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Figure 1: We propose training humanoids to hike complex trails, driving integrative skill development
across visual perception, decision-making, and motor execution. Center: The humanoid robot (H1) a)
equipped with vision, learns to b) anticipate near-future local goals to guide locomotion along the trail with
self-autonomy. Bubble size (large → small) indicates anticipated goal direction; color shows temporal order
(orange → green → forest). Left: Our LEGO-H framework is universal to different humanoid robots (e.g., G1, a
smaller robot) to adaptively c) emerge diverse motor skills, and d) develop embodied path exploration strategies
to hike on trails with varied terrains and obstacles.

Abstract: Hiking on complex trails demands balance, agility, and adaptive decision-
making over unpredictable terrain. Current humanoid research remains fragmented
and inadequate for hiking: locomotion focuses on motor skills without long-term
goals or situational awareness, while semantic navigation overlooks real-world
embodiment and local terrain variability. We propose training humanoids to hike
on complex trails, driving integrative skill development across visual perception,
decision making, and motor execution.
We develop a learning framework, LEGO-H, that enables a vision-equipped hu-
manoid robot to hike complex trails autonomously. We introduce two technical
innovations: 1) A temporal vision transformer variant - tailored into Hierarchi-
cal Reinforcement Learning framework - anticipates future local goals to guide
movement, seamlessly integrating locomotion with goal-directed navigation. 2)
Latent representations of joint movement patterns, combined with hierarchical
metric learning - enhance Privileged Learning scheme - enable smooth policy
transfer from privileged training to onboard execution. These components allow
LEGO-H to handle diverse physical and environmental challenges without relying
on predefined motion patterns. Experiments across varied simulated trails and
robot morphologies highlight LEGO-H’s versatility and robustness, positioning
hiking as a compelling testbed for embodied autonomy and LEGO-H as a baseline
for future humanoid development.
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1 Introduction

Hiking [1, 2] challenges humans to master diverse motor skills and adapt to complex, and unpre-
dictable terrain – such as steep slopes, wide ditches, tangled roots, and sudden elevation changes
(Fig. 1). It demands continuous balance, agility, and real-time decision-making, making it an ideal
testbed for advancing humanoid autonomy and the integration of vision, planning, and motor control.
Hiking-capable robots could explore remote areas, assist in rescue missions, and guide individuals
along rugged paths.

Hiking poses challenges beyond traditional navigation, blind locomotion, or single motor pattern
learning. To succeed, humanoid robots must master three core capabilities: 1) Locomotion versatility
– The ability to handle mixed terrains like dirt, rocks, stairs, and streams, adapting dynamically with
skills like jumping and leaping while maintaining balance. 2) Perceptual awareness - The ability
to sense and respond to complex 3D environments, such as stepping over logs or navigating around
trees. 3) Body awareness – The ability to adjust in real time to local obstacles, terrain changes, and
body states by coordinating vision and motor control for adaptive foot placement and movement.

Current humanoids struggle to meet these demands due to the lack of a unified framework that inte-
grates low-level motor skills with high-level navigation (. 1) Locomotion methods lack adaptability
to terrain variation. They treat terrain as a fixed, homogeneous, and passive background, focusing
narrowly on walking [3, 4], quasi-periodic motion patterns [5], or mimicry [6]. Advanced frameworks
for complex skills like parkour [7, 8], often depend heavily on user commands or engineered behav-
iors. Such isolated training paradigms and abstraction overlook the embodied interaction essential for
real-world locomotion, limiting generalization beyond curated environments. 2) Navigation methods
struggle with real-time adaptability. Traditional research efforts rely on scene mapping [9] or rigid
world geometry [10]. While LLMs and VLMs can plan behaviors and correct execution failures from
textual instructions [11], they often lack the physical grounding needed for real-world adaptability. A
robot may know it needs to step over the log, but without real-time perception and fine-grained motor
control, it cannot adjust mid-swing if the log shifts or the ground gives way. Reflexive foot placement
on uneven terrain demands fast, sensor-driven adaptation - not just faster planning - which symbolic
planners struggle to provide. Bridging motor skills and navigation remains challenging due to their
inherently different response levels (fast, reactive control vs. slower, deliberative planning) requiring
tight coordination for context-sensitive execution in complex environments.

We introduce LEGO-H, a perceptual-aware, end-to-end learning framework for acquiring situational
visual-motor skills and path exploration strategies that enable humanoids to traverse complex trails
autonomously (Fig. 1). It unifies navigation and locomotion by advancing Hierarchical Reinforcement
Learning (HRL) and enhancing Privileged Learning (PL) for effective skill development.

