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Abstract

Alpha factor discovery is a central challenge in quantitative finance, traditionally
addressed by human experts or automated search methods such as genetic pro-
gramming and evolutionary algorithms. These approaches often lack semantic
guidance, leading to inefficient search and fragile results. We propose a language-
model-guided evolutionary framework, where large language models (LLMs) act as
intelligent operators to guide mutation, crossover, and selection of candidate factors.
By embedding evolutionary instructions into prompts, the LLM leverages domain
knowledge and backtesting feedback to generate interpretable and high-quality
signals. We first validate the approach through static factor searching, showing
that LLMs can iteratively refine factors in a controlled setting. We then evaluate
the framework in sparse portfolio optimization, where LLM-generated factors are
used to rank assets and construct portfolios under ¢, constraints. Experiments on
multiple real-market datasets demonstrate consistent improvements in portfolio
performance over traditional baselines, highlighting the promise of combining
LLMs with evolutionary search for systematic factor discovery.

1 Introduction

Alpha factor discovery, the process of formulating interpretable expressions that extract predictive
signals from financial market data, has long been a central problem in quantitative research. Tradi-
tional approaches rely on domain expertise, manually constructed factor libraries, or symbolic search
methods such as genetic programming. Although these methods have produced effective factors in
certain contexts, they suffer from three persistent issues: (i) exploring the vast combinatorial factor
space is slow and computationally costly, (ii) discovered factors often fail to adapt to evolving market
conditions, leading to performance decay, and (iii) most pipelines rely on static, one-shot generation
without feedback from prior evaluations. To address these challenges, previous work has explored

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Generative Al in
Finance.



automated search paradigms such as random forests and reinforcement-based searching [[1} 2l], but
these methods still provide limited semantic guidance during factor construction.

Large Language Models (LLMs) offer a promising alternative. Modern LLMs, trained on large
collections of text and code, can generate syntactically valid and semantically meaningful formulae
directly from textual instructions. They have shown broad applications in finance [3} 4], and specifi-
cally in alpha mining tasks. Recent studies [, 6] demonstrate that LLMs can be used to generate
novel alpha factors with competitive predictive performance. Human-in-the-loop systems such as
AlphaGPT [7, 8] further incorporate expert feedback to guide LLM outputs, highlighting the potential
of interactive refinement. More recently, structured search algorithms have been integrated with
LLMs, such as Monte Carlo Tree Search (MCTS) for navigating the factor space [9]. Despite these
advances, existing methods leave a gap: most either treat factor generation as a single-pass process
or rely on highly specific search schemes such as MCTS. We argue that evolutionary algorithms
(EAs) provide a natural and more general framework for iterative factor discovery. Unlike tree-based
search, EAs balance exploration and exploitation through simple yet powerful operations (mutation
and crossover), maintain a diverse candidate pool, and are naturally compatible with feedback loops.

In this paper, we propose EvoAlpha, an evolutionary framework that integrates LLMs into iterative
factor discovery. The method maintains a pool of candidate factors, refines them through mutation
and crossover prompts, and incorporates evaluation feedback to guide subsequent generations. Our
contributions are threefold: (1) introducing an LLM-driven evolutionary search process where the
model acts as both generator and adaptive operator; (2) designing a closed-loop mechanism that
injects factor evaluation results into prompt updates; and (3) demonstrating that EvoAlpha produces
diverse, interpretable, and robust factors with strong performance across multiple datasets. By
reformulating alpha factor discovery as an LLM-guided evolutionary search problem, this work
shows that LLMs can serve as autonomous symbolic optimisers, capable of balancing creativity,
interpretability, and empirical performance without relying on manually crafted grammars or brittle
search heuristics.

2 Method

2.1 Problem Reformulation

Alpha factor discovery can be naturally cast as a symbolic search problem. An alpha factor is typically
represented as a computation tree, where leaves are raw financial features (e.g., price, volume) and
internal nodes are operators (e.g., arithmetic, ranking, rolling statistics). Traditional evolutionary
algorithms (EAs) generate new factors by mutating subtrees or recombining expressions, but these
approaches often suffer from inefficient exploration and invalid outputs.

