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ABSTRACT

Denoising-based generative models have been significantly advanced by representation-
alignment (REPA) loss, which leverages pre-trained visual encoders to guide intermediate
network features. However, REPA’s reliance on external visual encoders introduces two
critical challenges: potential distribution mismatches between the encoder’s training data
and the generation target, and the high computational costs of pre-training. Inspired by the
observation that REPA primarily aids early layers in capturing robust semantics, we pro-
pose an unsupervised alternative that avoids external visual encoder and the assumption
of consistent data distribution. We introduce DUal-Path condition Alignment (DUPA),
a novel self-alignment framework, which independently noises an image multiple times
and processes these noisy latents through decoupled diffusion transformer, then aligns the
derived conditions—low-frequency semantic features extracted from each path. Experi-
ments demonstrate that DUPA achieves FID=1.46 on ImageNet 256×256 with only 400
training epochs, outperforming all methods that do not rely on external supervision. Criti-
cally, DUPA accelerates training of its base model by 5× and inference by 10×. DUPA is
also model-agnostic and can be readily applied to any denoising-based generative model,
showcasing its excellent scalability and generalizability.
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Figure 1: Unsupervised representation alignment can efficiently train diffusion transformer as REPA
does. By aligning the representations of different noised images, DUPA achieves FID performance compa-
rable to that of REPA with only 400 training epochs, which means ≥ 3× faster convergence than current
state-of-the-art methods that do not rely on supervision from an external visual encoder. The radius of the
circles in the right figure denotes model size while the gray ring surrounding REPA represents the auxiliary
visual encoder.
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1 INTRODUCTION

In recent years, denoising-based generative models (Peebles & Xie, 2023; Ma et al., 2024) have achieved
remarkable progress in modeling complex data distributions. Such models are typically composed of stack-
ing transformer blocks. REPA (Yu et al., 2025) points out that aligning the intermediate representations of
transformer blocks with the features extracted by high-performance visual encoders (e.g., CLIP (Radford
et al., 2021), DINOv2 (Oquab et al., 2024), etc.) can significantly enhance the performance of generative
models. Since the proposal of REPA, most methods in class-to-image generation tasks have been built upon
this approach.

However, applying REPA to specific application scenarios may face the following challenges from our per-
spective:

Out of distribution. If there is a significant discrepancy between the data distribution modeled by the
generative model and the pre-training distribution of the large visual encoder, the features extracted by the
visual encoder may not only fail to facilitate the training of the generative model but could also potentially
”mislead” it, resulting in performance degradation.

Additional computational costs. Both pre-training and fine-tuning large visual encoders for specific ap-
plication scenarios incur additional computational costs. For instance, pre-training DINOv2 requires 1.1
billion model parameters, 1,500 training epochs, and 142 million images—far exceeding the computational
resources needed to train DiT (Yao et al., 2024) or SiT(Ma et al., 2024). Moreover, if the data distribution
in a specific domain differs from the pre-training distribution, further fine-tuning of the visual encoder is
necessary, which further increases the computational costs.

Xie et al. point out in REPA: “Limiting regularization to the first few layers further enhances generation
performance. We hypothesize that this enables the remaining layers to concentrate on capturing high-
frequency details, building on a strong representation.” Similarly, Wang et al. note in Decoupled Diffusion
Transformer (Wang et al., 2025): “Current diffusion transformers are fundamentally constrained by their
low-frequency semantic encoding capacity.” Therefore, we posit that the primary contribution of REPA lies
in providing accurate and invariant representations derived from pure images to the first few transformer
blocks when they extract semantic features from noisy images. As illustrated on the left of Figure 2, REPA
acts like a “data annotator” during training, supplying “labels” (i.e., effective representations) obtained from
“ground truth”(i.e., pure images) for noisy images, which is similar to supervised learning. However, as dis-
cussed above, this “supervised learning” approach in REPA faces two challenges compared to unsupervised
learning: “costliness of labeling” and “inaccurate labeling” issues. Consequently, we aim to utilize un-
supervised learning to provide effective representation guidance for generative model training, much
like REPA does but without the assumption of consistent data distribution and expensive additional compu-
tational costs.

Recently, several works have incorporated unsupervised learning into generative model training to improve
performance. Broadly, we categorize these works into two types: introducing masked image modeling into
the denoising process to enhance the contextual reasoning ability of generative models, such as MaskDiT
(Zheng et al., 2024) and SD-DiT (Zhu et al., 2024); and utilizing intermediate representations of generative
models for contrastive learning (typically treating them as negative pairs) to improve training efficiency,
such as Contrastive Flow Matching (Stoica et al., 2025) and Dispersive Loss (Wang & He, 2025). However,
neither of these unsupervised approaches can provide accurate representation guidance for each image in the
way REPA does, making it difficult for their performance to match that of REPA.

