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Abstract

This paper considers incremental few-shot learning, which requires a model to
continually recognize new categories with only a few examples provided. Our
study shows that existing methods severely suffer from catastrophic forgetting,
a well-known problem in incremental learning, which is aggravated due to data
scarcity and imbalance in the few-shot setting. Our analysis further suggests that
to prevent catastrophic forgetting, actions need to be taken in the primitive stage –
the training of base classes instead of later few-shot learning sessions. Therefore,
we propose to search for flat local minima of the base training objective function
and then fine-tune the model parameters within the flat region on new tasks. In
this way, the model can efficiently learn new classes while preserving the old ones.
Comprehensive experimental results demonstrate that our approach outperforms
all prior state-of-the-art methods and is very close to the approximate upper bound.
The source code is available at https://github.com/moukamisama/F2M.

1 Introduction

Why study incremental few-shot learning? Incremental learning enables a model to continually
learn new concepts from new data without forgetting previously learned knowledge. Rooted from
real-world applications, this topic has attracted a significant amount of interest in recent years [5, 30,
31, 40, 26]. Incremental learning assumes sufficient training data is provided for new classes, which
is impractical in many application scenarios, especially when the new classes are rare categories
which are costly or difficult to collect. This motivates the study of incremental few-shot learning, a
more difficult paradigm that aims to continually learn new tasks with only a few examples.

Challenges. The major challenge for incremental learning is catastrophic forgetting [14, 28, 35],
which refers to the drastic performance drop on previous tasks after learning new tasks. This
phenomenon is caused by the inaccessibility to previous data while learning on new data. Catastrophic
forgetting presents a bigger challenge for incremental few-shot learning. Due to the small amount of
training data in new tasks, the model tends to severely overfit on new classes while quickly forgetting
old classes, resulting in catastrophic performance.

Current research. The study of incremental few-shot learning has just started [47, 41, 60, 9, 8,
34, 59]. Current works mainly borrow ideas from research in incremental learning to overcome the
forgetting problem, by enforcing strong constraints on model parameters to penalize the changes
of parameters [34, 28, 56], or by saving a small amount of exemplars from old classes and adding
constraints on the exemplars to avoid forgetting [40, 20, 4]. However, in our empirical study, we find
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that an intransigent model that only trains on base classes and does not tune on new tasks consistently
outperforms state-of-the-art methods, including a joint-training method [47] that uses all encountered
data for training and hence suffers from severe data imbalance. This observation motivates us to
address this harsh problem from a different angle.

Our solution. Unlike existing solutions that try to overcome the catastrophic forgetting problem
during the process of learning new tasks, we adopt a different approach by considering this issue
during the training of base classes. Specifically, we propose to search for flat local minima of the base
training objective function. For any parameter vector in the flat region around the minima, the loss is
small, and the base classes are supposed to be well separated. The flat local minima can be found
by adding random noise to the model parameters for multiple times and jointly optimizing multiple
loss functions. During the following incremental few-shot learning stage, we fine-tune the model
parameters within the flat region, which can be achieved by clamping the parameters after updating
them on few-shot tasks. In this way, the model can efficiently learn new classes while preserving the
old ones. Our key contributions are summarized as follows:

• We conduct a comprehensive empirical study on existing incremental few-shot learning
methods and discover that a simple baseline model that only trains on base classes outper-
forms state-of-the-art methods, which demonstrates the severity of catastrophic forgetting.

• We propose a novel approach for incremental few-shot learning by addressing the catas-
trophic forgetting problem in the primitive stage. Through finding the flat minima region
during training on base classes and fine-tuning within the region while learning on new
tasks, our model can overcome catastrophic forgetting and avoid overfitting.

• Comprehensive experimental results on CIFAR-100, miniImageNet, and CUB-200-2011
show that our approach outperforms all state-of-the-art methods and achieves performance
that is very close to the approximate upper bound.

2 Related Work

Few-shot learning aims to learn to generalize to new categories with a few labeled samples in each
class. Current few-shot methods mainly include optimization-based methods [12, 23, 32, 39, 45,
46, 55] and metric-based methods [13, 19, 44, 49, 52, 58, 57, 53]. Optimization-based methods
can achieve fast adaptation to new tasks with limited samples by learning a specific optimization
algorithm. Metric-based approaches exploit different distance metrics such as L2 distance [44],
cosine similarity [49], and DeepEMD [58] in the learned metric/embedding space to measure the
similarity between samples. Recently, Tian et al. [48] find that standard supervised training can learn
a good metric space for unseen classes, which echoes with our observation on the proposed baseline
model in Sec. 3.

