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ABSTRACT

Existing Score-based Generative Models (SGMs) can be categorized into con-
strained SGMs (CSGMs) or unconstrained SGMs (USGMs) according to their
parameterization approaches. CSGMs model the probability density functions as
Boltzmann distributions, and assign their predictions as the negative gradients of
some scalar-valued energy functions. On the other hand, USGMs employ flexible
architectures capable of directly estimating scores without the need to explicitly
model energy functions. In this paper, we demonstrate that the architectural con-
straints of CSGMs may limit their modeling ability. In addition, we show that
USGMs’ inability to preserve the property of conservativeness may lead to sam-
pling inefficiency and degraded sampling performance in practice. To address the
above issues, we propose Quasi-Conservative Score-based Generative Models (QC-
SGMs) for keeping the advantages of both CSGMs and USGMs. Our theoretical
derivations demonstrate that the training objective of QCSGMs can be efficiently
integrated into the training processes by leveraging the Hutchinson trace estimator.
In addition, our experimental results on the CIFAR-10, CIFAR-100, ImageNet,
and SVHN datasets validate the effectiveness of QCSGMs. Finally, we justify the
advantage of QCSGMs using an example of a one-layered autoencoder.

1 INTRODUCTION

Score-based Generative Models (SGMs) are parameterized functions for estimating scores, which
are vector fields corresponding to the gradients of log probability density functions. According
to their parameterization approaches, SGMs can be categorized into constrained or unconstrained
SGMs (Salimans & Ho, 2021).

Constrained SGMs (CSGMs), also known as Energy-Based Models (EBMs), model probability
density functions as Boltzmann distributions, and assign their predictions as the negative gradi-
ents of some scalar-valued energy functions (Salimans & Ho, 2021). CSGMs are able to ensure
the conservativeness of their output vector fields. This property is essential in guaranteeing that
each updates in the sampling process are determined based on the probability ratio between two
consecutive sampling steps (Salimans & Ho, 2021). This, in turn, is necessary to ensure that the
sample distribution converges to the true data distribution. Such a concept has been explored by
the researchers of (Salimans & Ho, 2021; Alain & Bengio, 2014; Nguyen et al., 2017; Chen et al.,
2014). However, this parameterization approach requires specific model designs, limiting the choices
of model architectures for CSGMs. For example, the authors of (Vincent, 2011; Kamyshanska &
Memisevic, 2013) proposed to restrict a CSGM to be a one-layered autoencoder with symmetric
weights in its linear layer, which hinders its ability to be extended to more sophisticated architectures
such as convolution neural networks. On the other hand, the authors of (Salimans & Ho, 2021; Saremi
et al., 2018; Song et al., 2019) divided a CSGM into two halves: the first half explicitly parameter-
izes the negative energy function, while the second half is generated by automatic differentiation
tools (Martens et al., 2012) to output the estimated scores. Nevertheless, these methods limit that the
output of the first half can only be a scalar, and the second half has to be generated using automatic
differentiation tools.

In contrast, unconstrained SGMs (USGMs) employ flexible architectures capable of directly esti-
mating the scores without the need of modeling the energy functions. Due to their architectural
flexibility, USGMs have been extensively utilized in contemporary machine learning tasks such
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as image generation (Song & Ermon, 2019; Ho et al., 2020; Song & Ermon, 2020; Song et al.,
2021b; Nichol & Dhariwal, 2021) and audio generation (Lam et al., 2022; Kong et al., 2021; Chen
et al., 2021). Among these works, the authors in (Song et al., 2021b) proposed a unified framework
based on a USGM, which achieved remarkable performance on several benchmarks. Their success
demonstrated that architectural flexibility can be beneficial for SGMs. However, in spite of their
empirical benefit, our analyses in Section 3 indicate that USGMs’ inability to ensure conservativeness
may lead to degraded sampling performance.

To preserve both the conservativeness of CSGMs and the architectural flexibility of USGMs, we
propose Quasi-Conservative Score-based Generative Models (QCSGMs). Instead of constraining
the model architecture, QCSGMs resort to enhancing the conservativeness of USGMs through
minimizing a regularization loss. Our theoretical derivations demonstrate that such a regularization
term can be integrated into the training processes of SGMs efficiently through the Hutchinson trace
estimator (Hutchinson, 1989). Moreover, our experimental results showcase that the performance
of Noise Conditional Score Network++ (NCSN++) (Song et al., 2021b), which is considered the
state-of-the-art USGM, can be further improved by incorporating our regularization method on the
CIFAR-10, CIFAR-100, ImageNet-32x32, and SVHN datasets.

2 BACKGROUND AND RELATED WORKS

In this section, we walk through the background material and the related works for understanding
the contents of this paper. We first introduce a number of score matching methods for training an
SGM. Next, we describe the sampling algorithms for generating samples through an SGM. Lastly, we
elaborate on the conservative property of SGMs, and the differences between CSGMs and USGMs.

2.1 SCORE MATCHING METHODS

Given a true data distribution pdata, its empirical distribution p0(x) is established through samplingM
independent and identically distributed D-dimensional vectors {x(i) : x(i) ∈ RD}Mi=1, represented
as a Dirac delta distribution, i.e., p0(x) , 1

M

∑M
i=1 δ(

∥∥x− x(i)
∥∥). To ensure the probability density

function (pdf) is everywhere non-zero and differentiable, previous literature (Vincent, 2011) proposed
to replace p0(x) with Parzen density estimator pσ(x̃) ,

∫
x
pσ(x̃|x)p0(x)dx, where pσ(x̃|x) ,

1
(2π)D/2σD

e
−1

2σ2
‖x̃−x‖2 is an isotropic Gaussian smoothing kernel with a standard deviation σ. When

σ > 0, the score function of pσ(x̃) has a closed form (Chao et al., 2022), which can be formulated as:

∂ log pσ(x̃)

∂x̃
=

∑M
i=1

1
σ2 (x(i) − x̃)pσ(x̃|x(i))∑M

i=1 pσ(x̃|x(i))
. (1)

Score matching (Hyvärinen, 2005) describes the learning process to approximate the score function
∂
∂x̃ log pσ(x̃) in Eq. (1) using a neural network s(· ; θ) : RD → RD, which is parameterized by θ and
is trained through minimizing the Explicit Score Matching (ESM) objective expressed as follows:

LESM(θ) = Epσ(x̃)

[
1

2

∥∥∥∥s(x̃; θ)− ∂ log pσ(x̃)

∂x̃

∥∥∥∥2
]
. (2)

Eq. (2) involves the explicit calculation of Eq. (1), which suffers from serious training inefficiency
when the dataset size M is large. To address this issue, an alternative method called Implicit Score
Matching (ISM) (Hyvärinen, 2005), which excludes ∂

∂x̃ log pσ(x̃) in the training objective, was
introduced to efficiently train s(x̃; θ). ISM employs an equivalent loss LISM expressed as follows:

LISM(θ) = Epσ(x̃)
[

1

2
‖s(x̃; θ)‖2 + tr

(
∂s(x̃; θ)

∂x̃

)]
, (3)

where ∂
∂x̃s(x̃; θ) corresponds to the Jacobian matrix of s(x̃; θ), and tr (·) denotes the trace of a

matrix. Although LISM avoids the calculation of Eq. (1), the calculation of tr
(
∂
∂x̃s(x̃; θ)

)
in Eq. (3)

still requires D times of backpropagations (Song et al., 2019), which hinders LISM’s ability of
being utilized in high-dimensional context. To alleviate it, a scalable objective, called Sliced Score
Matching (SSM) (Song et al., 2019) loss, was proposed to approximate tr

(
∂
∂x̃s(x̃; θ)

)
in LISM
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with the Hutchinson trace estimator (Hutchinson, 1989). Given a random vector v drawn from a
distribution p(v) satisfying Ep(v)

[
vvT

]
= I , the Hutchinson trace estimator replaces the trace of a

square matrix A with Ep(v)
[
vTAv

]
, which can be derived as:

tr (A) = tr (AI) = tr
(
AEp(v)[vvT ]

)
= Ep(v)[tr

(
AvvT

)
] = Ep(v)[vTAv]. (4)

The above derivation suggests that tr
(
∂
∂x̃s(x̃; θ)

)
in Eq. (3) can be substituted with

Ep(v)[vT ∂
∂x̃s(x̃; θ)v], resulting in an equivalent objective LSSM expressed as follows:

LSSM(θ) = Epσ(x̃)
[

1

2
‖s(x̃; θ)‖2 + Ep(v)

[
vT

∂s(x̃; θ)

∂x̃
v

]]
. (5)

The vector-Jacobian product vT ∂
∂x̃s(x̃; θ) can be calculated with a single backward propagation

using automatic differentiation (Martens et al., 2012), and the expectation can be approximated using
K independently sampled vectors {v(i)}Ki=1. Therefore, the computation of Ep(v)

[
vT ∂

∂x̃s(x̃; θ)v
]

in Eq. (5) can be less expensive than tr
(
∂
∂x̃s(x̃; θ)

)
in Eq. (3) when K � D. The Denoising Score

Matching (DSM) (Vincent, 2011) loss is another scalable objective formulated based on the Parzen
density estimator, which further prevents the computational overhead incurred by the backward
propagation in LSSM:

LDSM(θ) = Epσ(x̃|x)p0(x)

[
1

2

∥∥∥∥s(x̃; θ)− ∂ log pσ(x̃|x)

∂x̃

∥∥∥∥2
]
, (6)

where ∂
∂x̃ log pσ(x̃|x) = 1

σ2 (x − x̃). Since the computational cost of LDSM is relatively low in
comparison to the other score matching losses, it has been widely adopted in contemporary modeling
methods (Song & Ermon, 2019; 2020; Song et al., 2021b;a) that pursue training efficiency.

