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Abstract

Long-sequence models are designed to better001
represent longer texts and improve performance002
on document-level tasks. Advancing from in-003
dividual sentences to using much longer con-004
text, rationale extraction from these models005
is becoming increasingly important, in order006
to analyse model behaviour and provide finer-007
grained informative predictions. This paper008
investigates methods of unsupervised rationale009
extraction for long-sequence models in the con-010
text of document classification. We find that011
previously proposed methods for sentence clas-012
sification do not perform well when applied on013
long documents, due to very limited tokens be-014
ing updated during training. We alleviate this015
issue by introducing a Ranked Soft Attention016
architecture that ensures more tokens receive017
appropriate weak supervision. We also investi-018
gate a Compositional Soft Attention architec-019
ture that applies RoBERTa sentence-wise to020
extract plausible rationales at the token-level.021
The proposed methods significantly outperform022
Longformer-driven baselines on sentiment clas-023
sification datasets, while also exhibiting signifi-024
cantly lower runtimes.025

1 Introduction026

Transformer-based architectures (Vaswani et al.,027

2017) have become ubiquitous in natural language028

processing research. A key attribute to their suc-029

cess is the multi-head self-attention mechanism030

(Michel et al., 2019). However, its computational031

and memory requirements grow quadratically with032

input sequence length. Therefore, models such as033

BERT (Devlin et al., 2019) commonly limit the034

maximum sequence length to 512 tokens. Longer035

documents are truncated (Devlin et al., 2019) or036

staggered position embeddings are used (Jain et al.,037

2020). This limitation motivated long-text trans-038

fomers, such as Big Bird (Zaheer et al., 2020) and039

Longformer (Beltagy et al., 2020), which reduce040

the complexity of self-attention through the use of041

sparse attention and improve the performance of 042

transformers on long documents. 043

The task of rationale extraction focuses on se- 044

lecting a subset of input as a justification for the 045

model’s output. The extracted tokens can then be 046

used for verification of document-level predictions 047

(Dzindolet et al., 2003) or as input to another model 048

(Jain et al., 2020). In particular, our work focuses 049

on extracting token-level rationales from long doc- 050

ument models. The architectures are optimised 051

using only document labels, with no token-level 052

annotations used during training. This setting is 053

more practical for longer texts, where token-level 054

annotations are often missing due to prohibitive 055

costs of manual labeling. 056

Existing work has investigated rationale ex- 057

traction for regular transformer-based classifiers 058

(Pruthi et al., 2020; Jain et al., 2020; Bujel et al., 059

2021; Fomicheva et al., 2022). However, to the 060

best of our knowledge, there is no work that inves- 061

tigates unsupervised rationale extraction for long- 062

text transformers. As we show, methods designed 063

for standard transformers do not necessarily per- 064

form as well on longer documents. We highlight 065

that this work focuses on extracting plausible ra- 066

tionales (agreeable to human annotators; DeYoung 067

et al. (2020)), as opposed to faithful explanations 068

(true to the system’s computation; Rudin (2018)). 069

We investigate various methods to adapt long- 070

text transformers to zero-shot rationale extraction. 071

We find that the sparse self-attention present in 072

Longformer struggles to locate tokens that can 073

serve as a plausible rationale for document labels. 074

For longer datasets, the quality of the rationale ex- 075

tracted from the self-attention layers is not better 076

than a random baseline. Following a qualitative in- 077

vestigation, we propose Ranked Soft Attention and 078

Compositional Soft Attention architectures, which 079

significantly improve over other unsupervised ap- 080

proaches for rationale extraction on longer senti- 081

ment detection documents. 082
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2 Soft Attention083