Based on the above insights, we propose DUal-Path condition Alignment (DUPA). As shown on the right
of Figure 2, an image is independently noised multiple times during training, and use Decoupled Diffusion
Transformer to predict different denoising paths. In this way, the condition encoder can extract different
conditions, which are low-frequency semantic features from different noisy images. Since these conditions
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originate from the same pure image, they should be similar, much like the representations obtained by large
visual encoders in REPA. We propose to align these different conditions derived from independently noised
versions of a single image to furnish effective representation guidance for model training. In summary, our
contributions can be outlined as follows:

• We point out that REPA may face issues of out of distribution and high computational costs, and hypothe-
size that internal alignment of noisy images can also provide effective representation guidance for training
of diffusion transformer without external supervision.

• We introduce DUPA, a simple alignment for two noisy views of a single image without external supervi-
sion, which can be easily applied to other denoising-based generative models.

• Our proposed DUPA achieves a remarkable FID of 1.46 after only 400 training epochs, surpassing all
evaluated methods that do not rely on external supervision. It also significantly narrows the performance
gap with REPA (FID=1.42), a model trained for 800 epochs under the guidance of external visual encoders.
Furthermore, compared to DUPA’s base model, DUPA accelerates training by 5× and inference by 10×.

2 RELATED WORKS

2.1 DIFFUSION TRANSFORMERS WITH REPRESENTATION LEARNING

Diffusion transformers (Peebles & Xie, 2023) present an innovative architecture for diffusion models which
integrates transformers (Vaswani et al., 2023) into the diffusion framework, effectively replacing the conven-
tional U-Net structure. Studies demonstrate that this architecture can surpass traditional methods particularly
when sufficiently trained. SiT (Ma et al., 2024) further validates the effectiveness of transformers and ex-
tends their application to challenging tasks such as text-to-image generation (Chen et al., 2023; 2024). Fur-
thermore, diffusion transformers have achieved remarkable progress in the text-to-video domain, exhibiting
outstanding visual and motion quality (Hong et al., 2022; Kong et al., 2025).

2.2 REPRESENTATION LEARNING IN DIFFUSION MODELS

In image generation research, REPA leverages auxiliary representation learning to optimize generative mod-
els by aligning their intermediate representations with those of high-capacity pretrained encoders trained on
external data. Building on this foundation, SARA (Chen et al., 2025) innovates by incorporating structured
and adversarial alignment strategies. SoftREPA (Lee et al., 2025) extends this approach to the multimodal
domain by aligning noisy image representations with soft semantic embeddings. While these approaches
demonstrate strong performance in practice, they exhibit a high dependency on additional pretraining and
external data.

2.3 UNSUPERVISED LEARNING IN DIFFUSION MODELS

The integration of masked image modeling(Xie et al., 2022) into diffusion transformers significantly en-
hances training efficiency and semantic representation. By masking image tokens during training, masked
image modeling forces the model to learn contextual reasoning within the diffusion process, often using an
asymmetric encoder-decoder structure that reduces computational cost. This approach accelerates training,
improves generation quality, and enables zero-shot image editing capabilities like inpainting. Models such
as MaskDiT (Zheng et al., 2024) and MDTv2(Gao et al., 2023b) demonstrate its effectiveness in producing
high-quality images with better structural coherence.

Compared to masked image modeling, contrastive learning (Khosla et al., 2020) has recently been demon-
strated to be a simpler yet also effective unsupervised method for improving diffusion transformer training.
These methods primarily work by constructing negative samples to separate distinct representations. Con-
trastive Flow Matching (Stoica et al., 2025) proposes to significantly reduce the number of sampling steps
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𝑻= 𝟏

REPA DUPA

Visual Encoder

𝑻= 𝟏 𝑻= 𝟎

Figure 2: Comparison between REPA and DUPA. REPA needs an external visual encoder to generate
effective representations, whereas DUPA can get effective representations through internal alignment.

required during inference by maximizing the dissimilarities between the predicted velocity and the ground-
truth velocity of an image from another category. Dispersive Loss (Wang & He, 2025) suggests that maxi-
mizing pairwise distances among different intermediate representations within the same batch can enhance
the generative capability of diffusion transformers without considering whether these representations belong
to the same category.