Our first technical contribution is task-grounded HRL for situational visual-motor control,
reformulating navigation as a sequential local goal anticipation problem to guide locomotion
policy learning. While HRL can unify navigation and locomotion via multi-level abstraction,
existing methods often oversimplify environments [12], or restrict low-level control to basic skills
like walking [13], limiting adaptability. We address this caveat by proposing TC-ViT, a temporal
vision transformer variant tailored for HRL that combines tokenization with embodied reinforcement
learning. Instead of treating the navigation target as a static token, TC-ViT models 1) navigation
goals and 2) temporal-spatial relations, considering the robot’s past, present, and future states for
sequential anticipation. The locomotion policy network then integrates these latent features with
proprioceptive inputs and partial anticipated navigation goals to produce motor actions, enabling tight
coordination between perception and control for navigating complex, dynamic trails.

Our second technical contribution is enhanced PL that distills diverse motor skills while
preserving action rationality. In PL, a teacher policy leverages privileged signals such as known
foothold locations to develop diverse, optimal behaviors efficiently and safely. A student policy

2



then learns to replicate these behaviors using only proprioception and onboard perception, enabling
deployment in unstructured environments without privileged information. It improves skill acquisition
but complicates action learning when integrating visual inputs, increasing the risk of errors and
damage from unexpected actions. Existing distillation approaches supervise global behaviors [14]
or per-joint accuracy [15], often ignoring inter-joint dependencies. We address this by proposing a
Hierarchical Latent Matching (HLM) metric that distills policy based on action rationality. HLM
utilizes structured latent representations and masked reconstruction via VAEs [16] to enforce relational
consistency across joints. This task-agnostic HLM loss set improves policy learning across motor
tasks. Crucially, the latent prior is derived from oracle policy, not human demonstrations, allowing
robot to learn self-reliant behaviors suited to its own morphology.

To summarize, our work makes three key contributions: 1) We propose hiking as a testbed for
integrative skill development in humanoid robots. 2) We introduce LEGO-H, a learning framework
for autonomous humanoid hiking. 3) We demonstrate LEGO-H’s robustness and versatility across
diverse simulated trails and humanoid morphologies, establishing hiking as a compelling testbed for
embodied autonomy and LEGO-H as a baseline for future humanoid research.

2 Related Work

Humanoid locomotion. Existing approaches to low-level motor skill learning typically simplify
environmental interactions, abstracting terrains into static patterns at a momentary scale, which
neglects occlusions caused by obstacles or dynamic environmental disruptions. Research in this
domain has primarily focused on learning specific locomotion skills such as walking [3, 4, 17,
18, 19], running [20, 21], and soccer-playing behaviors [22]. These approaches often rely on
highly engineered designs optimized for specific lower-body tasks. Other works employ imitation
learning [5, 6, 23, 24, 25] to generate human-like behaviors from large-scale motion datasets, but
this comes at the cost of reduced embodiment. Some frameworks attempt to push the boundaries
of robotic motor skills by exploring tasks like parkour [8, 7], acrobatic flipping [26], or cliffside
climbing [27]. While impressive, these methods are often bogged down by complex engineering,
reliance on user commands for motion planning, or lack of perceptual awareness.

Humanoid navigation. Research on this direction often struggles to address real-time environmental
constraints while accounting for the unique mechanisms and actions of humanoid robots. These
limitations frequently lead to suboptimal navigation plans in complex terrains. Conventional methods
typically rely on scene mapping [9, 28] or structured world assumptions [10], which restrict adapt-
ability in dynamic and unstructured environments. Contact-aware approaches [29, 30] attempt to
bridge robot configurations with environmental constraints, but they often depend on pre-generated
trajectories, limiting responsiveness. Similarly, mapless methods [31] leverage visual inputs for
navigation but are typically constrained to basic locomotion capabilities such as walking. Recent
advancements in large language and vision-language models have shown potential for complex
high-level planning [11], yet remain uncoupled from motor control systems, failing to achieve au-
tonomous perceptual awareness and last-step feasibility required for navigating diverse, fine-grained
environments, like hiking.

Joint learning of navigation and locomotion. Integrating navigation and locomotion into a unified
framework remains a significant challenge. In the realm of wheeled-legged and quadruped robots,
several studies [32, 33, 34, 35] have explored paradigms that unify local navigation and locomotion.
While these approaches provide valuable insights, tailoring them to humanoid robots as a baseline for
hiking tasks reveals several critical gaps. First, humanoid robots possess significantly more degrees
of freedom (DoF) than quadrupeds or wheeled-legged robots, complicating the development of
stable locomotion policies. Achieving balance across diverse lower-body motor skills (e.g., walking,
jumping, and leaping etc.) within a single framework remains an open problem. Second, the greater
body height of humanoid robots introduces challenges in visual perception, expanding their field of
view and capturing a broader range of distances. This increased perceptual complexity exacerbates
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the misalignment between environmental sensing and physical contact, further complicating decision-
making, navigation, and motor execution processes.

