory or
indexing constraints. At billion-scale, ELPIS achieves the
best performance (Figure 6c), leveraging its multithreaded
design. More results across various datasets and scales are
available in the Appendix.

4. Discussion
In the previous section, we presented the results of an exten-
sive evaluation of twelve state-of-the-art graph-based vector
search methods. Table 1 summarizes the evaluation across
key criteria: for search, we assess efficiency, accuracy, and
the number of tunable parameters; for indexing, we evaluate

6

Graph-Based Vector Search: An Experimental Evaluation of the State-of-the-Art

Figure 6. Indexing time
(a) Deep1M (b) Seismic1M (c) Deep1B (d) 10% noise

Figure 7. Query performance

✓ Good ∼ Medium × Bad
Method Query answering Index building

Efficiency Accuracy Tuning Efficiency Footprint Tuning

HNSW ✓ ✓ ✓ ✓ ✓ ✓
VAMANA ✓ ✓ ✓ ✓ ✓ ∼
NSG ✓ ✓ ✓ ∼ ∼ ∼
SSG ✓ ✓ ✓ ∼ ∼ ∼
ELPIS ✓ ✓ ∼ ✓ ✓ ∼
EFANNA × ∼ × × × ×
KGRAPH × × × × × ×
DPG × ∼ ∼ ∼ ∼ ∼
SPTAG-BKT ∼ ✓ × × ✓ ×
HCNNG ✓ ✓ ✓ ✓ ✓ ∼
LSHAPG × ∼ × ∼ ✓ ✓
NGT ∼ ∼ × × ✓ ×
SPTAG-KDT ∼ ∼ ∼ × ✓ ×

Table 1. Comparative analysis of graph-based ANN methods.

efficiency at high recall, memory footprint, and parameter
tuning complexity.

The best-performing methods, HNSW, VAMANA, and
ELPIS, have the best search performance and index effi-
ciency. However, ELPIS requires an extra parameter during
both indexing (leaf size) and search (nprobes), whereas VA-
MANA requires an extra parameter to tune during indexing
(alpha). NSG and SSG exhibit efficient query performance,
but their indexing capability is hindered because of their
base graph EFANNA, which similarly to KGraph, is tedious
to tune and suffers from high indexing time and footprint.
Both SPTAG-BKT and NGT show satisfactory performance
during search; however, they do not scale well to large
datasets and require more tuning compared to the best meth-
ods. The assessment of HCNNG is based on the optimized
parlayANN implementation which has shown competitive
performance on large-scale datasets.

We now summarize the key insights and pinpoint promising
research directions.

Unexpected Results. Our results lead to interesting obser-
vations that warrant further study.

(1) Stacked NSW: while hierarchical layers of NSW graphs
have shown promise in improving search performance on
billion-scale datasets (Figure 10), our experiments demon-
strate that a simpler approach like K-random sampling can
achieve better results on smaller and medium-sized datasets.

(2) Scalability of Graph Approaches: while all graph-based
vector search methods can efficiently build indexes on small

datasets, most approaches face significant scalability chal-
lenges. Some methods (SPTAG, NGT, NSG, and SSG)
demonstrate impressive search performance on 1M and
25GB datasets (Figs. 16b, 16a, 17c, 17a, and 17b)
but their index construction could not scale to 100GB and
billion-scale datasets. An important research direction is to
improve the indexing scalability for these methods either
by adopting summarization techniques during index con-
struction or by using a scalable data structure to construct
the base graph (i.e IVFPQ (Johnson et al., 2019) to find the
neighbors of nodes during insertion).

(3) DC-based approach for hard datasets and workloads:
an interesting finding was the superior performance of DC-
based approaches compared to other methods like HNSW,
NSG, and Vamana on challenging datasets/workloads such
as Seismic, RandPow0, RandPow50 and Deep hard query
workload for 1M and 25GB dataset sizes. We believe the
DC strategy helps in this context because the graphs are
built on clustered subsets of data, which facilitates beam
search in retrieving more accurate answers, as opposed to
running the search on the entire dataset, resulting in lower
accuracy (Figures 16d, 17c, 17e, and 17f).

Neighborhood Diversification. Adopting an ND strategy to
sparsify the graph always leads to better search performance,
especially as dataset size grows (Figures 16d, 17c). Our
experiments show that RND and MOND achieve the best
performance overall (Figure 9). While RRND can mimic
RND by setting α = 1, relaxing pruning via α > 1 allows
control over edge density, which benefits disk-based and
in-memory searches differently. For example, DiskANN
(Subramanya et al., 2019) uses denser graphs to reduce disk
I/O, trading off additional distance computations. We see
promising improvements from increased density on hard
datasets, but further theoretical work is needed to balance
proximity and sparsity for efficient, well-connected graphs.

Seed Selection: Our experiments demonstrate that the SS
strategy plays a crucial role in enhancing not only search
performance (Figure 10) but also indexing efficiency (Table
3). An important research direction is to develop novel,
lightweight SS strategies. Such strategies could signifi-
cantly improve the overall performance of graph-based vec-

7

Graph-Based Vector Search: An Experimental Evaluation of the State-of-the-Art

tor search, both in terms of indexing and query-answering.
Additionally, they could enhance the ability to handle out-
of-distribution queries, particularly for large datasets where
efficient seed selection becomes even more critical (Figures
10c, 10f).

Data-Adaptive Techniques. Our experiments evaluate the
performance of various graph-building paradigms within
our taxonomy (SS, NP, II, ND, and DC). While NP-based
methods perform the worst overall and are the least scal-
able, there is no clear winner across all dataset sizes and
query workloads. (1) Scalability: II-based approaches have
superior efficiency during indexing and higher scalability
in both querying and indexing. (2) Query Answering: ND-
based methods have the best query performance overall.
Meanwhile, DC-based approaches are superior on challeng-
ing datasets (High LID&Low RC, Fig. 3) and hard query
workloads (Fig. 20a, 16d, 17c, 19, 17f, 17e). A promising
research direction would be to develop techniques that adapt
to dataset characteristics such as dataset size, dimensionality,
RC and LID to excel both in indexing and query answering
across a variety of query workloads and dataset sizes.

Hybrid Design. Most recent methods use a mix of
paradigms. HNSW leverages II to scale index construc-
tion to large datasets and ND to support efficient query
answering. ELPIS incorporates a DC-based strategy dur-
ing both index building and search to further enhance the
scalability of HNSW across varying dataset difficulty levels.
Interestingly, Vamana, relying only on the ND paradigm,
achieves good search performance and scalability, however
its indexing time is prohibitive. A promising research di-
rection is building hybrid approaches that combine the key
strengths of different techniques, particularly II, ND and
DC. Besides, devising novel base graphs, clustering and
summarization techniques tailored for DC-based methods
can further improve their performance.

Optimized Libraries. Our experiments with Par-
layANN (Manohar et al., 2024) (Fig. 21) highlight the value
of optimized implementations. For example, HCNNG Opt
scaled to 1B datasets, while the non-optimized version failed
beyond 25GB. Other methods could similarly benefit, under-
scoring the need for broader community support of libraries
like ParlayANN.

Green Vector Search. Our findings highlight that choices
like Neighborhood Diversification (ND) and Seed Selection
(SS) reduce not only search time and memory, but also the
number of distance computations and overall floating-point
operations, which are key contributors to energy usage. This
makes them simple yet effective levers for aligning vector
search with Green AI goals. We advocate for incorporating
such computation-aware metrics into future evaluations to
better guide the development of efficient and sustainable
search methods.