Rei and Søgaard (2018) introduced a soft atten-084

tion architecture for biLSTM zero-shot sequence085

labelers, which Bujel et al. (2021) adapted to trans-086

formers by introducing Weighted Soft Attention.087

We apply Weighted Soft Attention to contextual088

embeddings ti ∈ Rh for all tokens in the docu-089

ment:090

ei = tanh(Weti + be) (1)091

ãi = σ(ẽi) ẽi = Wẽei + bẽ (2)092

where h ∈ N is the dimension of the contextual to-093

ken embeddings, ei ∈ Rh′
is a hidden layer, ẽi ∈ R094

is a single scalar value, σ is the sigmoid activa-095

tion function and ãi ∈ [0, 1] is the token attention096

score. The scores are converted to normalized at-097

tention weights ai to build document-level repre-098

sentations c:099

ai =
ãβi∑N
j=1 ã

β
j

c =
N∑
i=1

aiti (3)100

101
d = tanh(Wdc+ bd) y = σ(Wyd+ by) (4)102

where N is the number of tokens in a sentence,103

c ∈ Rh is the final document representation,104

d ∈ Rs is the hidden document representation and105

y ∈ R is the document-level prediction. β ∈ R106

is a weight controlling the sharpness of the atten-107

tion scores. For each document j ∈ N, we obtain108

document-level predictions y(j) ∈ [0, 1] and token-109

level scores 0 ≤ ãi ≤ 1. As the token-level scores110

are calculated using a logistic activation function,111

we use a classification threshold of 0.50. The su-112

pervision of Weighted Soft Attention is described113

in Appendix A.114

2.1 Ranked Soft Attention115

Empirically, we find that most of the token scores116

obtained using Weighted Soft Attention are close117

to 1 for long documents. We suspect this is caused118

by an insufficient number of token scores receiving119

supervision signal at each epoch – only minimum120

and maximum token scores are optimized by the121

soft attention method. While working well for indi-122

vidual sentences, such an approach does not scale123

to longer documents. We find that, on average,124

only 5% of tokens receive supervision signal dur-125

ing training.126

We instead propose Ranked Soft Attention,127

where k% of tokens with the highest scores are128

supervised with the document label, while the re- 129

maining 100− k% tokens are supervised with a 0 130

label. This is achieved through the following loss 131

function Lranked: 132

Ltop =
M∑
j

∑
ãi∈Ãj

Itop(ãi)(ãi − ỹ(j))2 (5) 133

Lrest =

M∑
j

∑
ãi∈Ãj

(1− Itop(ãi))(ãi − 0)2 (6) 134

Lranked =
1

k
Ltop +

1

100− k
Lbottom (7) 135

where M is the number of documents, Ãj is the 136

set of tokens in document j, Itop(ãi) is an indica- 137

tor function that returns 1 if ãi is in the top k% of 138

token scores and 0 otherwise, and k is a hyperpa- 139

rameter that can be tuned based on the percentage 140

of annotations in the dataset (Jain et al., 2020). 141

Ltop steers the top token scores towards 1 for the 142

positive documents only. This ensures the model 143

only provides rationale for the positive class texts. 144

Lrest encourages the model to ignore low-scoring 145

tokens by assigning them scores close to 0. This 146

term enforces sparsity of the token scores, ensuring 147

that only a subset of tokens are weighted highly. 148

Unlike Weighted Soft Attention, this setup ensures 149

all tokens receive supervision signal. The total loss 150

is then L = Ldoc + γrankedLranked, where Ldoc is 151

the document-level loss. 152

2.2 Compositional Soft Attention 153

Given RoBERTa’s strong performance as a ratio- 154

nale extractor for individual sentences (Bujel et al., 155

2021; Pruthi et al., 2020), we investigate the fea- 156

sibility of using RoBERTa together with Ranked 157

Soft Attention to extract token-level rationales from 158

longer documents. However, due to RoBERTa’s 159

standard 512 sequence length limit, a direct applica- 160

tion to longer texts is not feasible. Instead, we pro- 161

pose to model intra-sentence token dependencies 162

by applying RoBERTa to each sentence individu- 163

ally. To extract rationales for the whole document, 164

we use a Ranked Soft Attention layer that com- 165

poses the individual contextual token embeddings 166

across different sentences. This is in contrast to 167

Hierarchical Transformers (Pappagari et al., 2019), 168

which focused on document-level representation 169

without obtaining token-level rationale. 170

Our proposed Compositional Soft Attention ar- 171

chitecture uses a standard length transformer to 172
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IMDb-Pos IMDb-Neg
Doc F1 F1 F0.5 MAP Time Doc F1 F1 F0.5 MAP Time