3 Problem Formulation

Drawing from human hiking paradigm [36], we consider a humanoid robot equipped with vision
and GPS. A hiking trail is specified by start and end points (PA, PB) in GPS, optionally with M
intermediate waypoints along the trail. We define the basic task of humanoid hiking as follows:
traversing a trail to reach the trail’s end PB with safety, efficiency, and all-level autonomy.

The robot receives the following inputs: 1) GPS-based 2D vector Drb from robot’s current projected
2D root position PR[: 2] to end PB [: 2], which may not be visible from start PA. This vector provides
the distance and direction of the endpoint relative to the robot. 2) GPS-based 2D vectors {Drm}Mm=1

from PR to M optional intermediate waypoints. We use M = 1 to study the basic trail structure
and disambiguate forks. These points provide guidance but need not be strictly followed. 3) The
onboard proprioceptive input Xpro, like joint velocities and angles, reflects the robot’s internal
physical state. 4) K forward-facing depth images {Ck}Kk=1 from a head-mounted camera. Unlike
prior quadruped approaches [35, 32] assuming full local 3D information, our setup limits vision to a
frontal field, making perceptual-motor learning more realistic and challenging. Humanoids, being
taller, see farther - enabling look-ahead planning but complicating near-term action learning.

For ideal hiking, whole-body control would allow coordinated use of arms and legs to maintain
balance and support denser contact points with trails. However, as a baseline prototype for this
new task – and noting that many trails can still be traversed with leg movement alone – this study
simplifies the task by freezing humanoid’s upper-body pose, focusing on lower-body functionality.

4 LEGO-H for Integrative Skill Learning

4.1 LEGO-H System Overview

In our setup, the robot is only given the relative position of the endpoint. Thus, it must autonomously
determine how to traverse unknown, but locally observable trail with various terrain changes to
reach the destination safely. From a framework perspective, a humanoid system must fulfill two core
requisites to succeed: 1) learn embodied path exploration that is both target-driven and locally
adaptive – the robot must autonomously assess and adapt its local path based on immediate sensory
observations and current executable motor skills, while maintaining alignment with the overall goal;
2) enable emergent, context-aware, and safe motor execution – the robot must learn a diverse set
of motor skills and execute actions that are not only safe for its body but also feasible under local
environmental constraints, like clearance and terrain support. To this end, we propose an end-to-end,
embodied learning framework, LEGO-H (Fig. 2), short for Let Humanoids Go Hiking.

To fulfill the first requisite, LEGO-H employs two levels of modules within a unified policy learning
pipeline (Fig. 2b), combing a high-level navigation module (H) that encodes trail’s latent repre-
sentation and anticipates local goals, with a low-level motor skill module (E) that learns reactive
motor policy in real time. Specifically: 1) The high-level navigation module H, implemented via
TC-ViT (Sec. 4.2), acts as a trail scout, looking ahead and proposing local directions based on visual
cues, global goal, and motor execution. It receives the state sreal (depth images {Ck}Kk=1, propri-
oception Xpro, endpoint PB , and one middle waypoint M ), generates a latent trail representation
zuni, anticipates a sequence of N future local navigation goals G={gn}Nn=1, and calculates a goal
residual δg0 capturing the execution mismatch from the previous step. Each gn ∈ [0, 2π] represents
a goal direction as a yaw angle relative to the robot’s root. 2) Then, the latent trail representation
zuni, proprioception Xpro, residual δg0 , and the next anticipated goal g1, flow to the low-level motor
skill module E to guide softly. E plays the role of an agile trail runner, reacting in real time to
proprioceptive feedback and terrain conditions to decide how best to execute each step. It predicts an
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(b) Unified Hiking Policy Learning with Vision(a) Oracle Policy Learning for Motor Skills
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Figure 2: LEGO-H framework overview. LEGO-H equips humanoid robots with adaptive hiking skills by
integrating navigation H and locomotion E in a unified, end-to-end learning framework (b). To foster the
versatility of motor skills, we train the unified policy via privileged learning from the oracle policy (a).

executable action at. Rather than strictly tracking the sequence of local goals from H, E adapts to
local terrain and robot state to safely progress toward the endpoint.