Incremental learning focuses on the challenging problem of continually learning to recognize
new classes in new coming data without forgetting old classes [6, 7, 10, 51]. Previous research
mainly includes multi-class incremental learning [4, 38, 22, 33, 54, 51] and multi-task incremental
learning [21, 31, 42]. To overcome the catastrophic forgetting problem, some attempts propose to
impose strong constraints on model parameters by penalizing the changes of parameters [28, 1].
Other attempts try to enforce constraints on the exemplars of old classes by restricting the output
logits [40] or penalizing the changes of embedding angles [20]. In this work, our empirical study
shows that imposing strong constraints on the arriving new classes may not be a promising way to
tackle incremental few-shot learning, due to the scarcity of training data for new classes.

Incremental few-shot learning [47, 41, 60, 9, 8] aims to incrementally learn from very few samples.
TOPCI [47] proposes a neural gas network to learn and preserve the topology of the feature manifold
formed by different classes. FSLL [34] only selects few model parameters for incremental learning
and ensures the parameters are close to the optimal ones. To overcome catastrophic forgetting,
IDLVQC [8] imposes constraints on the saved exemplars of each class by restricting the embedding
drift, and Zhang et al. [59] propose to fix the embedding network for incremental learning. Similar to
the finding of Zhang et al., we also discover that an intransigent model that simply does not adapt to
new tasks can outperform prior state-of-the-art methods.

Robust optimization. It has been found that flat local minima leads to better generalization capabili-
ties than sharp minima in the sense that a flat minimizer is more robust when the test loss is shifted
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due to random perturbations [18, 17, 24]. A substantial body of methods [2, 37, 11, 15] have been
proposed to optimize neural networks towards flat local minima. In this paper, we show that for
incremental few-shot learning, finding flat minima in the base session and tuning the model within
the flat region on new tasks can significantly mitigate catastrophic forgetting.

3 Severity of Catastrophic Forgetting in Incremental Few-Shot Learning

3.1 Problem Statement

Incremental few-shot learning (IFL) aims to continually learn to recognize new classes with only few
examples. Similar to incremental learning (IL), an IFL model is trained by a sequence of training
sessions {D1, · · · ,Dt}, where Dt = {zi = (xti, y

t
i)}i is the training data of session t and xti is an

example of class yti ∈ Ct (the class set of session t). In IFL, the base session D1 usually contains
a large number of classes with sufficient training data for each class, while the following sessions
(t ≥ 2) only have a small number of classes with few training samples per class, e.g., Dt is often
presented as an N -way K-shot task with small N and K. The key difference between IL and IFL
is, for IL, sufficient training data is provided in each session. Similar to IL, in each training session
t of IFL, the model has only access to the training data Dt and possibly a small amount of saved
exemplars from previous sessions. When the training of session t is completed, the model is evaluated
on test samples from all encountered classes C =

⋃t
i=1 Ci, where it is assumed that there is no

overlap between the classes of different sessions, i.e., ∀i, j and i 6= j, Ci
⋂
Cj = ∅.

Catastrophic forgetting. IFL is undoubtedly a more challenging problem than IL due to the data
scarcity setting. IL suffers from catastrophic forgetting, a well-known phenomenon and long-standing
issue, which refers to the drastic drop in test performance on previous (old) classes, caused by the
inaccessibility of old data in the current training session. Unfortunately, catastrophic forgetting is an
even bigger issue for IFL, because data scarcity makes it difficult to adapt well to new tasks and learn
new concepts, while the adaptation process could easily lead to the forgetting of base classes. In the
following, we illustrate this point by evaluating a simple baseline model for IFL.

3.2 A Simple Baseline Model for IFL

We consider an intransigent model that simply does not adapt to new tasks. Particularly, the model
only needs to be trained in the base session D1 and is directly used for inference in all sessions.

Training (t = 1). We train a feature extractor f parameterized by φ with a fully-connected layer
as classifier by minimizing the standard cross-entropy loss using the training examples of D1. The
feature extractor f is fixed for the following sessions (t ≥ 2) without any fine-tuning on new classes.

Inference (test). In each session, the inference is conducted by a simple nearest class mean (NCM)
classification algorithm [36]. Specifically, all the training and test samples are mapped to the
embedding space of the feature extractor f , and Euclidean distance d(·, ·) is used to measure the
similarity between them. The classifier is given by

c?k = argmin
c∈C

d(f(x;φ), pc), where pc =
1

Nc

∑
i

1(yi = c)f(xi;φ), (1)

where C denotes all the encountered classes, pc refers to the prototype of class c (the mean vector of
all the training samples of class c in the embedding space), and Nc denotes the number of the training
images of class c. Note that we save the prototypes of all classes in Ct for later evaluation.

