
Automated Dynamics Curriculums for Deep
Reinforcement Learning

Sean Metzger
UC Berkeley, UC San Francisco
sean.metzger@berkeley.edu

Abstract

Humans often make the dynamics of a task easier (e.g. using training wheels
on a bicycle or a large voluminous surfboard) when first learning a skill before
tackling the full task with more difficult dynamics (riding a bike without training
wheels, surfing a smaller board). This can be thought of as a form of curriculum
learning. However, this is not the paradigm currently used for training agents
using reinforcement learning (RL). In many cases, agents are thrown into the
final environment, and must learn a policy from scratch in the context of the final
dynamics. While previous work on curriculum learning for deep RL has sought
to address this problem by changing the tasks agents are solving, or the starting
position of the agent, no work has derived a curriculum by modifying the dynamics
of the final environment. Here, we study using assist - simplifying task dynamics -
to accelerate and improve the learning process for RL agents. First, we modify the
physics of the LunarLander-v2 and FetchReach-v1 environments to allow us
to adjust the amount of assist provided with a single parameter α, which scales the
amount which an agent is nudged and hence assisted towards a known end goal
during training. We then show that we can automatically learn schedules for assist
using a population based training approach that results in faster agent convergence
on the evaluation environment without any assist, and better performance across
continuous control tasks using state of the art policy gradient algorithms (proximal
policy optimization). We show that our method can also scale to off-policy methods
such as Deep Deterministic Policy Gradients. Furthermore, we show that for tasks
with sparse rewards, assist is critical to agent learning as it allows exploration of
high-reward areas and use of algorithms that fail to learn the task without assist. We
also uncover that population based tuning approaches stabilize training of policy
gradients without tuning of any additional hyperparameters.

1 Introduction

Reinforcement Learning (RL) is a powerful method for training agents to optimize reward functions
on a variety of complex tasks, and has been demonstrated on tasks such as Atari games [1] and
robotic manipulation tasks [2]. However, agents can be slow to learn, requiring hundreds of sampled
trajectories for training data, which presents challenges for using RL to train agents in situations
when sampling is expensive or when situations require rapid agent learning. Furthermore, tasks with
sparse rewards are challenging to train - and sometimes training does not work at all if the agent is
unable to achieve the sparse reward frequently.

One tactic for expediting learning that is popular for teaching humans new tasks is the use of assist.
Here we define assist as an extrinsic force pushing one towards a goal. Assist could be thought of
as the hand of a teacher guiding a student through a tennis swing, or the forces of training wheels
keeping a bike upright. Another example comes from the Brain-Computer Interface literature [3, 4],

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

where a human learns to control a cursor using their neural activity in a closed-loop setting. At first
the cursor is extrinsically guided to the desired position, before the amount of assist is tapered down
until the human is completely in control of the brain-computer interface. Could such a strategy be
effective for RL?

This paper seeks to answer the following questions: can assist be used for training reinforcement
learning algorithms? Would making task dynamics easier or harder allow agents to learn meaningful
policies? Would policies learned with easier dynamics be functional once the original dynamics are
reintroduced? How can we determine functional assist schedules?

This work answers those questions by implementing assist mechanisms into two control tasks for
reinforcement learning - guiding a lunar lander, and simulated robotic locomotion. We show that
this can expedite learning and lead to improved convergence speed and reward values on two control
tasks. The main contributions of this work can be summarized as follows:

• Formalizing and implementing assist for goal-oriented control tasks

• A novel and practical approach for automatically finding assist schedules

• Empirical evaluations showing that this approach can solve robotic manipulation and control
tasks with higher convergence speed than using the same algorithms without modulating
assist.

2 Previous Work

2.1 Curriculum Learning

This work seeks to implement an assist curriculum, hence it is important to review the curriculum
learning literature.

The earliest example of curriculum learning in modern deep learning comes from [5]. A neural
network was first presented with examples that a simple classifier was very sure of, and slowly
trained on examples that simpler classifiers found more difficult to classify. This resulted in improved
performance over training on samples in random order. However the idea of training models on
simpler tasks before graduating to harder tasks was first proposed by [6], who trained neural networks
on a restricted set of simple data for learning grammars before increasing the complexity. Doing so
was shown to be critical to learning.

It is also possible to think of the extremely popular process of finetuning and pretraining neural
networks (e.g. [7]) as a form of curriculum learning.