2.2 SAMPLING PROCESS

Given an optimal SGM s(x̃; θ) = ∂
∂x̃ log pσ(x̃), ∀x̃ ∈ RD that minimizes the score-matching

objectives (i.e., Eqs. (2), (3), (5), and (6)), Langevin dynamics (Roberts & Tweedie, 1996; Roberts &
Rosenthal, 1998) enables pσ(x̃) to be iteratively approximated through the following equation:

x̃t+1 = x̃t + αs(x̃; θ) +
√

2αzt, (7)

where α is the step size, t is the timestep, zt ∈ RD is a noise vector sampled from a normal
distribution N (0, I). Under the condition where α → 0 and T → ∞, x̃T can be generated as
if it is directly sampled from pσ(x̃) (Roberts & Rosenthal, 1998; Welling & Teh, 2011). Despite
the theoretical guarantee of Langevin dynamics, it empirically suffers from the slow mixing issue
as discussed by (Song & Ermon, 2019), which limits its ability of being utilized in practical data
generation scenarios. To resolve this issue, a recent study (Song et al., 2021b) proposed to extend
Eq. (7) to a time-inhomogeneous variant by making the noise scale σ, the score model s(· ; θ), and
step size α dependent on t. Specifically, they consider a continuous sampling process defined using a
stochastic differential equation (SDE) as follows:

dx(t) = [f(x(t), t)− g(t)2s(x(t), t; θ)]dt+ g(t)dw̄, (8)

where {x(t)}Tt=0 is a set of time dependent variables, dt is an infinitesimal negative timestep, w̄
represents the Wiener process, f(·, t) is the drift coefficient, and g(t) is the diffusion coefficient.
Contemporary score-based generation frameworks (Ho et al., 2020; Song et al., 2021b;a; Nichol &
Dhariwal, 2021; Xu et al., 2022) implement such a sampling process in two different ways according
to the discretization method used. One branch of them (Ho et al., 2020; Song et al., 2021b) follows
the concept of Eq. (7) to discretize Eq. (8) using equal-sized steps. The other branch of them (Song
et al., 2021a; Xu et al., 2022) leverages an ordinary differential equation (ODE) solver to solve the
deterministic variant of Eq. (8) using adaptive sampling step sizes.

2.3 CONSERVATIVENESS AND ROTATION DENSITY OF A SCORE-BASED GENERATIVE MODEL

A vector field is said to be conservative if it can be written as the gradient of a scalar function (Im
et al., 2016). As proved in (Im et al., 2016), the output vector field of an SGM s(x̃; θ) is said to be con-
servative over a smooth and simply-connected domain S ⊆ RD if and only if its Jacobian is symmetry
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for all x̃ ∈ S, which can be equivalently expressed as the zero-rotation-density (ROTij) (Glotzl &
Richters, 2020) condition expressed as follows:

ROTijs(x̃; θ) =
∂s(x̃; θ)i
∂x̃j

− ∂s(x̃; θ)j
∂x̃i

= 0, 1 ≤ i, j ≤ D, (9)

where ∂
∂x̃j

s(x̃; θ)i corresponds to the gradient of the i-th element of s(x̃; θ) with respect to the j-th

element of x̃. ROTijs(x̃; θ) in Eq. (9) describes the infinitesimal circulation of s(x̃; θ) around x̃.

For CSGMs, pσ(x̃) is modeled as a Boltzman distribution p(x̃; θ) = exp (−E(x̃; θ)) /Z(θ), where
exp (·) indicates the exponential function, E(· ; θ) : RD → R represents a scalar-valued energy
function, and Z(θ) refers to the partition function. Therefore, the output vector field of a CSGM can
be represented as s(x̃; θ) = ∂

∂x̃ log p(x̃; θ) = − ∂
∂x̃E(x̃; θ). This implies that s(x̃; θ) is conservative.

In other words, s(x̃; θ) satisfies the zero-rotation-density condition in Eq. (9), since the mixed second
derivatives of E(x̃; θ) are equivalent (Alain & Bengio, 2014), which can be shown as the following:

ROTijs(x̃; θ) =
∂2E(x̃; θ)

∂x̃j∂x̃i
− ∂2E(x̃; θ)

∂x̃i∂x̃j
= 0, 1 ≤ i, j ≤ D. (10)

On the other hand, since USGMs do not follow the aforementioned modeling procedure to assign
their output vector field as the gradients of a scalar-valued function, the conservativeness of USGMs
is not guaranteed. Although it is possible to ensure the conservativeness of an USGM under an
ideal scenario that s(x̃; θ) perfectly models ∂

∂x̃ log pσ(x̃) for all x̃ ∈ RD, a trained USGM typically
contains approximation errors in practice. This suggests that USGMs are non-conservative in most
cases, and do not satisfy the zero-rotation-density condition.

3 MOTIVATIONAL EXAMPLES

In this section, we demonstrate the importance of preserving the conservativeness as well as the
architectural flexibility of SGMs. In addition, we provide the motivation behind the adoption of
QCSGMs through two motivational experiments.

3.1 THE INFLUENCES OF NON-CONSERVATIVENESS ON SAMPLING EFFICIENCY

The sampling processes described in Section 2.2 are formulated under an ideal scenario that s(x̃; θ) =
∂
∂x̃ log pσ(x̃), ∀x̃ ∈ RD. In practice, however, a trained USGM contains approximation errors, which
could lead to its failure in preserving its conservativeness, as stated in Section 2.3. In this example, we
inspect the impact of the non-conservativeness of USGMs on the sampling process by comparing the
sampling efficiency of a USGM and a CSGM under the same approximation error ε, i.e., LESM = ε.
To quantitatively evaluate the non-conservativeness of these SGMs, we measure the magnitude of
ROTijs(x̃; θ) using the asymmetry metric Asym ∈ [0,∞) defined as:

Asym = Epσ(x̃)

1

2

D∑
i,j=1

(
ROTijs(x̃; θ)

)2 = Epσ(x̃)
[

1

2

∥∥J − JT∥∥2
F

]
, (11)

where J = ∂
∂x̃s(x̃), ‖·‖F is the Frobenius norm. We also measure the normalized asymmetry metric

NAsym ∈ [0, 1] defined as Epσ(x̃)
[∥∥J − JT∥∥2

F
/(4 ‖J‖2F )

]
. To evaluate the sampling efficiency, we

calculate the number of function evaluation (NFE) required for all sample points to move to the target
during the sampling process. In this example, the USGM and the CSGM are denoted as sU and sC,
and constructed based on Eq. (A6) presented in Appendix A.5.1.

For an illustrative purpose, we present the visualization of the sampling processes as well as the eval-
uation results under different choices of ε for two specific designs of sU and sC in Figs. 1 (a) and (b),
respectively. As demonstrated in the visualized trajectories in Fig. 1 (b), the existence of the non-
conservativeness in sU incurs rotational vector fields tangent to the true score function, leading to
inefficient updates during the sampling processes. In addition, the evaluation results on the Asym,
NAsym, and NFE metrics further reveal that sU requires more function evaluations during the sam-
pling process than sC under the same score-matching error ε. The above experimental evidences thus
demonstrate that the non-conservativeness of sU may decelerate the sampling processes.
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Figure 1: The visualized examples of (a) the conservative sC and (b) the non-conservative sU under
different choices of ε. The table on the right-hand side reports the results measured using NFE as
well as the Asym and NAsym metrics. For a better data visualization, the vector fields are normalized
with the maximum norm of sU and sC in each plot.

3.2 THE IMPACTS OF ARCHITECTURAL FLEXIBILITY ON MODELING ABILITY AND
SAMPLING PERFORMANCE

To ensure the conservative property of an SGM, previous literature (Saremi et al., 2018; Salimans &
Ho, 2021) proposed to constrain the architecture such that its output vector field can be described as
the gradients of a scalar-valued function. This design, however, may limit the modeling ability of an
SGM. In this experiment, we examine the influence of architectural flexibility on both the training
and sampling processes. For a fair evaluation, a USGM sU and a CSGM sC are implemented as
neural networks consisting of the same number of parameters. Following the approach described
in (Salimans & Ho, 2021), these two models are represented as follows:

sU(x̃, t; θU) =
1

σt
(x̃− f(x̃, t; θU)), sC(x̃, t; θC) = − 1

2σt

∂ ‖x̃− f(x̃, t; θC)‖2

∂x̃
, (12)

where f : RD → RD is a neural network, and θU and θC are the parameters. The former is the
USGM architecture used in NCSN (Song & Ermon, 2019), while the latter is its conservative variant
explored by (Salimans & Ho, 2021). We then compare the conservativeness, the score-matching
ability, the likelihood-matching ability, and the sampling performance of both sU and sC, which are
trained independently on three two-dimensional datasets. The conservativeness is measured using
Asym and NAsym. The score-matching ability is evaluated using LESM. The likelihood-matching
ability is measured using the negative log likelihood (NLL) metric, which can be calculated based on
the instantaneous change of variable formula (Chen et al., 2018). Finally, the sampling performance
is evaluated using the Precision and Recall metrics (Kynkäänniemi et al., 2019), which measures the
distances between the true samples and the generated samples based on k-nearest neighbor algorithm.

Table 1 reports the results of the above setting. The columns ‘Score Error’ and ‘NLL’ in Table 1
demonstrate that the USGMs consistently deliver better modeling performance in comparison to the
CSGMs, suggesting that their architectural flexibility is beneficial to the training process. On the other
hand, due to the potential impact of their non-conservativeness, USGMs are unable to consistently
achieve superior results on the precision and recall metrics, as shown in the last two columns of
Table 1. The above observations thus indicate that the architectural flexibility of a USGM may
enhance its score-matching and likelihood-matching abilities. Nevertheless, its non-conservativeness
may deteriorate its sampling performance.