By seamlessly leveraging visual and proprioceptive feedback within an RL framework, this unified
pipeline reflects HRL’s abstraction, where local goal anticipation and reactive control jointly enable
the robot to autonomously adapt local paths within traversable regions, avoiding entrapment and
collisions in challenging trail terrains, while maintaining steady progress toward the trail’s end.

LEGO-H achieves the second requisite by enhancing privileged learning scheme wrt structural
rationality of actions: 1) It first trains an oracle motor skill policy πtea(a|ssim) (Sec. 4.3) with
privileged information Xpri (e.g., terrain type, ground friction, precise state measurements) and
expert navigation goals as inputs (Fig. 2a). While vision is not used at this stage, scandots and Xpri

provide clean, informative signals for high-quality skill acquisition. 2) Then, in the unified pipeline
training, the teacher policy is distilled into E to initialize it. Aside from basic imitation losses and
rewards (Sec. 4.4), LEGO-H uses a Hierarchical Latent Matching metric (Sec. 4.5) to learn the final
policy πuni(a|sreal) that balances robustness and behavioral diversity across diverse trail terrains.

4.2 TC-ViT: Autonomous Local Goal Anticipation

The navigation module H is implemented via TC-ViT, a variant of Temporal Information Conditioned
Vision Transformer. It serves as a central mechanism to achieve unified policy learning with visual
perception, by addressing four critical aspects to navigation module: 1) cognize surroundings with
balance of short-time reactivity and final goal alignment, adapt anticipation of local goals to local
terrain with 2) spatial precision and 3) embodied awareness, and 4) produces representations with
synchronized perception and action (shown in Fig. 3).

1) Cognize surroundings with final goal. A common strategy for environment perception as-
sumes Markovian observations and processes adjacent depth images via methods like 3D mod-
eling [32]/reconstruction [37], temporal features [38], or semantic traversability [39]. However,
hiking poses two key challenges: 1) Time scale: short-term dynamics and long-term environmental
dependencies must be handled jointly. 2) Specificity: Visual features must directly support execution
of immediate next step while aligning with final goal.

Thus, a direct solution is to integrate local perception with a distant global goal PB , where we
employ a temporal vision transformer with goal conditioning (Fig.3a), adapted from classic ViViT’s
encoder[40]. It captures the information with both spatial and long-range dependencies via processing
16-frame depth sequences (downsampled to 4) into spatio-temporal tokens (from 16× 16 patches)
using 6 transformer layers with spatial and temporal attention. The final goal PB is tiled as an
additional (1,H,W ) channel (H=W =128) and fused at tokenization. This early fusion ensures goal
awareness is preserved throughout spatio-temporal reasoning, yielding more task-aligned predictions.
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Figure 3: TC-ViT Architecture. Three key components: a) a goal-orientated temporal transformer encoder for
robots cognizing surroundings with the final goal; b) a parallel process on the current depth frame for integrating
spatially precise information to reflect the current state c) a recurrent goal adaptation mechanism that integrates
visual awareness, goal information, and proprioception.

The encoder outputs a flattened feature vector α({Ck}Kk=1, PB). Intuitively, this part of TC-ViT
serves as a trail scout with a map in hand: it interprets what’s immediately ahead through sequences
of depth images, while constantly factoring in the direction of the final destination. Embedding the
goal early - before visual abstraction — ensures the robot always “looks” with intent, allowing it to
anticipate terrain-compatible moves that remain globally purposeful.

2) Anticipate near-future goals with spatial precision. While aboves might be effective to support
long-horizon goal prediction in coarse, body-agnostic navigation [41], humanoid hiking demands fine-
grained, multi-scale decision-making. On uneven trails with sudden obstacles (Fig. 1), precise foot
placement and rapid balance adjustments are critical - capabilities that suffer as temporal transformers
abstract away fine spatial structure critical for precise control.

The second component of TC-ViT (Fig. 3b) thus introduces a parallel path focused on immediate
perception. It processes the current depth image Ck=t through a shallow CNN, producing high-
resolution spatial features β(Ck=t) that capture near-field terrain details. This branch omits goal
conditioning, as its role is purely reactive.

The final representation γ combines long-range goal-informed context α with fine-grained local
perception β via feature concatenation followed by MLPs: γ = MLPs(concat(α,β)). Intuitively,
this merges the foresight of a trail guide - who knows where the path leads - with the reflexes of a
hiker watching their next step.

3) Adapt goals with embodied awareness. Beyond understanding environment, effective navigation
must also account for how motor actions and body state affect outcomes. TC-ViT includes a third
part - a recurrent goal adaptation mechanism (Fig. 3c) - that fuses visual features, proprioception, and
goal information to adaptively anticipate a sequence of local goals, and produce an embodied latent
representation.