2.2 Curriculum Learning for Deep Reinforcement Learning

Previous work in curriculum learning [5] in RL has focused on changing the task itself from easy
to hard [8], changing initial states from close to the reward to farther and farther away [9], and
progressively changing the goals that the RL agent is trying to meet [10]. Another approach, taken by
Mix&Match [11] is to learn a curriculum over agents by effectively bootstrapping solutions found by
simpler agents for more complex tasks.

To date, no work has focused on using a curriculum of dynamics as we do here.

2.3 Hyperparameter Scheduling

An ideal assist curriculum will modulate the amount of assist that is provided to an agent throughout
the learning process. For example, one could imagine beginning learning with a high assist amount,
then reducing the amount of assist throughout training. Ideally, we would be able to automatically
search for this assist schedule.

Learning hyperparameter schedules has long been an important field of study for deep learning,
where learning rate schedules have been shown to result in improved performance for many tasks
(e.g. [7]). Within deep Reinforcement Learning, finding a schedule for hyperparameters has been
shown to improve performance on a wide range of tasks, including DeepMind-Lab, StarCraft II and
Atari [12]. This schedule is derived through population based training, which is based on exploration

2

and exploitation of hyperparameters. In population based training, a set of models explores a set of
hyperparameters in parallel. After performance is evaluated, then population based training keeps
models with the best performing hyperparameters, clones them, then adjusts the hyperparameters of
cloned models to explore new spaces.

Moreover, recent work [13] has shown that it is possible to learn a schedule of augmentations to
improve performance of image classifiers on various datasets. The work uncovered augmentation
schedules, where augmentations early in training used low augmentation strengths, before intro-
ducing higher augmentation strengths later in training - hence effectively deriving a curriculum of
augmentations for training classifiers.

3 Assisting RL agents

3.1 Training agents

We want to derive a policy π, parameterized by a vector θ, πθ to maximize the objective function:

J(θ) = Eτ∼πθ(τ)[r(τ)] (1)

As shown in [14], we can rewrite this as

Et[log πθ(at|st)Ât] (2)

Where Ât is the estimated advantage.

We use Proximal Policy Optimization (PPO) [14] as our main algorithm to optimize equation 2 . PPO
is a policy gradient method that seeks to optimize the following modified version of equation 2 to
ensure that the policy’s deviation from the previous policy is relatively small.

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât] (3)

Here θ is the policy parameter, Êt is the empirical expectation over timesteps, rt is the ratio of
probability under the new and old policies, Ât is the estimated advantage at time t, and ε is a
hyperparameter. This objective essentially implements a way to do a trust region update [15] that is
compatible with stochastic gradient descent.

3.2 Assist approach

3.2.1 LunarLander-v2

We seek to assist the agent by making the dynamics of the environment easier. Essentially, this means
’guiding’ the agent towards their goal or towards a high reward state. This can take many forms, and
we explore two variants thereof in this work.

Firstly, for LunarLander-v2 we directly modify the lander’s velocity at each timestep. Taking
inspiration from the brain-computer interface literature [3], we assume that an optimal agent would
be trying to move towards the goal state at each timepoint, and adjust the velocity vt at each timepoint
to make the dynamics easier:

vt = αvassist,t + voriginal,t (4)

Here voriginal,t corresponds to the true velocity of the lunar lander at time t before the assist velocity
is applied. vassist,t is the assist velocity at time t which is derived as follows:

vassist,t =
xgoal − xcurr

dt
(5)

Here x is a 2-d vector with the current position of the agent, and dt is the frequency at which the
environment operates. xcurr is the current position of the lander, and xgoal denotes the goal or high
reward position we want the lander to end in.

3

We apply the assist velocity as an impulse using the Box2D physics engine.

If the assist level α is set high, the lander will be strongly guided towards the goal state no matter the
actual velocity used.

3.2.2 FetchReach-v1

For the FetchReach environment, we use the FetchReach-v1 task, where we train a robotic arm
to reach a target endpoint. The action space for the Fetch robotics environment is given as a four
dimensional vector (δx, δy, δz, o). The first three dimensions of the vector correspond to the desired
change along the axes x, y, and z for the gripper of a robotic arm. The final element in the action
vector, o corresponds to the gripper being open or closed and is not changed with assist. The fetch
robot then abstracts these desired changes in movement into an actual position. Hence by modifying
each δ with an assistive δ, we achieve the same result as in equation 5.