Inspired by recent advances in applying LLMs to evolutionary computation [[10} [11} [12]], we re-
formulate this task as an LLM-guided evolutionary search problem. Instead of blindly applying
symbolic operations, we let a large language model act as the search operator. The LLM receives
descriptions of current candidate factors and their historical performance, and is instructed to perform
evolutionary actions such as mutation (local modifications of an expression) or crossover (combining
sub-expressions from different factors). This shifts the burden of semantic reasoning from handcrafted
rules to the LLM’s learned priors, enabling a more efficient and adaptive exploration of the factor
space. This reformulation brings several benefits. By leveraging the LLM’s prior knowledge of
mathematical structures and financial semantics, the search process can avoid many invalid or trivial
candidates that typically plague rule-based Evolutionary Algorithm.

2.2 LLM-Guided Factor Generation

The key idea of our framework is to embed evolutionary operations directly into LLM prompts. Each
prompt contains three elements: (i) a definition of the search task, specifying the allowed operators
and financial constraints; (ii) a description of top-performing factors from the current pool, presented
as structured expressions with anonymized performance summaries; and (iii) illustrative evolutionary
instructions that demonstrate mutation or crossover actions, for example, “mutate the time window of
arolling mean” or “combine a volatility factor with a momentum factor.”

By combining generative ability and reasoning ability, the LLM acts as a structured evolutionary
engine. As shown in Figure (1} the EA process iteratively selects the top-/N performing factors



and carries them forward to the next generation, where they are modified to create new candidates.
Two key operators drive this process: mutation, which applies small local changes to an existing
factor (e.g., replacing a 10-day moving average with a 20-day version, or altering a normalization
operator), and crossover, which combines complementary components from multiple parent factors
(e.g., embedding a volatility adjustment inside a momentum-based signal). These operations balance
local refinement with broader exploration of the search space.

In the LLM-guided design, evolutionary operations can be realized in two ways. One approach is
to use dedicated agents for each operator, where mutation and crossover are explicitly separated
into different prompt templates. Alternatively, a single unified agent can be employed, with the
LLM itself deciding whether to perform mutation or crossover based on the context and provided
instructions. Both designs retain the exploratory power of evolutionary search while ensuring that
generated factors remain semantically coherent and financially interpretable.
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Figure 1: Left: general EA factor-searching framework—at each iteration, select the top-N best
factors and carry them forward to generate new candidates for the next round. Right: the generation
operators used in each step, including crossover and mutation.

3 Experiments

3.1 Experiment Settings

To demonstrate the adaptability of the EA+LLM framework, we design two tasks: one for controlled
factor-level improvement, and another for dynamic portfolio construction.

(1) Static factor searching. We start from seed factors in Alphal58 from Qlib [13]] with in-sample
feedback and let the LLM refine it through mutation and crossover. After each round, top candidates
are backtested and retained. This tests whether LLMs can improve factor quality, measured by IC,
RankIC, and their IR. We run the experiment on CSI300 with Alphal58 as the seed pool, tracking
group-level performance in-sample (2023-2024) and out-of-sample (2024-2025).

(2) Sparse portfolio optimization. We further evaluate in a dynamic market setting, where LLM-
generated factors score assets and the top-m are selected to form a sparse portfolio under ¢ constraints.
Datasets include US50, HSI45, and CSI300. Performance is measured by Cumulative Wealth (CW),
Sharpe Ratio (SR), and Maximum Drawdown (MDD). Baselines cover two groups: (i) non-
sparse strategies — Equal Weighting (1/N), Min-CVaR, and Max-Sharpe; (ii) sparse strategies —
classical SSPO [14], machine-learning selectors (XGBoost, LGBM), and state-of-the-art methods
mSSRM-PGA [15] and ASMCVaR [16].

3.2 Results and Discussion

Static factor searching. Figure Eka) shows the average values of IC, RankIC, and ICIR within
the candidate pool across 15 search rounds. We observe a clear upward trend, indicating that the
evolutionary search guided by the LLM can gradually improve the quality of the factor set in-sample.
Figure2|b) illustrates the out-of-sample distribution of IC values across the same rounds. The median
IC steadily rises and the interquartile range narrows, suggesting not only enhanced predictive power
but also improved robustness of the factor group when evaluated on unseen data. Together, these



results demonstrate that even in a controlled static environment, LLM-driven factor search is able to
consistently refine factor quality and generalization.