Figure 8. Recommendations (Indexing + 10K queries)

Recommendations. Our study demonstrates varying perfor-
mance trends across datasets of different sizes, query work-
loads of different hardness and desired recall values. Fig-
ure 8 provides recommendations for methods based on these
criteria. For small to medium-sized datasets (25GB and
below), II-ND and ND based methods consistently demon-
strate excellent performance on easier datasets (Fig.16a,
16b, 16f, 16e). On harder datasets, DC-based methods
prove more efficient (Figs. 16d 17c, 16c, 17b, 19a, 19b).
On large datasets (100GB and above), II-ND based methods
consistently rank as top choices (Figs.18, 20).

5. Conclusions
In this paper, we conduct a survey of the SotA graph-based
methods for in-memory ng-approximate vector search,
proposing a new taxonomy based on five key design
paradigms. Through extensive experimentation on datasets
with up to 1B vectors, we highlight the scalability challenges
faced by most methods, with incremental insertion methods
showing the best scalability on datasets exceeding 100GB.
We observe that light-weight hierarchical structures help se-
lect better seeds to start the search on billion-scale datasets,
and that neighborhood diversification is a key contributor
in improving the query answering performance, with RND
and MOND being the best techniques. We also propose
promising research directions.

Acknowledgements
Supported by EU Horizon projects AI4Europe (101070000),
TwinODIS (101160009), ARMADA (101168951),
DataGEMS (101188416), RECITALS (101168490),
YΠAIΘA & NextGenerationEU project HARSH
(YΠ3TA − 0560901), and CNRS-UM6P program for
postdoctoral fellowships.

Impact Statement
Paper presents work that advances field of Machine Learn-
ing; many potential societal consequences, none of which
must be specifically highlighted here.

8

Graph-Based Vector Search: An Experimental Evaluation of the State-of-the-Art

References
Hnswlib - fast approximate nearest neighbor search.
https://github.com/nmslib/hnswlib, 2019.

ELPIS Archive. https://github.com/
scalablesimilaritysearch/ELPIS, 2022.

Graph-based vector search: An experimental evaluation
of the state-of-the-art (archive). https://github.
com/iliasazizi/GVS, 2025.

Aumüller, M. and Ceccarello, M. The role of local di-
mensionality measures in benchmarking nearest neighbor
search. Inf. Syst., 101:101807, 2021. doi: 10.1016/J.IS.
2021.101807. URL https://doi.org/10.1016/
j.is.2021.101807.

Aumüller, M., Bernhardsson, E., and Faithfull, A. Ann-
benchmarks: A benchmarking tool for approximate near-
est neighbor algorithms. In International Conference on
Similarity Search and Applications, pp. 34–49. Springer,
2017.

Aurenhammer, F., Klein, R., and Lee, D.-T. Voronoi di-
agrams and Delaunay triangulations. World Scientific
Publishing Company, 2013.

Azizi, I., Echihabi, K., and Palpanas, T. Elpis: Graph-based
similarity search for scalable data science. PVLDB, 16
(6), 2023.

Azizi, I., Echihabi, K., and Palpanas, T. Graph-based vector
search: An experimental evaluation of the state-of-the-art.
Proceedings of the ACM on Management of Data, 3(1):
1–31, 2025.

Babenko, A. and Lempitsky, V. The Inverted Multi-Index.
TPAMI, 37(6), 2015.

Baranchuk, D. and Babenko, A. Text-to-image
dataset for billion-scale similarity search.
https://research.yandex.com/datasets/
text-to-image-dataset-for-billion-scale-similarity-search,
2021.

Beaumont, O., Kermarrec, A.-M., Marchal, L., and Rivière,
É. Voronet: A scalable object network based on voronoi
tessellations. In 2007 IEEE International Parallel and
Distributed Processing Symposium, pp. 1–10. IEEE,
2007a.

Beaumont, O., Kermarrec, A.-M., and Rivière, É. Peer to
peer multidimensional overlays: Approximating complex
structures. In International Conference On Principles Of
Distributed Systems, pp. 315–328. Springer, 2007b.

Beis, J. S. and Lowe, D. G. Shape indexing using ap-
proximate nearest-neighbour search in high-dimensional
spaces. In Proceedings of IEEE computer society con-
ference on computer vision and pattern recognition, pp.
1000–1006. IEEE, 1997.

Blattmann, A., Rombach, R., Oktay, K., Müller, J., and Om-
mer, B. Retrieval-augmented diffusion models. Advances
in Neural Information Processing Systems, 35, 2022.

Boniol, P. and Palpanas, T. Series2Graph: Graph-based Sub-
sequence Anomaly Detection for Time Series. PVLDB,
2020.

Bubeck, S. and von Luxburg, U. Nearest neighbor clus-
tering: A baseline method for consistent clustering with
arbitrary objective functions. JMLR, 10, 2009.

Camerra, A., Shieh, J., Palpanas, T., Rakthanmanon, T., and
Keogh, E. Beyond One Billion Time Series: Indexing
and Mining Very Large Time Series Collections With
iSAX2+. Knowledge and information systems, 39(1):
123–151, 2014.

Chen, Q., Wang, H., Li, M., Ren, G., Li, S., Zhu, J., Li, J.,
Liu, C., Zhang, L., and Wang, J. SPTAG: A library for
fast approximate nearest neighbor search, 2018. URL
https://github.com/Microsoft/SPTAG.

Chiang, H.-W., Huang, C.-T., Cheng, H.-Y., Tseng, P.-H.,
Lee, M.-H., and Wu, A.-Y. Efficient and reliable vector
similarity search using asymmetric encoding with nand-
flash for many-class few-shot learning. In Proceedings
of the 30th Asia and South Pacific Design Automation
Conference, pp. 93–99, 2025.

Christophides, V., Efthymiou, V., Palpanas, T., Papadakis,
G., and Stefanidis, K. An overview of end-to-end entity
resolution for big data. ACM Computing Surveys (CSUR),
53(6):1–42, 2020.

Croft, D., Gupta, M., Josifovski, V., Narayanan, P., Wu, W.,
and Xue, Y. Diskann: Fast approximate nearest neighbor
search on disk. GitHub repository, 2021. URL https:
//github.com/microsoft/DiskANN. Accessed:
2024-10-25.

Dasgupta, S. and Freund, Y. Random projection trees and
low dimensional manifolds. In Proceedings of the fortieth
annual ACM symposium on Theory of computing, pp. 537–
546, 2008.

DBAIWangGroup. Nns benchmark: Evaluating ap-
proximate nearest neighbor search algorithms in
high dimensional euclidean space - dpg algorithm.
https://github.com/DBAIWangGroup/nns_
benchmark/tree/master/algorithms/DPG,
2023. GitHub repository.

9

https://github.com/nmslib/hnswlib
https://github.com/scalablesimilaritysearch/ELPIS
https://github.com/scalablesimilaritysearch/ELPIS
https://github.com/iliasazizi/GVS
https://github.com/iliasazizi/GVS
https://doi.org/10.1016/j.is.2021.101807
https://doi.org/10.1016/j.is.2021.101807
https://research.yandex.com/datasets/text-to-image-dataset-for-billion-scale-similarity-search
https://research.yandex.com/datasets/text-to-image-dataset-for-billion-scale-similarity-search
https://github.com/Microsoft/SPTAG
https://github.com/microsoft/DiskANN
https://github.com/microsoft/DiskANN
https://github.com/DBAIWangGroup/nns_benchmark/tree/master/algorithms/DPG
https://github.com/DBAIWangGroup/nns_benchmark/tree/master/algorithms/DPG

Graph-Based Vector Search: An Experimental Evaluation of the State-of-the-Art

Desislavov, R. et al. Trends in ai inference energy con-
sumption: Beyond the performance-vs-parameter laws of
deep learning. Sustainable Computing: Informatics and
Systems, 38, 2023.