The baseline model outperforms state-of-the-art IFL and IL methods. We compare the above
baseline model against state-of-the-art IFL methods including FSLL [34], IDLVQC [8] and
TOPIC [47], IL methods including Rebalance [20] and iCarl [40], and a joint-training method
that uses all previously seen data including the base and the following few-shot tasks for training,
for IFL. The performance is evaluated on miniImageNet, CIFAR-100, and CUB-200. We tune the
methods re-implemented by us to the best performance. For the other methods, we use the results
reported in the original papers. The experimental details are provided in Sec. 5. As shown in Fig. 1,
the baseline model consistently outperforms all the compared methods including the joint-training
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Figure 1: Comparison of the proposed baseline model with state-of-the-art IFL and IL methods and
the joint-training method.The baseline model outperforms all the other methods.

method (which suffers from severe data imbalance) on every dataset3. The fact that an intransigent
model performs best suggests that

• For IFL, preserving the old (base classes) may be more critical than adapting to the new.
Due to data scarcity, the performance gain on new classes is limited and cannot make up for
the significant performance drop on base classes.

• Prior works [47, 8, 34, 20, 40] that enforce strong constraints on model parameters or exem-
plars during fine-tuning on new classes cannot effectively prevent catastrophic forgetting in
IFL, indicating that actions may need to be taken in the base training stage.

4 Overcoming Catastrophic Forgetting in IFL by Finding Flat Minima

The goal of IFL is to preserve the old while adapting to the new efficiently. The results and analysis
in Sec. 3 suggest that it might be “a bit late” to try to prevent catastrophic forgetting in the few-shot
learning sessions (t ≥ 2), which motivates us to consider this problem in the base training session.

Overview of our approach. To overcome catastrophic forgetting in IFL, we propose to find a b-flat
(b > 0) local minima θ? of the base training objective function and then fine-tune the model within
the flat region in later few-shot learning sessions. Specifically, for any parameter vector θ in the flat
region, i.e., θ?− b � θ � θ?+ b, the risk (loss) of the base classes is minimized such that the classes
are well separated in the embedding space of fθ. In the later incremental few-shot learning sessions
(t ≥ 2), we fine-tune the model parameters within this region to learn new classes, i.e., to find

θ′ = argmin
θ

∑
z∈Dt

L(z; θ), s.t. θ? − b � θ � θ? + b.

As such, the fine-tuned model θ′ can adapt to new classes while preserving the old ones. Also, due
to the nature of few-shot learning, to avoid excessive training and overfitting, it suffices to tune the
model in a relatively small region. A graphical illustration of our approach and prior arts, as well as
the notions of sharp minima and flat minima, are presented in Fig. 2.

4.1 Searching for Flat Local Minima in the Base Training Stage

A formal definition of b-flat local minima is given as follows.

Definition 1 (b-Flat Local Minima). Given a real-valued objective function L(z; θ), for any b > 0,
θ? is a b-flat local minima of L(z; θ), if the following conditions are satisfied.

• Condition 1: L(z; θ?) = L(z; θ? + ε), where −b � ε � b and bi = b.

• Condition 2: there exist c1 ≺ θ? − b and c2 � θ? + b, s.t. L(z; θ) > L(z; θ?), where
c1 ≺ θ ≺ θ? − b and L(z; θ?) < L(z; θ), where θ? + b ≺ θ ≺ c2.

3We notice that a similar observation is made in a newly released paper [59].
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Figure 2: Illustration of our approach and existing solutions. → indicates the incremental learning
steps on new classes. R1 and R2 respectively denote the loss of base classes before and after
minimizing the loss of new classes. (a) SGD finds sharp minima in the base training. Directly tuning
the model on new classes will result in a severe performance drop on base classes. (b) Enforcing
strong constraints on parameters by penalizing parameter changes [1, 28, 34] may still lead to a
significant performance drop on base classes. (c) Finding flat local minima of base classes and
clamping the parameters after trained on new classes to make them fall within the flat region can
effectively mitigate catastrophic forgetting.

In practice, it is hard to find the flat local minima that strictly satisfies the above definition, which
may not even exist. Hence, our goal is to find an approximately flat local minima of the base training
objective function. To this end, we propose to add some small random noise to the model parameters.
The noise can be added for multiple times to obtain similar but different loss functions, which will be
optimized together to locate the flat minima region. The intuition is clear – the parameter vectors
around the flat local minima also have small function values.