Specifically, inputs including the visual representation γ, endpoint PB , intermediate cue Drm, and
proprioception Xpro are passed through a two-layer MLP and a GRU to model temporal dependencies:
zuni, δg0, G = GRU(MLPs(γ, PB ,Drm,Xpro)). The resulting latent encodes perceptual context,
physical embodiment. The residual correction δg0 and near-future goals G provide soft guidance for
the locomotion module. Intuitively, this mechanism helps the robot learn not just what it sees, but
how it moves through what it sees, adapting its local goals based on how past actions played out, and
staying grounded in both vision and bodily awareness (as shown in Fig 4).
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Figure 4: Dynamic adjustments of near goal anticipation. Snapshots from left to right show a robot traversing
mixed terrains along a trail. TC-ViT does not provide a fixed trajectory that locomotion module must rigidly
follow. Instead, it predicts several near-future goals (g1, g2, g3), which dynamically adapt to robot’s current state,
reflecting real-time adjustments to its navigation decisions. Bubble size (large→ small) represents predicted
local navigation direction.

4) Synchronize perception and control. Real-world systems operate at mismatched time scales, e.g.,
Unitree H1’s depth sensing runs at 10± 2 Hz with RealSense D435i, while control executes at 50 Hz
on Jetson NX. TC-ViT addresses this latency gap with two strategies. 1. Nearest-goal forwarding:
Only the immediate goal g1 is passed to the locomotion module, ensuring timely response and
reducing drift from delayed decisions. Intuitively, this reflects the idea that – while multiple goals are
anticipated, only the immediate one shapes action, as it reflects the step that matters right now. 2.
Latent tiling: The latent representation zuni is tiled five times per control cycle to maintain a stable
signal stream. Together, these mechanisms bridge asynchronous modules and allow perception and
action to stay in sync despite hardware-level delays.

4.3 Oracle Policy Learning for Motor Skills

Before unifying navigation and locomotion via TC-ViT, we pretrain an oracle locomotion policy
(Fig. 2a) to acquire diverse motor skills. The oracle takes as input proprioception Xpro, current
navigation goal, privileged state Xpri, and latent terrain features ztea from scandots S ∈ R66×2. To
encourage upright locomotion with emergent motor behavior rather than pre-defined modes, rewards
in three aspects are essential in this stage: 1) direction-aligned velocity tracking rtracking, 2) soft torso
height constraint rbase-height, 3) foot airtime accumulation rair-time.

4.4 Unified Hiking Policy Learning with Vision

After training the oracle policy πtea(a|ssim), we distill it into a unified student policy πuni(a|sreal)
that jointly learns navigation and motor control from visual input (Fig. 2b). Specifically, TC-ViT
encodes depth sequences into latent zuni and predicts near-future goals. The tuple (zuni, δg0 , g1) is
passed to the locomotion module to compute πuni(a|sreal), which outputs current action at. Both
policies are implemented as MLPs. Basic training losses here are RL rewards and reconstructions for
imitation in goal, latent, and action levels from teacher stage:

Lim = w1∥ztea − zuni∥2 + w2 SmoothL1(Gtea,Guni)

+ w3 SmoothL1(atea,auni). (1)
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The oracle acts as a mentor guiding student through complex terrain. By initializing πuni via imitation
and optimizing it together with TC-ViT under RL framework, πuni learns to align vision, planning,
and control into a cohesive behavior.

4.5 Hierarchical Latent Matching Metric

Standard action imitation loss aggregates per-joint errors, overlooking joint coordination. Thus, we
introduce Hierarchical Latent Matching (HLM) loss metric, which captures structural dependencies
to bound the student’s action space. We first train a masked VAE on oracle actions to learn a latent
space that encodes joint coordination. During distillation, student policy is guided to match this
latent structure, promoting physically coherent and well-coordinated actions despite modality and
representation gaps. Analogous to feature matching in image reconstruction, this method shifts
imitation from pointwise joint matching to holistic joint pattern matching, treating the body as a
coordinated system rather than a set of independent joints.

Specifically, during distillation, VAE is iteratively trained on teacher actions with randomly masked
joints, learning to reconstruct full actions from partial inputs, where:

Lrec = w4LKL + w5Lself + w6Lmask (2)
LKL = KL (q(zvae|atea) ∥ N (0, I)) (3)
Lself = SmoothL1(Dec(Enc(atea)),atea) (4)
Lmask = SmoothL1(Dec(Enc(atmask)),atea) (5)

Here, wx are weighting terms, zvae is latent vector, and atmask denotes masked teacher action. KL
term follows VAE formulation [16]. To handle joint permutation invariance, we apply sine-cosine
positional embeddings to each joint. The compact latent space, regularized by the Gaussian prior
and enriched by masking, encourages learning of inter-joint dependencies and structural consistency,
capturing coordination patterns aligned with the robot’s physical embodiment, rather than relying on
human motion priors.