3 PRELIMINARIES

3.1 FLOW AND DIFFUSION-BASED MODELS

Based on the unified framework of stochastic interpolants, flow and diffusion-based models are characterized
by a continuous-time interpolation process between data and noise xt = αtx∗ + σtϵ, where x∗ ∼ p(x) is
data and ϵ ∼ N (0, I) is Gaussian noise, with αt decreasing and σt increasing in time t. The dynamics
are governed by a probability flow ODE ẋt = v(xt, t), enabling deterministic sampling, and an equivalent
reverse SDE

dxt = v(xt, t)dt−
1

2
wts(xt, t)dt+

√
wtdw̄t, (1)

enabling stochastic sampling. The velocity field
v(x, t) = α̇tE[x∗|xt = x] + σ̇tE[ϵ|xt = x] (2)

is trained by minimizing the objective
Lvelocity(θ) = Ex∗,ϵ,t

[
∥vθ(xt, t)− α̇tx∗ − σ̇tϵ∥2

]
, (3)

unifying both ODE and SDE-based generation approaches.

3.2 DECOUPLED DIFFUSION TRANSFORMER

Decoupled Diffusion Transformer (DDT) (Wang et al., 2025) introduces a novel encoder-decoder archi-
tecture to resolve the optimization dilemma in traditional diffusion transformers between low-frequency
semantic encoding and high-frequency detail decoding.

Specifically, DDT uses a dedicated condition encoder to extract semantic condition features zt =
Encoder(xt, t, y) and a velocity decoder to predict the velocity field vt = Decoder(xt, t, zt). This encoder-
decoder architecture significantly improves training efficiency while reducing FID (Deng et al., 2009).
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4 DUPA: DUAL-PATH CONDITION ALIGNMENT

4.1 DUAL-PATH SAMPLING

For an input image x and its class label y, we sample multiple noises to get different noises ϵk and times-
tamps tk, generating distinct noisy latents xtk = αtk · x + σtk · ϵk, 1 ≤ k ≤ K to be denoised, where K

represents the number of independent samples times.

Then we use DDT to estimate the velocity for xtk :
ztk = Encoder(xtk , tk, y), vtk = Decoder(xtk , tk, ztk). (4)

Considering the overall performance and computational cost trade-off (refer to Figure 3a), we set K = 2.
Multiple independent noise sampling of a single pure image are performed for two main reasons.

Training efficiency. It enables the training of different noised states of an image through a single training
step. As will be discussed in Section 5.4, this approach is more efficient compared to applying only a single
noising operation.

Different conditions to align. Multiple independent noise sampling can obtain different velocity conditions
for decoding velocities of distinct paths with the same “end point” via DDT. By aligning these conditions,
DDT can encode more accurate low-frequency semantic information, which will be discussed in detail in
Section 4.2.

4.2 CONDITION ALIGNMENT

In REPA and DDT, the features extracted from pure images by state-of-the-art visual encoders are used to
align the conditional features learned by DiT blocks from noisy latents, which has been shown to signifi-
cantly enhance the model’s performance:

LREPA(θ, ϕ) = −Ex∗,ϵ,t

[ 1

N

N∑
n=1

sim(y
[n]
∗ , zϕ(z

[n]
t ))

]
(5)

where y∗ denotes the output of the visual encoder, zt represents the conditions extracted by DDT, and zϕ is
a trainable MLP used to align the data dimensions of y∗ and zt. θ and ϕ are the parameters of DDT and zϕ,
respectively. N is the patch number and sim(·, ·) is a pre-defined similarity function.

However, large visual encoders introduce additional training data and model parameters. We posit that
the features output by the visual encoder provide consistent and accurate conditioning for different noisy
latents derived from the same pure image during training. The fact that different condition features of the
same image converge toward the representation extracted by the visual encoder during training resembles
clustering in unsupervised learning. This inspires us to sample multiple condition features in a single training
step and align them towards the cluster center—which corresponds to the representation extracted by the
visual encoder in REPA as intuitively illustrated in 2.

Similarly, We align any two conditions of {ztk} in the manner of REPA:

LDUPA(θ, ϕ) := −Ex∗,{ϵk,tk}K
k=1

[ 2

K(K − 1)

∑
1≤i<j≤K

1

N

N∑
n=1

sim(zϕ(z
[n]
ti ), zϕ(z

[n]
tj ))

]
. (6)

On the other hand, we modify the original diffusion model’s loss to the average of diffusion losses over
K-times samplings:

Lvelocity(θ) := Ex∗,{ϵk,tk}K
k=1

[
K∑

k=1

∥vθ(xtk , tk)− α̇tkx∗ − σ̇tkϵk∥2
]
. (7)
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Algorithm 1 Dual-Path Condition Alignment Batch Step
1: Input: DDT vθ, batch of B flow examples F = {(x1, y1), . . . , (xB , yB)}, projector zϕ, learning rate

β, sampling times K = 2 and hyperparameter λ = 0.5.
2: Output: Updated model parameters θ.
3: L(θ, ϕ) = 0
4: for i in range(B) do
5: for j in range(K) do
6: tj ∼ U(0, 1), ϵj ∼ N (0, I), xtj = αtjxi + σtj ϵj
7: v̂j , zj = vθ(xtj , tj , yi), vj = α̇tjxi + σ̇tj ϵj
8: zj = zϕ(zj)
9: L(θ, ϕ)+ = ||v̂j − vj ||2