Sparse portfolio optimization. In Table we report the results of sparse portfolio optimization
under different settings of sparsity (m = 10 and m = 15). Across all three markets (US50, HSI45,
and CSI300), two LLMs models (GPT-4.1 and Deepseek-V3) consistently achieve the highest
cumulative wealth, with improvements that are an order of magnitude larger than traditional baselines
such as 1/N, Min-cVaR, and Max-Sharpe. Compared to machine learning based models (LGBM,
XGBoost) and advanced portfolio optimization methods (mSSRM-PGA, ASMCVaR), also delivers
superior risk-adjusted performance, reflected in higher Sharpe Ratios and competitive drawdown
control. For instance, on US50 with m = 10, DeepSeek-V3 reaches a CW of 25.1, far exceeding
the best baseline (ASMCVaR, CW=10.3). These results demonstrate that combining LL.M-guided
factor search with evolutionary exploration yields robust improvements in portfolio-level returns
while maintaining risk stability across different markets and sparsity levels.
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Figure 2: (a) Evolution of average in-sample metrics (IC, RankIC, ICIR) across 15 rounds. (b)
Distribution of out-of-sample IC values per round. Together, these plots illustrate both the overall
trend and the variability of factor performance.

US50 HSI45 CSI300
Group  Method CWt SRt MDD, CWt SRt MDD) CW{t SRt MDDJ
I/N 4562 0072 0344 1333 0029 0409 1.087 0014 0214
Baseline Min-cVaR 1779 0.038 0314 1.628 0063 0244 0992 0003  0.286
Max-Sharpe ~ 4.495 0.061 0461 1428 0043 0300 1.008 0007  0.333
LGBM 4182 0063 0332 1611 0038 0367 2334 0072 0225
10 XGBoost 6313 0077 0328 1581 0.035 0440 1420 0032 0345
= mSSRM-PGA 5121  0.059 0569 0766 -0.003 0.547 0.881 0.002  0.399
ASMCVaR 10259 0.073 0582 2481 0052 0453 1453 0030 0.462
DeepSeek-V3 25101 0.132 0288 3.463 0080 0385 3437 0079  0.327
GPT 4.1 22905 0.130 0260 2789 0.067 0292 4962 0.098  0.301
LGBM 3.899 0062 0328 1588 0.037 0387 1812 0055 0.250
- XGBoost 5607 0076 0319 158 0.036 0420 1.348 0.029  0.344

mSSRM-PGA 4976 0.062 0477 0.766 -0.003 0547 0.787 -0.010 0.384
ASMCVaR 11.124  0.074 0.566  2.647 0.054 0.434  1.658 0.035 0.424
DeepSeek-V3 13978 0.114  0.298  2.364  0.061 0406 2510 0.067 0.298
GPT 4.1 14707 0.117 0278 2277 0.058 0307 3.218 0.082 0.246

Table 1: Evaluation of Cumulative Wealth (CW1), Sharpe Ratio (SRT), and Maximum Drawdown
(MDDJ) on real-market datasets (US50, HSI45 and CSI300) for different model variants. Our
approach significantly outperforms traditional baselines.



4 Conclusion

This work explored large language models as evolutionary search engines for alpha factor discovery
and sparse portfolio optimization. We proposed a framework where LLMs perform mutation and
crossover to evolve interpretable factors under quantitative feedback. Experiments revealed two
main insights: (1) in controlled static search, LLMs iteratively refine seed factors to achieve stronger
and more stable predictive power (IC, RankIC, ICIR); and (2) when applied to sparse portfolio
construction, LLM-driven factor search yields substantial gains in cumulative wealth and risk-adjusted
performance over traditional baselines.

