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Abstract

Commercially available, synthesis-on-demand virtual libraries contain trillions
of readily synthesizable compounds and can serve as a bridge between in silico
property optimization and in vitro validation. However, as these libraries continue
to grow exponentially in size, traditional enumerative search strategies that scale
linearly with the number of compounds encounter significant limitations. Hierarchi-
cal enumeration approaches scale more gracefully in library size, but are inherently
greedy and implicitly rest on an additivity assumption of the molecular property
with respect to its sub-components. In this work, we present a reinforcement
learning approach to retrieving compounds from ultra-large libraries that satisfy
a set of user-specified constraints. Along the way, we derive what we believe
to be a new family of α-divergences that may be of general interest in density
estimation. Our method first trains a library-constrained generative model over a
virtual library and subsequently trains a normalizing flow to learn a distribution
over latent space that decodes constraint-satisfying compounds. The proposed
approach naturally accommodates specification of multiple molecular property
constraints and requires only black box access to the molecular property functions,
thereby supporting a broad class of search problems over these libraries.

1 Introduction

Recent advances in combinatorial chemistry have vastly increased the size of commercially available,
synthesis-on-demand virtual catalogs. Ultra-large1 combinatorial synthesis libraries (CSL) now
contain trillions of compounds, and library sizes are expected to continue to grow. These virtual
catalogs are prohibitively large for any exhaustive experimental screen, and thus require virtual
screening protocols to select a subset of molecules that satisfy multiple desired properties for
synthesis and testing. However, the current size and growth of CSLs poses ongoing challenges for
existing computational approaches.

Ultra-large CSLs cannot be explicitly enumerated using common molecular representations such as
the string-based SMILES [16] encoding. Instead, retrieving a compound from these libraries relies
on dedicated cheminformatics algorithms using fingerprint patterns [3, 13] or molecular substructure

1Today, the largest [15] commercially available CSLs contain on the order of 1012 synthesizable molecules,
which is “ultra-large” in comparison to conventional chemical libraries used in virtual screening, but is of course
still a round-off error with respect to the vastness of chemical space, estimated to be on the order of 1060.
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searches [14]. These approaches rely on explicit representations of the full compound and encounter
scaling challenges with modern library sizes. Hierarchical enumeration [12] approaches that exploit
the structure of these libraries are a practical compromise, but have a tendency to be greedy and
rest on an implicit assumption that the molecular properties of interest are additive with respect to a
molecule’s sub-components.

To accommodate this rapid growth in library size, recent work, like the combinatorial synthesis library
variational auto-encoder (CSLVAE) [11], has proposed specially designed auto-encoders that give
way to efficient decoding schemes for retrieving products from CSLs, which allows for navigation of
these libraries through traversals in the latent space. This further presents us with the opportunity to
formulate multi-parameter optimization over ultra-large libraries as a reinforcement learning problem
over the latent space, which could serve as a useful template in supporting a broad class of search
problems applied to CSLs.

In this work, we present an approach for retrieving compounds from CSLs given a set of user-specified
constraints on molecular properties by applying reinforcement learning in the latent space of a trained
CSLVAE. A key contribution is the derivation of a new objective function for policy optimization
that admits a numerically stable, low variance gradient estimator for a new family of mass-covering
divergences. We explore multiple molecular property constraints that are commonly used in drug
discovery and show that our method is significantly more effective at retrieving compounds that
satisfy those constraints than enumerative approaches.

2 Methodology

Let X denote the set of potentially pharmacologically active molecules, colloquially referred to as
chemical space. The set of all molecules contained in a CSL D is denoted by XD ⊂ X . We omit
details about the construction of CSLs as well as specifics about the featurization of molecules in this
manuscript, but interested readers can refer to [11] for more information.

Define a : X → Rk to be a vector-valued function that evaluates k molecular properties of a given
query molecule. We assume, without loss of generality, that higher values are preferable to lower
values for each of the k molecular properties. Let b ∈ Rk be a vector of acceptability thresholds. A
molecule x is said to be constraint-satisfying if a(x) ≥ b. Our objective is to identify and sample
from the constraint-satisfying part of the CSL, denoted X∗

D ≡ {x : x ∈ XD, a(x) ≥ b}.

Let R0 : X → {0, 1} denote the binarized reward function, which takes on a value of one if a
molecule x ∈ X jointly satisfies the constraints and zero if any of the constraints are violated,

R0(x) =

{
1, if a(x) ≥ b;

0, otherwise.
(1)

Binarized rewards are challenging optimization targets for reinforcement learning algorithms due to
the so-called “sparse reward” problem. We therefore introduce a temperature parameter τ > 0 and
consider a continuous family of tempered reward relaxations Rτ : X → [0, 1],

Rτ (x) =

k∏
i=1

σ

(
ai(x)− bi

τ

)
, (2)

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function. Note that the binarized reward emerges in
the zero temperature limit of the tempered reward, R0(x) = limτ→0+ Rτ (x).