The experimental insights in Sections 3.1 and 3.2 shed light on two essential issues to be further
explored and addressed. First, although USGMs benefit from their architectural flexibility, their
non-conservativeness may lead to sampling inefficiency and degraded sampling performance. Second,
despite that CSGMs are conservative, their architectural requirement may limit their score-matching
and likelihood-matching abilities in practice. Based on the above observations, this paper intends
to investigate a new type of SGMs, called Quasi-Conservative Score-based Generative Models
(QCSGMs), which are developed to maintain both the conservativeness as well as the architectural
flexibility. As revealed in Table 1, QCSGMs are able to achieve improved results in terms of their
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Table 1: The evaluation results of CSGMs, USGMs, and QCSGMs in terms of their means and
confidence intervals of three independent runs on the ‘8-Gaussian,’ ‘Spirals,’ and ‘Checkerboard’
datasets, which are detailed in Appendix A.5.2. The arrow symbols ↑ / ↓ indicate that higher / lower
values correspond to better performance, respectively.

Dataset Model Asym (↓) NAsym (↓) Score Error (↓) NLL (↓) Precision (↑) Recall (↑)

8-Gaussian
CSGM 0.00±0.00 e-4 0.00±0.00 e-2 2.49±0.00 e+1 4.86±0.00 e+0 9.78±0.00 e-1 9.31±0.00 e-1
USGM 9.64±0.00 e-3 3.80±0.03 e-1 2.28±0.00 e+1 4.56±0.00 e+0 9.74±0.00 e-1 9.52±0.00 e-1

QCSGM 1.52±0.00 e-3 7.16±0.00 e-2 2.26±0.01 e+1 4.55±0.00 e+0 9.79±0.00 e-1 9.64±0.00 e-1

Spirals
CSGM 0.00±0.00 e-4 0.00±0.00 e-2 3.88±0.07 e+1 5.40±0.00 e+0 4.48±0.00 e-1 9.96±0.00 e-1
USGM 2.61±0.00 e-2 9.23±0.01 e-1 3.62±0.01 e+1 5.27±0.01 e+0 4.53±0.00 e-1 9.94±0.00 e-1

QCSGM 6.92±0.00 e-4 8.04±0.00 e-2 3.55±0.01 e+1 5.24±0.00 e+0 4.55±0.00 e-1 9.97±0.00 e-1

Checkerboard
CSGM 0.00±0.00 e-4 0.00±0.00 e-2 3.38±0.06 e+1 5.15±0.05 e+0 8.87±0.00 e-1 9.98±0.00 e-1
USGM 1.58±0.00 e-2 6.08±0.01 e-1 3.34±0.03 e+1 5.05±0.01 e+0 8.93±0.00 e-1 9.98±0.00 e-1

QCSGM 6.14±0.00 e-3 3.83±0.00 e-2 3.32±0.02 e+1 5.03±0.00 e+0 8.96±0.00 e-1 9.99±0.00 e-1

conservativeness as well as sampling performance without sacrificing its modeling ability. In the next
section, we elaborate on the formulation and our implementation of QCSGMs.

4 METHODOLOGY

In this section, we introduce QCSGMs and present an efficient implementation of them. In Section 4.1,
we describe the learning objective of QCSGMs, and derive its scalable variant. In Section 4.2, we
detail the training procedure for QCSGMs, and discuss the time complexity of this implementation.

4.1 QUASI-CONSERVATIVE SCORE-BASED GENERATIVE MODELS

Instead of following the concept of CSGMs to ensure the conservativeness through architecture
constraints, QCSGMs resort to penalizing the non-conservativeness through a regularization loss. The
training objective for QCSGMs is defined as LTotal, which is expressed as the following equation:

LTotal(θ) = LSM(θ) + λLQC(θ), (13)

where LSM can be any one of the score-matching objectives (i.e., Eqs. (2), (3), (5), or (6)), LQC

represents the regularization term reflecting the non-conservativeness, and λ is a balancing factor. As
discussed in Section 3.1, the non-conservativeness of an SGM can be measured using the magnitude
of its rotation densities in the Frobenius norm (i.e., Eq. (11)), suggesting a formulation of LQC as:

LQC(θ) = Epσ(x̃)
[

1

2

∥∥J − JT∥∥2
F

]
, (14)

where J = ∂
∂x̃s(x̃; θ). This objective function, however, requires D times of backpropagations

to explicitly calculate the Jacobian matrix of s(x̃; θ). In order to reduce the computational cost,
we first formulate an equivalent objective Ltr

QC, and then utilize the Hutchinson trace estimator to
approximate Ltr

QC. The loss of Ltr
QC is derived in Appendix A.2.2, and is formulated as follows:

Ltr
QC(θ) = Epσ(x̃)

[
tr
(
JJT

)
− tr (JJ)

]
. (15)

By applying the Hutchinson trace estimator to both tr
(
JJT

)
and tr (JJ) according to Eq. (4), Ltr

QC

can be equivalently replaced by an another objective Lest
QC, which is expressed as the following:

Lest
QC(θ) = Epσ(x̃)

[
Ep(v)

[
vTJJTv

]
− Ep(v)

[
vTJJv

]]
= Epσ(x̃)

[
Ep(v)

[
vTJJTv − vTJJv

]]
.

(16)

Eq. (16) suggests that Ep(v)
[
vTJJTv − vTJJv

]
can be approximated using K random vectors

{v(i)}Ki=1 independently sampled from p(v). Additionally, the computational graph of vTJJTv −
vTJJv can be efficiently constructed without increasing the asymptotic time complexity with respect
to D, which is later explained in Section 4.2. As a result, under such an implementation, the
computational cost of Lest

QC is significantly lower than LQC and Ltr
QC when K � D.
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Figure 2: The computational graph of LTotal in QCSGMs. The ‘Auto. Diff.’ blocks represent the
operation of differentiating uT s(x̃; θ), where u is a constant vector with respect to x̃.

4.2 THE TRAINING PROCEDURE OF QCSGMS

Algorithm 1 Training Procedure of QCSGM
Input. x̃, v, s(· ; θ), λ

// (1) Computing vTJJTv.
1: vTJ ← ∂

∂x̃
[vT s(x̃; θ)]

2: vTJJTv ←
∥∥vTJ∥∥2

// (2) Computing vTJJv.
3: sg

[
vTJ

]
J ← ∂

∂x̃
[sg
[
vTJ

]
s(x̃; θ)]

4: sg
[
vTJ

]
Jv ← sg

[
vTJ

]
J · v

// (3) Computing LTotal(θ).
5: Lest

QC(θ)← Epσ(x̃)p(v)[v
TJJTv − sg

[
vTJ

]
Jv]

6: LSM(θ)← Eqs. (2), (3), (5), (6)
7: LTotal(θ)← LSM(θ) + λLest

QC(θ)

// (4) Deriving the primary component.
8: Perform Backpropagation through the blue arrows.

// (5) Deriving the secondary component.
9: Perform Backpropagation through the red arrows.

10: Update θ

In this subsection, we walk through the proposed
training procedure of QCSGMs. This proce-
dure is detailed in Algorithm 1, and the corre-
sponding computational graph is illustrated in
Fig. 2. The entire training procedure is divided
into five steps, denoted as Steps (1)∼(5), re-
spectively. Steps (1)∼(3) describe the forward
propagation process of LTotal(θ), which is de-
picted by the black arrows in Fig. 2. Steps (4)
and (5) correspond to the backpropagation pro-
cesses of the two gradient components compris-
ing ∂

∂θLTotal(θ), which are named the primary
and secondary components, and are depicted as
the blue and red arrows in Fig. 2, respectively.
The detailed formulations for these two compo-
nents and the rationale behind such a two-step
backpropagation process are further elaborated
in Appendix A.2.3. Please note that the symbol
sg [·] used in Algorithm 1 represents the ‘stop
gradient’ operation, which is adopted to discon-
nect the computational graph.

Table 2: The asymptotic computational complexity
of different objectives discussed in this paper.

LSM
LESM LISM LSSM LDSM

O(DHL+M) O(D2HL) O(KDHL) O(DHL)

LQC
LQC Ltr

QC Lest
QC

O(D2HL) O(D2HL) O(KDHL)

Based on the above implementation, the com-
putation of Lest

QC does not require D times of
backpropagation, justifying the computational
efficiency of Lest

QC over LQC and Ltr
QC. We sum-

marize this section with the time complexity
of different training objectives discussed in this
paper in Table 2. In this table, H denotes the
dimension of the largest hidden layer in s(· ; θ),
L denotes the number of layers in s(· ; θ), M
denotes the dataset size, D denotes the data dimension, and K denotes the number of random vectors
used in the Hutchinson trace estimator. Please note that a reasonable assumption for deep generative
tasks is M � D � K (Song et al., 2019; Grathwohl et al., 2019).

5 EXPERIMENTAL RESULTS ON THE REAL-WORLD DATASETS

In this section, we examine the effectiveness of the proposed QCSGMs on four real-world datasets:
CIFAR-10, CIFAR-100 (Krizhevsky & Hinton, 2009), ImageNet-32x32 (Van Oord et al., 2016),
and SVHN (Netzer et al., 2011) datasets. We employ the unconstrained architecture as well as the
training procedure adopted by NCSN++ (VE) (Song et al., 2021b) as our baseline, and denote this
method as ‘U-NCSN++’ in our experiments. On the other hand, C-NCSN++ and QC-NCSN++,

7
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Table 3: The sampling performance and NFE of C-NCSN++, U-NCSN++, and QC-NCSN++ with
an ODE sampler. The arrow symbols ↑ / ↓ indicate that higher / lower values correspond to better
performance, respectively.