10: for k in range(j) do
11: L(θ, ϕ)− = 2λ

K(K−1) · sim(zk, zj)

12: end for
13: end for
14: end for
15: θ ← θ − β

B∇θL(θ, ϕ), ϕ← ϕ− β
B∇ϕL(θ, ϕ)

Then we sum the condition alignment loss and diffusion loss to construct the loss function for model training:

L := Lvelocity + λLDUPA, (8)

where λ is a hyperparameter that controls the tradeoff between condition alignment and denoising. Algo-
rithm 1 illustrates the implementation of an arbitrary batch step in training DUPA.

5 EXPERIMENTS

We conduct extensive experiments to evaluate DUPA’s performance and effectiveness, focusing on three key
aspects:

• Performance comparison between DUPA and current state-of-the-art methods. (Section 5.2)
• Effectiveness and necessity of DUPA’s components and settings. (Section 5.3, 5.4)
• Time and computational costs of DUPA during training and inference. (Section 5.5)

5.1 EXPERIMENTAL SETUP

Implementation details. Our experimental setup aligns with DiT, SiT, REPA, and DDT. DUPA is trained
on 256×256 ImageNet datasets with a batch size of 256. Images are processed through the off-shelf Stable
Diffusion VAE to obtain latents z ∈ R32×32×4. Adam optimizer with a learning rate of 0.0001 is employed
throughout the entire training process. DUPA’s model configuration is shown in Appendix B, which main-
tains the same model size with SiT. We set hyperparameter λ = 0.5 and independent noise sampling times
K = 2, choose cosine similarity as sim(·, ·) and do not use classifier-free guidance (CFG) unless otherwise
specified. Our default training infrastructure consisted of 8×A100 GPUs. For more experimental details,
please refer to Appendix D.

Initialization of projector. It is crucial to avoid setting both the weights and biases to 0 when initializing
projector zϕ. Otherwise, the condition used to align with will remain 0, leading to shortcut learning. In our
experiments, we employ Kaiming initialization (He et al., 2015) for the first layer of projector zϕ to preserve
variance during forward propagation, while utilizing a reduced-gain Xavier initialization (Glorot & Bengio,
2010) for subsequent layers to prevent gradient explosion or overfitting.

Evaluation. We report following five quantitative metrics to evaluate model’s performance: Fréchet incep-
tion distance (FID; (Heusel et al., 2017)), sFID (Nash et al., 2021), inception score (IS; (Salimans et al.,

6
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Table 1: System-Level Performance on ImageNet 256 × 256. Our results are bolded to indicate that
DUPA performs better than methods without external supervision of large visual encoders, while high-
lighted to indicate that DUPA performs the best among all methods. ↓ indicates a lower value is better and
↑ indicates a higher value is better.

Method Training
Epochs #params External

Images
External
Params

Generation w/o CFG Generation w/ CFG
FID↓ sFID↓ IS↑ Prec.↑ Rec.↑ FID↓ sFID↓ IS↑ Prec.↑ Rec.↑
No Auxiliary Task

DiT 1400 675M 0 0 9.62 6.85 121.5 0.67 0.67 2.27 4.60 278.2 0.83 0.57
SiT 1400 675M 0 0 8.61 6.32 131.7 0.68 0.67 2.06 4.50 270.3 0.82 0.59
FasterDiT 400 675M 0 0 7.91 5.45 131.3 0.67 0.69 2.03 4.63 264.0 0.81 0.60
DDT 400 675M 0 0 8.06 5.31 127.4 0.69 0.67 2.01 4.66 281.7 0.80 0.59

Masked Image Modeling
MaskGIT 555 227M 0 0 6.18 - 182.1 0.80 0.51 - - - - -
LlamaGen 300 3.1B 0 0 9.38 8.24 112.9 0.69 0.67 2.18 5.97 263.3 0.81 0.58
VAR 350 2.0B 0 0 - - - - - 1.80 - 365.4 0.83 0.57
MagViT-v2 1080 307M 0 0 3.65 - 200.5 - - 1.78 - 319.4 - -
MAR 800 945M 0 0 2.35 - 227.8 0.79 0.62 1.55 - 303.7 0.81 0.62
MaskDiT 1600 675M 0 0 5.69 10.34 177.9 0.74 0.60 2.28 5.67 276.6 0.80 0.61
MDT 1300 675M 0 0 6.23 5.23 143.0 0.71 0.65 1.79 4.57 283.0 0.81 0.61
MDTv2 920 675M 0 0 - - - - - 1.58 4.52 314.7 0.79 0.65