Our findings highlight language-guided evolution as a promising paradigm for systematic investment
research. By combining the generative and reasoning abilities of LLMs with rigorous financial
evaluation, factors can be discovered and adapted dynamically under sparsity constraints. Future
work will extend this framework with multimodal signals (e.g., news, fundamentals), improved prompt
strategies for robustness, and lightweight distillation methods to reduce dependence on large-scale
LLMs, paving the way toward interpretable and adaptive factor-driven investment strategies.
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Appendix

A Design of EvoAlpha framework

Our framework follows a closed-loop evolutionary design where a pool of alpha factors is iteratively
refined under LLM guidance. At the start, the initial factor pool is evaluated using standard metrics
(IC, RankIC, ICIR), and the top-performing factors are selected as seeds. In each round, these
seeds are embedded into structured prompts and passed to the LLM to generate new candidates
through two operators: mutation, which makes small local adjustments (e.g., window size changes
or normalization tweaks), and crossover, which combines complementary sub-expressions from
different factors. The generated candidates are deduplicated, evaluated via backtesting, and merged
with the existing pool. A fixed-size pool is maintained by keeping only the top-K factors ranked by
IC, ensuring continuous selection pressure. This cycle repeats for a predefined number of rounds,
producing an evolution history and a final pool of diverse, interpretable, and high-quality factors.

Algorithm 1 LLM-Guided Evolutionary Factor Searcher (EA_Searcher)

Require: Initial factor pool P = {(name, expr)}; mutation rate u; crossover rate y; candidates per
round NV; number of rounds R; pool size K

Ensure: Final factor pool and evolution history

1: Evaluate initial pool P via API — assign metrics (IC, RankIC, etc.)

2: Rank P by IC — current_pool

3: Record baseline mean IC

4: forr =1to Rdo

5:  Select top seeds S C current_pool (size < seeds_top_k)
6:  Build JSON block of seeds with {name, expression, metrics}
7.
8

Split N into npye = [N pt], Neross = | IN7y] (adjust to sum N)

: Mutation: Send mutation prompt with .S to LLM — M ndidates
9:  Crossover: Send crossover prompt with .S to LLM — Ciandidates
10:  Combine candidates C' = M ndidates U Ceandidates
11:  Remove duplicates by expression
12:  Evaluate C via API — assign metrics
13:  Update pool: current_pool <— Top-K by IC from (current_pool U C)
14:  Record history: prompts, candidates, metrics
15:  Report round summary (top IC, mean IC)
16: end for
17: return Final factor pool (size K), baseline IC, and history

To guide the large language model in generating meaningful factor candidates, we design structured
prompts that explicitly encode the evolutionary operations. Each prompt has three components: (i) a
definition of the task, including the round index, the number of required outputs, and the constraints
on valid Qlib-style expressions; (ii) a seed block in JSON format that lists the top-performing
factors from the current pool along with their metrics, providing grounded context for the LLM;
and (iii) operator-specific instructions. For mutation, the prompt emphasizes local modifications
such as adjusting window sizes, altering normalizers, or adding stability terms. For crossover, the
prompt encourages recombining complementary sub-expressions across factors, such as merging
a momentum core with a volatility normalizer. Each prompt also specifies strict output formatting
rules (JSON array with name, expression, reason), ensuring the generated factors remain executable,
interpretable, and directly comparable during backtesting.

You are a quantitative researcher. Your task is to **mutate** existing alpha
factors.

Round: 2

Goal: Propose **exactly 9** mutated candidates that are likely to improve
the information coefficient (IC) while remaining valid Qlib-style
expressions.



Seed factors (JSON; each item has "name", "expression", "metrics"):
[
{
"name": "SmoothedMomOverMad_d525fc0f-3e6f-4f6b-99f0-d93f6abc2fe8_5b4790",
"expression": "Div(Mean(Delta($close, 1), 5), Add(Mad($close, 40),
le-12))",
"metrics": {
"ic": 0.0257128719240427,
"rank_ic": 0.012954626788882515,
"icir": 0.16971179842948914,
"rank_icir": 0.07512629478580483

}
}’
{

llna—rne n B
"SmoothedMomentumOverRange_8eed97c5-ab31-4bf7-b8ff-d042399f4bea_b4el71",
"expression": "Div(Mean(Delta($close, 1), 5), Add(Mean(Sub($high, $low),
20), le-12))",
"metrics": {

"ic": 0.02426382154226303,

"rank_ic": 0.00818133429533971,

"icir": 0.14620926976203918,

"rank_icir": 0.045271601689904684

What to do (Mutation):
- Tweak window lengths (e.g., 57, 1012, 2018) to control smoothness and
responsiveness.
- Replace or insert nearby operators while preserving the core signal type
(momentum / mean-reversion / volatility / liquidity).
Normalize signals to reduce scale effects (e.g., divide by rolling Std or
use Rank).
Add light regularization tricks (e.g., small epsilon in denom, clipping
via Min/Max) to improve numerical stability.
Keep expressions parsable and balanced (all parentheses closed), and
variables limited to: $close, $open, $high, $low, $volume.
Do NOT invent new variables or unsupported ops.
- Try to use more diverse operators and window sizes than the seeds, don’t
only adjust parameters.