Once trained, the encoder defines a structured feature space for comparing teacher and student actions.
We utilize it to introduce a two-level HLM loss: full-feature alignment and masked-subset matching.

Concretely, for each student action auni, we compute a cosine similarity loss with the teacher action:

Lts = 1− cos_sim(Enc(atea),Enc(auni)) (6)

= 1− Enc(atea) · Enc(auni)
∥Enc(atea)∥∥Enc(auni)∥

(7)

We further apply a triplet-style consistency loss using a randomly masked student action:

Ltrip = cmt(1− cos_sim(Enc(atea),Enc(aumask)))

+ cms(1− cos_sim(Enc(auni),Enc(aumask))) (8)

The combined hierarchical loss is:

Lhie = w7Lts+ w8Ltrip (9)

As shown in Tab. 1, without HLM, student robots can complete the task but with frequent collisions
and poor coordination. In contrast, HLM promotes robots to exhibit more refined, collision-free
movements that align better with internal structural consistency.

5 Experiments

5.1 Experimental Settings

Robots. We use Unitree H1 [42] and G1 [43] humanoids, chosen for their distinct differences in body
scale and mechanism: H1, at adult size (5.9 ft/47kg), contrasts with kid-sized G1 (4.26 ft/35kg), with
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Table 1: Ablation of LEGO-H’on H1. for best goal completeness; for most safeness; for best efficiency.

Metrics Oracle LEGO-H w TC-ViT Vanilla

Success Rate (SR) (%) ↑ 71.20± 0.72 68.40± 1.34 64.73± 2.22 42.97± 0.67
Trail Completion (TC) (%) ↑ 77.73± 0.92 52.78± 1.30 52.50± 1.52 32.01± 0.61

Traverse Rate (TR) (%) ↑ 73.60± 0.81 71.96± 2.37 72.04± 0.98 60.26± 0.94
MEV (%) ↓ 7.12± 0.92 7.84± 0.92 10.40± 1.50 9.41± 1.27
TTF (s) ↑ 7.25± 0.09 7.46± 0.17 7.00± 0.20 5.36± 0.10
T2R (s) ↓ 4.59± 0.08 4.95± 0.12 5.13± 0.12 6.50± 0.07

notable variations in torque density and morphology. These inherent differences impact key factors
like visual perception range/motor stability/overall movement complexity even within identical trails.

Implementations. Proprioception (Xpro ∈ R45): covers lower-body joint positions, velocities, torso
roll and pitch, foot contact indicators, and previous action at−1 for both robots. Actions (at ∈ R10):
the learned policy uses position control for joints, with positions converted to torque via a PD
controller τ = Kp(q̂ − q) + Kd( ˙̂q − q̇) with fixed gains (Kp and Kd follow default configuration
of Unitree). Training: for both oracle and unified policy training, we use PPO [44], supported by
Dagger [45] and Actor-Critic [46] for privileged learning. Rewards follow those introduced in method
section, with additional basic elements from [38, 47]. All physics simulations perform in Isaac Gym
simulator [48].

Metrics. We evaluate models based on three core criteria with levels of granularity: goal complete-
ness, safeness, and efficiency. Concretely, we use 6 evaluation metrics – (1) Goal Completeness:
Success Rate (%) measuring the percentage of episodes where robots reach the hiking endpoint;
Trail Completion (%) indicating the portion of the trail route a robot passed; and Traverse Rate
(%) reflecting the distance from robot’s final position (if not complete goal) to endpoint relative
to total trail length. (2) Safeness: MEV (%) assessing foot-edge collisions; and TTF (seconds)
evaluating robot stability based on episode duration before a fall occurs. (3) Efficiency: Time-to-
Reach (seconds) measuring average time required for successful episodes to reach endpoint. Unless
specified, experiments are conducted with 512 randomly spawned robots over 30 seconds on 5 distinct
trail types, each featuring 5 difficulty levels. Results are averaged over 5 runs to minimize random
biases and verify robustness.