Contrastive Learning
∆FM 800 675M 0 0 - - - - - 1.97 4.53 268.4 0.79 0.65
Disp-Loss 1200 675M 0 0 - - - - - 1.97 4.61 275.2 0.80 0.63

Supervised Representation Alignment

REPA
80

675M 142M 1.1B
7.90 5.06 122.6 0.70 0.65 - - - - -

200 6.40 - - - - 1.96 4.49 264.0 0.82 0.60
800 5.90 5.73 157.8 0.70 0.69 1.42 4.70 305.7 0.80 0.65

Unsupervised Representation Alignment
80 8.71 4.65 114.6 0.70 0.65 2.28 4.48 237.2 0.83 0.59
200 6.57 4.63 136.5 0.70 0.68 1.70 4.45 265.3 0.83 0.61DUPA (Ours)
400

675M 0 0
5.92 4.63 149.6 0.71 0.69 1.46 4.45 296.2 0.84 0.62

2016)), precision (Prec.) and recall (Rec.) (Kynkäänniemi et al., 2019). We sample 50,000 images to
calculate the above quantitative metrics.

Sampler. We use the SDE Euler-Maruyama sampler (for SDE with wt = σt) and set the number of function
evaluations (NFE) as 250 which follows SiT unless otherwise specified.

Baselines. We select state-of-the-art generative models in recent years as our baselines. Unlike other works,
we do not distinguish DUPA and baselines based on model architecture, but rather based on the types of
auxiliary tasks used for generation: (a) No auxiliary task: Dit (Peebles & Xie, 2023), SiT (Ma et al., 2024),
FasterDiT (Yao et al., 2024) and DDT (Wang et al., 2025). (b) Masked Image Modeling: MaskGIT, (Chang
et al., 2022), LlamaGen (Sun et al., 2024), VAR (Tian et al., 2024), MagViT-v2 (Yu et al., 2023), MAR
(Li et al., 2024), MaskDiT (Zheng et al., 2024), MDT (Gao et al., 2023a) and MDTv2(Gao et al., 2023b).
(c) Contrastive learning: ∆FM (Stoica et al., 2025) and Disp-Loss (Wang & He, 2025). (d) Supervised
representation alignment: REPA (Yu et al., 2025). (e) Unsupervised representation alignment: DUPA. We
categorize all autoregressive models as (b). The original DDT introduces architectural improvements, such
as SwiGLU (Touvron et al., 2023), RoPE (Su et al., 2024), and RMSNorm (Touvron et al., 2023), as well as
supervision from external visual encoders. Our approach solely focuses on its core contribution—decoupled
encoder-decoder architecture. Therefore, the following results regarding DDT are all reproduced based on
SiT.

5.2 SYSTEM-LEVEL COMPARISON

Table 3 shows the performance of our method compared to different sizes of base models. It can be seen that
DUPA has improved all sizes of base models in various generation metrics.

Table 1 presents a comparative analysis of DUPA-XL/2 against current state-of-the-art methods on the Im-
ageNet 256 × 256. In terms of sFID, DUPA outperforms all other listed methods, both with and without

7
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Table 2: Component-wise analysis. All models are
DUPA-L/2 trained for 400K iterations with different set-
tings. “Resampling” column indicates whether to inde-
pendently resample timestamp t or noise ϵ.

Resampling Depth Objective λ FID↓
Vanilla SiT-L/2 18.8

t 8 Cos. sim. 0.5 13.2
ϵ 8 Cos. sim. 0.5 12.4

t, ϵ 4 Cos. sim. 0.5 11.8
t, ϵ 6 Cos. sim. 0.5 11.3
t, ϵ 10 Cos. sim. 0.5 11.2
t, ϵ 12 Cos. sim. 0.5 11.6
t, ϵ 14 Cos. sim. 0.5 11.9
t, ϵ 16 Cos. sim. 0.5 12.1

t, ϵ 8 NT-Xent 0.5 11.6

t, ϵ 8 Cos. sim. 0.25 11.2
t, ϵ 8 Cos. sim. 0.75 11.1
t, ϵ 8 Cos. sim. 1 11.1

t, ϵ 8 Cos. sim. 0.5 11.1

Table 3: Model performance across different sizes with
400K training steps.

Model FID↓ sFID↓ IS↑ Prec.↑ Rec.↑
SiT-B/2 33.0 6.46 43.7 0.53 0.63
DDT-B/2 29.5 6.23 51.7 0.57 0.63
DUPA-B/2 25.2 5.89 67.4 0.61 0.63

SiT-L/2 18.8 5.29 72.0 0.64 0.64
DDT-L/2 14.9 5.17 87.8 0.65 0.64
DUPA-L/2 11.1 4.91 104.8 0.69 0.65

SiT-XL/2 17.2 5.07 76.5 0.65 0.63
DDT-XL/2 12.8 4.98 91.3 0.67 0.63
DUPA-XL/2 8.71 4.65 114.6 0.70 0.65

Table 4: Ablation study of proposed improvements.