To formally state the idea, we assume that the model is parameterized by θ = {φ, ψ}, where φ
denotes the parameters of the embedding network and ψ denotes the parameters of the classifier.
z denotes a labelled training sample. Denote the loss function by L: Rdz → R. Our target is to
minimize the expected loss function R: Rd → R w.r.t. the joint distribution of data z and noise ε, i.e.,

R(θ) =

∫
Rdε

∫
Rdz
L(z;φ+ ε, ψ) dP (z)dP (ε) = E[L(z;φ+ ε, ψ)], (2)

where P (z) is the data distribution and P (ε) is the noise distribution, and z and ε are independent.
Since it is impossible to minimize the expected loss, we minimize its estimation, the empirical loss,
which is given by

L(θ) = 1

M

M∑
j=1

Lbase(z;φ+ εj , ψ), where (3)

Lbase(z;φ+ εj , ψ) =
1

|D1|
∑
z∈D1

Lce(z;φ+ εj , ψ) + λ
1

|C1|
∑
c∈C1
‖pc − p∗c‖22, (4)

where εj is a noise vector sampled from P (ε), M is the sampling times, Lce(z;φ + εj , ψ) refers
to the cross-entropy loss of a training sample z, and pc and p∗c are the class prototypes before and
after injecting noise respectively. The first term of Lbase is designed to find the flat region where
the parameters φ of the embedding network can well separate the base classes. The second term
enforces the class prototypes fixed within such region, which is designed to solve the prototype drift
problem [54, 8] (the class prototypes change after updating the network) in later incremental learning
sessions such that the saved base class prototypes can be directly used for evaluation in later sessions.

4.2 Incremental Few-shot Learning within the Flat Region

In the incremental few-shot learning sessions (t ≥ 2), we fine-tune the parameters φ of the embedding
network within the flat region to learn new classes. It is worth noting that while the flat region might
be relatively small, it is enough for incremental few-shot learning. Because only few training samples
are provided for each new class, to prevent overfitting in few-shot learning, excessive training should
be avoided and only a small number of update iterations should be applied.
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Algorithm 1: F2M
Input: the flat region bound b, randomly initialized θ = {φ, ψ}, the step sizes α and β.
// Training over base classes t = 1
for epoch k = 1,2,... do

for j = 1,2,..., M do
Sample a noise vector εj ∼ P (ε), s.t. −b � εj � b;
Add the noise to the parameters of the embedding network, i.e., θ = {φ+ εj , ψ};
Compute the base loss Lbase with Eq. 4;
Reset the parameters, i.e., θ = {φ, ψ};

end
Update θ = θ − α∇L(θ) with the loss L defined in Eq. 3.

end
Normalize and save the prototype of each base class;

// Incremental learning t ≥ 2
Combine the training data Dt and the exemplars saved in previous few-shot sessions 2 ≤ te < t;
for epoch k = 1,2,... do

Compute the metric-based classification loss Lm by Eq. 5;
Update φ = φ− β∇Lm(z;φ);
Clamp the parameters φ to ensure they fall in the flat minima region;

end
Randomly select and save a few exemplars from the training data Dt;
Normalize and save the prototype of each new class;
Output: Model parameters θ = {φ, ψ}.

We employ a metric-based classification algorithm with Euclidean distance to fine-tune the parameters.
The loss function is defined as

Lm(z;φ) = −
∑
z∈D

∑
c∈C

1(y = c) log(
e−d(pc,f(x;φ))∑

ck∈C e
−d(pck ,f(x;φ))

), z (5)

where d(·, ·) denotes Euclidean distance, pc is the prototype of class c, C =
⋃t
i=1 Ci refers to all

encountered classes, and D = Dt
⋃
P denotes the union of the current training data Dt and the

exemplar set P = {P2, ..., Pt−1}, where Pte(2 ≤ te < t) is the set of saved exemplars in session te.
Note that the prototypes of new classes are computed by Eq. 1, and those of base classes are saved in
the base session. After updating the embedding network parameters, we clamp them to ensure that
they fall within the flat region, i.e. φ? − b � φ � φ? + b, where φ? denotes the optimal parameter
vector learned in the base session. After fine-tuning, we evaluate the model using the nearest class
mean classifier as in Eq. 1, with previously saved prototypes and newly computed ones. The whole
training process is described in Algorithm 1. Note that to calibrate the estimates of the classifier, we
normalize all prototypes to make those of base classes and those of new classes have the same norm.