Dobkin, D. P., Friedman, S. J., and Supowit, K. J. Delaunay
graphs are almost as good as complete graphs. Discrete
& Computational Geometry, 5(4):399–407, 1990.

Dong, W. Kgraph, an open source library for k-nn graph
construction and nearest neighbor search. www.kgraph.
org, 2022.

Dong, W., Moses, C., and Li, K. Efficient k-nearest neigh-
bor graph construction for generic similarity measures.
In Proceedings of the 20th international conference on
World wide web, pp. 577–586, 2011.

Echihabi, K., Zoumpatianos, K., Palpanas, T., and Ben-
brahim, H. Return of the Lernaean Hydra: Experimental
Evaluation of Data Series Approximate Similarity Search.
PVLDB, 2019.

Echihabi, K., Zoumpatianos, K., and Palpanas, T. High-
dimensional similarity search for scalable data science.
ICDE, 2021.

Echihabi, K., Fatourou, P., Zoumpatianos, K., Palpanas,
T., and Benbrahim, H. Hercules Against Data Series
Similarity Search. PVLDB, 15(10), 2022.

Edelsbrunner, H. Algorithms in Combinatorial Geometry.
Springer Publishing Company, Incorporated, 1st edition,
2012. ISBN 3642648738.

Engel, A., Monasson, R., and Hartmann, A. K. On large de-
viation properties of erdös–rényi random graphs. Journal
of Statistical Physics, 117(3):387–426, 2004.

Ferhatosmanoglu, H., Tuncel, E., Agrawal, D., and El Ab-
badi, A. Vector approximation based indexing for non-
uniform high dimensional data sets. In Proceedings of
the ninth international conference on Information and
knowledge management, pp. 202–209, 2000.

for Seismology with Artificial Intelligence, I. R. I. Seis-
mic Data Access. http://ds.iris.edu/data/
access/, 2018.

Fortune, S. Voronoi diagrams and delaunay triangulations.
Computing in Euclidean geometry, pp. 225–265, 1995.

Fu, C. and Cai, D. Efanna: An extremely fast approximate
nearest neighbor search algorithm based on knn graph.
arXiv preprint arXiv:1609.07228, 2016.

Fu, C., Xiang, C., Wang, C., and Cai, D. Fast approximate
nearest neighbor search with the navigating spreading-out
graph. Proc. VLDB Endow., 12(5):461–474, 2019.

Fu, C., Wang, C., and Cai, D. High dimensional similarity
search with satellite system graph: Efficiency, scalability,
and unindexed query compatibility. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2021.

Gabriel, K. R. and Sokal, R. R. A new statistical approach
to geographic variation analysis. Systematic zoology, 18
(3):259–278, 1969.

Gionis, A., Indyk, P., Motwani, R., et al. Similarity search
in high dimensions via hashing. In Vldb, volume 99, pp.
518–529, 1999.

Gogolou, A., Tsandilas, T., Echihabi, K., Palpanas, T., and
Bezerianos, A. Data Series Progressive Similarity Search
with Probabilistic Quality Guarantees. In SIGMOD, 2020.

He, J., Kumar, S., and Chang, S.-F. On the difficulty of
nearest neighbor search. arXiv preprint arXiv:1206.6411,
2012.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Huang, C.-T., Chang, C.-Y., Cheng, H.-Y., and Wu, A.-Y.
Bore: Energy-efficient banded vector similarity search
with optimized range encoding for memory-augmented
neural network. In 2024 Design, Automation Test in
Europe Conference Exhibition (DATE), pp. 1–6, 2024.

Iwasaki, M. Pruned bi-directed k-nearest neighbor graph
for proximity search. In International Conference on
Similarity Search and Applications, pp. 20–33. Springer,
2016.

Jégou, H., Douze, M., and Schmid, C. Product quantization
for nearest neighbor search. In IEEE Transactions on
Pattern Analysis and Machine Intelligence, volume 33,
pp. 117–128. IEEE, 2011.

Jin, Z., Zhang, D., Hu, Y., Lin, S., Cai, D., and He, X.
Fast and accurate hashing via iterative nearest neighbors
expansion. IEEE transactions on cybernetics, 44(11):
2167–2177, 2014.

Johnson, J., Douze, M., and Jégou, H. Billion-scale similar-
ity search with GPUs. IEEE Transactions on Big Data, 7
(3):535–547, 2019.

Kaneko, H. Local interpretation of nonlinear regression
model with k-nearest neighbors. Digital Chemical Engi-
neering, 6:100078, 2023.

Karpukhin, V., Oğuz, B., Min, S., Lewis, P., Wu, L., Edunov,
S., Chen, D., and Yih, W.-t. Dense passage retrieval
for open-domain question answering. arXiv preprint
arXiv:2004.04906, 2020.

10

www.kgraph.org
www.kgraph.org
http://ds.iris.edu/data/access/
http://ds.iris.edu/data/access/

Graph-Based Vector Search: An Experimental Evaluation of the State-of-the-Art

Kleinberg, J. et al. Small-world phenomena and the dy-
namics of information. Advances in neural information
processing systems, 1:431–438, 2002.

Kleinberg, J. M. Navigation in a small world. Nature, 406
(6798):845–845, 2000.

Li, W., Zhang, Y., Sun, Y., Wang, W., Li, M., Zhang, W.,
and Lin, X. Approximate nearest neighbor search on
high dimensional data: experiments, analyses, and im-
provement. IEEE Transactions on Knowledge and Data
Engineering, 32(8):1475–1488, 2019.

Lu, K. Hvs: Hierarchical graph structure based on
voronoi diagrams for solving approximate nearest neigh-
bor search, 2023. URL https://github.com/
Kejing-Lu/hvs.

Lu, K., Kudo, M., Xiao, C., and Ishikawa, Y. Hvs: hierarchi-
cal graph structure based on voronoi diagrams for solving
approximate nearest neighbor search. Proceedings of the
VLDB Endowment, 15(2):246–258, 2021.

Malinen, M. I. and Fränti, P. Balanced k-means for clus-
tering. In Structural, Syntactic, and Statistical Pattern
Recognition: Joint IAPR International Workshop, S+
SSPR 2014, Joensuu, Finland, August 20-22, 2014. Pro-
ceedings, pp. 32–41. Springer, 2014.

Malkov, Y., Ponomarenko, A., Logvinov, A., and Krylov,
V. Approximate nearest neighbor algorithm based on
navigable small world graphs. Information Systems, 45:
61–68, 2014.

Malkov, Y. A. and Yashunin, D. A. Efficient and robust
approximate nearest neighbor search using hierarchical
navigable small world graphs. IEEE Trans. Pattern Anal.
Mach. Intell., 42(4):824–836, 2020.

Manohar, M. D., Shen, Z., Blelloch, G., Dhulipala, L., Gu,
Y., Simhadri, H. V., and Sun, Y. Parlayann: Scalable and
deterministic parallel graph-based approximate nearest
neighbor search algorithms. In Proceedings of the 29th
ACM SIGPLAN Annual Symposium on Principles and
Practice of Parallel Programming, pp. 270–285, 2024.

Matula, D. W. and Sokal, R. R. Properties of gabriel graphs
relevant to geographic variation research and the cluster-
ing of points in the plane. Geographical analysis, 12(3):
205–222, 1980.

Morozov, S. and Babenko, A. Non-metric similarity graphs
for maximum inner product search. Advances in Neural
Information Processing Systems, 31, 2018.

Munoz, J. V., Gonçalves, M. A., Dias, Z., and Torres, R. d. S.
Hierarchical clustering-based graphs for large scale ap-
proximate nearest neighbor search. Pattern Recognition,
96:106970, 2019.

