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Abstract

Long-sequence models are designed to better
represent longer texts and improve performance
on document-level tasks. Advancing from in-
dividual sentences to using much longer con-
text, rationale extraction from these models
is becoming increasingly important, in order
to analyse model behaviour and provide finer-
grained informative predictions. This paper
investigates methods of unsupervised rationale
extraction for long-sequence models in the con-
text of document classification. We find that
previously proposed methods for sentence clas-
sification do not perform well when applied on
long documents, due to very limited tokens be-
ing updated during training. We alleviate this
issue by introducing a Ranked Soft Attention
architecture that ensures more tokens receive
appropriate weak supervision. We also investi-
gate a Compositional Soft Attention architec-
ture that applies ROBERTa sentence-wise to
extract plausible rationales at the token-level.
The proposed methods significantly outperform
Longformer-driven baselines on sentiment clas-
sification datasets, while also exhibiting signifi-
cantly lower runtimes.

1 Introduction

Transformer-based architectures (Vaswani et al.,
2017) have become ubiquitous in natural language
processing research. A key attribute to their suc-
cess is the multi-head self-attention mechanism
(Michel et al., 2019). However, its computational
and memory requirements grow quadratically with
input sequence length. Therefore, models such as
BERT (Devlin et al., 2019) commonly limit the
maximum sequence length to 512 tokens. Longer
documents are truncated (Devlin et al., 2019) or
staggered position embeddings are used (Jain et al.,
2020). This limitation motivated long-text trans-
fomers, such as Big Bird (Zaheer et al., 2020) and
Longformer (Beltagy et al., 2020), which reduce
the complexity of self-attention through the use of

sparse attention and improve the performance of
transformers on long documents.

The task of rationale extraction focuses on se-
lecting a subset of input as a justification for the
model’s output. The extracted tokens can then be
used for verification of document-level predictions
(Dzindolet et al., 2003) or as input to another model
(Jain et al., 2020). In particular, our work focuses
on extracting token-level rationales from long doc-
ument models. The architectures are optimised
using only document labels, with no token-level
annotations used during training. This setting is
more practical for longer texts, where token-level
annotations are often missing due to prohibitive
costs of manual labeling.

Existing work has investigated rationale ex-
traction for regular transformer-based classifiers
(Pruthi et al., 2020; Jain et al., 2020; Bujel et al.,
2021; Fomicheva et al., 2022). However, to the
best of our knowledge, there is no work that inves-
tigates unsupervised rationale extraction for long-
text transformers. As we show, methods designed
for standard transformers do not necessarily per-
form as well on longer documents. We highlight
that this work focuses on extracting plausible ra-
tionales (agreeable to human annotators; DeYoung
et al. (2020)), as opposed to faithful explanations
(true to the system’s computation; Rudin (2018)).

We investigate various methods to adapt long-
text transformers to zero-shot rationale extraction.
We find that the sparse self-attention present in
Longformer struggles to locate tokens that can
serve as a plausible rationale for document labels.
For longer datasets, the quality of the rationale ex-
tracted from the self-attention layers is not better
than a random baseline. Following a qualitative in-
vestigation, we propose Ranked Soft Attention and
Compositional Soft Attention architectures, which
significantly improve over other unsupervised ap-
proaches for rationale extraction on longer senti-
ment detection documents.



2 Soft Attention

Rei and Sggaard (2018) introduced a soft atten-
tion architecture for biLSTM zero-shot sequence
labelers, which Bujel et al. (2021) adapted to trans-
formers by introducing Weighted Soft Attention.
We apply Weighted Soft Attention to contextual
embeddings t; € R for all tokens in the docu-
ment:

e; = tanh(Wet; + be) (1)
a;=o(&) & =Wzei+bz (2)
where h € N is the dimension of the contextual to-
ken embeddings, e; € R" is a hidden layer, ¢; € R
is a single scalar value, o is the sigmoid activa-
tion function and a; € [0, 1] is the token attention
score. The scores are converted to normalized at-
tention weights a; to build document-level repre-
sentations c:
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d = tanh(Wyc + by)

a; =

y=0o(Wyd+by) (4)

where NV is the number of tokens in a sentence,
¢ € R" is the final document representation,
d € R? is the hidden document representation and
y € R is the document-level prediction. 5 € R
is a weight controlling the sharpness of the atten-
tion scores. For each document 5 € N, we obtain
document-level predictions y) € [0, 1] and token-
level scores 0 < a; < 1. As the token-level scores
are calculated using a logistic activation function,
we use a classification threshold of 0.50. The su-
pervision of Weighted Soft Attention is described
in Appendix A.