CIFAR-10 ImageNet-32x32

Method NFE (↓) FID (↓) IS (↑) Precision (↑) Recall (↑) NFE (↓) FID (↓) IS (↑) Precision (↑) Recall (↑)
C-NCSN++ 442 16.43 8.19 0.5587 0.6117 422 23.91 8.64 0.5416 0.5391
U-NCSN++ 170 7.48 9.24 0.6083 0.6204 148 17.09 9.80 0.5541 0.5488

QC-NCSN++ 124 7.21 9.25 0.6099 0.6205 115 16.62 9.85 0.5556 0.5515
CIFAR-100 SVHN

Method NFE (↓) FID (↓) IS (↑) Precision (↑) Recall (↑) NFE (↓) FID (↓) IS (↑) Precision (↑) Recall (↑)
C-NCSN++ 381 17.79 8.40 0.5650 0.6146 498 25.09 2.93 0.5314 0.5494
U-NCSN++ 168 8.95 10.09 0.5890 0.6321 209 16.08 3.17 0.5553 0.6268

QC-NCSN++ 131 8.90 10.12 0.5903 0.6373 126 15.15 3.24 0.5865 0.6512

Table 4: The sampling performance and NFE of C-NCSN++, U-NCSN++, and QC-NCSN++ with
the PC sampler. The arrow symbols ↑ / ↓ indicate that higher / lower values correspond to better
performance, respectively.

CIFAR-10 ImageNet-32x32

Method NFE FID (↓) IS (↑) Precision (↑) Recall (↑) FID (↓) IS (↑) Precision (↑) Recall (↑)
U-NCSN++ 500 3.77 9.41 0.6573 0.6010 24.85 9.32 0.6113 0.5014

QC-NCSN++ 3.75 9.52 0.6603 0.6028 24.78 9.45 0.6345 0.5048
U-NCSN++ 1000 2.50 9.58 0.6682 0.6026 19.82 9.89 0.6048 0.5202

QC-NCSN++ 2.48 9.70 0.6686 0.6048 19.62 9.94 0.6108 0.5216
U-NCSN++ 2000 2.20 9.89 0.6756 0.6035 19.22 10.14 0.6157 0.5186

QC-NCSN++ 2.33 9.91 0.6759 0.6036 19.48 10.40 0.6261 0.5245

which are variants of U-NCSN++ constructed by Eq. (12) and regularized by Lest
QC, are compared

against U-NCSN++ using the NLL, Asym, NAsym, Fréchet Inception Distance (FID) (Heusel et al.,
2017), and Inception Score (IS) (Barratt & Sharma, 2018), Precision, and Recall metrics. Please note
that the details of the experimental setups are provided in Appendix A.5.3.

Table 5: The NLL, Asym, and NAsym of C-NCSN++,
U-NCSN++, and QC-NCSN++ evaluated on the CIFAR-
10, CIFAR-100, ImageNet-32x32, and SVHN datasets.

CIFAR-10 ImageNet-32x32

Method NLL Asym NAsym NLL Asym NAsym

C-NCSN++ 3.89 0.00 0.00 4.26 0.00 0.00
U-NCSN++ 3.46 1.88 e8 1.90 e-3 3.96 2.05 e7 7.17 e-4

QC-NCSN++ 3.38 5.03 e7 1.10 e-3 3.83 1.13 e7 5.47 e-4

CIFAR-100 SVHN

Method NLL Asym NAsym NLL Asym NAsym

C-NCSN++ 3.69 0.00 0.00 2.74 0.00 0.00
U-NCSN++ 3.50 2.98 e8 2.25 e-3 2.15 3.06 e7 6.54 e-4

QC-NCSN++ 3.44 9.31 e7 1.44 e-3 2.01 1.69 e7 4.80 e-4

Likelihood and Conservativeness Eval-
uation. Table 5 reports the evaluation re-
sults of U-NCSN++, C-NCSN++, and QC-
NCSN++ in terms of NLL, Asym, and
NAsym on the four real-world datasets. The
evaluation results of C-NCSN++ is inferior
to those of U-NCSN++ and QC-NCSN++
on the NLL metric, which aligns with our
observation in Section 3, suggesting that
the modeling flexibility is influential to the
final performance on the NLL metric. In
addition, we observe that the evaluation
results on the NLL metric can be further
improved when Lest

QC is incorporated into
the training process. As demonstrated in the table, QC-NCSN++, which can achieve superior
performance in terms of Asym and NAsym metrics, also has improved results on the NLL metric.

Sampling with an ODE Solver. In this experiment, we examine the sampling performance and effi-
ciency of U-NCSN++, C-NCSN++, and QC-NCSN++ based on NFE and the FID/IS/Precision/Recall
metrics. The sampler is implemented using the RK45 (Dormand & Prince, 1980) ODE solver, and
NFE here refers to the number of function evaluations performed during the sampling process. Table 3
presents the evaluation results of the above setting. It is observed that C-NCSN++ is inferior to
U-NCSN++ and QC-NCSN++, suggesting that modeling errors (i.e., NLL) can be influential to the
sampling performance. On the other hand, QC-NCSN++ is able to outperform U-NCSN++ in terms
of the sampling performance metrics with fewer function evaluations, indicating that QC-NCSN++
is able to deliver a better sampling efficiency. The above experimental results thus demonstrate the
effectiveness of the proposed Lest

QC.

Sampling under a Fixed NFE. In this experiment, we further compare the sampling performance of
U-NCSN++ and QC-NCSN++ under fixed NFE using the Predictor-Corrector (PC) sampler (Song

8



Under review as a conference paper at ICLR 2023

Steps Steps Steps
0 2,500 5,000 7,500 10,000

2.00 e-3

4.00 e-3

0.00 e-3
0 2,500 5,000 7,500 10,000 0 2,500 5,000 7,500 10,000

0.60

1.20

0.00
0.96

1.08

0.84

Figure 3: The trends of
∥∥WRT −RWT

∥∥
F

and ‖W −R‖F during the minimization process of
LQC. The ‘steps’ on the x-axes refer to the training steps.

et al., 2021b). Different from the ODE sampler presented above, PC sampler discretizes the sampling
process described Eq. (8) with equal-sized steps according to a predetermined value of NFE. This
design allows us to control NFE in the sampling process and compare the sampling performance under
a fixed NFE. Table A8 presents the evaluation results of U-NCSN++ and QC-NCSN++ when NFE is
equal to 500, 1,000, and 2,000. It is observed that QC-NCSN++ can outperform U-NCSN++ in terms
of the FID/IS/Precion/Recall metrics when NFE is equal to 500, 1,000. Nonetheless, QC-NCSN++
has inferior FID results when NFE is equal to 2,000. The results suggest that the impact of the
non-conservativeness may also be influenced by the sampling step size. A larger step size, which
corresponds to a smaller value of NFE, is able to magnify the effect of the rotational vector field
incurred by approximation errors.

6 QCSGM IMPLEMENTED AS A ONE-LAYERED AUTOENCODER

A line of research (Vincent, 2011; Kamyshanska & Memisevic, 2013; Im et al., 2016; Kamyshanska
& Memisevic, 2015) focuses on a type of SGM constructed as a one-layered autoencoder, since
its property of conservativeness can be systematically analyzed. Such an SGM is represented as
s(x̃; θ) = Rh(WT x̃ + b) + c, where h(·) is an activation function, b, c ∈ RD, R,W ∈ RD×H are
the weights of s(· ; θ) (i.e., θ = {R,W, b, c}), and H is the width of the hidden-layer. As proved
in (Im et al., 2016), the output vector field of s(· ; θ) is conservative if and only if WRT = RWT .
To ensure the conservativeness of such an SGM, a number of works (Vincent, 2011; Kamyshanska
& Memisevic, 2013; 2015) follow the concept of CSGMs and restrict the weights of s(· ; θ) to
be ‘tied,’ i.e., W = R. An SGM with tied weights, however, is only a sufficient condition for its
conservativeness, rather than a necessary one. This implies that there must exist some conservative
s(· ; θ) that cannot be modeled using tied weights (Im et al., 2016).

Instead of enforcing an SGM’s weights to be tied (i.e., W = R), QCSGMs indirectly learn to satisfy
the conservativeness condition (i.e., WRT = RWT ) through minimizing LQC. Fig. 3 depicts the
trends of

∥∥WRT −RWT
∥∥
F

and ‖W −R‖F during the minimization process of LQC. As the
training progresses, the values of

∥∥WRT −RWT
∥∥
F

approach zero, indicating that s(· ; θ) learns to
output a conservative vector field through minimizing LQC. In contrast, the values of ‖W −R‖F
do not decrease to zero, revealing that minimizing LQC does not necessarily lead to W = R. The
experimental results thus suggest that QCSGMs can learn to output conservative vector fields that
cannot be modeled by one-layered autoencoders with tied weights. This justifies the advantage of
QCSGMs over CSGMs. In Appendix A.6.1, we offer more examples to support this observation.

7 CONCLUSION

In this paper, we unveiled the underlying issues of CSGMs and USGMs, and highlighted the
importance of preserving both of the architectural flexibility and the property of conservativeness
through two motivational experiments. We proposed a new category of SGMs, named QCSGMs,
in which the magnitudes of their rotation densities are minimized through a regularization loss for
enhancing their property of conservativeness. We showed that such a regularization loss can be
reformulated as a scalable variant based on the Hutchinson trace estimator, and demonstrated that
it can be efficiently incorporated into the training procedure of SGMs. Finally, we validated the
effectiveness of QCSGMs through the experimental results on the real-world datasets, and showcased
the advantage of QCSGMs over CSGMs using the example of a one-layered autoencoder.
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A APPENDIX

In this Appendix, we first provide the definitions for the symbols used in the main manuscript
and the Appendix in Section A.1. Next, we detail the backpropagation processes described in
Section 4.2, and provide the derivation for (15) in Section A.2. Then, we offer a discussion on the
normalized asymmetry metric as well as the detailed setups for the motivational experiments in
Section A.3. Subsequently, in Section A.4, we describe the approach to extend a QCSGM to the time-
inhomogeneous variant, i.e., QC-NCSN++ described in Section 5 of the main manuscript. Finally,
we provide the detailed experimental configurations in Section A.5, and a number of qualitative and
quantitative experimental results in Section A.6.