Oliva, A. and Torralba, A. Modeling the shape of the scene:
A holistic representation of the spatial envelope. Interna-
tional journal of computer vision, 42:145–175, 2001.

Palpanas, T. Data series management: The road to big
sequence analytics. ACM SIGMOD Record, 44(2):47–52,
2015.

Palpanas, T. and Beckmann, V. Report on the First and
Second Interdisciplinary Time Series Analysis Workshop
(ITISA). ACM SIGMOD Record, 48(3), 2019.

Petitjean, F., Forestier, G., Webb, G. I., Nicholson, A. E.,
Chen, Y., and Keogh, E. J. Dynamic time warping av-
eraging of time series allows faster and more accurate
classification. In ICDM, 2014.

Ponomarenko, A., Malkov, Y., Logvinov, A., and Krylov,
V. Approximate nearest neighbor search small world ap-
proach. In International Conference on Information and
Communication Technologies & Applications, volume 17,
2011.

Pugh, W. Skip lists: a probabilistic alternative to balanced
trees. Communications of the ACM, 33(6):668–676, 1990.

Reddy, D. R. et al. Speech understanding systems: A
summary of results of the five-year research effort. De-
partment of Computer Science. Camegie-Mell University,
Pittsburgh, PA, 17:138, 1977.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh,
S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bern-
stein, M., et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115:
211–252, 2015.

Shamos, M. I. and Hoey, D. Closest-point problems. In 16th
Annual Symposium on Foundations of Computer Science
(sfcs 1975), pp. 151–162. IEEE, 1975.

Simhadri, H. V., Williams, G., Aumüller, M., Douze, M.,
Babenko, A., Baranchuk, D., Chen, Q., Hosseini, L.,
Krishnaswamy, R., Srinivasa, G., Subramanya, S. J.,
and Wang, J. Results of the neurips’21 challenge
on billion-scale approximate nearest neighbor search.
CoRR, abs/2205.03763, 2022. doi: 10.48550/arXiv.
2205.03763. URL https://doi.org/10.48550/
arXiv.2205.03763.

Skoltech Computer Vision. Deep billion-scale indexing.
http://sites.skoltech.ru/compvision/
noimi, 2018.

Song, L., Pan, P., Zhao, K., Yang, H., Chen, Y., Zhang, Y.,
Xu, Y., and Jin, R. Large-scale training system for 100-
million classification at alibaba. In Proceedings of the
26th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pp. 2909–2930, 2020.

11

https://github.com/Kejing-Lu/hvs
https://github.com/Kejing-Lu/hvs
https://doi.org/10.48550/arXiv.2205.03763
https://doi.org/10.48550/arXiv.2205.03763
http://sites.skoltech.ru/compvision/noimi
http://sites.skoltech.ru/compvision/noimi

Graph-Based Vector Search: An Experimental Evaluation of the State-of-the-Art

Subramanya, S. J., Kadekodi, R., Krishaswamy, R., and
Simhadri, H. V. Diskann: Fast accurate billion-point near-
est neighbor search on a single node. In Proceedings of
the 33rd International Conference on Neural Information
Processing Systems, pp. 13766–13776, 2019.

Sugawara, K., Kobayashi, H., and Iwasaki, M. On approxi-
mately searching for similar word embeddings. In Pro-
ceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
pp. 2265–2275, 2016.

Sun, Y., Wang, W., Qin, J., Zhang, Y., and Lin, X. SRS:
Solving c-approximate Nearest Neighbor Queries in High
Dimensional Euclidean Space with a Tiny Index. PVLDB,
8(1), 2014a.

Sun, Y., Wang, W., Qin, J., Zhang, Y., and Lin, X. SRS:
solving c-approximate nearest neighbor queries in high di-
mensional euclidean space with a tiny index. Proceedings
of the VLDB Endowment, 2014b.

Tao, Y., Yi, K., Sheng, C., and Kalnis, P. Quality and
efficiency in high dimensional nearest neighbor search.
In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data, pp. 563–576, 2009.

Team, T. P. Parlayann: A deep learning library
for parallel computation. https://github.com/
parlayann/parlayann, 2023. Accessed: 2024-10-
25.

TEXMEX Research Team. Datasets for approximate nearest
neighbor search. http://corpus-texmex.irisa.
fr/, 2018.

Toussaint, G. T. The relative neighbourhood graph of a finite
planar set. Pattern recognition, 12(4):261–268, 1980.

Toussaint, G. T. Proximity graphs for nearest neighbor
decision rules: recent progress. Interface, 34, 2002.

University, S. Southwest University Adult Lifespan Dataset
(SALD). http://fcon_1000.projects.nitrc.
org/indi/retro/sald.html?utm_source=
newsletter&utm_medium=email&utm_
content=See20Data&utm_campaign=indi-1,
2018.

Wang, J., Wang, N., Jia, Y., Li, J., Zeng, G., Zha, H., and
Hua, X.-S. Trinary-projection trees for approximate near-
est neighbor search. IEEE transactions on pattern analy-
sis and machine intelligence, 36(2):388–403, 2013.

Wang, J., Huang, P., Zhao, H., Zhang, Z., Zhao, B., and
Lee, D. L. Billion-scale commodity embedding for e-
commerce recommendation in alibaba. In KDD, 2018.

Wang, M., Xu, X., Yue, Q., and Wang, Y. A comprehen-
sive survey and experimental comparison of graph-based
approximate nearest neighbor search. Proc. VLDB En-
dow., 14(11):1964–1978, jul 2021. ISSN 2150-8097.
doi: 10.14778/3476249.3476255. URL https://doi.
org/10.14778/3476249.3476255.

Wang, Q., Ileana, I., and Palpanas, T. LeaFi: Data Series
Indexes on Steroids with Learned Filters. Proc. ACM
Manag. Data, 2025.

Watts, D. J. and Strogatz, S. H. Collective dynamics
of ‘small-world’networks. nature, 393(6684):440–442,
1998.

Weber, R., Schek, H.-J., and Blott, S. A Quantitative Analy-
sis and Performance Study for Similarity-Search Methods
in High-Dimensional Spaces. In Proc. VLDB, pp. 194–
205, 1998.

Williams, K., Li, L., Khabsa, M., Wu, J., Shih, P. C., and
Giles, C. L. A web service for scholarly big data infor-
mation extraction. In ICWS, 2014.

Yahoo Japan Corporation. Ngt: Neighborhood graph and
tree for high-dimensional data. https://github.
com/yahoojapan/NGT, 2022. Accessed: 2024-10-
20.

Yianilos, P. N. Data structures and algorithms for near-
est neighbor search in general metric spaces. In Soda,
volume 93, pp. 311–21, 1993.

Zhang, Y.-M., Huang, K., Geng, G., and Liu, C.-L. Fast
knn graph construction with locality sensitive hashing.
In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pp. 660–674.
Springer, 2013.

Zhao, X., Tian, Y., Huang, K., Zheng, B., and Zhou, X. To-
wards efficient index construction and approximate near-
est neighbor search in high-dimensional spaces. Proceed-
ings of the VLDB Endowment, 16(8):1979–1991, 2023.

Zoumpatianos, K., Lou, Y., Ileana, I., Palpanas, T.,
and Gehrke, J. Generating data series query work-
loads. The VLDB Journal, 27(6):823–846, De-
cember 2018. ISSN 1066-8888. doi: 10.1007/
s00778-018-0513-x. URL https://doi.org/10.
1007/s00778-018-0513-x.