2.1 Ranked Soft Attention

Empirically, we find that most of the token scores
obtained using Weighted Soft Attention are close
to 1 for long documents. We suspect this is caused
by an insufficient number of token scores receiving
supervision signal at each epoch — only minimum
and maximum token scores are optimized by the
soft attention method. While working well for indi-
vidual sentences, such an approach does not scale
to longer documents. We find that, on average,
only 5% of tokens receive supervision signal dur-
ing training.

We instead propose Ranked Soft Attention,
where k% of tokens with the highest scores are

supervised with the document label, while the re-
maining 100 — £% tokens are supervised with a 0
label. This is achieved through the following loss
function L,qpnked:

1 1
Lrank:ed = %Ltop + meottom (7)

where M is the number of documents, flj is the
set of tokens in document j, I;,,(a;) is an indica-
tor function that returns 1 if @; is in the top k% of
token scores and 0 otherwise, and k is a hyperpa-
rameter that can be tuned based on the percentage
of annotations in the dataset (Jain et al., 2020).
Lyop steers the top token scores towards 1 for the
positive documents only. This ensures the model
only provides rationale for the positive class texts.
L5t encourages the model to ignore low-scoring
tokens by assigning them scores close to 0. This
term enforces sparsity of the token scores, ensuring
that only a subset of tokens are weighted highly.
Unlike Weighted Soft Attention, this setup ensures
all tokens receive supervision signal. The total loss
is then L = Lgoc + ’YrankedLranked’ where Lo is
the document-level loss.

2.2 Compositional Soft Attention

Given RoBERT2’s strong performance as a ratio-
nale extractor for individual sentences (Bujel et al.,
2021; Pruthi et al., 2020), we investigate the fea-
sibility of using ROBERTa together with Ranked
Soft Attention to extract token-level rationales from
longer documents. However, due to RoBERTa’s
standard 512 sequence length limit, a direct applica-
tion to longer texts is not feasible. Instead, we pro-
pose to model intra-sentence token dependencies
by applying RoBERTa to each sentence individu-
ally. To extract rationales for the whole document,
we use a Ranked Soft Attention layer that com-
poses the individual contextual token embeddings
across different sentences. This is in contrast to
Hierarchical Transformers (Pappagari et al., 2019),
which focused on document-level representation
without obtaining token-level rationale.

Our proposed Compositional Soft Attention ar-
chitecture uses a standard length transformer to



IMDb-Pos IMDb-Neg
Doc F1 F1 F0,5 MAP Time | Doc F1 F1 F0,5 MAP Time
Random Uniform - 5.46 427 8.46 - - 6.02 480 9.90 -
Longformer Weighted Soft Attention | 93.41 6.89 443 7.81 603 | 93.52 834 540 1059 599
Longformer Self-Attention Top-K 9442 590 519 785 606 | 9460 571 502 9.03 603
Longformer Ranked Soft Attention 92.63 14.13 1192 1197 618 | 9392 19.62 1698 16.44 608
Compositional Soft Attention 91.85 2546 20.12 26.82 436 | 90.82 27.27 2270 29.78 433

Table 1: Results on the Sentiment Detection IMDb dataset. Doc Fj represents document-level classification
performance, while F, Fy 5 and MAP are token-level metrics. Time represents the average seconds per epoch each
model took to train. We find our Compositional Soft Attention to perform best at the token-level rationale extraction.

build contextual token embeddings s} € RNk xR
separately for each sentence s:

sj, = Transformer(sy,) (8)
t = Concat|sy, ..., s;nj] )

where m; is the number of sentences in document
Jj with 0 < k£ < my, h is the output dimension
of the transformer, N € R is the number of to-
kens in sentence s, and ¢ € RV*" contains the
concatenated representations of all tokens in the
document.