Examples (illustrative only; you must produce new ones):
- From: Mean(Sub($close, Ref($close, 1)), 10)
To: Div(Mean(Sub($close, Ref($close, 1)), 12), Add(Std($close, 60),
le-12))
- From: Rank(Sub($high, $low))
To: Rank (Div(Sub($high, $low), Add(Mean(Sub($close, Ref($close, 1)),
20), le-12)))

Output format:

Return a JSON array of length 9. Each item MUST be an object with:
- "name": a short unique name (string)
- "expression": the full Qlib-style expression (string)
- "reason": 12 sentences explaining the mutation (string)

No extra text. Output ONLY the JSON array.



[CROSSOVER PROMPT]

You are a quantitative researcher. Your task is to **crossover** existing
alpha factors.

Round: 2
Goal: Propose **exactly 21%* crossover candidates by combining complementary
parts of the seed expressions to improve robustness and IC.

Seed factors (JSON; each item has "name", "expression", "metrics"):
[
{
"nalne":
"SmoothedMomentumOverRange_8eed97c5-ab31-4bf7-b8ff-d042399f4bea_bdel71",
"expression": "Div(Mean(Delta($close, 1), 5), Add(Mean(Sub($high, $low),
20), le-12))",
"metrics": {
"ic": 0.02426382154226303,
"rank_ic": 0.00818133429533971,
"icir": 0.14620926976203918,
"rank_icir": 0.045271601689904684
}
}’
{
"name" :
"SmoothedMomOverHybridVol_8e02b4a3-83e9-484e-a0d6-db5£706d4594_ddb2d6",
"expression": "Div(Mean(Delta($close, 1), 5), Add(Add(Std($close, 30),
Mean (Sub($high, $low), 20)), 1le-12))",
"metrics": {
"ic": 0.02379864640533924,
"rank_ic": 0.010518853960332362,
"icir": 0.14901390671730042,
"rank_icir": 0.05898742807830996
}
}’

]

What "crossover" means here

- *xxPick good parts from good factors**: identify sub-expressions that
plausibly drive performance (e.g., momentum cores, volatility/volume
normalizers, range/volatility proxies, smoothers, gates/filters).

- **Recombine** complementary parts across seeds to form concise, novel
expressions (not minor edits or concatenations).

How to identify & extract good parts
1) Rank seeds by metrics (prefer higher RankIC/ICIR and stability). Skim top
seeds first.
2) Decompose expressions into roles:
- Core signal (e.g., Sub/Delta/Range/Momentum on $close/$high/$low)
- Normalizer (e.g., Std/Mean/Rank with safe epsilon in denominators)
- Volume or regime component (e.g., Mean($volume, L), Rank(...))
- Smoother (e.g., Mean(..., L), Rank(...))
3) Extract the **short, reusable subchains** (24 ops) that carry the
behavior (trend, mean-revert, breakout) or the stabilizer (vol/volume
scaling).

Examples (illustrative only; you must produce new ones):
- From A: Mean(Sub($close, Ref($close, 1)), 10)
From B: Div($volume, Add(Mean($volume, 60), 1le-12))
To: Div(Mean(Sub($close, Ref($close, 1)), 12), Add(Mean($volume, 60),
1e-12))




- From A: Rank(Sub($high, $low))
From B: Div(Sub($close, Ref($close, 1)), Add(Std($close, 30), 1le-12))
To: Rank (Div(Sub($high, $low), Add(Std($close, 30), 1le-12)))

Output format:
Return a JSON array of length 21. Each item MUST be an object with:
- "name": a short unique name (string)
- "expression": the full Qlib-style expression (string)
- "reason": 12 sentences explaining which traits were combined and why
(string)

No extra text. Output ONLY the JSON array.