4.3 Convergence Analysis

Our aim is to find a flat region within which all parameter vectors work well. We then minimize the
expected loss w.r.t. the joint distribution of noise ε and data z. To approximate this expected loss,
we sample from P (ε) for multiple times in each iteration and optimize the objective function using
stochastic gradient descent (SGD). Here, we provide theoretical guarantees for our method. Given
the non-convex loss function in Eq. 3, we prove the convergence of our proposed method. The proof
idea is inspired by the convergence analysis of SGD [3, 27].

Formally, in each batch k, let zk denote the batch data, {εj}Mj=1 be the sampled noises, and αk be the
step size. In the base training session, we update the model parameters as follows:

θk+1 = θk −
αk
M

M∑
j=1

∇Lbase(zk;φk + εj , ψk) = θk −
αk
M

M∑
j=1

g(zk;φk + εj , ψk), (6)

where g(zk;φk + εj , ψk) = ∇Lbase(zk;φk + εj , ψk) is the gradient. To formally analyze the
convergence of our algorithm, we define the following assumptions.
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Assumption 4.1 (L-smooth risk function). The expected loss function R : Rd → R (Eq. 2) is
continuously differentiable and L-smooth with constant L > 0 such that

‖∇R(θ)−∇R(θ′)‖2 ≤ L‖θ − θ′|. (7)

This assumption is significant for the convergence analysis of gradient-based optimization algorithms,
since it limits how fast the gradient of the loss function can change w.r.t. the parameter vector.
Assumption 4.2. The expected loss function satisfies the following conditions:

• Condition 1: R is bounded below by a scalar R?, given the sequence of parameters {θk}.

• Condition 2: For all k ∈ N and j ∈ [1,M ],

Ezk,εj [g(zk;φk + εj , ψk)] = ∇R(θk). (8)

• Condition 3: There exist scalars m1 ≥ 0 and m2 ≥ 0, for all k ∈ N and j ∈ [1,M ],

Vzk,εj [g(zk;φk + εj , ψk)] ≤ m1 +m2‖∇R(θk)‖22. (9)

Ezk,εj [·] denotes the expectation w.r.t. the joint distribution of random variables zk and εj , and
Vzk,εj [·] denotes the variance. Condition 1 ensures that the expected loss R is bounded by a
minimum value R? during the updates, which is a natural and practical assumption. Condition 2
assumes that the gradient g(zk;φk + εj , ψk) is an unbiased estimate of ∇R(θk). This is a strict
assumption made to simplify the proof, but it can be easily relaxed to a general and easily-met
condition that there exist µ1 ≥ µ2 > 0 satisfying ‖Ezk,εj [g(zk;φk + εj , ψk)]‖2 ≤ µ1‖∇R(θk)‖2
and∇R(θk)TEzk,εj [g(zk;φk+εj , ψk)] ≥ µ2‖∇R(θk)‖22. Therefore, the convergence can be proved
in a similar way using the techniques presented in the Appendix. Condition 3 assumes the variance
of the gradient g(zk;φk + εj , ψk) cannot be arbitrarily large, which is also reasonable in practice. To
facilitate later analysis, similar to [43], we restrict the step sizes as follows.
Assumption 4.3. The learning rates satisfy:

∞∑
k=1

αk =∞,
∞∑
k=1

α2
k <∞. (10)

This assumption can be easily met, since in practice the learning rate αk is usually far less than 1 and
decreases w.r.t. k. Based on the above assumptions, we can derive the following theorem.
Theorem 4.1. Under assumptions 4.1, 4.2 and 4.3, we further assume that the risk function R is
twice differentiable, and that ‖∇R(θ)‖22 is L2-smooth with constant L2 > 0, then we have

lim
k→∞

E[‖∇R(θk)‖22] = 0. (11)

This theorem establishes the convergence of our algorithm. The proof is provided in Appendix A.1.

5 Experiments

In this section, we empirically evaluate our proposed method for incremental few-shot learning and
demonstrate its effectiveness by comparison with state-of-the-art methods.

5.1 Experimental Setup

Datasets. For CIFAR-100 and miniImageNet, we randomly select 60 classes as the base classes
and the remaining 40 classes as the new classes. In each incremental learning session, we construct
5-way 5-shot tasks by randomly picking 5 classes and sampling 5 examples for each class. For
CUB-200-2011 with 200 classes, we select 100 classes as the base classes and 100 classes as the new
ones. We test 10-way 5-shot tasks on this dataset.

Baselines. We compare our method F2M with 8 methods: the Baseline proposed in Sec. 3, a joint-
training method that uses all previously seen data including the base and the following few-shot
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Table 1: Classification accuracy on CIFAR-100 for 5-way 5-shot incremental learning. ∗ indicates
our re-implementation.