We provide this document representation ¢ as
input to our Ranked Soft Attention layer (Sec-
tion 2.1), which composes tokens across all sen-
tences to obtain a document-level representation
and the prediction yU). We additionally obtain
token-level attention scores a;, which we use to
extract rationales for document classification tasks.
An architecture visualization and pseudocode are
given in Appendix B.

3 Datasets

We investigate the performance of our models on
three different datasets. Each of the datasets con-
tains a document-level label, together with human
annotations on the token-level that are used for
evaluation only.

We evaluate our models on Grammatical Er-
ror Detection (GED) datasets, which contain texts
written by non-native learners of English. They
are annotated with token-level grammatical errors,
which serve as rationale for document-level profi-
ciency scores. Specifically, the BEA 2019' shared
task (Bryant et al., 2019) released a set of essays
from Write & Improve, an online automated assess-
ment and feedback platform (Yannakoudakis et al.,
2018). The essays were submitted in response to

"https://www.cl.cam.ac.uk/research/nl/bea2019st/

various prompts, and document-level labels indi-
cate the CEFR proficiency level (A/B/C)>. We re-
move intermediate (B) essays, treat the beginner
(A) class as the positive documents and the ad-
vanced (C) class as the negative label. This is moti-
vated by the beginner class containing a higher pro-
portion of grammatically incorrect tokens, which
we treat as rationale for the low proficiency level.
Since there is no publicly available test set, we
held out the development set for evaluation and
randomly sample 10% of the training data for de-
velopment.

The First Certificate in English3 (FCE) dataset
(Yannakoudakis et al., 2011) contains essays writ-
ten for an intermediate-level language proficiency
exam. Each student wrote 2 essays, which have
been given an overall exam script score. We treat
these concatenated essays as one document. We
split the dataset into beginner (score < 27; equiva-
lent to a fail) and advanced learners (score > 30),
and use the train/dev/test split released by Rei and
Yannakoudakis (2016). We note that both GED
datasets contain a relatively small number of docu-
ments exceeding 512 tokens, which is the standard
RoBERTa maximum sequence length (Table 3).
We use them due to lack of longer datasets with
document-level and token-level annotations.

We also use the Sentiment Detection movie re-
views IMDb* dataset (Zaidan et al., 2007), which
contains positive and negative movie reviews. We
focus on a subset of this dataset that has been an-
notated with rationales for the reviews by human
annotators. We split the dataset into IMDb-Pos
and IMDb-Neg, where the former contains evi-
dence for only positive reviews, while the latter
contains evidence for negative ones. We use the
train/dev/test split published by Pruthi et al. (2020).

Zhttps://www.coe.int/en/web/common-european-
framework-reference-languages/level-descriptions
3https://ilexir.co.uk/datasets/index.html

*https://www.tensorflow.org/datasets/catalog/movie_rationales
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FCE BEA 2019
Doc F1 F1 F0,5 MAP Time | Doc F1 F1 F0,5 MAP Time
Random Uniform - 12.13 13.70 15091 - - 11.36 12.00 16.68 -
Longformer Weighted Soft Attention | 89.34 24.81 17.64 16.17 242 | 93.79 21.22 1459 16.38 357
Longformer Self-Attention Top-K 89.29 14.23 15.57 14.67 243 | 9439 14.75 1499 13.76 360
Longformer Ranked Soft Attention 89.10 22.23 2340 18.82 238 | 9349 19.11 19.65 18.55 351
Compositional Soft Attention 81.32 21.08 23.19 19.67 139 | 89.07 20.44 20.22 1944 141

Table 2: Results for the Grammatical Error Detection Datasets. Doc F represents document-level classification
performance, while F, Fy 5 and MAP are token-level metrics. Time represents the average seconds per epoch each
model took to train. We note that Weighted Soft Attention achieves a high F due to assigning 1 to most tokens,
thus resulting in high recall. Our Compositional Soft Attention is on-par with Longformer-based models.

4 Results

We report I and Fj 5 on the token level. As the
rationale proportion in our datasets is low, the Fp 5
metric allows us to better distinguish between mod-
els that display high recall but low precision and
more well-balanced ones. We further evaluate per-
formance using Mean Average Precision (MAP) for
ranking positive tokens. MAP removes the thresh-
old dependency and indicates which models return
the best token ranking. We perform significance
testing using a two-tailed paired t-test (a = 0.05).
As a baseline, we use the Longformer Self-
Attention Top-K (Jain et al., 2020), where we select
the top k% of the global attention scores from the
<CLS> token in the Longformer’s last layer. These
high ranking tokens are rationale if the document-
level prediction is the positive class. Details of our
experimental setup are presented in Appendix D.
Tables 1 and 2 present results for the GED and Sen-
timent Detection datasets respectively. We provide
example token-level predictions in Appendix F.