CSLVAEs [11] are comprised of a probabilistic encoder qψ(z|x) and decoder pθ(x|z,D), where
z ∈ Z ⊆ Rd is a so-called latent code and Z is the latent space. Importantly, the architecture of
the decoder guarantees that supp(pθ) ⊆ XD by construction, i.e., that only compounds in XD are
reachable via the decoder.

In a sufficiently expressive and well-trained variational auto-encoder (i.e., one which attains a high
reconstruction accuracy), the decoder pθ(x|z,D) behaves like a probabilistic pseudo-inverse of the
encoder qψ(z|x) within the essential support2 of the aggregated variational posterior qψ(z|D) ≡

2The ϵ-essential support of a distribution p(z) is defined as suppϵ(p) = {z : p(z) > ϵ}, i.e., it includes all
z ∈ Z where the probability density p(z) exceeds ϵ > 0.
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|XD|−1
∑
x∈XD

qψ(z|x). In particular, high reconstruction accuracy suggests that (1) for distinct
pairs of molecules x ̸= x′ from XD, the latent space conditionals qψ(z|x) and qψ(z|x′) have mostly
disjoint essential supports (i.e., the probability of collisions in the latent space for distinct molecules
is low), and (2) for latent codes sampled from the aggregated variational posterior z ∼ qψ(z|D), the
essential support of pθ(x|z,D) should concentrate on a relatively small subset of XD.

Given such an approximate bijectivity, it is natural to consider framing the search in the continuous
latent space and using the learned decoder pθ to retrieve the associated molecules from the library,
effectively turning what is otherwise a discrete problem into policy optimization in Rd with a non-
differentiable reward, which is a rather routine setting in reinforcement learning. In a slight abuse of
notation, define the tempered reward induced by z as follows:

Rτ (z) = Epθ(x|z,D) [Rτ (x)] . (3)

Hence, R0(z) = limτ→0+ Rτ (z) can be viewed as the probability that a molecule x ∼ pθ(x|z,D)
decoded from z conditionally at random is constraint-satisfying, i.e.,

R0(z) = Pr
pθ(x|z,D)

[x ∈ X∗
D]. (4)

We frame our objective as that of learning a policy that samples latent codes with probability
proportional to their tempered reward πη(z|τ) ∝ Rτ (z), which bears similarity to recent work on
Boltzmann generators [10] and generative flow networks [1]. The policy together with the decoder
pθ(x|z,D) induces a distribution over XD:

πη(x|τ,D) =

∫
z

pθ(x|z,D)πη(z|τ) dz. (5)

In other words, the policy πη(x|τ = 0,D) can be viewed as an approximation to uniformly sampling
over the constraint-satisfying subset of the library, i.e.,

πη(x|τ = 0,D) ∝∼ Uniform(x|X∗
D). (6)

Optimization of the policy parameters η can be formulated as a divergence minimization problem,
min
η

Ep(τ) [D(πη∥rτ )] , (7)

where D(πη∥rτ ) ≥ 0 is a divergence from the policy πη(z|τ) to the target distribution rτ (z) =
Ψ−1
τ Rτ (z) and Ψτ =

∫
z
Rτ (z) dz is the (unknown) normalizing constant of the tempered reward

function. Here, we amortize optimization [4] with respect to τ > 0 by specifying a temperature
distribution p(τ), e.g., an exponential distribution with rate parameter λ > 0, and minimize the
expected divergence from the policy to the tempered reward marginalized over p(τ).

Valid divergences are non-negative and attain a value of zero if and only if πη = rτ , but otherwise
vary in the manner by which they penalize differences between the source and target distributions
[7–9]. So-called mass-covering divergences, such as the forward KL divergence DKL(rτ∥πη) =
Erτ (z)[log rτ (z) − log πη(z|τ)], prefer policies where rτ (z) > 0 =⇒ πη(z|τ) > 0, thereby
steering the policy iterates towards solutions that cover the bulk of the essential support of the target
rτ . On the other hand, mode-seeking divergences, such as the reverse KL divergence DKL(πη∥rτ ) =
Eπη(z|τ)[log πη(z|τ) − log rτ (z)], prefer policies where rτ (z) = 0 =⇒ πη(z|τ) = 0, which
can often have the pathological effect of steering the policy iterates towards the most salient and
prominent nearby mode(s), leading to training instabilities that fail to consider the bulk of the target
distribution (i.e., mode collapse). Policies optimized according to mass-covering (cf. mode-seeking)
divergences show bias in favor of having a high recall (cf. precision) with respect to its coverage of
the essential support of the target distribution.