A.1 LIST OF NOTATIONS

In this section, we offer the list of notations used throughout the main manuscript and the Appendix.
These notations and their descriptions are summarized in Tables A1 and A2.

Symbol Description

M the dataset size.

D the data dimension.

K the number of random vectors used in the Hutchinson trace estimator.

H the dimension of the largest hidden layer in an SGM.

L the number of layers in an SGM.

N the number of discretized points for the estimation of the line integral.

T the number of discretized timesteps for the sampling algorithm.

α the step size used in Langevin dynamics.

ε the score-matching error described in Section 3.1.

σ the standard deviation for Gaussian distribution.

θ the parameters of an SGM.

x ∈ RD a data sample.

x̃ ∈ RD a perturbed data sample.

z ∈ RD a noise vector used in Langevin dynamics.

v ∈ RD a random vector used in the Hutchinson trace estimator.

b, c ∈ RD the bias for the one-layered autoencoder described in Section 6.

W,R ∈ RD×H the weights for the one-layered autoencoder described in Section 6.

{x(i)}Mi=1 a dataset.

{x̃t}Tt=1 a set of discretized timesteps in Langevin dynamics.

{x̃(i)
t }Ni=1 a set of discretized points of the t-th timestep used for estimating

line integral.

{v(i)}Ki=1 a set of random vectors drawn from p(v).

pdata the unknown true probability density function (pdf).

p0(x) =
1
m

∑m
i=1 δ(‖x− x(i)‖) the empirical distribution of a dataset.

pσ(x̃|x) = 1

(2π)D/2σD
e

−1

2σ2
‖x̃−x‖2 the smoothing kernel with mean x and standard deviation σ used in

Parzen density estimator.

pσ(x̃) =
∫
x
pσ(x̃|x)p0(x)dx Parzen density estimator for p0(x).

p(v) a distribution satisfying Ep(v)[vvT ] = I such as a Gaussian or a
Radamacher distribution.

Table A1: The list of symbols used in this paper.
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Z(θ) a partition function of a Boltzmann distribution.

E(· ; θ) : RD → R an energy model parameterized by θ.

s(· ; θ) : RD → RD a score model parameterized by θ.
∂
∂x̃

log pσ(x̃) the gradient of log pσ(x̃) w.r.t. x̃.
∂
∂x̃
E(x̃; θ) the gradient of E(x̃; θ) w.r.t. x̃.

∂
∂x̃
s(x̃; θ) the Jacobian matrix of s(x̃; θ).

J the simplified notation for ∂
∂x̃
s(x̃; θ).

LESM Explicit Score Matching (ESM) loss defined in Eq. (2).

LISM Implicit Score Matching loss (ISM) loss defined in Eq. (3).

LSSM Sliced Score Matching loss (SSM) loss defined in Eq. (5).

LDSM Denoising Score Matching loss (DSM) loss defined in Eq. (6).

LTotal the total loss of QCSGMs defined in Eq. (13).

LQC the proposed regularization loss defined in Eq. (14).

Ltr
QC the equivalent variant of LQC defined in Eq. (15).

Lest
QC the approximated variant of Ltr

QC defined in Eq. (16).

uTv = u · v =
∑
i uivi inner product between two vectors u, v.

tr (A) =
∑
iAi,i trace of a matrix A.

‖u‖ =
√∑

i u
2
i Euclidean norm of a vector u.

‖A‖F =
√∑

i,j A
2
i,j Frobenius norm of a matrix A.

exp (·) an exponential function.

sg [·] a stop gradient operator.

Table A2: The list of symbols used in this paper (cont.).

A.2 DERIVATIONS

A.2.1 THE EQUIVALENCE BETWEEN ZERO-ROTATION-DENSITY CONDITION AND THE
CONSERVATIVENESS OF A SCORE MODEL

Lemma 1. ROTijs(x̃; θ) = 0 for all 1 ≤ i, j ≤ D if and only if the Jacobian of s(x̃; θ) (i.e., J) is
symmetric.

Proof. As defined in Eq. (9), the following holds:

ROTijs(x̃; θ) = 0, ∀ 1 ≤ i, j ≤ D

⇔ ∂s(x̃; θ)i
∂x̃j

− ∂s(x̃; θ)j
∂x̃i

= 0, ∀ 1 ≤ i, j ≤ D

⇔ Jij − Jji = 0, ∀ 1 ≤ i, j ≤ D
⇔ Jij = Jji, ∀ 1 ≤ i, j ≤ D
⇔ J is symmetric.

Lemma 2. According to (Im et al., 2016), the Jacobian of s(x̃; θ) (i.e., J) is symmetric if and only if
s(x̃) is conservative.

Proposition 1. ROTijs(x̃) = 0 for all 1 ≤ i, j ≤ D if and only if s(x̃) is conservative.

Proof. Based on Lemma 1 and Lemma 2, the proof completes.
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A.2.2 THE DERIVATION OF Ltr
QC IN EQ. (15)

In Section 4.1, we derived the computationally efficient objective Lest
QC based on the assumption that

LQC equals Ltr
QC. To show that the equivalence holds, we provide a formal derivation as follows.

Proposition 2. LQC(θ) = Ltr
QC(θ).

Proof.

LQC(θ) = Epσ(x̃)
[

1

2

∥∥J − JT∥∥2
F

]

= Epσ(x̃)

1

2

∥∥∥∥∥
(
∂s(x̃; θ)

∂x̃

)
−
(
∂s(x̃; θ)

∂x̃

)T∥∥∥∥∥
2

F


= Epσ(x̃)

1

2

D∑
i=1

D∑
j=1

(
∂s(x̃; θ)i
∂x̃j

− ∂s(x̃; θ)j
∂x̃i

)2


= Epσ(x̃)

1

2

D∑
i=1

D∑
j=1

((
∂s(x̃; θ)i
∂x̃j

)2

+

(
∂s(x̃; θ)j
∂x̃i

)2

− 2

(
∂s(x̃; θ)i
∂x̃j

∂s(x̃; θ)j
∂x̃i

))
= Epσ(x̃)

1

2

D∑
i=1

D∑
j=1

(
∂s(x̃; θ)i
∂x̃j

)2

+
1

2

D∑
i=1

D∑
j=1

(
∂s(x̃; θ)j
∂x̃i

)2

− 1

2
· 2

D∑
i=1

D∑
j=1

(
∂s(x̃; θ)i
∂x̃j

∂s(x̃; θ)j
∂x̃i

)
= Epσ(x̃)

1

2
· 2

D∑
i=1

D∑
j=1

(
∂s(x̃; θ)i
∂x̃j

)2

− 1

2
· 2

D∑
i=1

D∑
j=1

(
∂s(x̃; θ)i
∂x̃j

∂s(x̃; θ)j
∂x̃i

)
= Epσ(x̃)

 D∑
i=1

D∑
j=1

(
∂s(x̃; θ)i
∂x̃j

)2

−
D∑
i=1

D∑
j=1

(
∂s(x̃; θ)i
∂x̃j

∂s(x̃; θ)j
∂x̃i

)
= Epσ(x̃)

[
tr

((
∂s(x̃; θ)

∂x̃

)(
∂s(x̃; θ)

∂x̃

)T)
− tr

((
∂s(x̃; θ)

∂x̃

)(
∂s(x̃; θ)

∂x̃

))]
= Epσ(x̃)

[
tr
(
JJT

)
− tr (JJ)

]
= Ltr

QC(θ)

Remark 1. Proposition 2 can also be proved by utilizing the properties of trace, i.e., ‖A‖2F =

tr
(
ATA

)
and tr (AB) = tr (BA), leading to a simplified proof as follows:

LQC(θ) = Epσ(x̃)
[

1

2

∥∥J − JT∥∥2
F

]
= Epσ(x̃)

[
1

2
tr
(
(J − JT )T (J − JT )

)]
= Epσ(x̃)

[
1

2
tr
(
(JT − J)(J − JT )

)]
= Epσ(x̃)

[
1

2
tr
(
JTJ − JTJT + JJT − JJ

)]
= Epσ(x̃)

[
1

2

(
tr
(
JTJ

)
− tr

(
JTJT

)
+ tr

(
JJT

)
− tr (JJ)

)]
= Epσ(x̃)

[
tr
(
JJT

)
− tr (JJ)

]
= Ltr

QC(θ)
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(a) Forward Propagation (Steps (1)~(3))

Score model

Score Matching Objective

Auto. Diff.
(1)

(2)

(3)

Auto. Diff.

(b) Backward Propagation (Steps (4) and (5))

Score model

Auto. Diff.

Score Matching Objective

Auto. Diff.
(4)

(5)

(ii)

(i)

(iv)

(iii)

(i)

(ii)

(iii)

(iv)

(5) Deriving the secondary component of (4) Deriving the primary component of 

Forward propagation

(2) Computing(1) Computing (3) Computing

Operation The goal of backward propagation

Figure A1: The computational graphs of LTotal in QCSGMs. The upper and lower subplots depict
the forward and backward propagation processes, respectively. The ‘Auto. Diff.’ blocks represent the
operation of differentiating uT s(x̃; θ), where u is a constant vector with respect to x̃.