Explicitly, we compose the assisted action as

(δx, δy, δz, o) = (δx,original, δy,original, δz,original, ooriginal) + α(δx,assist, δy,assist, δz,assist, 0)
(6)

We define

δx,assist = xgoal − xcurr (7)

Where xcurr is the current location, xgoal is the desired or high reward location, and so on for y, z.

It is worth noting that the Fetch robotics environment automatically scales the whole action vector by
.05 to limit huge and impossible movements, providing a second layer of assist scaling beyond our
scaling with α.

3.3 Finding schedules for α using population based training

Critical to the success of our method and it’s ability to scale is finding a curriculum for α automatically
on a variety of tasks. While increased assist will help agents recover high rewards during parts of
training, we assume that it will need to be lowered so that the agent learns good control in the
environment without assist where we want it to operate. However, it is unclear how to adjust α, and
hand-tuning schedules for α would require hundreds of runs for each environment we want to learn an
assist function for. Hence we used Population Based Training (PBT) to automatically discover assist
schedules. PBT has been used to find augmentation [13] curriculums and learning rate schedules [16]
and is thus a natural choice for us. We describe the formulation of the search in the format of PBT
experiments as in [16, 13].

Step: In each iteration we train the policy for 1 iteration in an environment with assist level α.

Eval: We evaluate the policy on the environment without any assist by evaluating the mean reward
over 10 episodes. This is so that we are moving towards policies that achieve the best performance
on the final evaluation environment.

Ready: A trial is ready to go through the explore-and-exploit process when 1 PPO iteration has
elapsed.

Exploit: We use truncation selection as in [16] where a trial in the bottom quarter of the population
clones the weights and hyperparameter α of a model in the top 25%.

Explore: When a new trial is cloned from a successful trial, we either resample α from a distribution
of possible values (we use a loguniform distribution) 25% of the time, or perturb the original value
to be either .8 to 1.2 times its original value with equal probability of each of the two values being
selected as in [16].

4 Experiments & Results

For all experiments we use Ray [17]. We take advantage of Ray’s Population Based Training
implementation, as well as their implementation of PPO and Deep Deterministic Policy Gradients

4

Figure 1: Evaluation of PPO with and without an assist schedule in the LunarLander-v2 environment.
Left plot shows rewards vs the number of iterations. Thick line indicates mean of top half of agents
in the population, shaded region indicates bootstrapped 95% confidence intervals. In all figures, eval
rewards are evaluated in the environment without any assist, wheras train rewards are evaluated with
assist on (if applicable). Right plot, assist schedule for one run with assist. Thick line indicates
median assist amount for top half of agents in the population, shaded region shows boostrapped 95%
confidence interval. Assist helps the agents learn rewards more quickly over traditional PPO training.
The reward schedule shows that a small amount of assist earlier in training helps the agent achieve
faster convergence and obtain better final performance. The assist later in training goes up a little bit,
likely due primarily to exploration.

(DDPG). We use the LunarLander-v2 and FetchReach-v1 environments from OpenAI’s Gym toolkit
[18].

4.1 LunarLander-v2

We first evaluate the LunarLander environment, since it is a goal based control task that has been
studied in the context of assisting agent learning (by inferring goals) in previous work [19]. We
use PPO with a population size of 16. We initialize models with an assist level from a loguniform
distribution from 10−5 to 1. During exploration, we resample from a loguniform distribution from
10−4 to 1 or scale values by .8 or 1.2.

We compare 3 runs with a population of 16 agents trained using PPO both with without using assist.
All plots show the top half of performers in their populations, since recently perturbed agents may
have bad performance. Throughout our experiments, the only hyperparameter tuned during PBT is α.

As shown in figure 1 using an assistive approach hugely improves performance over traditional PPO
without assist. We also see that we are able to automatically learn an assist schedule that starts with a
small α, before increasing α around 10-20 iters then reducing it once more near the end of training.

Because it was initially unclear if the improved performance from our assist method was due to the
assist process itself, or just the advantage presented by PBT of throwing out bad models and replacing
them with clones of good models early in training, given the challenges of training with policy
gradients. Hence, we compared our assist approach to using PBT’s exploitation with α constantly
set to 0 in figure 2. This showed improved results without assist, but models with assist were still
able to outperform models without assist, and reached higher rewards more quickly. Nevertheless,
this demonstrates that using a population of models and exploiting the best model leads to far better
results when using policy gradients.