12

https://github.com/parlayann/parlayann
https://github.com/parlayann/parlayann
http://corpus-texmex.irisa.fr/
http://corpus-texmex.irisa.fr/
http://fcon_1000.projects.nitrc.org/indi/retro/sald.html?utm_source=newsletter&utm_medium=email&utm_content=See20Data&utm_campaign=indi-1
http://fcon_1000.projects.nitrc.org/indi/retro/sald.html?utm_source=newsletter&utm_medium=email&utm_content=See20Data&utm_campaign=indi-1
http://fcon_1000.projects.nitrc.org/indi/retro/sald.html?utm_source=newsletter&utm_medium=email&utm_content=See20Data&utm_campaign=indi-1
http://fcon_1000.projects.nitrc.org/indi/retro/sald.html?utm_source=newsletter&utm_medium=email&utm_content=See20Data&utm_campaign=indi-1
https://doi.org/10.14778/3476249.3476255
https://doi.org/10.14778/3476249.3476255
https://github.com/yahoojapan/NGT
https://github.com/yahoojapan/NGT
https://doi.org/10.1007/s00778-018-0513-x
https://doi.org/10.1007/s00778-018-0513-x

Graph-Based Vector Search: An Experimental Evaluation of the State-of-the-Art

A. State-of-the-Art Approaches
This section presents the graph-based approximate near-
est neighbor (ANN) methods studied in our experiments,
highlighting their core principles:

KGraph (Dong, 2022) reduces the construction cost of an
exact k-NNG, which has a quadratic worst-case complexity.
It constructs an approximate k-NNG by refining a random
initial graph with an empirical cost of O

(
n1.14

)
(Dong

et al., 2011). This refinement process, also known as NNDe-
scent (Dong et al., 2011) (Neighborhood Propagation), aims
at improving the approximation of the k-NN graph by as-
suming that the neighbors of a vertex u are more likely to
be neighbors of each other. The process iterates over all
graph vertices u ∈ V : for each vertex u and pair (x, y) of
its neighbors, it adds x to the neighbors of y and vice-versa,
keeping the closest k neighbors of u.

Navigable Small World (NSW) (Ponomarenko et al., 2011;
Malkov et al., 2014) is an approximation of a Delaunay
graph which guarantees the small world property (Watts
& Strogatz, 1998), i.e. the number of hops L between
two randomly chosen vertices grows to the logarithm of
graph size n such that L ∝ Log (n). An NSW graph is
based on the VoroNet graph (Beaumont et al., 2007a), an
extention of Kleinberg’s variant of Watts-Strogatz’s small
world model graph (Kleinberg, 2000; Kleinberg et al., 2002),
The VoroNet graph is built incrementally by inserting a
randomly picked vertex to the graph and connecting it to
2d+1 neighbors selected using a beam search on the existing
vertices in the graph. Once this process completes, the
first built edges would serve as long-range edges to quickly
converge toward nearest neighbors (Beaumont et al., 2007a).
The resulting graph was proved to guarantee the small world
network property (Beaumont et al., 2007a;b).

Iterative Expanding Hashing (IEH) (Jin et al., 2014) fol-
lows the same process as KGraph to construct an approx-
imate k-NNG; however, it refines an initial graph where
the candidates for each node are generated using a hashing
function. Two extensions of IEH have been proposed to
better leverage advanced hashing methods for generating
initial candidates: IEH-LSH (Gionis et al., 1999) and IEH-
ITQ (Zhang et al., 2013). All these methods use NNDescent
to finalize the graph connections.

EFANNA (Fu & Cai, 2016) selects seeds similarly to
KGraph (Dong, 2022) and IEH (Jin et al., 2014) and re-
fines candidates using NNdescent. It builds an approximate
k-NNG by selecting initial neighbors of each node using ran-
domized truncated K-D Trees (Dasgupta & Freund, 2008)
and refining the graph using NNDescent (Dong et al., 2011).
During search, EFANNA uses the pre-built trees to select
seeds, then runs a beam search on the graph index.

Hierarchical Navigable Small World (HNSW) (Malkov

& Yashunin, 2020) improves the scalability of NSW (Pono-
marenko et al., 2011; Malkov et al., 2014) by proposing
RND to sparsify the graph and a hierarchical seed selection
strategy (SN) to shorten the search path during index build-
ing and query answering. Each hierarchical layer includes
all nodes in the layer above it, with the bottom (a.k.a. base)
layer containing all points of the dataset S, HNSW builds
an NSW graph incrementally. However, HNSW diverges
from NSW in that it refines the candidate nearest neighbors,
identified through beam search on the nodes already in that
layer using RND. During query answering, HNSW utilizes
SN to quickly find an entry point in the base layer to start
the beam search.

Diversified Proximity Graph (DPG) (Li et al., 2019) ex-
tends KGraph (Dong, 2022) by diversifying the neighbor-
hoods of its nodes through edge orientation, a technique we
refer to as Maximum-Oriented Neighborhood Diversifica-
tion (MOND) in Section 3.4. MOND’s main objective is to
maximize the angles between neighboring nodes, contribut-
ing to a sparsed graph structure. This process is iteratively
applied to all nodes. After that, the directed graph is trans-
formed into an undirected one, enhancing its connectivity.
Nevertheless, note that DPG’s publicly available implemen-
tation (DBAIWangGroup, 2023) utilizes RND rather than
MOND for neighborhood diversification.

NGT (Yahoo Japan Corporation, 2022) is an approximate
nearest neighbor (ANN) search library developed by Ya-
hoo Japan. It offers two construction methods: one extends
KNN graphs with reverse edges, forming bi-directed KNN
graphs (Iwasaki, 2016), while the other incrementally builds
graphs similar to HNSW with a range-based search strat-
egy (Sugawara et al., 2016). In this study, we consider the
former (Iwasaki, 2016). Additionally, the library includes
methods that employ quantization for highly efficient search.
NGT maintains efficiency by pruning neighbors via RND
and using Vantage-Point Trees (Yianilos, 1993) to select
seed nodes for accurate query results.

Navigating Spreading-out Graph (NSG) (Fu et al., 2019),
similarly to DPG, builds an approximate k-NNG first. But,
unlike DPG, it builds an EFANNA graph rather than a
KGraph. It then diversifies the graph using RND. At the end,
NSG creates a depth-first search tree to verify the connec-
tivity of the graph. If there is a vertex that is disconnected
from the tree, NSG connects it to the nearest node in the
tree to ensure graph connectivity.

SPTAG (Chen et al., 2018) is a library for approximate
vector search proposed by Microsoft. SPTAG follows a
DC approach and is based on multiple existing works. It
selects small dataset samples on which it builds either K-D
Trees (Beis & Lowe, 1997) or Balanced K-means Trees (Ma-
linen & Fränti, 2014). These strutures will be used for seed
selection during query answering. Then it clusters the full

13

Graph-Based Vector Search: An Experimental Evaluation of the State-of-the-Art

dataset using multiple hierarchical random divisions of TP
Trees (Wang et al., 2013), builds an exact k-NN graph on
each cluster (i.e., leaf) and refines each graph using ND.
The graphs are merged into one large graph index for query
processing.

Vamana (Subramanya et al., 2019) is similar to NSG in
considering the set of visited nodes when building long-
range edges within the graph. However, instead of using
EFANNA (Fu & Cai, 2016), Vamana uses a randomly gener-
ated graph with node degree ≥ log (n) to ensure the initial
graph connectivity (Engel et al., 2004). Then, for each node,
Vamana runs a beam search on the graph structure to get the
visited node list R, which will be refined in the first round
using RRND. After adding bi-directional edges to selected
neighbors, the neighbors that exceed the maximum allowed
out-degree will refine their neighborhood list following an
RND process. Then, Vamana repeats the same refinement
process a second time to improve the graph quality, this time
using RRND with α ≥ 1 to increase the connectivity within
the graph.