A.2.3 A DETAILED DESCRIPTION OF THE TRAINING PROCESS

The entire training procedure is divided into five steps, denoted as Steps (1)∼(5), respectively. Steps
(1)∼(3) describe the forward propagation process of LTotal(θ), which is depicted by the black arrows
in Fig. A1 (a). Steps (4) and (5) correspond to the backpropagation processes of the two gradient
components comprising ∂

∂θLTotal(θ), which are depicted in Fig. A1 (b). In the following paragraphs,
we elaborate on the details of Steps (1)∼(5).

(1) Computing vTJJTv. First, vTJ is computed by performing backpropagation of vT s(x̃; θ) with
respect to x̃ via automatic differentiation, which is depicted as the upper ‘Auto. Diff.’ block in
Fig. A1 (a). Then, vTJJTv is calculated by taking the squared L2 norm on vTJ according to the
relationship:

∥∥vTJ∥∥2 = vTJ(vTJ)T = vTJJTv.

(2) Computing vTJJv. First, sg
[
vTJ

]
s(x̃; θ) is calculated by taking the inner product between

sg
[
vTJ

]
and s(x̃; θ), where the stop-gradient operator sg [·] is applied to vTJ to detach it from

the computational graph built in Step (1). Then, sg
[
vTJ

]
J is calculated by differentiating

sg
[
vTJ

]
s(x̃; θ) via performing backpropagation. Stopping the gradient of vTJ is necessary to

ensure that the automatic differentiation (i.e., the lower ‘Auto. Diff.’ block in Fig. A1 (a)) excludes
the computational graph used for differentiating vTJ , allowing vTJJ to be correctly derived. Lastly,
sg
[
vTJ

]
Jv is obtained by taking the inner product of sg

[
vTJ

]
J and v.

(3) Computing LTotal(θ). Based on the results of Steps (1) and (2), Lest
QC(θ) is computed by taking

the expectation of (vTJJTv − sg
[
vTJ

]
Jv). Meanwhile, the score matching loss LSM(θ) can be

derived using any one of the Eqs. (2), (3), (5), and (6). Finally, LTotal(θ) is calculated by adding
LSM(θ) and λLest

QC(θ), as described in Eq. (13).

(4) Deriving the primary component of ∂
∂θLTotal(θ). Based on the computational graph built

in Steps (1)∼(3), the primary component of ∂
∂θLTotal(θ) is computed by performing backward
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propagation through the paths in the computational graph highlighted by the blue arrows in Fig. A1 (b)
using automatic differentiation. Note that these gradients are not equal to ∂

∂θLTotal(θ) due to the
adoption of the stop-gradient operator sg [·] in Step (2). As a result, an additional secondary gradient
component, which is derived in Step (5), is included to compensate it.

(5) Deriving the secondary component of ∂
∂θLTotal(θ). The secondary component of ∂

∂θLTotal(θ)
is derived by performing backward propagation through the paths in the computational graph high-
lighted by the red arrows in Fig. A1 (b) using automatic differentiation. By accumulating the gradients
of the primary and the secondary components, the gradients ∂

∂θLTotal(θ) can be correctly calculated.

The Derivation of the primary and secondary components of ∂
∂θLTotal(θ). In Steps (4) and (5),

we decompose ∂
∂θLTotal(θ) as the primary and secondary components, and separately derive them.

To further elaborate on such a backward propagation process, we offer a detailed description in this
subsection. For the sake of notational simplicity, we assume that both the batch size and the number
of random vectors K are 1.

According to the rule of sum and the rule of product from vector calculus, the gradient of the total
loss ∂

∂θLTotal(θ) can be decomposed as the sum of ∂
∂θLSM(θ), λ ∂

∂θv
TJJTv, −λ( ∂∂θv

TJ)Jv, and
−λvTJ( ∂∂θJv), indexed as (i)∼(iv) respectively. The derivation is shown as the following:

∂LTotal(θ)

∂θ
=
∂(LSM(θ) + λLest

QC(θ))

∂θ

=
∂LSM(θ)

∂θ
+ λ

∂Lest
QC(θ)

∂θ

=
∂LSM(θ)

∂θ
+ λ

∂(vTJJTv − vTJJv)

∂θ

=
∂LSM(θ)

∂θ
+ λ

∂vTJJTv

∂θ
− λ∂v

TJJv

∂θ

=
∂LSM(θ)

∂θ︸ ︷︷ ︸
(i)

+λ
∂vTJJTv

∂θ︸ ︷︷ ︸
(ii)

+ (−λ)vTJ
∂Jv

∂θ︸ ︷︷ ︸
(iii)

+ (−λ)
∂vTJ

∂θ
Jv︸ ︷︷ ︸

(iv)

.

We name the sum of (i)∼(iii) the primary component of ∂
∂θLTotal(θ), and the term (iv) the secondary

component of ∂
∂θLTotal(θ). Such a decomposition suggests that ∂

∂θLTotal(θ) can be separately
computed based on the computational graph built in Steps (1)∼(3) as shown in the upper subplot
of Fig. A1. For the primary component, the sum of (i)∼(iii) is computed by performing backward
propagation through the paths in the computational graph highlighted by the blue arrows in the
lower subplot of Fig. A1 using automatic differentiation. For the secondary component, the term (iv)
is calculated by performing backward propagation through the red arrows in the lower subplot of
Fig. A1. Through these two steps, ∂

∂θLTotal(θ) can be correctly derived.

A.3 NORMALIZED ASYMMETRY METRIC

In this section, we elaborate on the formulation of the normalized asymmetry metric NAsym, which
was introduced in Section 3.1 of the main manuscript. In addition, we derive a computationally
efficient implementation of NAsym using the Hutchinson trace estimator.

Derivation of the NAsym Metric. As described in (Andrilli & Hecker, 2016), any matrix A can be
uniquely decomposed into a symmetric matrix Asym and a skew-symmetric matrix Askew as follows:

A = Asym +Askew =
A+AT

2
+
A−AT

2
. (A1)

Based on Eq. (A1), the Jacobian J of an SGM s(x̃; θ) can be written as the sum of a symmetric
matrix Jsym = (J + JT )/2 and a skew-symmetric matrix Jskew = (J − JT )/2. Under such a
definition, the NAsym metric introduced in Section 3.1 can be formulated as follows:

NAsym = Epσ(x̃)

[
‖Jskew‖2F
‖J‖2F

]
= Epσ(x̃)

[∥∥ 1
2 (J − JT )

∥∥2
F

‖J‖2F

]
= Epσ(x̃)

[
1

4

∥∥J − JT∥∥2
F

‖J‖2F

]
. (A2)
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This metric measures the ratio of the squared Frobenius norm of the skew-symmetric matrix ‖Jskew‖2F
to the squared Frobenius norm of the Jacobian matrix ‖J‖2F , and falls within the range [0, 1].
NAsym = 1 corresponds to the condition where Jskew dominates J , implying that J is skew-
symmetric. On the contrary, NAsym = 0 indicates that J only contains the symmetric component
Jsym, suggesting that J is symmetric. Since the squared Frobenius norm of the skew-symmetric
matrix can be written as the sum of the squared rotation densities of s(x̃; θ), i.e., ‖Jskew‖2F =∥∥(J − JT )/2

∥∥2
F

= 1
4

∑D
i,j=1( ∂

∂x̃j
s(x̃; θ)i − ∂

∂x̃i
s(x̃; θ)j)

2 = 1
4

∑D
i,j=1

(
ROTijs(x̃; θ)

)2
, NAsym

can be adopted to measure the non-conservativeness of s(x̃; θ), as mentioned in Section 3.1.

An Efficient Implementation of NAsym. Since Eq. (A2) involves the explicit calculation of the
Jacobian matrix J , evaluating the NAsym metric for a single instance x̃ requires D times of backward
propagations. This indicates that the evaluation cost may grow significantly whenD and a test set size
become large. To reduce the evaluation cost, we utilize the Hutchinson trace estimator to approximate
the NAsym metric based on the following derivation:

NAsym = Epσ(x̃)

[
1

4

∥∥J − JT∥∥2
F

‖J‖2F

]
= Epσ(x̃)

[
1

2

tr
(
JJT

)
− tr (JJ)

tr (JJT )

]

= Epσ(x̃)

[
1

2

Ep(v)[vTJJTv]− Ep(v)[vTJJv]

Ep(v)[vTJJTv]

]

= Epσ(x̃)
[

1

2
Ep(v)

[
vTJJTv − vTJJv

vTJJTv

]]
,

(A3)

where p(v) satisfies Ep(v)[vvT ] = I . The expectation Ep(v)[·] can be approximated using K random
vectors. In addition, the terms vTJJTv and vTJJv in Eq. (A3) can be efficiently calculated based
on Steps (1) and (2) described in Section 4.2. This suggests that the computational cost of evaluating
NAsym can be significantly reduced when K � D. In Section A.5.3, we describe an approach to
measure NAsym on the Cifar-10 and ImageNet-32x32 datasets in detail.

A.4 TIME-INHOMOGENEOUS QCSGMS

In this section, we demonstrate how a QCSGM is converted to its time-inhomogeneous variant
QC-NCSN++ (VE), which was described in Section 5 of the main manuscript. We first explain the
modifications made in the sampling process. Then, we elaborate on the corresponding adjustments in
the score-matching objective and the regularization loss.

Sampling Process. QC-NCSN++ adopts the variance exploding (VE) diffusion process identical
to that employed in NCSN++ (VE) (Song et al., 2021b), which is a time-inhomogeneous sampling
algorithm. In this sampling algorithm, SGM and step size are respectively represented as s(· ; θ, σt)
and αt = ∂

∂tσ
2
t , where σt is a time-dependent standard deviation. In C-NCSN++, U-NCSN++, and

QC-NCSN++, σt is set to σmin(σmin/σmax)
t
T (Song et al., 2021b), where T is the total number of

timesteps in the sampling process, σmin is a constant representing a minimal noise scale, and σmax is
a constant denoting a maximal noise scale.