To ensure that the factors produced by the LLM are executable and reliable, we employ a multi-stage
filtering pipeline. After generation, outputs are first parsed into a unified schema containing name,
expression, and optionally a short reasoning. Malformed or empty items are discarded, and duplicate
expressions are removed to guarantee uniqueness. Each surviving candidate is then validated through
several checks. First, we verify the syntactic structure: only permitted operators and variables (close,
open, high, low, volume) are allowed, parentheses must be balanced, rolling window parameters
must be positive integers within a reasonable range, and denominators must include small stabilizers
(e.g., +1e-12). Second, we enforce diversity by ensuring that factors cover different roles such as
momentum, volatility, mean-reversion, and volume-based dynamics, rather than being near-duplicates.
Finally, candidates are stress-tested through execution checks: formulas that cannot be evaluated
within a fixed timeout, that return invalid outputs, or that produce a large proportion of missing or
NaN values are filtered out. This layered mechanism guarantees that only high-quality, interpretable,
and robust factors are admitted into the evolving pool.

B Details of Experiment

B.1 Factor Pool Construction

Our experiments use the Alphal58 library. It comprises three groups: KBar (candlestick relations
among open/high/low/close), Price (simple ratios with 1-step references), and Rolling (operators
applied over windows to expand variants). Tables[2H3]list the factors and their default expressions
used as seeds in our experiments.

Table 2: Alphal58 factors (KBar and Price). Default expressions shown; type cells merged.

Type Name Default Expression
KMID (close - open) / open
KLEN (high - low) / open
KMID2 (close - open) / (high - low + le-12)
KUP (high - Greater(open, close)) / open
KBar KUP2 (high - Greater(open, close)) / (high - low + le-12)
KLOW (Less(open, close) - low) / open
KLOW?2 (Less(open, close) - low) / (high - low + le-12)
KSFT (2 * close - high - low) / open
KSFT2 (2 * close - high - low) / (high - low + le-12)
OPEN_REF Ref(open, 1) / close
HIGH_REF Ref(high, 1) / close
Price LOW_REF Ref(low, 1) / close

VWAP_REF Ref(vwap, 1) / close
VOLUME_REF Ref(volume, 1)/ (volume + le-12)

In our experiments, we construct a factor pool of 38 factors by selecting the Price and Rolling
collections with their default window sizes.
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Table 3: Alphal58 factors (Rolling). Windowed operators use default window size of 5 unless
otherwise stated.

Type Name Default Expression
ROC Ref(close, 5) / close
MA Mean(close, 5) / close
STD Std(close, 5) / close
BETA Slope(close, 5) / close
RSQR Rsquare(close, 5)
RESI Resi(close, 5) / close
MAX Max(high, 5) / close
LOW Min(low, 5) / close
QTLU Quantile(close, 5, 0.8) / close
QTLD Quantile(close, 5, 0.2) / close
RANK_CLOSE Rank(close, 5)
RSV (close - Min(low, 5)) / (Max(high, 5) - Min(low, 5) + le-12)
IMAX IdxMax(high, 5) / 5
IMIN IdxMin(low, 5) / 5

Rolling IMXD (IdxMax(high, 5) - IdxMin(low, 5)) / 5
CORR Corr(close, Log(volume + 1), 5)
CORD Corr(close / Ref(close, 1), Log(volume / Ref(volume, 1) + 1), 5)
CNTP Mean(close > Ref(close, 1), 5)
CNTN Mean(close < Ref(close, 1), 5)
CNTD Mean(close > Ref(close, 1), 5) - Mean(close < Ref(close, 1), 5)
SUMP Sum(Greater(close - Ref(close, 1), 0), 5) / (Sum(Abs(close -

Ref(close, 1)), 5) + le-12)
SUMN Sum(Greater(Ref(close, 1) - close, 0), 5) / (Sum(Abs(close -
Ref(close, 1)), 5) + le-12)

SUMD (Sum(Greater(close -  Ref(close, 1), 0), 5 -

Sum(Greater(Ref(close, 1) - close, 0), 5)) / (Sum(Abs(close -
Ref(close, 1)), 5) + le-12)

VMA Mean(volume, 5) / (volume + le-12)

VSTD Std(volume, 5) / (volume + le-12)

WVMA Std(Abs(close / Ref(close, 1) - 1) * volume, 5) / (Mean(Abs(close
/ Ref(close, 1) - 1) * volume, 5) + le-12)