SSG (Fu et al., 2021) integrates the MOND approach from
DPG (Li et al., 2019) and closely follows the steps of
NSG (Fu et al., 2019) and DPG (Li et al., 2019) in index
building from a foundational graph. Instead of performing
a search for each node to acquire candidates, SSG (Fu et al.,
2021) employs a breadth-first search on each node to assem-
ble candidate neighbors through local expansion on a base
graph (EFANNA). When the maximum size for the candi-
date neighbors is achieved, SSG reduces the neighbors in the
list by enforcing the MOND diversification strategy, pruning
the candidate nodes forming an angle smaller than a user-
defined parameter θ with the already existing neighbors of
the concerned node. After iteratively applying this method
to all nodes, SSG (Fu et al., 2021) enhances connectivity
by constructing multiple DFS trees from various random
points, in contrast to NSG’s (Fu et al., 2019) singular DFS
approach.

Hierarchical Clustering-based Nearest Neighbor Graph
(HCNNG) (Munoz et al., 2019) was inspired by SPTAG.
It employs hierarchical clustering to randomly divide the
dataset into multiple subsets. This subdivision process is ex-
ecuted several times, resulting in a collection of intersecting
subsets. On each subset, HCNNG constructs a Minimum
Spanning Tree (MST) graph. Following this, the vertices
and edges from all the MSTs are merged to form a single,
connected graph. To facilitate the search process, HCNNG
constructs multiple K-D Trees (Beis & Lowe, 1997), to
identifying entry points during query search.

HVS (Lu et al., 2021) extends HNSW’s base layer by re-
fining the construction of hierarchical layers. Instead of
random selection, nodes are assigned to layers based on
local density to better capture data distribution. Each layer

forms a Voronoi diagram and uses multi-level quantization,
increasing dimensionality by a factor of 2 in each lower
layer. Search at the base layer is similar to that of HNSW.

LSHAPG (Zhao et al., 2023) combines HNSW graphs with
multiple hash tables based on the LSB-Tree structure (Tao
et al., 2009) to enhance search efficiency. It leverages L
hash tables to retrieve seeds for beam search on the base
layer, unlike HNSW, which selects a single seed through
SN. LSHAPG also utilizes these hash tables for probabilis-
tic rooting during search, pruning neighbors based on the
projected distance before evaluating and pruning the raw
vectors.

ELPIS (Azizi et al., 2023) is a DC-based approach that
splits the dataset into subsets using the Hercules EAPCA
tree (Echihabi et al., 2022), where each leaf corresponds to a
different subset, then builds in parallel a graph-based index
for each leaf using HNSW (Malkov & Yashunin, 2020).
During search, ELPIS first selects heuristically an initial
leaf and executes a beam search on its respective graph. The
retrieved set of answers feed the search priority queues for
the other leaves. Only a subset of leaves is selected based
on the answers and the lower-bounding distances of the
query to the EAPCA summarization of each leaf. Then,
ELPIS initiates multiple concurrent beam searches on the
graph structures of the candidate leaves. Finally, ELPIS
aggregates all results from candidate clusters and returns
the top-k answers.

B. Experimental Results
This section presents detailed experimental results across
various datasets and sizes. We analyze key design choices
in Neighborhood Diversification and Seed Selection, assess-
ing their impact on query and indexing performance. We
also evaluate twelve state-of-the-art methods on real and
synthetic datasets of varying scale, dimensionality, and com-
plexity. The importance of optimized implementation is
highlighted. Additional details are available in the supple-
mentary material (url, 2025).

Procedure. We tune each method to achieve the best trade-
offs in accuracy/efficiency. Then, we carry experiments in
two steps: indexing building and query answering, with
caches cleared before each step and kept warm during the
same query workload. Methods were allowed at most 48
hours to build a single index. During timed experiments,
the server was used exclusively to ensure accurate measure-
ments. For each query workload, we ran the experiment six
times; we excluded the two best and worst, and reported the
mean of the remaining performances. For reproducibility,
all parametrization details are provided in (url, 2025).

Implementations. The implementations of various meth-
ods compared in this study were carefully examined and

14

Graph-Based Vector Search: An Experimental Evaluation of the State-of-the-Art

sourced from their official open-source repositories. Some
approaches, such as VAMANA (Subramanya et al., 2019)
and NGT (Yahoo Japan Corporation, 2022), are complex
and continuously evolving; for instance, VAMANA of-
fers an improved version with incremental insertion build-
ing (Croft et al., 2021). However, we utilized the earlier
version as described in the original paper, employing the two
pruning steps and starting from a random graph. Ideally, all
methods would be re-implemented from scratch to ensure
uniformity, but this is highly time-consuming. Instead, by
carefully adjusting each implementation to adhere as closely
as possible to the original algorithms and applying compa-
rable levels of optimization across methods, we provide a
fair basis for comparing different algorithmic approaches
for construction and search. This also enables a thorough
analysis of the impact of various strategies on indexing and
search performance. For comparisons involving seed selec-
tion and neighborhood diversification components, we built
upon the official HNSW codebase (url, 2019), implement-
ing additional components on top of it. All code is publicly
available (url, 2025). We believe our implementation will
facilitate future research by enabling reproducibility of our
findings across different scenarios, as well as serving as a
foundation for exploring novel approaches to neighborhood
diversification and seed selection.

Comparison. We compare and evaluate different methods
based on indexing time, memory footprint, and disk size,
while search comparisons focus on memory usage and query
time. Search time is reported for evaluating state-of-the-art
(SOTA) methods. Following reviewers comments, we be-
lieve that distance calculations provide a more neutral metric
for comparing different SOTA approaches, as they typi-
cally employ similar search procedures. However, methods
like ELPIS leverage lower bounding distances across multi-
resolution dimensionalities, which complicates the straight-
forward summation of distance calculations. Nonetheless,
in future extensions of this work, we plan to report the num-
ber of distance calculations alongside query time for a more
comprehensive evaluation of SOTA methods.

It is also important to note that this study focuses on in-
memory ANN search. While our insights and results apply
to scenarios where the entire dataset fits within a single
machine’s memory, we do not claim they extend to settings
where data or graph indices must be maintained on disk or in
distributed environments. We believe that techniques such
as relaxed RND and K-random sampling may be prefer-
able choices in such settings, including disk-based graph
ANN. Future work could extend this study by experimenting
with various graph ANN components and techniques across
different settings and ANN search variants.

(a) DEEP25GB (b) DEEP100GB (c) DEEP1B

(d) SIFT25GB (e) SIFT100GB (f) SIFT1B

Figure 9. ND methods performance on real-world datasets

B.1. Neighborhood Diversification

We now evaluate the ND strategies covered in Section 2,
i.e., RND, RRND, and MOND against a baseline without
ND (NoND). We apply each strategy individually to an
II-based graph, where each node is inserted sequentially
and linked with a pruned list of neighbors, determined via
a beam search with maximum out-degree R = 60 and
beam width L = 800. Bi-directional edges are added to
neighbors, and the neighborhood list is pruned to size R
using the same ND strategy. Graphs are built on Deep and
Sift (25GB, 100GB and 1B). For RRND and MOND, we
run experiments with different values of α (1.2 − 2) and
θ (50◦ − 80◦), respectively, and selected the best values
α = 1.2 and θ = 60◦, which align with recommendation
in (Subramanya et al., 2019; Fu et al., 2021). Then, we
execute workloads with 100 queries against each dataset,
and measure the accuracy/efficiency tradeoff using the recall
and the number of distance calculations incurred during the
search. The results in Figure 9 indicate that both RND
and MOND consistently outperform, followed by RRND.
NoND is the worst performer overall. As the dataset size
increases, the performance gap between NoND and ND
methods widens, particularly at high Recall (Figures 9f, 9c).
This is due to the higher number of hops needed to find the
answers and the density of the neighborhoods in the NoND
nodes since no pruning was applied. These results indicate
the key role played by the ND paradigm in improving query-
answering performance and the superiority of the RND and
MOND strategies.