Random Uniform - 5.46 4.27 8.46 - - 6.02 4.80 9.90 -
Longformer Weighted Soft Attention 93.41 6.89 4.43 7.81 603 93.52 8.34 5.40 10.59 599
Longformer Self-Attention Top-K 94.42 5.90 5.19 7.85 606 94.60 5.71 5.02 9.03 603
Longformer Ranked Soft Attention 92.63 14.13 11.92 11.97 618 93.92 19.62 16.98 16.44 608
Compositional Soft Attention 91.85 25.46 20.12 26.82 436 90.82 27.27 22.70 29.78 433

Table 1: Results on the Sentiment Detection IMDb dataset. Doc F1 represents document-level classification
performance, while F1, F0.5 and MAP are token-level metrics. Time represents the average seconds per epoch each
model took to train. We find our Compositional Soft Attention to perform best at the token-level rationale extraction.

build contextual token embeddings s′k ∈ RNk×h173

separately for each sentence sk:174

s′k = Transformer(sk) (8)175

176

t = Concat[s′0, ..., s
′
mj

] (9)177

where mj is the number of sentences in document178

j with 0 < k ≤ mj , h is the output dimension179

of the transformer, Nk ∈ R is the number of to-180

kens in sentence sk and t ∈ RN×h contains the181

concatenated representations of all tokens in the182

document.183

We provide this document representation t as184

input to our Ranked Soft Attention layer (Sec-185

tion 2.1), which composes tokens across all sen-186

tences to obtain a document-level representation187

and the prediction y(j). We additionally obtain188

token-level attention scores ãi, which we use to189

extract rationales for document classification tasks.190

An architecture visualization and pseudocode are191

given in Appendix B.192

3 Datasets193

We investigate the performance of our models on194

three different datasets. Each of the datasets con-195

tains a document-level label, together with human196

annotations on the token-level that are used for197

evaluation only.198

We evaluate our models on Grammatical Er-199

ror Detection (GED) datasets, which contain texts200

written by non-native learners of English. They201

are annotated with token-level grammatical errors,202

which serve as rationale for document-level profi-203

ciency scores. Specifically, the BEA 20191 shared204

task (Bryant et al., 2019) released a set of essays205

from Write & Improve, an online automated assess-206

ment and feedback platform (Yannakoudakis et al.,207

2018). The essays were submitted in response to208

1https://www.cl.cam.ac.uk/research/nl/bea2019st/

various prompts, and document-level labels indi- 209

cate the CEFR proficiency level (A/B/C)2. We re- 210

move intermediate (B) essays, treat the beginner 211

(A) class as the positive documents and the ad- 212

vanced (C) class as the negative label. This is moti- 213

vated by the beginner class containing a higher pro- 214

portion of grammatically incorrect tokens, which 215

we treat as rationale for the low proficiency level. 216

Since there is no publicly available test set, we 217

held out the development set for evaluation and 218

randomly sample 10% of the training data for de- 219

velopment. 220

The First Certificate in English3 (FCE) dataset 221

(Yannakoudakis et al., 2011) contains essays writ- 222

ten for an intermediate-level language proficiency 223

exam. Each student wrote 2 essays, which have 224

been given an overall exam script score. We treat 225

these concatenated essays as one document. We 226

split the dataset into beginner (score < 27; equiva- 227

lent to a fail) and advanced learners (score > 30), 228

and use the train/dev/test split released by Rei and 229

Yannakoudakis (2016). We note that both GED 230

datasets contain a relatively small number of docu- 231

ments exceeding 512 tokens, which is the standard 232

RoBERTa maximum sequence length (Table 3). 233

We use them due to lack of longer datasets with 234

document-level and token-level annotations. 235

We also use the Sentiment Detection movie re- 236

views IMDb4 dataset (Zaidan et al., 2007), which 237

contains positive and negative movie reviews. We 238

focus on a subset of this dataset that has been an- 239

notated with rationales for the reviews by human 240

annotators. We split the dataset into IMDb-Pos 241

and IMDb-Neg, where the former contains evi- 242

dence for only positive reviews, while the latter 243

contains evidence for negative ones. We use the 244

train/dev/test split published by Pruthi et al. (2020). 245

2https://www.coe.int/en/web/common-european-
framework-reference-languages/level-descriptions