VSUMP Sum(Greater(volume - Ref(volume, 1), 0), 5) / (Sum(Abs(volume
- Ref(volume, 1)), 5) + 1le-12)

VSUMN Sum(Greater(Ref(volume, 1) - volume, 0), 5) / (Sum(Abs(volume
- Ref(volume, 1)), 5) + le-12)

VSUMD (Sum(Greater(volume - Ref(volume, 1), 0), 5) -

Sum(Greater(Ref(volume, 1) - volume, 0), 5)) / (Sum(Abs(volume
- Ref(volume, 1)), 5) + le-12)

B.2 Searching Settings

For the static factor search, we adopt fixed evolutionary parameters: the crossover rate is set to 0.7,
the mutation rate to 0.3, and each search is conducted for 15 rounds with a pool size of 30 candidates.
This configuration allows sufficient exploration while maintaining stability of the candidate pool.

For the sparse portfolio search, the horizon of evaluation is much longer and the total number of
search iterations becomes prohibitively large. To reduce computational cost and transaction overhead,
we limit the search size to 10 candidates per iteration. In this setting, we further allow the LLM to
autonomously decide whether to perform mutation or crossover in each round, instead of enforcing a
fixed ratio. This design makes the search more efficient and adaptive under real market constraints.
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B.3 Additional Experiment Results

Table [ summarizes the top-5 candidate factors discovered at different rounds of the evolutionary
search. For each candidate, we report the expression, provenance (mutation or crossover), and its IC
score. We illustrate results from Round 1, Round 5, and Round 15.

Table 4: Top-5 candidate factors across different rounds of evolutionary search. The results demon-
strate gradual refinement of factor structures and improved IC scores over iterations.

Round Candidate Expression Provenance IC

#1 Div(Sum(Greater ($close, Ref($close,1)), 7), Mutation 0.026

Add (Mean (Abs (Sub($close, Ref($close,1))),
: 14), 1e-12))

#2 Div(Slope($close, 5), Add(Sub($high, $low), Crossover 0.021
1e-12))

#3 Div(Slope($close, 7), Add(Mul($close, Mutation 0.017
Std($close, 20)), 1e-12))

#4 Div(Rsquare($close, 5), Crossover 0.016
Add (Sum(Abs ($close-Ref ($close,1)), 5),
le-12))

#5 Div(Sub(IdxMax($high, 7), IdxMin($low, 7)), Mutation 0.013
7)

#1 Div(Div(Sum(Greater (Sub($close, Mutation 0.035

Ref ($close,1)),0),5), Add(Sum(Abs(Sub($close,
Ref ($close,1))),10),1e-12)),
Add(Sub($high,$low) ,le-12))

#2 Div(Sum(Greater($close, Ref($close,1)),21), Crossover 0.035
Add (Mul(Sub($high, $low),
WMA ($close,20)),1e-12))

#3 Div(Sum(Greater ($close, Ref($close,1)),14), Crossover 0.035
Add (Mul (Sub($high,$low),
EMA($1low,14)) ,1e-12))

#4 Div(Mean($low,7), Add(Sub($high,$low),le-12)) Mutation 0.034

#5 Div(Div(Sum(Greater (Sub($close, Mutation 0.033
Ref ($close,1)),0),7),
Add (Mean (Abs (Sub($close,
Ref ($close,1))),14),1e-12)),
Add (Sub($high,$low) ,1e-12))

#1 Div(Mean (Rank (Sum(Greater ($close, Mutation 0.043
Ref ($close,1)),27),3),5),
Add(Sqrt (Sub($high,$low)),1le-12))

#2 Div(Rank (Mean (Greater($close, Crossover 0.043
Ref ($close,1)),27),3),
Add(Sqrt (Sub($high,$low)),1le-12))

#3 Div(Mean (Rank (Sum(Greater ($close, Mutation 0.042
Ref ($close,1)),21),3),10),
Add (Sqrt (Sub($high,$low)),1le-12))

#4 Div (Rank (WMA (Sum(Greater($close, Mutation 0.042
Ref ($close,1)),27),10),3),
Add (Sqrt (Sub($high,$low)),le-12))

#5 Div(Rank (Med (Greater($close, Crossover 0.041
Ref ($close,1)),24),3),
Add (Sqrt (Sub($high,$low)),1le-12))
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