Method sessions The gap
with cRT1 2 3 4 5 6 7 8 9

cRT [25]∗ 65.18 63.89 60.20 57.23 53.71 50.39 48.77 47.29 45.28 -
Joint-training∗ 65.18 61.45 57.36 53.68 50.84 47.33 44.79 42.62 40.08 -5.20
Baseline 65.18 61.67 58.61 55.11 51.86 49.43 47.60 45.64 43.83 -1.45

iCaRL [40]∗ 66.52 57.26 54.27 50.62 47.33 44.99 43.14 41.16 39.49 -5.79
Rebalance [20]∗ 66.66 61.42 57.29 53.02 48.85 45.68 43.06 40.56 38.35 -6.93
FSLL [34]∗ 65.18 56.24 54.55 51.61 49.11 47.27 45.35 43.95 42.22 -3.08
iCaRL [40] 64.10 53.28 41.69 34.13 27.93 25.06 20.41 15.48 13.73 -31.55
Rebalance [20] 64.10 53.05 43.96 36.97 31.61 26.73 21.23 16.78 13.54 -31.74
TOPIC [47] 64.10 55.88 47.07 45.16 40.11 36.38 33.96 31.55 29.37 -15.91
FSLL [34] 64.10 55.85 51.71 48.59 45.34 43.25 41.52 39.81 38.16 -7.12
FSLL+SS [34] 66.76 55.52 52.20 49.17 46.23 44.64 43.07 41.20 39.57 -5.71

F2M 64.71 62.05 59.01 55.58 52.55 49.96 48.08 46.28 44.67 -0.61

Table 2: Classification accuracy on miniImageNet for 5-way 5-shot incremental learning. ∗ indicates
our re-implementation.

Method sessions The gap
with cRT1 2 3 4 5 6 7 8 9

cRT [25]∗ 67.30 64.15 60.59 57.32 54.22 51.43 48.92 46.78 44.85 -
Joint-training∗ 67.30 62.34 57.79 54.08 50.93 47.65 44.64 42.61 40.29 -4.56
Baseline 67.30 63.18 59.62 56.33 53.28 50.50 47.96 45.85 43.88 -0.97

iCaRL [40]∗ 67.35 59.91 55.64 52.60 49.43 46.73 44.13 42.17 40.29 -4.56
Rebalance [20]∗ 67.91 63.11 58.75 54.83 50.68 47.11 43.88 41.19 38.72 -6.13
FSLL [34]∗ 67.30 59.81 57.26 54.57 52.05 49.42 46.95 44.94 42.87 -1.11
iCaRL [40] 61.31 46.32 42.94 37.63 30.49 24.00 20.89 18.80 17.21 -27.64
Rebalance [20] 61.31 47.80 39.31 31.91 25.68 21.35 18.67 17.24 14.17 -30.68
TOPIC [47] 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42 -20.43
FSLL [34] 66.48 61.75 58.16 54.16 51.10 48.53 46.54 44.20 42.28 -2.57
FSLL+SS [34] 68.85 63.14 59.24 55.23 52.24 49.65 47.74 45.23 43.92 -0.93
IDLVQ-C [8] 64.77 59.87 55.93 52.62 49.88 47.55 44.83 43.14 41.84 -3.01

F2M 67.28 63.80 60.38 57.06 54.08 51.39 48.82 46.58 44.65 -0.20

tasks for training, the classifier re-training method (cRT) [25] for long-tailed classification trained
with all encountered data, iCaRL [40], Rebalance [20], TOPIC [47], FSLL [34], and IDLVQ-C [8].
For a fair comparison, we re-implement cRT [25], iCaRL [40], Rebalance [20], FSLL [34], and the
joint-training method and tune them to their best performance. We also provide the results reported in
the original papers for comparison. The results of TOPIC [47] and IDLVQ-C [8] are copied from the
original papers. Note that for IL, joint-training is naturally the upper bound of incremental learning
algorithms, however, for IFL, joint-training is not a good approximation of the upper bound because
data imbalance makes the model perform significantly poorer on new classes (long-tailed classes). To
address the data imbalance issue, we re-implement the cRT method as the approximate upper bound.