Training Objectives. Since the above time-inhomogeneous sampling process requires the SGM
s(· ; θ, σt) to be conditioned on a time-dependent standard deviation σt, the training objectives of
s(· ; θ, σt) have to be modified accordingly. For example, the score-matching objective LDSM used
in C-NCSN++, U-NCSN++, and QC-NCSN++ is modified as follows:

EU(t)

[
λ(t)Epσt (x̃|x)p0(x)

[∥∥∥∥s(x̃; θ, σt)−
∂ log pσt(x̃|x)

∂x̃

∥∥∥∥2
]]

, (A4)

where U(t) is a uniform distribution defined on the interval [0, T ], and λ(t) is a time-dependent
coefficient for balancing the loss functions of different t. Meanwhile, the regularization term Lest

QC

used in QC-NCSN++ is adjusted according to λ(t), which is formulated as follows:

EU(t)
[
λ(t)Epσt (x̃)

[
Ep(v)

[
vTJJTv − vTJJv

]]]
, (A5)

where J = ∂
∂x̃s(x̃; θ, σt).
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A.5 EXPERIMENTAL SETUPS

In this section, we elaborate on the experimental configurations and provide the detailed hyperpa-
rameter setups for the experiments presented in Sections 3 and 5 of the main manuscript. The
code implementation for the experiments is provided in the following anonymous repository:
https://anonymous.4open.science/r/qcsgm-review-B4FF/README.md.

A.5.1 EXPERIMENTAL SETUPS FOR SECTION 3.1

In Section 3.1, we compare the sampling efficiency of a USGM and a CSGM with an approximation
error ε. These SGMs are formulated based on the following equation:

s(x̃) =
∂

∂x̃
log pσ(x̃) +

√
2εµ(x̃)

‖x̃‖2 pσ(x̃)
u(x̃), (A6)

where pσ is the target distribution, µ is an arbitrary distribution, and u(x̃) ∈ RD is a vector function
with its norm equal to the norm of its input (i.e., ‖u(x̃)‖ = ‖x̃‖). To show that s(x̃) in Eq. (A6)
satisfies LESM = ε, we provide the following proposition.

Proposition 3. Given ε > 0, a target distribution pσ, and an arbitrary pdf µ, s defined in Eq. (A6)
satisfies LESM = ε.

Proof.

LESM =

∫
x̃

pσ(x̃)
1

2

∥∥∥∥s(x̃)− ∂

∂x̃
log pσ(x̃)

∥∥∥∥2 dx̃
=

∫
x̃

pσ(x̃)
1

2

∥∥∥∥∥ ∂∂x̃ log pσ(x̃) +

√
2εµ(x̃)

‖x̃‖2 pσ(x̃)
u(x̃)− ∂

∂x̃
log pσ(x̃)

∥∥∥∥∥
2

dx̃

=

∫
x̃

pσ(x̃)
1

2

∥∥∥∥∥
√

2εµ(x̃)

‖x̃‖2 pσ(x̃)
u(x̃)

∥∥∥∥∥
2

dx̃ =

∫
x̃

pσ(x̃)
1

2

2εµ(x̃)

‖x̃‖2 pσ(x̃)
‖u(x̃)‖2 dx̃

=

∫
x̃

µ(x̃)
ε ‖u(x̃)‖2

‖x̃‖2
dx̃ =

∫
x̃

µ(x̃)εdx̃ = ε

In the motivational example presented in Section 3.1, we choose pσ = N (0;σ2I), and select
µ = 1

10

∑10
i=1N ([3 cos( 2iπ

10 ), 3 sin( 2iπ
10 )]T ; I). We consider u(x̃) = [−x̃2, x̃1]T for sU, and u(x̃) =

[x̃1, x̃2]T for sC, where x̃ = [x̃1, x̃2]T . In particular, [−x̃2, x̃1]T is a rotational vector field with
each vector tangent to the true score function ∂

∂x̃ log pσ(x̃) = −1/σ2[x̃1, x̃2]T . On the other
hand, [x̃1, x̃2]T is a vector field with each vector pointing to the opposite direction against the
true score function. For an illustrative purpose, we leverage a deterministic variant of Eq. (7) (i.e.,
x̃t+1 = x̃t + αts(x̃t)) as our sampler to generate samples based on sU and sC, and calculate the
NFE required for all samples to move to the center of pσ .

A.5.2 EXPERIMENTAL SETUPS FOR THE MOTIVATIONAL EXAMPLES PRESENTED IN
SECTION 3.2

Datasets. The motivational experiments in Section 3 are performed on the 8-Gaussian, Spirals,
and Checkerboard datasets as shown in Fig. A2 (a). The data points of the 8-Gaussian dataset
are sampled from eight separate Gaussian distributions centered at (cos(πw4 ), sin(πw4 )), where
w ∈ {1, ..., 8}. The data points of the Spirals dataset are sampled from two separate curves
(−π
√
w cos(π

√
w), π

√
w sin(π

√
w)) and (π

√
w cos(π

√
w),−π

√
w sin(π

√
w)), where w ∈ [0, 1].

Lastly, the data points of the Checkerboard dataset are sampled from (4w − 2, t− 2s+ bwcmod 2),
where w ∈ [0, 1], s ∈ {0, 1}, b·c is a floor function, and mod represents the modulo operation. For
all of these three datasets, p0(x) is established by sampling 50,000 data points (i.e., M = 50, 000).

19

https://anonymous.4open.science/r/qcsgm-review-B4FF/README.md


Under review as a conference paper at ICLR 2023

Training and Implementation Details. The network architecture of f is a three-layered multilayer
perceptron (MLP) with (128, 64, 32) neurons and Swish (Ramachandran et al., 2017) as its activation
function. This model architecture is the same as that used in the two-dimensional experiments of
(Chao et al., 2022). The SGMs sU and sC are trained utilizing the Adam optimizer (Kingma & Ba,
2014) with a learning rate of 1× 10−2 and a batch size of 5,000 for 100,000 iterations. The balancing
factor λ is fixed to 0.1. The maximal and minimal noise scales σmax and σmin are set to 10 and 0.01,
respectively.

Evaluation Method. The precision and recall metrics are calculated using 10,000 sample points.
On the other hand, the Asym, NAsym metrics, and the score errors are approximated based on the
following formulas:

Epσ(x̃)

[∥∥∥∥s(x̃; θ)− ∂ log pσ(x̃)

∂x̃

∥∥∥∥2
]
≈
∑
x̃∈D

pσ(x̃)

∥∥∥∥s(x̃; θ)− ∂ log pσ(x̃)

∂x̃

∥∥∥∥2 , (A7)

Epσ(x̃)
[

1

2

∥∥J − JT∥∥2
F

]
≈
∑
x̃∈D

pσ(x̃)
1

2

∥∥J − JT∥∥2
F
, (A8)

Epσ(x̃)

[
1

4

∥∥J − JT∥∥2
F

‖J‖2F

]
≈
∑
x̃∈D

pσ(x̃)
1

4

∥∥J − JT∥∥2
F

‖J‖2F
, (A9)

where D denotes a set of 1,600 grid points. A visualization of D is depicted in Fig. A2 (b).

A.5.3 EXPERIMENTAL SETUPS FOR THE EVALUATIONS ON THE REAL-WORLD DATASETS

Datasets. The experiments presented in Section 5 are performed on the CIFAR-10, CIFAR-
100 (Krizhevsky & Hinton, 2009), ImageNet-32x32 (Van Oord et al., 2016), and SVHN (Netzer et al.,
2011) datasets. The training and test sets of Cifar-10 and Cifar-100 contain 50,000 and 10,000 images,
respectively. The training and test sets of SVHN contain 73,257 and 26,032 images, respectively. On
the other hand, the training and the test sets of ImageNet-32x32 consist of 1,281,149 and 49,999
images, respectively.

Training and Implementation Details. C-NCSN++, U-NCSN++, and QC-NCSN++ are imple-
mented using the Pytorch framework. C-NCSN++, U-NCSN++, and QC-NCSN++ are trained
using the Adam optimizer with a learning rate of 2× 10−4. The batch size is fixed to 128, while the
value of K for QC-NCSN++ is fixed to 1. The training procedure of QC-NCSN++ consists of two
stages. In the first stage, QC-NCSN++ is optimized according to the score matching objective, which
requires 600,000 training iterations for convergence. In the second stage, the regularization term Lest

QC
is incorporated during the training process, which requires 150,000 training iterations for convergence.
The maximal and minimal noise scales σmax and σmin are set to 50 and 0.01, respectively. The total
number of timesteps T in the sampling process is set to 1,000. The balancing factor λ is set to 0.0001.
The ODE sampler is implemented using the scipy.integrate.solve ivp library.

Evaluation Method. The asymmetry Asym and normalized asymmetry NAsym metrics are evaluated
on 100 discretized timesteps on the test sets of both datasets. Specifically, the Asym metric is

8-Gaussian Spirals Checkerboard Grid Points

(a) (b)

Figure A2: (a) The visualizations of the 8-Gaussian, Spirals, and Checkerboard datasets. (b) The grid
points comprising D.
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calculated based on the following equation:

Asym =
∑
t∈T

1

|T |
∑
x̃∈D

1

|D|
Ep(v)

[
vTJJTv − vTJJv

]
, (A10)

where D represents the test set, and T = { i
100T}

100
i=1. On the other hand, the NAsym metric is

evaluated based on the following equation:

NAsym =
∑
t∈T

1

|T |
∑
x̃∈D

1

|D|
1

2
Ep(v)

[
vTJJTv − vTJJv

vTJJTv

]
. (A11)

The expectations Ep(v)[·] in Eqs. (A10) and (A11) are estimated with K = 1. The metrics for
sampling performance (i.e., FID, IS, precision and recall) are evaluated using the tensorflow gan
library as well as the official evaluation package implemented by (Kynkäänniemi et al., 2019; Naeem
et al., 2020).