As noticed, both RND and MOND lead to the best perfor-
mance, while RRND can be adjusted through α to prune
similarly to RND using α = 1. Nevertheless, controlling
edge density through α and increasing edge density may
deliver better performance in other settings, such as disk-
based graph ANN. In particular, Vamana has been adopted
in DiskANN (Subramanya et al., 2019) as the base graph
to reduce the graph search diameter, thereby reducing the

15

Graph-Based Vector Search: An Experimental Evaluation of the State-of-the-Art

RND MOND RRND

Deep 20% 2% 0.6%
Sift 25% 4% 0.7%

Table 2. Pruning ratios of ND methods on Deep and Sift datasets.

number of disk I/Os, which are typically more expensive
than computing extra distances per hop. We also note that in-
creasing edge density for in-memory search on hard datasets
is promising. Our experiments in the supplementary mate-
rials (url, 2025) on power-law random datasets show that
RRND and MOND can deliver better performance on chal-
lenging datasets.

In Table 2, we report the pruning ratios of the three neighbor-
hood ND methods on the Deep and Sift 25GB datasets. The
pruning ratio quantifies the percentage reduction in the size
of the candidate neighbor list before and after the diversifi-
cation step. Higher pruning ratios indicate more aggressive
pruning, which directly affects the graph size and memory
usage. RND achieves the highest pruning ratios, MOND
provides moderate pruning, and RRND exhibits the least
pruning. As a result, RND leads to smaller graph sizes and
reduced memory requirements, while RRND creates larger
graphs with higher memory usage.

B.2. Seed Selection

State-of-the-art graph-based vector search methods differ
in their graph construction strategies but almost universally
rely on beam search (Algorithm 1) for query answering.
Beam search efficiently retrieves high-quality results on
well-connected graphs. A critical factor affecting search
efficiency is the choice of initial nodes, called seeds. Better
seeds reduce the number of visited nodes and speed up the
search. Typically, one or more entry nodes warm the beam
search priority queue; when multiple seeds are used, the
search begins with the seed closest to the query, keeping the
others in the queue.

In these experiments, we focus on the four most common
SS strategies for the beam search algorithm: SN (Malkov
& Yashunin, 2020; Azizi et al., 2023), MD (Fu et al., 2019;
Subramanya et al., 2019), KS (Dong, 2022; Ponomarenko
et al., 2011; Li et al., 2019; Subramanya et al., 2019; Fu et al.,
2021), and KD (Fu & Cai, 2016; Chen et al., 2018; Munoz
et al., 2019) (KM and LSH were excluded because they are
not among the commonly used seed selection strategies in
graph-based methods). We consider the baseline method SF
which has not been used in the literature before. In these ex-
periments, we focus on the four most common SS strategies
for the beam search algorithm: SN (Malkov & Yashunin,
2020; Azizi et al., 2023), MD (Fu et al., 2019; Subramanya
et al., 2019), KS (Dong, 2022; Ponomarenko et al., 2011; Li

et al., 2019; Subramanya et al., 2019; Fu et al., 2021), and
KD (Fu & Cai, 2016; Chen et al., 2018; Munoz et al., 2019)
(KM and LSH were excluded because they are not among
the commonly used seed selection strategies in graph-based
methods). We consider the baseline method SF which has
not been used in the literature before. These strategies are
compared using the same insertion-based graph structure
that exploits RND pruning since this is the best baseline
from the results in Section B. We run 100 queries for each
strategy on the Deep and Sift datasets with sizes 25GB,
100GB, and 1B. We extrapolate the results to 1M queries
and report the number of distance calculations to achieve a
0.99 accuracy in Figure 10. We observe that SN and KS are
the most efficient strategies across all scenarios, while SF
and MD are the least efficient overall. The KD strategy is
competitive on 25GB and 100GB Deep and Sift datasets but
its performance deteriorates on billion-scale datasets. KS
outperforms SN on dataset sizes 25GB and 100GB; however,
this trend reverses with the 1B size dataset. The difference
in distance calculations between SN and KS on the 25GB
and 1B datasets is ∼1M and ∼10M, respectively. As the
dataset size increases, it becomes imperative to sample more
nodes (beyond the beam width utilized during search in KS)
to obtain a representative sample of the dataset, thereby
enhancing the likelihood of initiating the search closer to
the graph region where the query resides (SN adapts its size
logarithmically with the growth of the dataset, leading to
a better representation of the dataset). Figure 10 also illus-
trates that both MD and SF are among the least performing
strategies, with MD performing better than SF on Deep and
vice-versa on Sift. This indicates neither MD nor SF are
effective and robust seed selection strategies.

We now study the effect of SS strategies on indexing per-
formance. We focus on the two best strategies KS and SN
and study their effect on the same baseline based on II and
RND (Ponomarenko et al., 2011; Li et al., 2019; Malkov &
Yashunin, 2020; Fu et al., 2019; 2021; Subramanya et al.,
2019; Azizi et al., 2023; Chen et al., 2018). This is because
these methods are the most impacted by the SS strategy
used, since they perform a beam search, which includes a
seed selection step, at the insertion of each node. We build
an index using each strategy on Deep1M and Deep25GB
and measure distance calculations. We calculate the dis-
tance overhead of SN compared to KS, and we estimate
the number of additional 100-NN queries that the KS-based
graph can answer, with 0.99 recall, before the SN-based
graph completes its construction. We observe (Table 3)
that the SN-based graph requires 182 million and 22.3 bil-
lion more distance calculations than the KS-based graph on
Deep1M and Deep25GB respectively. Furthermore, the KS-
based graph can answer 45K and 1.17 million queries on
Deep1M and Deep25GB respectively before the SN-based
graph finishes construction.

16

Graph-Based Vector Search: An Experimental Evaluation of the State-of-the-Art

(a) Deep25GB (b) Deep100GB (c) Deep1B

(d) Sift25GB (e) Sift100GB (f) Sift1B

Figure 10. The impact of SS Methods on query answering

Deep1M Deep25GB

Dist. Calculations (SN) 4.3 billion 1.49 trillion
Dist. Calculations (KS) 4.1 billion 1.46 trillion

Overhead (SN vs. KS) 182 million 22.3 billion
Additional Queries 44,959 1,165,870

Table 3. The impact of SS methods on Indexing Performance

B.3. Indexing Performance

We evaluate twelve state-of-the-art vector search methods,
varying dataset sizes and reporting total indexing time and
memory footprint. For brevity, we present results only
for the Deep dataset as trends are consistent across other
datasets. Full results are in (url, 2025). We use subsets of
Deep ranging from 1 million to 1 billion vectors (equiv-
alent to 350GB). Indexes are built to allow a 0.99 recall
efficiently. Initial experiments on 1 million vectors include
all methods. Methods that could not scale to larger datasets
are excluded from subsequent experiments. Specifically,
HCNNG, SPTAG-BKT, NGT, and SPTAG-KDT take over
24 hours to build indexes on 25GB datasets and exceed 48
hours on 100GB datasets. KGraph, DPG, EFANNA, and
LSHAPG delivered unsatisfactory results on 25GB, so they
were not included in larger datasets. Furthermore, KGraph
and EFANNA require over 300GB and 1.4TB of RAM for
25GB and 100GB datasets, respectively. As DPG, NSG,
and SSG rely on KGraph and EFANNA, they were also
excluded from larger datasets.