Experimental details. The experiments are conducted with NVIDIA GPU RTX3090 on CUDA 11.0.
We randomly split each dataset into multiple tasks (sessions). For each dataset (with a fixed split),
we run each algorithm for 10 times and report the mean accuracy. We adopt ResNet18 [16] as the
backbone network. For data augmentation, we use standard random crop and horizontal flip. In the
base training stage, we select the last 4 or 8 convolution layers to inject noise, because these layers
output higher-level feature representations. The flat region bound b is set as 0.01. We set the number
of times for noise sampling as M = 2 ∼ 4, since a larger M will increase the training time. In each
incremental few-shot learning session, the total number of training epochs is 6, and the learning rate
is 0.02. To verify the correctness of our implementation, we conduct experiments on incremental
learning and compare our results to those reported on CIFAR-100 in Appendix A.3. More experiment
details are provided in Appendix A.2.
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Table 3: Classification accuracy on CUB-200-2011 for 10-way 5-shot incremental learning.∗ indicates
our re-implementation.

Method sessions The gap
with cRT1 2 3 4 5 6 7 8 9 10 11

cRT [25]∗ 80.83 78.51 76.12 73.93 71.46 68.96 67.73 66.75 64.22 62.53 61.08 -
Joint-training∗ 80.83 77.57 74.11 70.75 68.52 65.97 64.58 62.22 60.18 58.49 56.78 -4.30
Baseline 80.87 77.15 74.46 72.26 69.47 67.18 65.62 63.68 61.30 59.72 58.12 -2.96

iCaRL [40]∗ 79.58 67.63 64.17 61.80 58.10 55.51 53.34 50.89 48.62 47.34 45.60 -15.48
Rebalance [20]∗ 80.94 70.32 62.96 57.19 51.06 46.70 44.03 40.15 36.75 34.88 32.09 -28.99
FSLL [34]∗ 80.83 77.38 72.37 71.84 67.51 65.30 63.75 61.16 59.05 58.03 55.82 -5.26
iCaRL [40] 68.68 52.65 48.61 44.16 36.62 29.52 27.83 26.26 24.01 23.89 21.16 -39.92
Rebalance [20] 68.68 57.12 44.21 28.78 26.71 25.66 24.62 21.52 20.12 20.06 19.87 -41.21
TOPIC [47] 68.68 62.49 54.81 49.99 45.25 41.40 38.35 35.36 32.22 28.31 26.28 -34.80
FSLL [34] 72.77 69.33 65.51 62.66 61.10 58.65 57.78 57.26 55.59 55.39 54.21 -6.87
FSLL+SS [34] 75.63 71.81 68.16 64.32 62.61 60.10 58.82 58.70 56.45 56.41 55.82 -5.26
IDLVQ-C [8] 77.37 74.72 70.28 67.13 65.34 63.52 62.10 61.54 59.04 58.68 57.81 -3.27

F2M 81.07 78.16 75.57 72.89 70.86 68.17 67.01 65.26 63.36 61.76 60.26 -0.82

Table 4: Comparison of the flatness of the local minima found by the Baseline and our F2M.

Method Indicator I Variance σ2

Training Set Testing Set Training Set Testing Set

Baseline 0.2993 0.4582 0.1451 0.2395
F2M 0.0506 0.0800 0.0296 0.0334

5.2 Comparison with the State-of-the-Art

F2M outperforms the state-of-the-art methods. The main results on CIFAR-100, miniImageNet
and CUB-200-2011 are presented in Table 1, Table 2 and Table 3 respectively. Based on the experi-
ment results, we have the following observations: 1) The Baseline introduced in Sec. 3 outperforms
the state-of-the-art approaches on all incremental sessions. 2) As expected, cRT consistently outper-
forms the Baseline up to 1% to 3% by considering the data imbalance problem and applying proper
techniques to tackle the long-tailed classification problem to improve performance. Hence, it is
reasonable to use cRT as the approximate upper bound of IFL. 3) Our F2M outperforms the state-of-
the-art methods and the Baseline. Moreover, the performance of F2M is very close to the approximate
upper bound, i.e., the gap with cRT is only 0.2% in the last session on miniImageNet. The results
show that even with strong constraints [20, 40, 34] and saved examplars of base classes [20, 40, 8],
current methods cannot effectively address the catastrophic forgetting problem. In contrast, finding
flat minima seems a promising approach to overcome this harsh problem.

5.3 Ablation Study and Analysis

Analysis on the flatness of local minima. Here, we verify that our method can find a more flat local
minima than the Baseline. For a found local minima θ?, we measure its flatness as follows. We sample
the noise for 1000 times. For each time, we inject the sampled noise to θ? and calculate the loss Li.
Then, we adopt the indicator I = 1

1000

∑1000
i=1 (Li − L∗)2 and variance σ2 = 1

1000

∑1000
i=1 (Li − L)2

to measure the flatness. L∗ denotes the loss of θ?, and L denotes the average loss of {Li}1000i=1 . The
values of the indicator and variance of F2M and the Baseline are presented in Table 4, which clearly
demonstrate that our method can find a more flat local minima.