4.1.1 Ablations

To more closely examine the importance of a schedule and the effects of using different models of
assist, we trained models without using any schedule, and then using a naive schedule where assist

5

Figure 2: PPO - with Population Based Training exploitation applied to the baseline without the
modulation of any hyperparameters: For a more fair comparison, we compare our assist with a
population of models with no assist that where the bottom quarter of models are replaced by PBT
every iteration. Because bad models are eliminated throughout training, population based training
actually improves training significantly for high variance policy gradient techniques, even without
actually tuning any hyperparameters. Nevertheless, our assist method is still able to beat the baseline
and achieves stronger performance in fewer iterations.

Figure 3: Training curves across 16 runs of PPO on LunarLander-v2 when using a naive assist
schedule, where we shut off assist halfway through training at iteration 30, denoted by the vertical
blue line. Despite performing better in environments with the assist on, policies trained with high
assist start doing poorly when assist is turned off and must essentially start from scratch. Policies
trained with smaller amounts of assist perform comparably to policies trained without assist and
continue to learn and perform well even after assist is shut off.

was simply turned off halfway through training, and no exploitation or exploitation was done. Results
are shown in Figure 3 and 4.

Figure 3 serves a sanity check that assist works as intended. Indeed, with increasing assist we see
better rewards on the assisted environment earlier in training. However, using a high assist of 1
surprisingly does worse than using a smaller amount of assist (.1). This is likely because the assist
amount was too high and resulted in overly jerky lander movements that were hard to correct. It is
notable that policies with high levels of assist (≥ .1) do not generalize well to the environment with
no assist. This emphasizes that it is important to keep assist levels relatively small - otherwise the
agent is essentially optimizing its policy within a completely different environment.

Both figure 3 and 4 emphasize the importance of a good assist schedule. Simply leaving assist on
does not account for the performance improvements we saw in figures 1 and 2

6

Figure 4: Evaluation of 16 runs with no assist modulation (assist is held constant throughout the run)
on LunarLander-v2. Higher assist tends to result in better training rewards (right plot), but when
assist is too large (e.g. ≥ 1), the agent struggles to learn good policies. If assist is too high, despite
good rewards in training, the policy performs quite poorly in the real final environment (left plot),
since it is too reliant on high assist. It appears that a small, constant amount of assist α = .0001 can
actually modestly improve policies over policies learned without any assist whatsoever.

4.2 FetchReach-v1

For the FetchReach environment, we used the same search space as in part 1, but increase the maxi-
mum assist level to 10, since the assist is intrinsically scaled by .05 in the fetch-reach environment,
as previously mentioned. For our evaluations, we use the sparse reward mechanism.

As shown in figure 5 in the sparse reward setting the importance of assist goes up tremendously -
assist can make the difference between the algorithm being able to learn to successfully make reaches
within 60 training iterations vs having it fail completely.

We also see a compelling but sensible assist pattern: the amount of assist begins small, scales up
when the agent starts learning, then slowly drops down so that the agent is able to autonomously
complete the task, almost perfectly.

We also evaluated the assist paradigm using an off policy algorithm, Deep Deterministic Policy
Gradients (DDPG) [20]. We implement DDPG using Ray’s [17] RLLib and keep all hyperparameters
at the default settings. As shown in figure 6, using assisted trajectories allowed DDPG to successfully
learn the FetchReach-v1 task.

5 Discussion

We have shown that assist is beneficial to agent’s learning, and that policies learned with assist on
train faster than policies without assist on.

While we claim these policies are more efficient, it is worth noting that our method does require
training 16 policies in parallel. While this effectively increases the number of samples that need to be
collected by a factor of 16, it does not affect the training time, since the samples can be collected in
parallel. However, for policies training in the real world (e.g. on a robotic arm), it would be necessary
to have parallel implementations of the task and algorithm going at once, which could be expensive.

A key area for improvement in our method would be combining our method with results from recent
works like Hindsight Experience Replay (HER) [21], which produces stronger results than DDPG on
the fetch environment. Given that our method allows DDPG to learn in an environment with sparse
rewards without HER, we expect that adding HER will further accelerate training, but baseline HER
results would be improved with a dynamics curriculum, since the true goal state would be identified

7

Figure 5: Rewards during evaluation of PPO with and without assist in the FetchReach-v1 envi-
ronment, and assist schedules for PPO. In a sparse reward environment like FetchReach-v1, assist
enables PPO to learn with high speed. As expected, with assist, the reward on the training data is
slightly higher than the actual evaluated reward, but then assist is reduced by the scheduler as the
agent is able to complete the task.