Indexing Time. Figure 11 demonstrates that II-based ap-
proaches have the lowest indexing time across dataset sizes.
In particular, the II and DC-based approach ELPIS, is 2.7x
faster than HNSW and 4x faster than NSG for both 1M and
25GB dataset sizes, while HNSW is 1.4x faster than NGT.
Note that NSG’s indexing time includes both the construc-
tion of its base graph, EFANNA, which is time-intensive,
and the refinement with NSG. SPTAG-BKT and SPTAG-
KDT exhibit high indexing times, requiring over 25 hours to
index the Deep25GB dataset-24 times more than ELPIS, the

fastest method. This inefficiency in SPTAG arises from its
design, which involves constructing multiple TP Trees and
graphs, becoming increasingly costly with larger datasets.
On datasets with 100GB and 1B vectors (≈350GB), only
HNSW, ELPIS, and Vamana scale with acceptable indexing
time, with ELPIS being 2 and 2.7 times faster than HNSW
and Vamana, respectively.

Indexing Footprint. Figure 12 reports the memory foot-
print for each index, including the raw data. To perform the
evaluation, we record the peak virtual memory usage during
construction. SPTAG-BKT and SPTAG-KDT demonstrate
efficient memory utilization (1M and 25GB) despite hav-
ing the highest indexing time. For larger datasets, ELPIS
has the lowest indexing memory footprint, occupying up to
40% less memory than HNSW and 30% less than Vamana
during indexing. This is because ELPIS needs a smaller
maximum out-degree and beam width compared to its com-
petitors. HNSW has a higher indexing memory footprint
due to its use of a graph layout optimized for direct access to
node edges through a large contiguous block allocation (url,
2019). This layout offers a time advantage over adjacency
lists by reducing memory indirections and cache misses.
However, it can result in quadratic memory growth when
using a large maximum out-degree on large-scale datasets.
In Figure 13, we compare the size of method indices, in-
cluding the raw data. The figure shows that certain methods,
such as EFANNA, HCNNG, KGraph, and consequently
NSG, SSG, and DPG (which use one of these base graphs),
exhibit a significantly larger memory footprint relative to
their final index size. For instance, HCNNG consumes sub-
stantial memory during indexing, requiring over 200GB for
Deep25GB (Fig. 12) due to merging multiple MST from
numerous samples generated during hierarchical clusterings.
In contrast, its final index size is less than 50GB (Fig. 13).

B.4. Search Performance

We now evaluate the search performance of the different
methods. All methods were included in the 1M experiments.
Some methods were excluded in 25GB plots (KGraph, DPG,
SPTAG-KDT, HCNNG, and EFANNA) for the sake of clar-
ity, as their search was significantly slower than the best
baselines. Full results are in (url, 2025). Other methods
were omitted from the 100GB and 1B dataset sizes due
to various limitations. The indexes for SPTAG and NGT
could not be built on the larger datasets within 48 hours.
EFANNA was excluded due to its high footprint, and like-
wise for methods based on it such as NSG and SSG. Finally,
KGraph, DPG, and LSHAPG were excluded due to unsatis-
factory results on 1M and 25GB.

Query Memory Footprint and Beam Width. Figure 14
indicates that Vamana, followed by ELPIS, have the lowest
memory footprint during search. Even though ELPIS has a

17

Graph-Based Vector Search: An Experimental Evaluation of the State-of-the-Art

Figure 11. Indexing Time
Figure 12. Indexing Mem-
ory Footprint

Figure 13. Indexing Disk
Footprint

Figure 14. Query Memory
Footprint

Figure 15. Query Beam
Width

smaller index size, it adopts a contiguous memory storing
during search just like HNSW, which increases the index
footprint when loaded into memory. Besides, Figure 15
shows that Elpis requires the smallest beam width to reach
similar query accuracy. Having a very high beam width
indicates that the beam search requires to visit a wider area
to and making more distance calculations to retrieves the
NN answers.

Real Datasets. On datasets with 1M vectors (Figure 16),
ELPIS and NSG/SSG perform best on Sift1M, achieving the
highest performance for 0.99 and lower recall, respectively.
For Seismic1M, HCNNG and ELPIS share the top rank.
NGT, SSG, and NSG excel on Deep1M, while HCNNG
leads on SALD1M at the highest recall, followed by SPTAG
and NSG at lower recall levels. In ImageNet1M, NSG/SSG
and HNSW rank as the top performers. Across most sce-
narios, SSG and NSG show similar performance. However,
LSHAPG demonstrates limitations, requiring more com-
putation to achieve high accuracy. Its probabilistic root-
ing prunes promising neighbors, requiring a larger beam
width and tighter L-bsf lower-bound distance during search.
When moving to 25GB datasets (Figure 17), SSG, NSG,
NGT and HCNNG experience a drop in performance, and
ELPIS takes the lead with the best overall performance
together with SPTAG-BKT for SALD25GB . It is worth
noting that none of the methods achieved an accuracy over
0.8 on the Seismic dataset, leading us to report results for
these lower recall values. The significant indexing foot-
print of NSG prevented us from extending its evaluation to
larger datasets, as constructing the EFANNA graph (which
NSG depends on) requires more memory than the available
1.4TB. For hard query workloads in Figure 19 we compare
the best-performing methods from the two most performing
graph paradigms, ND-based and DC-based methods, includ-
ing HNSW, NSG, ELPIS and SPTAG-BKT. SPTAG-BKT
achieves the overall best performance for 1% noise query
set, as we increase the noise up to 10%, SPTAG-BKT’s per-
formance deteriorates, which we can relate to SPTAG BKT
structures failing to identify good seed points. At the same
time, the other competitors gain an advantage, with ELPIS
taking the lead. When analyzing very large datasets of 1
billion vectors, Figure 20 shows the superiority of ELPIS

which is up to an order of magnitude faster at achieving 0.95
accuracy, thanks to its design that supports multi-threading
for single query answering This trend is consistent across
subsets ranging from 100GB (Figure 18) to 250GB (detailed
results are reported in (url, 2025)).

Data Distributions. We assess top performers represent-
ing different paradigms (EFANNA, Vamana, SSG, HNSW,
ELPIS, and SPTAG-BKT) on challenging datasets (Fig. 3).
Results (Figs. 17e and 17f) indicate that ELPIS consistently
achieves high accuracy across skewness levels (0 to 50), out-
performing other methods. As skewness increases, search
becomes easier so most graph-based approaches improve
but ELPIS maintains its superiority.

Implementation Impact. We evaluate the performance of
original implementations of the best performing methods on
1B experiments, i.e., Vamana, HNSW, and ELPIS against
optimized methods from the ParlayANN library (Manohar
et al., 2024) (Vamana Opt, HNSW Opt, and HCNNG Opt)
on Deep1B. Figure 21 indicates that Vamana Opt and
HNSW Opt are faster for recall below 0.97 compared to
their original counterparts, due to more efficient data struc-
tures (Manohar et al., 2024; Team, 2023). However, at
higher recall, this advantage diminishes as distance compu-
tations dominate; HCNNG Opt is competitive with Vamana
and HNSW, while ELPIS maintains a performance lead.

18

Graph-Based Vector Search: An Experimental Evaluation of the State-of-the-Art

(a) Deep (b) Sift (c) SALD (d) Seismic (e) Gist (f) Imagenet

Figure 16. Query performance on 1M vectors

(a) Deep (b) SALD (c) Seismic

(d) Sift (e) RandPow0 (f) RandPow50

Figure 17. 25GB datasets

(a) Deep

(b) Sift

Figure 18. 100GB
datasets

(a) 1% noise

(b) 10% noise

Figure 19. Varying work-
loads

(a) Text2Image (b) Deep (c) Sift

Figure 20. 1B Datasets
Figure 21. Optimized Implementa-
tions (Deep1B)

19