Ablation study on the designs of our method. Here, we study the effectiveness of each design of
our method, including adding noise to the model parameters for finding b-flat local minima (FM)
during the base training session, the prototype fixing term (PF) used in the base training objective
(Eq. 4), parameter clamping (PC) during incremental learning, and prototype normalization (PN). We
conduct an ablation study by removing each component in turn and report the experimental results in
Table 5.

Finding b-flat local minima. Standard supervised training with SGD as the optimizer tends to converge
to a sharp local minima. It leads to a significant drop in performance because the loss changes quickly
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Table 5: Ablation study of our F2M on CIFAR-100. PD refers to the performance dropping rate.

FM PF PC PN sessions PD ↓
1 2 3 4 5 6 7 8 9

65.18 60.83 53.13 43.57 23.75 10.76 08.26 07.24 06.45 58.73
X 65.18 59.48 56.77 52.99 50.09 47.80 45.92 44.20 42.55 22.63

X X X 64.71 59.54 53.03 45.09 41.68 39.04 38.64 37.19 36.01 28.70
X X X 64.55 61.27 58.33 54.82 51.60 49.22 47.48 45.78 44.08 20.47
X X X 64.71 61.75 58.80 55.33 52.27 49.75 47.72 46.01 44.43 20.28

X X X X 64.71 61.99 58.99 55.58 52.55 49.96 48.08 46.28 44.67 20.04

Table 6: Study of the flat region bound b for 5-way 5-shot incremental learning on CIFAR-100. The
top 3 results in each row are in boldface.

Session The hyperparameter b

0.0025 0.005 0.01 0.02 0.04 0.08

Session 1 (60 bases classes) 64.85 64.67 64.81 64.71 63.30 62.25
Session 9 (All 100 classes) 44.16 44.54 44.58 44.67 43.75 43.04
Session 9 (60 base classes) 59.58 59.69 59.73 59.44 58.38 57.21
Session 9 (40 new classes) 21.03 21.81 21.86 22.52 21.80 21.77

in the neighborhood of the sharp local minima. As shown in Table 5, even with parameter clamping
during incremental learning, the performance still drops significantly. In contrast, restricting the
parameters in a small flat region can mitigate the forgetting problem.

Prototype fixing. Without fixing the prototypes after injecting noise to selected layers during the
process of finding local minima, i.e. removing the second term of Eq. 4, it is still possible to tune
the model within the flat region to well separate base classes. However, the saved prototypes of base
classes will become less accurate because the embeddings of the base samples suffer from semantic
drift [54]. As shown in Table 5, it results in a performance drop of nearly 0.6%.

Parameter clamping. Parameter clamping restricts the model parameters to the b-flat region after
incremental few-shot learning. Outside the b-flat region, the performance drops quickly. It can be
seen from Table 5 that removing parameter clamping leads to a significant drop in performance.

Prototype normalization. As mentioned in Sec. 4.2, we normalize the class prototypes to calibrate the
estimates of the class mean classifier. The results in Table 5 show the effectiveness of normalization,
which helps to further improve the performance.

Study of the flat region bound b. We study the effect of the flat region bound b for 5-way 5-shot
incremental learning on CIFAR-100. We report the test accuracy in session 1 (base session) and
session 9 (last session) w.r.t. different b in Table 6. It can be seen that the best results are achieved
for b ∈ [0.005, 0.02]. A larger b (e.g., 0.04 or 0.08) leads to a significant performance drop on base
classes, even for those in session 1, indicating that there may not exist a large flat region around a
good local minima. Meanwhile, a smaller b (e.g., 0.0025) results in a performance decline on new
classes, due to the overly small capacity of the flat region. This illustrates the trade-off effect of b.

6 Conclusion

We have proposed a novel approach to overcome catastrophic forgetting in incremental few-shot
learning by finding flat local minima of the objective function in the base training stage and then
fine-tuning the model within the flat region on new tasks. Extensive experiments on benchmark
datasets show that our model can effectively mitigate catastrophic forgetting and adapt to new classes.
A limitation of our method is that it may not be suitable for medium- or high-shot tasks, since the flat
region is relatively small, which limits the model capacity. However, it is still possible to adapt our
core idea for incremental learning. For example, one can search for a less flat but wider local minima
region in the base training stage and tune the model within this region during incremental learning
sessions, where previous techniques such as elastic weight consolidation (EWC) [28] can be used to
constraint the model parameters. This could be an interesting direction for future research.
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