3https://ilexir.co.uk/datasets/index.html
4https://www.tensorflow.org/datasets/catalog/movie_rationales

3
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FCE BEA 2019
Doc F1 F1 F0.5 MAP Time Doc F1 F1 F0.5 MAP Time

Random Uniform - 12.13 13.70 15.91 - - 11.36 12.00 16.68 -
Longformer Weighted Soft Attention 89.34 24.81 17.64 16.17 242 93.79 21.22 14.59 16.38 357
Longformer Self-Attention Top-K 89.29 14.23 15.57 14.67 243 94.39 14.75 14.99 13.76 360
Longformer Ranked Soft Attention 89.10 22.23 23.40 18.82 238 93.49 19.11 19.65 18.55 351
Compositional Soft Attention 81.32 21.08 23.19 19.67 139 89.07 20.44 20.22 19.44 141

Table 2: Results for the Grammatical Error Detection Datasets. Doc F1 represents document-level classification
performance, while F1, F0.5 and MAP are token-level metrics. Time represents the average seconds per epoch each
model took to train. We note that Weighted Soft Attention achieves a high F1 due to assigning 1 to most tokens,
thus resulting in high recall. Our Compositional Soft Attention is on-par with Longformer-based models.

4 Results246

We report F1 and F0.5 on the token level. As the247

rationale proportion in our datasets is low, the F0.5248

metric allows us to better distinguish between mod-249

els that display high recall but low precision and250

more well-balanced ones. We further evaluate per-251

formance using Mean Average Precision (MAP) for252

ranking positive tokens. MAP removes the thresh-253

old dependency and indicates which models return254

the best token ranking. We perform significance255

testing using a two-tailed paired t-test (a = 0.05).256

As a baseline, we use the Longformer Self-257

Attention Top-K (Jain et al., 2020), where we select258

the top k% of the global attention scores from the259

<CLS> token in the Longformer’s last layer. These260

high ranking tokens are rationale if the document-261

level prediction is the positive class. Details of our262

experimental setup are presented in Appendix D.263

Tables 1 and 2 present results for the GED and Sen-264

timent Detection datasets respectively. We provide265

example token-level predictions in Appendix F.266

We find that both Longformer Self-Attention267

and Longformer Weighted Soft Attention perform268

poorly on the task of rationale extraction. On269

the longer Sentiment Detection dataset, the per-270

formance of both methods is on-par with a random271

baseline. For GED, we note that the higher token-272

level F1 score of Weighted Soft Attention is due273

to the model assigning scores of 1 to most tokens,274

as evident by the substantially lower F0.5 score.275

We suspect this homogeneity of token scores to276

be caused by only 2 tokens per document receiv-277

ing supervision signal at each epoch. This encour-278

ages the scores to stay close to the initial values,279

meaning the model is unable to learn to provide280

plausible rationales for its predictions. Increas-281

ing the supervision signal through Ranked Soft At-282

tention significantly improves the token-level F0.5283

(5.06%− 11.58% absolute increase).284

We suspect the poor performance of Longformer 285

Self-Attention is partly due to the use of normal- 286

ized global attention from the <CLS> token. As 287

the token attention scores across the whole doc- 288

ument have to sum up to 1, very few tokens are 289

assigned high scores. This is evidenced by the 290

significantly lower token-level recall compared to 291

other methods. While some improvement could 292

be obtained by fine-tuning the classification thresh- 293

old, self-attention methods do not return a good 294

token ranking, as indicated by the low MAP scores, 295

which are below the random baseline. 296

Compositional Soft Attention significantly out- 297

performs all models on the longer IMDb datasets 298

and achieves results on-par with Longformer 299

Ranked Soft Attention on the GED datasets. The 300

compositional nature of this architecture allows 301

RoBERTa to learn to provide meaningful token- 302

level scores for each sentence individually. This 303

is in contrast to other Longformer-based meth- 304

ods, which focus on modeling global dependen- 305

cies and struggle to provide good token-level pre- 306

dictions. We also notice that Compositional Soft 307

Attention, overall, exhibits substantially lower run- 308

times (30%− 60%) than the Longformer methods. 309

5 Conclusion 310