5.2 Ablation Study

Settings. We compare full LEGO-H with following designs: (1)Oracle: trained with access to
privileged info and expert-designed navigation goals, representing an upper-bound performance.(2)
w TC-ViT: LEGO-H trained without Hierarchical Latent Matching (HLM) loss metric. (3)Vanilla:
LEGO-H variant where TC-ViT is replaced by a ConvGRU to predict latent and goal, altering the
navigation mechanism.

Results. Tab 1 indicates several insights. (1) TC-ViT is essential for basic hiking functionality. The
consistent, significant performance advantage of w TC-ViT over Vanilla across all metrics, except
MEV, reveals the essence of balancing the goal, physical state, and visual perception, which is
crucial for coordination between navigation and locomotion.(2) Structural action behavior helps
more efficient goal accomplishment and better stability. The absence of HLM (w TC-ViT) results in
behaviors that complete tasks but compromise stability, often leading to mechanical risks (worse MEV
than others). Including HLM (LEGO-H) ensures coordinated joint actions that align with the robot’s
physical structure, promoting both task success (SR rises from 64.73% to 68.40%) and mechanical
integrity (MEV goes from 10.40% to 7.84%, TTF increase to 7.46s), leading to more efficient task
accomplishment (T2R improves from 5.13s to 4.95s). (3) LEGO-H rivals oracle in efficiency and
safety. Compared to oracle which has perfect observation conditions and expert navigation goals,
LEGO-H falls behind on success rate and trail completion. But surprising aspects are the efficiency
and safeness, where LEGO-H’s performances are comparable to or slightly better than oracle. This
stresses again LEGO-H’s effectiveness and capacity.
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Figure 5: Locomotion in diverse trail terrains. Robots developed distinct motor skills to tackle different
terrains, e.g., walking on rough surfaces/leaping across ditches/leaning away high obstacles.

Detour around Obstacle
Skip Obstacle

Figure 6: Navigation in diverse situations. Robots developed different navigation skills, such as directly
skipping a small obstacle and detouring around a high obstacle to edge through.

5.3 Emerged Behaviors in Different Situations

We further explore the behaviors that emerge in humanoid robots to unfold how robots autonomously
adapt their motor skills and decision-making in response to various factors.

Locomotion in diverse trail terrains. Different terrains trigger distinct locomotion behaviors, like
walking, stepping, jumping, leaping, and leaning (Fig 5). Key observations include: (1) H1 robots
typically opt for a walking gait on continuous surfaces, regardless of variations in friction, adjusting
their body tilt as needed to maintain balance (Fig. 5a). (2) Irregular surfaces, like fractured or sloped
terrains, prompt gaits like stepping, jumping, or leaping, depending on slope and gap size (Fig. 5b).
(3) In tight spaces, such as cracks between large obstacles, H1’s adapt by leaning sideways to navigate
through these confined areas (Lean in Fig. 5b).

Navigation in blocked paths. Two key behaviors are evident from Fig 6: (1) When faced with tall or
large obstacles, the robots typically choose to detour, maintaining a safe clearance from the obstacles.
(2) For obstacles below hip height, the robots initially attempt to stride or step over; if unsuccessful,
they then choose to detour. These phenomena reveal the embodied character in high-level decisions.

Motor behavior differences between robots. As shown in Fig 7, when encountering identical
trails like transitions between platform and flat ground, H1 and G1 exhibit different behaviors. H1
navigates down smoothly, while G1 bends its knees to jump down. This difference highlights the
impact of physical mechanisms on emergent motor styles.

5.4 Humanoid Hiking Benchmark

Settings. Since current research does not directly support humanoid hiking, we selected two
representative quadruped pipelines, adapting them to this task using the same input structure and
oracle policy as LEGO-H. This setup allows us to investigate several key factors essential for effective
humanoid hiking. The first adapted pipeline, EP-H, represents a modified humanoid-hiking version
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Walk Down Leap Down

Figure 7: Motor behavior differences between robots. Robots with different structures developed unique skills
– H1, which is higher and heavier, chooses to “walk down” step, while G1, which is shorter and more lightweight,
chooses to “leap down” the step.

LEGO-H EP-H RMA-B RMA-H LEGO-H EP-H RMA-B RMA-H
(b)(a)

LEGO-H EP-H RMA-B RMA-H
(c)

Figure 8: Qualitative comparisons between LEGO-H and other benchmarked methods. The trajectories,
visualized through dynamically updated colored lines, depict the robots’ torso position as they traverse diverse
trail environments. (a) illustrates the performance on a RandomMix trail featuring unobstructed views with varied
terrain types. (b) highlights the results on a Ditch trail, where uneven terrain with slopes and gaps demands quick
turns and agile leaps. (c) showcases the performance on a Forest trail, where extensive obstacles of different
sizes and heights block the robot’s view. The zoom-in regions highlight the issues of the robots.