Method FID↓ sFID↓ IS↑ Prec.↑ Rec.↑
DDT-L/2 14.9 5.17 87.8 0.65 0.64

+ Dual-Path Sampling 12.5 5.02 96.6 0.68 0.65
+ Condition Alignment 11.1 4.91 104.8 0.69 0.65

CFG. Furthermore, it achieves the best recall score in the non-CFG setting and the best precision score when
CFG is applied.

Notably, for FID, DUPA surpasses all methods that do not rely on external supervision after only 400 training
epochs. Even when compared to REPA—a model trained for a full 800 epochs with the aid of large visual
encoders’ representation alignment—DUPA’s performance is within a narrow 3% margin. This achievement,
despite the shorter training schedule (we train DUPA-XL/2 only for 400 epochs due to resource and time
limits), strongly demonstrates the superior efficiency of DUPA.

5.3 COMPONENT-WISE ANALYSIS

The resampling strategy, encoder-decoder architecture, condition alignment method and hyperparameter
settings of DUPA significantly impact the model’s performance. Results of the impact of these components
are shown in Table 2.

Resampling strategy. Experiments show that independently resampling of both timestamp t and noise ϵ
performs the best. We believe this provides more diverse noisy images, thereby enhancing the reliability of
cluster centers of extracted condition representations.

Condition encoder depth. We investigate the impact of the number of layers in the condition encoder on
DUPA-L/2. Similar to the conclusion in REPA, aligning the representations output by the first few layers
can help the subsequent network predict high-frequency details. In the remaining experiments, we perform
condition alignment at the 8th layer.

Alignment objective. We compare the effects of two similarity functions which are commonly used in con-
trastive learning: Normalized Temperature-scaled Cross Entropy (NT-Xent) and negative cosine similarity
(cos. sim.), and we choose cos. sim. in other experiments.

Effect of tradeoff parameter. As shown in Table 2, DUPA is robust to the tradeoff parameter λ.
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Method Iter. BS K TS↓ Mem.↓ FID↓

SiT-L/2 400K 256 1 0.97 22.6 18.8
DDT-L/2 400K 256 1 1.01 23.3 15.2
DDT-L/2 400K 512 1 1.87 35.5 13.9
DDT-L/2 800K 256 1 1.01 23.3 13.4
DUPA-L/2 400K 256 2 1.12 27.9 11.1
DUPA-L/2 400K 256 3 1.26 32.5 10.8
DUPA-L/2 400K 256 4 1.43 38.2 10.7
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18
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Batch Size *= 2
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DDT
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(a) “BS” indicates batch size, “K” indicates noising times, “TS” indicates
training speed (sec/step) and “Mem.” indicates memory usage of a single
GPU (GB).
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(b) Image sampling is performed on
DUPA-XL/2 and DDT-XL/2 trained for
400K iterations.

Figure 3: Time and computational cost analysis. (a) Time and computational costs comparison.
(b)Training efficiency and inference speed comparison.

5.4 ABLATION STUDY

Compared to the baseline model DDT, our primary improvements lie in dual-path sampling and condition
alignment. Since condition alignment relies on dual-path sampling, we conduct the following three sets
of ablation experiments on DUPA-L/2: DUPA without dual-path sampling and condition alignment (which
degenerates to DDT), DUPA without condition alignment and the vanilla DUPA. The results of the ablation
experiments are shown in Table 4.

Dual-path sampling offers more precise gradient guidance for model parameter optimization in a training
step, enhancing training efficiency, while conditional alignment enables the condition encoder to capture
more accurate semantic representations from noisy images, further boosting model performance.
5.5 TIME AND COMPUTATIONAL COSTS

Since training and sampling of generative models require significant time and computational resources,
we emphasize evaluating the model’s computational cost in addition to its performance. During training,
multiple independent sampling of noises and velocity prediction for single image represent the primary extra
computational overhead introduced by our method. For the sampling phase, we also conduct experiments to
explore whether DUPA can accelerate the sampling procedure through aligned condition feature.

Noise sampling times. We compare the impact of different noise sampling times on training speed, GPU
memory usage, and model performance in Figure 3a. To illustrate the difference between multiple sampling
and batch size enlargement, we additionally train DDT with a batch size of 2× 256 = 512.

Neither doubling the batch size nor the training steps of DDT can achieve the performance of DUPA. More-
over, the former approach leads to a nearly doubled training cost. On the other hand, increasing K signif-
icantly raises GPU memory usage and slows down training speed, without significant FID gains. We thus
select K = 2 in other experiments.