Figure 6: Evaluation of DDPG with and without assist in the FetchReach-v1 environment, and
associated assist schedules. We posit that because DDPG has a large amount of low assist trajectories
in a replay buffer, it doesn’t have to reduce the amount of assist later in training as much as PPO.

more quickly than in HER. Another area for improvement is in combining our results with learning
from human demonstrations [22] to hopefully even further improve results and accelerate training.

While we have shown success for these initial simple tasks, it remains to be seen if assist can scale
to more difficult tasks. For example, the other tasks in the Fetch robot environment like FetchPush
and tasks with multiple goals like FetchPickandPlace would require further engineering of the assist
function, since you are not just trying to reach a simple goal. Nevertheless, using assist early in
training to complete small subtasks could help improve training.

It would also be compelling to examine if basic forms of assist could be helpful for teaching agents to
play video games. For example, in Montezuma’s Revenge, which has been shown to be a challenging
task for RL agents to solve without exploration models [23]. Nudging the agent towards the reward
state early in training could help force it to explore meaningful states earlier in training.

Finally, it would be fascinating to implement assist in the real world via actual forces, e.g. having
a robotic arm drawn to specific objects with an electromagnet at the start of training before slowly
turning down the electromagnetic force.

6 Conclusions

We have presented assist via dynamics curriculums, which presents a practical way to speed up and
improve training of reinforcement learning algorithms. We showed improvements on algorithm
convergence time and performance on two domains (video games and robotics). We demonstrated a

8

recipe for automatically modulating assist levels, and showed that population based approaches can
help improve model performance both with and without assist tuning when using policy gradients.
Finally, we showed that our assist approach is functional across both on-policy and off-policy methods,
and that agents can learn meaningful policies even with small levels of assist on.

References
[1] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”. In: Nature

518.7540 (2015), pp. 529–533. DOI: 10.1038/nature14236. URL: https://doi.org/10.
1038/nature14236.

[2] Sergey Levine et al. “End-to-end training of deep visuomotor policies”. In: The Journal of
Machine Learning Research 17.1 (2016), pp. 1334–1373.

[3] Vikash Gilja et al. “A high-performance neural prosthesis enabled by control algorithm
design”. In: Nature Neuroscience 15.12 (2012), pp. 1752–1757. DOI: 10.1038/nn.3265.
URL: https://doi.org/10.1038/nn.3265.

[4] Daniel B. Silversmith et al. “Plug-and-play control of a brain–computer interface through
neural map stabilization”. In: Nature Biotechnology (2020). DOI: 10.1038/s41587-020-
0662-5. URL: https://doi.org/10.1038/s41587-020-0662-5.

[5] Yoshua Bengio et al. “Curriculum Learning”. In: Proceedings of the 26th Annual International
Conference on Machine Learning. ICML ’09. Montreal, Quebec, Canada: Association for
Computing Machinery, 2009, pp. 41–48. ISBN: 9781605585161. DOI: 10.1145/1553374.
1553380. URL: https://doi.org/10.1145/1553374.1553380.

[6] Jeffery Elman. “Learning and development in neural networks, the importance of starting
small”. In: Cognition (1993).

[7] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks for Large-Scale
Image Recognition”. In: 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. Ed. by Yoshua
Bengio and Yann LeCun. 2015. URL: http://arxiv.org/abs/1409.1556.

[8] Alex Graves et al. “Automated Curriculum Learning for Neural Networks”. In: CoRR
abs/1704.03003 (2017). arXiv: 1704.03003. URL: http://arxiv.org/abs/1704.03003.

[9] Carlos Florensa et al. “Reverse Curriculum Generation for Reinforcement Learning”. In: CoRR
abs/1707.05300 (2017). arXiv: 1707.05300. URL: http://arxiv.org/abs/1707.05300.

[10] Carlos Florensa et al. Automatic Goal Generation for Reinforcement Learning Agents. 2018.
arXiv: 1705.06366 [cs.LG].

[11] Wojciech Marian Czarnecki et al. Mix Match - Agent Curricula for Reinforcement Learning.
2018. arXiv: 1806.01780 [cs.LG].

[12] Max Jaderberg et al. Population Based Training of Neural Networks. 2017. arXiv: 1711.09846
[cs.LG].

[13] Daniel Ho et al. “Population Based Augmentation: Efficient Learning of Augmentation Policy
Schedules”. In: CoRR abs/1905.05393 (2019). arXiv: 1905.05393. URL: http://arxiv.
org/abs/1905.05393.