We investigated unsupervised rationale extraction 311

for long document classifiers. Our experiments 312

showed that standard Transformer-based soft atten- 313

tion methods do not perform well on longer texts. 314

We proposed Ranked Soft Attention that works 315

well with Longformer by increasing the supervision 316

signal available to individual tokens. We further 317

introduced a novel Compositional Soft Attention ar- 318

chitecture that extends RoBERTa to represent long 319

documents. We found Compositional Soft Atten- 320

tion to significantly outperform Longformer-based 321

systems on rationale extraction for longer docu- 322

ments, while being 30%− 60% faster to fine-tune. 323
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Limitations324

Our work aims to fill a gap in the literature for effec-325

tive rationale extraction from long text classifiers.326

We improve the scalability of such methods by327

sequentially applying RoBERTa to each sentence328

instead of relying on slower long text transform-329

ers. However, it is important to underline that this330

method still does not permit application to texts of331

arbitrary length, as the memory of the GPU is the332

main limitation. We hope to address this in future333

work.334

We also note the limited evaluation for truly335

long documents. This is due to the small number336

of long text datasets with token-level annotations337

available. We encourage the development of such338

new datasets in the future.339

We believe that current approaches of framing340

rationale extraction as a sequence labeling problem341

do not scale well to longer documents. It is becom-342

ing difficult to quantitatively evaluate such models343

without taking into accounts spans of predictions344

and the annotations. We encourage future work to345

investigate alternative methods of evaluating plau-346

sibility of token-level rationale extractors for long347

texts.348

Ethics Statement349

The Grammatical Error Detection datasets were ob-350

tained from responses to various prompts either on-351

line or during an English exam. We note that both352

datasets were annotated by experts with knowledge353

of the CEFR language proficiency scale. As mi-354

nors constitute a large group of English learners, it355

is likely that a part of responses come from them.356

However, we note that the authors of the origi-357

nal datasets obtained all necessary consents and358

anonymized the essays. The dataset contains no359

harmful language. FCE dataset is released under360

a non-commercial research license and for educa-361

tional purposes. BEA 2019 is similarly available362

under a non-commercial license.363

On the other hand, the IMDb dataset annotation364

was crowd-sourced from Amazon Mechanical Turk365

workers. While the authors put measures in-place366

to ensure consistency of the annotations, we note367

that they were likely performed by non-experts and368

thus might be less comprehensive than the Gram-369

matical Error Detection datasets. The dataset con-370

tains no personally identifiable information, but371

may contain offensive language. The dataset is372

released under a personal and non-commercial li- 373

cense. 374

We note that our models do not provide explana- 375

tions of their decisions. They focus on extracting 376

rationale that is plausible to a human annotator, in- 377

stead of a faithful explanation. These two terms 378

can be easily confused by a non-expert reader and 379

can lead to incorrect application of the architecture. 380
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A Supervision of Weighted Soft Attention503

We further recall that the Weighted Soft Attention504

architecture uses the following loss functions:505

Ldoc =
∑
j

(y(j) − ỹ(j))2 (10)506

L1 =
∑
j

(min(ãi)− 0)2 (11)507

L2 =
∑
j

(max(ãi)− ỹ(j))2 (12)508

L = Ldoc + γ(L1 + L2) (13)509

where Ldoc optimizes the document-level perfor-510

mance, L1 ensures the minimum attention score is511

close to 0 and L2 optimizes the maximum attention512

score to be close to the document label ỹ(j).513

B Compositional Soft Attention514

We present the algorithm for Compositional Soft515

Attention in Algorithm 1 and the overview of the516

architecture in Figure 1.517

Algorithm 1 Compositional Soft Attention
for sentence sj,i in documentj do

s′j,i ← Transformer(sj,i)
end for
tj ← [s′j,1, ..., s

′
j,mj

]

y(j), ã = SoftAttention(tj)