Improved training efficiency and inference speed. To accelerate experiments, we compare the training
efficiency of DUPA-L/2 and DDT-L/2. As shown in Figure 3b, DUPA requires only about 1/5 training
steps and 1/10 sampling steps to reach DDT’s performance.

6 CONCLUSION AND FUTURE WORK
Inspired by REPA, we propose DUPA, which provides efficient semantic information for denoising-based
generative models’ training by aligning the representations of different noisy views from the same image,
which is similar to REPA. DUPA can achieve performance comparable to that of REPA without any external
supervision of large visual encoder, which can easily applied to any denoising-based models. Furthermore,
we intend to conduct further testing and improvement of DUPA on text-to-image tasks in the future.
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7 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics and all authors have read and adhered to the Code of Ethics.
In this study, no human subjects is involved. The use of all datasets, including ImageNet (Deng et al., 2009),
follows the relevant usage guidelines and public licenses, ensuring no violation of privacy. We have been
careful to avoid any biased or discriminatory results during our research process. No personally identifiable
information is used, and no privacy or security concerns will be raised due to our experiments. We are
committed to maintaining transparency and integrity throughout the research process.

8 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All code
and datasets have been made publicly available in an anonymous repository to facilitate replication and
verification. The experimental setup, including training steps, model configurations, and hardware details,
is described in detail in the paper. We have also provided a full description of DUPA to assist others in
reproducing our experiments.

Additionally, the datasets used in our experiments are publicly available, ensuring consistent and repro-
ducible evaluation results.

We believe these measures will enable other researchers to reproduce our work and further advance the field.
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A USE OF LARGE LANGUAGE MODELS

We acknowledge the use of Large Language Models (LLMs), specifically OpenAI’s GPT-5 and Google’s
Gemini 2.5 Pro, to assist in the preparation of this manuscript. The specific applications were as follows:

• Information Gathering: To assist in consulting background information and identifying potential litera-
ture related to the research field.

• Language and Readability: To improve the grammar, clarity, and overall readability of the manuscript
through language polishing.

• Format Checking: To assist in checking the paper’s layout and citation style for general compliance with
conference requirements.

We emphasize that all scientific claims, cited works, experimental results, and final conclusions were inde-
pendently reviewed and verified by the human authors. The authors take full and final responsibility for the
entire content of this submission, including any potential errors or inaccuracies, in accordance with ICLR
policy.

B MODEL CONFIGURATION

Table 5: Model configuration details.

Config #Layers Hidden dim #Heads Enc depth Patch size

DUPA-S/2 12 384 6 4 2
DUPA-B/2 12 768 12 4 2
DUPA-L/2 24 1024 16 8 2
DUPA-XL/2 28 1152 16 8 2

C CLASSIFIER FREE GUIDANCE

Considering that classifier-free guidance can significantly affect the generation quality, we adopt interval
guidance with interval [0, 0.7] following REPA, which apply classifier-free guidance only to the phase of
generating high-frequency details, thereby ensuring the diversity of the generation results. The results of
classifier-free guidance scale w are shown in Table 6.

Table 6: Detailed evaluation results of DUPA-XL/2 at 2M iteration with different classifier-free guidance
scale w.

Model #Params Iter. w FID↓ sFID↓ IS↑ Prec.↑ Rec.↑
DUPA-XL/2 675M 2M 1.56 1.51 4.47 274.6 0.82 0.63
DUPA-XL/2 675M 2M 1.58 1.47 4.45 286.8 0.83 0.62
DUPA-XL/2 675M 2M 1.60 1.46 4.45 296.2 0.84 0.62
DUPA-XL/2 675M 2M 1.62 1.49 4.44 304.7 0.84 0.61
DUPA-XL/2 675M 2M 1.64 1.53 4.43 309.5 0.84 0.60
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D IMPLEMENTATION DETAILS

Table 7: Experimental setup.

Table 1 (DUPA-XL/2) Table 2 (DUPA-L/2) Table 4 (DUPA-L/2) Figure 3a (DUPA-L/2)

Architecture
Input dim. 32×32×4 32×32×4 32×32×4 32×32×4
Num. layers 28 24 24 24
Hidden dim. 1,152 1,024 1,024 1,024
Num. heads 16 16 16 16

DUPA
λ 0.5 0.25∼1 0.5 0.5
Alignment depth 8 4∼16 8 8
sim(·, ·) cos. sim. cos. sim./NT-Xent cos. sim. cos. sim.
Noising Times 2 2 2 2∼4

Optimization
Training iteration 2M 400K 400K 400K
Batch size 256 256 256 256
Optimizer AdamW AdamW AdamW AdamW
lr 0.0001 0.0001 0.0001 0.0001
(β1, β2) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)

Interpolants
αt 1− t 1− t 1− t 1− t
σt t t t t
wt σt σt σt

Training objective v-prediction v-prediction v-prediction v-prediction
Sampler Euler-Maruyama Euler-Maruyama Euler-Maruyama Euler-Maruyama
Sampling steps 250 250 250 250
Guidance 1.6 - - -

E DISCRIMINATIVE SEMANTICS

Figure 4 presents a comprehensive discriminative semantics analysis of the DUPA-XL/2 and SiT-XL/2 mod-
els, evaluated through two key metrics: linear probing validation accuracy and CKNNA score.