We derive a new family of α-divergences related to the Rényi divergences [7] with the useful properties
of (i) being invariant to the unknown normalizing constant Ψτ , (ii) having the mass-covering inductive
bias for α ≥ 1, and (iii) admitting low variance and numerically stable stochastic gradients:

Dα(πη∥rτ ) =
Eπη(z|τ)

[(
Rτ (z)
πη(z|τ)

)α
log Rτ (z)

πη(z|τ)

]
αEπ(z|τ)

[(
Rτ (z)
πη(z|τ)

)α] − 1

α2
logEπη(z|τ)

[(
Rτ (z)

πη(z|τ)

)α]
. (8)

Details pertaining to the derivation of this divergence family can be found in the Appendix. Once we
have adequately trained the policy using the objective (7), we can sample from the learned distribution
over the relevant constraint-satisfying subset of the library πη(x|τ = 0,D).
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Lipinski Ghose Lee Rule-of-3 Macrocycles QED

Random (uniform)
# satisfied clusters 223.4±9.5 189.8±21.9 2.2±1.3 0.2±0.4 1.6±1.0 7.2±2.6
% satisfied 2.27±0.09 1.92±0.21 0.02±0.01 0.01±0.01 0.02±0.01 0.07±0.03

Random (stratified)
# satisfied clusters 1956.2±23.5 2075.8±23.2 30.6±7.3 0.8±0.6 0.8±0.7 121.8±10.5
% satisfied 29.47±0.43 31.51±0.46 0.40±0.03 0.02±0.02 0.01±0.01 1.36±0.10

Hierarchical (k=2000, m=20)
# satisfied clusters 924.4±8.65 812.2±7.16 20.8±1.3 382.8±5.4 0.0±0.0 149.8±7.8
% satisfied 52.01±0.26 37.37±0.12 0.58±0.08 21.05±0.54 0.00±0.00 2.09±0.13
# evals 108,260 117,199 96,664 76,812 61,560 124,699
# capless evals 44,260 50,238 30,365 32,951 20,560 55,872

Trained policy (ααα=2, i.i.d.)
# satisfied clusters 1504.6±29.2 1537.6±24.9 1251.4±47.5 119.6±2.6 57.8±4.1 992.8±26.7
% satisfied 26.61±0.37 20.46±0.33 17.57±0.44 11.15±0.18 10.86±0.19 23.87±0.36
% unique 98.40±0.21 99.82±0.02 99.56±0.03 67.34±0.11 72.16±0.33 97.80±0.14

Trained policy (ααα=2, w/ d.s.)
# satisfied clusters 2705.8±21.7 4182.4±10.0 2490.4±17.5 156.2±6.8 61.2±3.4 1404.4±14.6
% satisfied 66.79±0.20 67.75±0.48 53.01±0.53 12.66±0.25 70.12±0.26 56.55±0.57
% unique 99.61±0.04 99.98±0.01 99.92±0.01 88.46±0.14 43.95±0.36 95.20±0.38

Table 1: Summary statistics from sampling 10,000 molecules from each policy using the 3T compound
library. Means and standard deviations are calculated using results from five distinct attempts.

3 Satisfying multiple molecular property constraints in an ultra-large CSL

We demonstrate that the proposed approach can efficiently retrieve constraint-satisfying compounds
from ultra-large CSLs using a library comprised of 74,232 Enamine [6] building blocks and 21 three-
and four-component reactions, resulting in a library with nearly three trillion products.

We trained a CSLVAE model on this library using the same architecture and hyperparameters
described in [11], which has a latent space dimension of d = 64. For the policy, we use a neural
spline flow [5] with eight rational quadratic spline flow coupling layers with eight knots each, with a
fixed but randomly-initialized permutation applied after each coupling layer to mix units.

To demonstrate the generality of the proposed approach, we consider multiple commonly (and less
commonly) used molecular property filters. We compare against two random baseline policies
illustrative of naive enumeration as well as a hierarchical enumeration policy [12]. Details concerning
the baseline methods and the molecular property filters are discussed in the Appendix.

For each molecular property filter, we train the policy for 100 episodes, where each episode is
comprised of 1,000 samples from the most recent policy iterate, reflecting a total of 100,000 function
evaluations over the course of training. The policy parameters are updated off-policy for 50 iterations
given data sampled i.i.d. from a replay buffer of the last 32 episodes.

For each of the fitted policies, we sample 10,000 compounds and evaluate the satisfiability rate—the
proportion of sampled compounds that satisfied the specified constraints—as well as the number of
distinct compound clusters found among the constraint-satisfying retrievals as a measure of diversity.
For this latter statistic, we use sequential Butina clustering [2] with the ECFP4 similarity and a cutoff
of 0.35 and count the number of distinct clusters.

Table 1 summarizes the results. We observe that, in the majority of cases considered, the trained
policy with diversity sampling attains both the highest satisfiability rate as well as the largest number
of distinct clusters with a constraint-satisfying compound. For filters where the prevalence in the
library is low, we observe significant enrichment in both of these quantities. Notably, for two filters
considered where the prevalence in the library is relatively high (Lipinski and Ghose), sampling i.i.d.
from the trained policy actually attains a lower satisfiability rate and cluster count than the stratified
random baseline. Once we apply diversity sampling—a non-i.i.d. sampling procedure described in
the Appendix to improve coverage of the policy modes—the number of identified satisfied clusters
increases by 2-4x, substantially outperforming the baselines.
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