C Datasets 518

We present the summary statistics for the datasets 519

used in our experiments in Table 3. 520

D Experimental Setup 521

We use a pre-trained RoBERTa-base (Liu et al., 522

2019) and Longformer-base (Beltagy et al., 2020) 523

models, available through the HuggingFace library 524

(Wolf et al., 2020). All experiments are performed 525

on Nvidia Tesla P100. Following Mosbach et al. 526

(2020), we train for 20 epochs, with the best per- 527

forming checkpoint chosen. Each experiment is re- 528

peated 3 times and the average results are reported. 529

We set k based on the percentage of evidence 530

present for the positive class. We use γranked = 1.0 531

and γ = 1.0 where appropriate. The Longformer- 532

based models have approximately 1.49× 108 train- 533

able parameters, while the Compositional Soft At- 534

tention has 1.25× 108 trainable parameters. 535

E Full Results 536

We present full results of the experiments in Tables 537

4, 5, 6 and 7. 538

F Example Predictions 539

Furthermore, we provide more sample predictions 540

made by different models in Figures 2 and 3. 541
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Figure 1: Compositional Soft Attention architecture for rationale extraction and document classification. A standard
size transformer is applied to each sentence individually and the contextual token embeddings are then combined to
build a document-level representation.

FCE BEA 2019 IMDb-Pos IMDb-Neg
Number of train samples 722 1120 1200 1200

Number of dev samples 51 280 299 299

Number of test samples 66 200 300 300

Average text length (words) 441 213 686 686

Maximum text length (words) 725 655 1935 1935

% of texts > 512 words 16% 2% 73% 73%

% positive samples 49% 46% 50% 50%

% negative samples 51% 54% 50% 50%

% evidence 13% 9% 8% 8%

Table 3: Statistics for the datasets used. All measured on the development datasets. We note the low proportion of
long texts in FCE and BEA 2019.
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Doc F1 F1 F0.5 P R MAP
Random Uniform - 11.36± 0.32 12.00 12.47 10.42 16.68

Longformer Weighted Soft Attention 93.79 21.22 ± 0.17 14.59 12.08 88.38 16.38

Longformer Soft Attention Top-K 94.39 14.75± 3.21 14.99 15.16 14.40 13.76

Longformer Ranked Soft Attention 93.49 19.11± 2.92 19.65 20.12 18.53 18.55

Compositional Soft Attention 89.07 20.44± 1.73 20.22 20.10 20.95 19.44

Table 4: Full results for BEA 2019. We note that while Weighted Soft Attention performs best on the token-level, it
is largely due to the model assigning scores of 1 to most tokens, as indicated by the high recall. Using F0.5 as an
evaluation metric highlights this issue. Our proposed Compositional Soft Attention performs best on the token-level
in terms of both F0.5 and MAP.

Doc F1 F1 F0.5 P R MAP
Random Uniform - 12.13± 0.36 13.70 14.99 10.18 15.91

Longformer Weighted Soft Attention 89.34 24.81 ± 1.42 17.64 14.81 83.35 16.17

Longformer Soft Attention Top-K 89.29 14.23± 2.25 15.57 16.61 12.46 14.67

Longformer Ranked Soft Attention 89.10 22.23± 2.44 23.40 24.51 21.33 18.82

Compositional Soft Attention 81.32 21.08± 2.02 23.19 25.21 18.78 19.67

Table 5: Full results for FCE GED dataset. Similarly to BEA 2019, we note that the Weighted Soft Attention
performs best on the token-level, as evaluated by F1 score. However, that is mainly because the model assigns 1
to most tokens, causing recall to be high. This is evident by the significantly lower F0.5 metric. Our Ranked Soft
Attention and Compositional Soft Attention models achieve similar performance, significantly better than Weighted
Soft Attention if evaluated on the F0.5 and MAP metrics.