Linear probing. The linear probing results in Figure 4a show that both DUPA-XL/2 and SiT-XL/2 models
exhibit an initial increase in validation accuracy as layer depth increases, before eventually plateauing or
decreasing. This trend is typical for discriminative models, where the initial layers learn basic features and
the later layers learn more abstract, task-specific features.

Significantly, the DUPA-XL/2 model consistently outperforms SiT-XL/2 across all layers. At its peak per-
formance, DUPA-XL/2 achieves 69% validation accuracy, while the SiT-XL/2 model peaks at 53.5%. This
large performance gap highlights DUPA-XL/2’s superior ability to learn more discriminative, semantically
rich representations.

CKNNA score. As shown in 4b, DUPA-XL/2 demonstrates a much higher CKNNA score than the SiT-XL/2
across all three time steps (t=0.0, t=0.25, and t=0.5). CKNNA score, which measures the complexity and
discriminative power of the learned features, is consistently over 0.4 for DUPA-XL/2, whereas SiT-XL/2’s
score remains below 0.2.
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This result indicates that the features extracted by DUPA-XL/2 are not only more discriminative but also
more complex and better structured for classification tasks compared to those of SiT-XL/2. The consistent
gap in CKNNA scores across different time steps further confirms that the superior discriminative capability
of DUPA-XL/2 is a robust characteristic of the model’s architecture.
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Figure 4: Discriminative semantics analysis.

F ALIGNMENT LOSS

Figure 5 shows the change in cosine similarity during DUPA-XL/2 training, measured across different de-
noising paths for condition alignment. Initially, most of the network’s neurons are not activated, which leads
to similar yet uninformative representations (note the initialization of the projector zϕ to prevent shortcut
learning). In the early stage of training, DUPA begins to learn image features, but the cosine similarity
rapidly decreases due to the influence of noise. After a small number of training steps (approximately 3,000
steps), DUPA begins to learn useful representations from different noisy latents of the same image, i.e., the
invariant semantic information from the pure image. Subsequently, the cosine similarity increases as training
progresses.
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Figure 5: DUPA alignment similarity during training.
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G TIMESTAMP SELECTION

To investigate the impact of timestep selection, we conduct experiments under three configurations: using
only dual-path sampling, using only condition alignment, and using both improvements simultaneously. For
experimental efficiency, we conduct tests on ImageNet at 256×256 resolution using DUPA-B/2, training for
80 epochs without using CFG. Time intervals in the table below denote the range from which t is sampled for
one branch of dual-path sampling, while the other branch retains the original sampling strategy. We employ
uniform sampling across the time interval.

1. Only dual-path sampling.

Time Interval FID-50K
[0, 0.1) 28.92
[0, 0.2) 28.14
[0, 0.3) 27.45
[0, 1) 26.21

A broader sampling range enables the model to encounter more diverse intermediate states zt, thereby en-
hancing performance.

2. Only condition alignment.

To investigate the impact of timestep selection on condition alignment, we apply the stop-gradient operation
to one branch of the dual-path sampling (which can be regarded as the teacher branch), utilizing only the in-
termediate conditions output by the teacher branch for condition alignment without computing the diffusion
loss of the teacher branch.

Time Interval FID-50K
[0, 0.1) 27.21
[0, 0.2) 27.04
[0, 0.3) 27.13
[0, 1) 28.17
[0.8, 1) 30.36

Selecting a relatively small t (closer to the clean image) in the teacher branch is most beneficial for model
performance. This is understandable because when the teacher branch is frozen, its output effectively serves
as ”ground truth” that guides the model. Inaccurate outputs generated from large t (blurred images) would
harm model performance.

3. Both dual-path sampling and condition alignment.

Time Interval FID-50K
[0, 0.1) 26.17
[0, 0.2) 25.72
[0, 0.3) 25.58
[0, 1) 25.23

When both improvements are adopted simultaneously, the result of not restricting the selection of t is better,
which also reflects the simplicity of the proposed method as it does not require too much manual configura-
tion.
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H MORE QUALITATIVE RESULTS
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