[14] John Schulman et al. “Proximal Policy Optimization Algorithms”. In: CoRR abs/1707.06347
(2017). arXiv: 1707.06347. URL: http://arxiv.org/abs/1707.06347.

[15] John Schulman et al. “Trust Region Policy Optimization”. In: CoRR abs/1502.05477 (2015).
arXiv: 1502.05477. URL: http://arxiv.org/abs/1502.05477.

[16] Max Jaderberg et al. “Population Based Training of Neural Networks”. In: CoRR
abs/1711.09846 (2017). arXiv: 1711.09846. URL: http://arxiv.org/abs/1711.09846.

[17] Philipp Moritz et al. “Ray: A Distributed Framework for Emerging AI Applications”. In: CoRR
abs/1712.05889 (2017). arXiv: 1712.05889. URL: http://arxiv.org/abs/1712.05889.

[18] Greg Brockman et al. “OpenAI Gym”. In: CoRR abs/1606.01540 (2016). arXiv: 1606.01540.
URL: http://arxiv.org/abs/1606.01540.

[19] Sid Reddy, Anca Dragan, and Sergey Levine. “Where Do You Think You’re Going?:
Inferring Beliefs about Dynamics from Behavior”. In: Advances in Neural Information
Processing Systems. Ed. by S. Bengio et al. Vol. 31. Curran Associates, Inc., 2018,
pp. 1454–1465. URL: https : / / proceedings . neurips . cc / paper / 2018 / file /
6f2268bd1d3d3ebaabb04d6b5d099425-Paper.pdf.

9

https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nn.3265
https://doi.org/10.1038/nn.3265
https://doi.org/10.1038/s41587-020-0662-5
https://doi.org/10.1038/s41587-020-0662-5
https://doi.org/10.1038/s41587-020-0662-5
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1145/1553374.1553380
http://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1704.03003
http://arxiv.org/abs/1704.03003
https://arxiv.org/abs/1707.05300
http://arxiv.org/abs/1707.05300
https://arxiv.org/abs/1705.06366
https://arxiv.org/abs/1806.01780
https://arxiv.org/abs/1711.09846
https://arxiv.org/abs/1711.09846
https://arxiv.org/abs/1905.05393
http://arxiv.org/abs/1905.05393
http://arxiv.org/abs/1905.05393
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1711.09846
http://arxiv.org/abs/1711.09846
https://arxiv.org/abs/1712.05889
http://arxiv.org/abs/1712.05889
https://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
https://proceedings.neurips.cc/paper/2018/file/6f2268bd1d3d3ebaabb04d6b5d099425-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/6f2268bd1d3d3ebaabb04d6b5d099425-Paper.pdf

[20] Timothy P. Lillicrap et al. “Continuous control with deep reinforcement learning”. In: 4th
International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico,
May 2-4, 2016, Conference Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2016.
URL: http://arxiv.org/abs/1509.02971.

[21] Marcin Andrychowicz et al. “Hindsight Experience Replay”. In: CoRR abs/1707.01495 (2017).
arXiv: 1707.01495. URL: http://arxiv.org/abs/1707.01495.

[22] Ashvin Nair et al. “Overcoming Exploration in Reinforcement Learning with Demonstrations”.
In: CoRR abs/1709.10089 (2017). arXiv: 1709.10089. URL: http://arxiv.org/abs/
1709.10089.

[23] Adrien Ecoffet et al. “Go-Explore: a New Approach for Hard-Exploration Problems”. In: CoRR
abs/1901.10995 (2019). arXiv: 1901.10995. URL: http://arxiv.org/abs/1901.10995.

10

http://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1707.01495
http://arxiv.org/abs/1707.01495
https://arxiv.org/abs/1709.10089
http://arxiv.org/abs/1709.10089
http://arxiv.org/abs/1709.10089
https://arxiv.org/abs/1901.10995
http://arxiv.org/abs/1901.10995

	Introduction
	Previous Work
	Curriculum Learning
	Curriculum Learning for Deep Reinforcement Learning
	Hyperparameter Scheduling

	Assisting RL agents
	Training agents
	Assist approach
	LunarLander-v2
	FetchReach-v1

	Finding schedules for using population based training

	Experiments & Results
	LunarLander-v2
	Ablations

	FetchReach-v1

	Discussion
	Conclusions