Doc F1 F1 F0.5 P R MAP
Random Uniform - 5.46± 0.18 4.27 3.72 10.24 8.46

Longformer Weighted Soft Attention 93.41 6.89± 0.19 4.43 3.58 92.39 7.81

Longformer Soft Attention Top-K 94.42 5.90± 2.21 5.19 4.80 7.67 7.85

Longformer Ranked Soft Attention 92.63 14.13± 2.27 11.92 10.80 20.54 11.97

Compositional Soft Attention 91.85 25.46 ± 0.97 20.12 17.66 45.85 26.82

Table 6: Full results for the IMDb-Pos Sentiment Detection dataset. We note that our Compositional Soft Attention
architecture performs significantly better across all token-level metrics.

Doc F1 F1 F0.5 P R MAP
Random Uniform - 6.02± 0.23 4.80 4.23 10.46 9.90

Longformer Weighted Soft Attention 93.52 8.34± 0.98 5.40 4.37 93.38 10.59

Longformer Soft Attention Top-K 94.60 5.71± 3.63 5.02 4.65 7.40 9.03

Longformer Ranked Soft Attention 93.92 19.62± 0.61 16.98 15.63 27.27 16.44

Compositional Soft Attention 90.82 27.27 ± 3.68 22.70 20.42 41.22 29.78

Table 7: Full results for the IMDb-Neg Sentiment Detection dataset. Similarly to IMDb-Pos, we note that our
Compositional Soft Attention architecture performs significantly better across all token-level metrics.
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(a) Sample token-level predictions for BEA 2019 posi-
tive sample (beginner learner). Compositional Soft Atten-
tion finds all evidence, but also scores neighboring tokens
highly. Ranked Soft Attention on the other hand attends to
less neighbouring tokens. We note that this might explain
the performance differences between Grammatical Error
Detection and Sentiment Detection datasets, as the the
former annotations are more concentrated than the latter.

(b) Excerpt from an FCE positive document (beginner
learner) without any grammatical errors in the sentence.
We note that both Weighted Soft Attention and Ranked
Soft Attention find a lot of false positives. On the other
hand, Compositional Soft Attention correctly does not
much rationale.

(c) Excerpt from a positive FCE document (beginner
learner). This sentence includes grammatical errors.
Ranked Soft Attention manages to pick up some manually
annotated rationale, while Compositional Soft Attention
fails. However, Ranked Soft Attention also finds many
false positives.

(d) An excerpt from a FCE positive document (beginner
learner), for a sentence with grammatical errors. Ranked
Soft Attention fails to provide any rationale, while Com-
positional Soft Attention correctly finds "," as rationale,
but fails to attend to neighboring tokens.

Figure 2: Example predictions for Grammatical Error Detection datasets. W-SA corresponds to Weighted Soft
Attention, R-SA to Ranked Soft Attention, while C-SA to Compositional Soft Attention. We highlight words that
human annotators marked as rationale in orange, while also marking true positives in green and false positives as
red.
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(a) Sample predictions for a sample negative review in the
IMDb-Neg dataset. We find that Weighted Soft Attention
assigns similar scores to most tokens, while Ranked Soft
Attention and Compositional Soft Attention manage to
provide more fine-grained predictions. Compositional
Soft Attention appears to recover spans of rationale better
than Ranked Soft Attention.

(b) Sample prediction for a positive movie review in the
IMDb-Pos review. Here we note how Compositional
Soft Attention learns the correct ranking of tokens, as
evidenced by the higher scores for true positives than false
positives. However, it still failed to optimize correctly
for the classification threshold, leading numerous false
positives. This problem is not present in the Ranked Soft
Attention for this sample.

(c) Sample predictions for a negative review in the IMDb-Pos
dataset. The gold token-level labels are all 0, as there are no
positive rationale in the negative review. Weighted Soft Attention
still assigns scores close to 1 to most tokens, while both Ranked
Soft Attention and Compositional Soft Attention learns not to
attend to any tokens. This shows how the increased token-level
supervision signal helps these architectures to learn to provide
better token-level rationale.

Figure 3: Example predictions for Sentiment Detection IMDb datasets. W-SA corresponds to Weighted Soft
Attention, R-SA to Ranked Soft Attention, while C-SA to Compositional Soft Attention. We highlight words that
human annotators marked as rationale in orange, while also marking true positives in green and false positives as
red.
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