Table 2: Humanoid hiking benchmark for H1 across all trail categories. / / show best goal complete-
ness/safeness/efficiency.

Metrics LEGO-H EP-H RMA-H RMA-B

Success Rate (%) ↑ 68.40± 1.34 28.80± 0.88 65.17± 2.05 48.11± 0.72
Trail Completion (%) ↑ 52.78± 1.30 25.98± 0.22 52.51± 1.41 41.92± 0.34

Traverse Rate (%) ↑ 71.96± 2.37 64.16± 0.48 74.61± 0.93 69.85± 1.50
MEV (%) ↓ 7.84± 0.92 12.44± 1.32 8.70± 1.55 10.74± 1.13
TTF (s) ↑ 7.46± 0.17 4.64± 0.13 6.97± 0.17 5.22± 0.03

Time-to-Reach (s) ↓ 4.95± 0.12 9.79± 0.16 4.98± 0.11 6.19± 0.05

of EP [38]. The main methodological difference between EP-H and LEGO-H is that EP-H handles
visual-aware navigation and locomotion by processing each depth frame independently, disregarding
farther depth data to avoid distributional shifts. RMA-H and RMA-B are the adapted pipeline from
RMA [15] – the former has vision inputs, and the later is blind. This pipeline originally supports
blind locomotion, and employs a frozen oracle policy with an adapter network to map real-world
sensory data to oracle’s latent space for policy adaptation.

Results. We focus on three vital questions from the benchmark: 1) Is visual perception essential
for integrated navigation and locomotion? 2) What type of visual information is most effective? 3)
Is unified cross-level learning necessary? Key findings in Tab 2 and Fig 8 revel the answers:(1)
Vision is essential. Without vision, RMA-B struggles across all metrics, highlighting the need for
visual feedback. (2) Goal-aligned, multi-scale visual perception is critical. EP-H, which processes
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each depth frame independently without continuous goal alignment, and brute-force cutoff distance
information, results in frequent circles and fails to lock onto navigation paths. The performance
gap between LEGO-H and EP-H across metrics underscores the importance of structured visual
information. (3) Unified learning is vital for adaptability. RMA-H performs adequately on straight
paths but fails with turns or obstacles, showing that locomotion feedback alone is insufficient for
embodied-aware decision-making. A unified learning framework supports essential cross-level
interaction, enabling adaption and effectiveness across all levels.

6 Conclusion

We propose humanoid hiking as a new testbed for advancing research in embodied autonomy.
To address the challenges it poses, we introduce LEGO-H, a unified policy learning framework
that highlights the importance of integrative skill development for a humanoid to autonomously
accomplish complex tasks like hiking. Experiments demonstrate effectiveness of LEGO-H and also
uncover promising directions for future research, like whole-body control, long-horizon exploration,
and visual-motor coordination.

Rear-arm Tuck Athletic Twisting Stride

with Arms

Lower Body

Figure 9: Preliminary observations for future work on Whole-body Control setting. G1 exhibits distinct
motor behaviors over with arms vs only lower body. Besides, G1 emerges a rear-arm tuck posture while walking,
likely to minimize arm interference with vision (see depth map).

7 Limitations

There are four limitations: (1) Kilometer-scale hiking. In this paper, we investigate humanoid robots
on prototype trails to establish a baseline on the importance of integrative high-level navigation
and low-level motor skills. However, real-world trails are considerably more complex, with long-
distance traverse challenges. Future work could expand the framework to handle kilometer-scale
trails, where sustained adaptability, energy efficiency, and long-term planning become crucial. (2)
Whole-body control for integrative navigation and locomotion skills. Expanding control across the
entire body would enable a wider spectrum and adaptive behaviors, enhancing the robot’s flexibility
in complex, obstacle-rich environments. Our preliminary results suggest that while robots exhibit
distinct motor styles based on physical constraints(Fig. 9), direct involvement of the upper body
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does not significantly impact performance in a positive manner. This opens opportunities for future
work on exploring how coordinated whole-body strategies can enhance performance. (3) Simulated
environment upgrading. Our current simulated trails are primarily for foot contact; Future work
could upgrade the simulated environment to better incorporate whole-body interactions, enabling
a better testbed for future hiking studies. (4) Real-world deployment. In this paper, we conduct
experiments on the simulator, enabling controlled benchmarking, rapid iteration, and reproducibility
— key prerequisites for real-world deployment. However, applying LEGO-H to real-world scenarios
remains a vital next step toward closing the sim-to-real gap and realizing field-ready humanoid hikers.
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