Table A3: A comparison between the results re-
ported in (Xu et al., 2022) and those reproduced
by us for U-NCSN++.

FID IS NFE

U-NCSN++ (Xu et al., 2022) 7.66 9.17 194
U-NCSN++ (Ours) 7.48 9.24 170

QC-NCSN++ (Ours) 7.21 9.25 124

Sampling performance of U-NCSN++. Ta-
ble A3 compares the sampling performance of
the baseline method (i.e., U-NCSN++) reported
in (Xu et al., 2022) and that reproduced by us
on the CIFAR-10 dataset using an ODE sam-
pler. It is observed that the reproduced results
are improved in terms of the FID, IS, and NFE
metrics. This reinforces our statement in Sec-
tion 5, as QC-NCSN++ is able to achieve supe-
rior results to both the reproduced and reported
performance of U-NCSN++.

Table A4: The confidence interval of the evaluation
results on the CIFAR-10 dataset.

NLL FID IS Precision Recall

±0.0014 ±0.0143 ±0.0065 ±0.0024 ±0.0011

Confidence Intervals of the Evaluation Re-
sults. Table A4 shows the 95% confidence inter-
vals for the evaluation results of QC-NCSN++
in terms of the NLL, FID, IS, Precision, and
Recall metrics on the CIFAR-10 dataset. For the
evaluation results of the FID, IS, Precision, and
Recall metrics, the PC sampler with NFE=1,000 is adopted. All of these results are obtained by three
times of evaluations.

A.6 ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide a number of additional experimental results. In Section A.6.1, we present
additional experimental results of QCSGMs implemented as one-layered autoencoders to support
our observation presented in Section 6 of the main manuscript. In Section A.6.2, we provide a
comparison between C-NCSN++, U-NCSN++, and QC-NCSN++ in terms of their time and memory
consumption for each training and sampling iteration. In Section A.6.3, we demonstrate the impact
of the choices of λ on the performance of QC-NCSN++. In Section A.6.4, we offer the results of
QC-NCSN++ with a PC sampler on the CIFAR-100 and SVHN datasets. Finally, in Section A.6.5,
we provide additional qualitative results on the real-world datasets.

A.6.1 QCSGMS IMPLEMENTED AS ONE-LAYERED AUTOENCODERS

In Section 6, we leveraged the example of an one-layered autoencoder s(x̃; θ) = Rh(WT x̃+ b) + c
to demonstrate the advantage of QCSGMs over CSGMs. Our experimental results in Fig. 3 reveals
that QCSGMs can learn to output conservative vector fields, which cannot be captured by CSGMs
with tied weights (i.e., R = W ). To further solidify our assumption, we provide additional examples
in Fig. A3. Fig. A3 depicts the trends of

∥∥WRT −RWT
∥∥
F

and ‖W −R‖F during the minimization
process of LQC with four different seeds. As the training progresses, LQC and

∥∥WRT −RWT
∥∥
F

both approach zero in all of these four examples. In contrast, the values of ‖W −R‖F do not
approach zero, and the trends of ‖W −R‖F for these four examples differ. The above experimental
evidences demonstrate that QCSGMs can learn to output conservative vector fields with R 6= W , and
thus justify the advantage of QCSGMs over CSGMs.
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Steps Steps Steps

Figure A3: The trends of
∥∥WRT −RWT

∥∥
F

and ‖W −R‖F during the minimization process of
LQC. The ‘steps’ on the x-axes refer to the training steps.

Score Error

QCSGM CSGM

Figure A4: The trends of
∥∥WRT −RWT

∥∥
F

, ‖W −R‖F , LQC, and the score error of QCSGM and
CSGM during the minimization process of LTotal. The ‘step’ on the x-axes stands for the training
steps. The curves depict the mean and 95% confidence interval of three times of training. In this
experiment, CSGM and QCSGM are implemented using one-layered autoencoders.

To further showcase the benefit of adopting QCSGMs over CSGMs, we include a comparison of
QCSGMs and CSGMs in terms of their score matching ability. Fig. A4 shows that QCSGMs
demonstrate lower score errors in comparison to CSGMs when both of them are implemented as
one-layered autoencoders and trained on a Gaussian distribution.

22



Under review as a conference paper at ICLR 2023

A.6.2 A COMPARISON ON THE TIME AND MEMORY CONSUMPTION

Table A5: The time and memory consumption of
C-NCSN++, U-NCSN++, and QC-NCSN++. The
time is reported as the mean over 100 evaluations.

Training Sampling

Method Time Memory Time Memory

C-NCSN++ 0.25 s 20.4 GB 0.23 s 18.1 GB
U-NCSN++ 0.13 s 13.8 GB 0.09 s 11.5 GB

QC-NCSN++ 0.34 s 32.0 GB 0.09 s 11.5 GB

In this section, we investigate the time and mem-
ory consumption of C-NCSN++, U-NCSN++,
and QC-NCSN++ for each training and sam-
pling iteration. The results are evaluated on a
single NVIDIA V100 GPU with 32GB memory,
and the batch size is fixed at 32. Table A5 re-
ports the evaluation results of the above setting.
The training time and memory requirement of
QC-NCSN++ are 2.6× and 2.3× higher than
U-NCSN++ as the calculation of Lest

QC requires
two additional backward propagations. On the other hand, QC-NCSN++ and U-NCSN++ have the
same time and memory requirement for each sampling iteration, which are 2.6× and 1.6× more
efficient than those of C-NCSN++, respectively.

Table A6: The evaluation results in terms of the
FID and IS metrics of U-NCSN++, U-NCSN++
(Extend), and QC-NCSN++ on the CIFAR-10
dataset. In this experiment, a PC sampler with
NFE=1,000 is adopted.

Method Training Time FID IS

U-NCSN++ 87 hours 2.50 9.58
U-NCSN++ (Extend) 144 hours 2.51 9.56

QC-NCSN++ 144 hours 2.48 9.70

To demonstrate the effectiveness of QC-
NCSN++ over U-NCSN++ within the same
training time, we compare the performance of
‘QC-NCSN++’ against both ‘U-NCSN++’, and
‘U-NCSN++ (Extend)’, where ‘U-NCSN++ (Ex-
tend)’ represents the U-NCSN++ model trained
with an extended training period after conver-
gence. As shown in Table A6, U-NCSN++ (Ex-
tend) has inferior performance in comparison
to U-NCSN++ and QC-NCSN++, suggesting
that even with an extended the training period,
U-NCSN++ is unable to improve its performance.

A.6.3 THE IMPACT OF THE CHOICES OF λ ON THE PERFORMANCE OF QC-NCSN++

Table A7: The evaluation results of QC-NCSN++
with different choices of λ on the CIFAR-10
dataset.

λ 0.001 0.0005 0.0001 0.00005 0.0

Asym 9.99 e6 2.38 e7 5.03 e7 6.42 e7 1.88 e8

FID 2.75 2.53 2.48 2.48 2.50
IS 9.58 9.64 9.70 9.61 9.58

Based on our preliminary results on the toy en-
vironment, we perform a hyperparameter sweep
for λ ={1e-3, 5e-4, 1e-4, 5e-5}, and report the
best results on the real-world experiments. Ta-
ble A7 presents the evaluation results of FID
and IS under different choices of λ. In this ex-
periment, the PC sampler is adopted and NFE
is fixed at 1,000. The experimental results pre-
sented on the rows ‘FID’ and ‘IS’ demonstrate
that QC-NCSN++ achieves its best sampling performance when λ is selected as 0.0001. Based on
this finding, we choose λ to equal to 0.0001 throughout the experiments in Section 5.

A.6.4 ADDITIONAL RESULTS OF U-NCSN++ AND QC-NCSN++ WITH PC SAMPLER

Table A8: The evaluation results of U-NCSN++
and QC-NCSN++ with PC sampler on the CIFAR-
100 and SVHN datasets.

Cifar-100

Method FID IS Precision Recall

U-NCSN++ 3.53 11.86 0.6341 0.6227
QC-NCSN++ 3.50 11.88 0.6372 0.6242

SVHN

Method FID IS Precision Recall

U-NCSN++ 14.34 3.10 0.6666 0.5970
QC-NCSN++ 13.88 3.12 0.6669 0.6057

Table A8 presents the experimental results of
U-NCSN++ and QC-NCSN++ using a PC sam-
pler (NFE=2,000) on the SVHN and CIFAR-
100 datasets. It is observed that QC-NCSN++
is able to outperform U-NCSN++ in terms of
FID/IS/Precision/Recall, justifying the effective-
ness of Lest

QC.

A.6.5 VISUALIZED EXAMPLES

Figs. A5-A8 depict a few uncurated visualized
examples that qualitatively demonstrate the sam-
pling quality of NCSN++ and QC-NCSN++ on
the real-world datasets.
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Figure A5: The visualized examples generated using (a) U-NCSN++ and (b) QC-NCSN++ on the
CIFAR-10 dataset.
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Figure A6: The visualized examples generated using (a) U-NCSN++ and (b) QC-NCSN++ on the
CIFAR-100 dataset.
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Figure A7: The visualized examples generated using (a) U-NCSN++ and (b) QC-NCSN++ on the
ImageNet-32x32 dataset.
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Figure A8: The visualized examples generated using (a) U-NCSN++ and (b) QC-NCSN++ on the
SVHN dataset.
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