We find that both Longformer Self-Attention
and Longformer Weighted Soft Attention perform
poorly on the task of rationale extraction. On
the longer Sentiment Detection dataset, the per-
formance of both methods is on-par with a random
baseline. For GED, we note that the higher token-
level F score of Weighted Soft Attention is due
to the model assigning scores of 1 to most tokens,
as evident by the substantially lower Fj 5 score.
We suspect this homogeneity of token scores to
be caused by only 2 tokens per document receiv-
ing supervision signal at each epoch. This encour-
ages the scores to stay close to the initial values,
meaning the model is unable to learn to provide
plausible rationales for its predictions. Increas-
ing the supervision signal through Ranked Soft At-
tention significantly improves the token-level Fj 5
(5.06% — 11.58% absolute increase).

We suspect the poor performance of Longformer
Self-Attention is partly due to the use of normal-
ized global attention from the <CLS> token. As
the token attention scores across the whole doc-
ument have to sum up to 1, very few tokens are
assigned high scores. This is evidenced by the
significantly lower token-level recall compared to
other methods. While some improvement could
be obtained by fine-tuning the classification thresh-
old, self-attention methods do not return a good
token ranking, as indicated by the low MAP scores,
which are below the random baseline.

Compositional Soft Attention significantly out-
performs all models on the longer IMDb datasets
and achieves results on-par with Longformer
Ranked Soft Attention on the GED datasets. The
compositional nature of this architecture allows
RoBERTa to learn to provide meaningful token-
level scores for each sentence individually. This
is in contrast to other Longformer-based meth-
ods, which focus on modeling global dependen-
cies and struggle to provide good token-level pre-
dictions. We also notice that Compositional Soft
Attention, overall, exhibits substantially lower run-
times (30% — 60%) than the Longformer methods.

5 Conclusion

We investigated unsupervised rationale extraction
for long document classifiers. Our experiments
showed that standard Transformer-based soft atten-
tion methods do not perform well on longer texts.
We proposed Ranked Soft Attention that works
well with Longformer by increasing the supervision
signal available to individual tokens. We further
introduced a novel Compositional Soft Attention ar-
chitecture that extends RoBERTa to represent long
documents. We found Compositional Soft Atten-
tion to significantly outperform Longformer-based
systems on rationale extraction for longer docu-
ments, while being 30% — 60% faster to fine-tune.



Limitations

Our work aims to fill a gap in the literature for effec-
tive rationale extraction from long text classifiers.
We improve the scalability of such methods by
sequentially applying RoBERTa to each sentence
instead of relying on slower long text transform-
ers. However, it is important to underline that this
method still does not permit application to texts of
arbitrary length, as the memory of the GPU is the
main limitation. We hope to address this in future
work.

We also note the limited evaluation for truly
long documents. This is due to the small number
of long text datasets with token-level annotations
available. We encourage the development of such
new datasets in the future.

We believe that current approaches of framing
rationale extraction as a sequence labeling problem
do not scale well to longer documents. It is becom-
ing difficult to quantitatively evaluate such models
without taking into accounts spans of predictions
and the annotations. We encourage future work to
investigate alternative methods of evaluating plau-
sibility of token-level rationale extractors for long
texts.

Ethics Statement

The Grammatical Error Detection datasets were ob-
tained from responses to various prompts either on-
line or during an English exam. We note that both
datasets were annotated by experts with knowledge
of the CEFR language proficiency scale. As mi-
nors constitute a large group of English learners, it
is likely that a part of responses come from them.
However, we note that the authors of the origi-
nal datasets obtained all necessary consents and
anonymized the essays. The dataset contains no
harmful language. FCE dataset is released under
a non-commercial research license and for educa-
tional purposes. BEA 2019 is similarly available
under a non-commercial license.

On the other hand, the IMDb dataset annotation
was crowd-sourced from Amazon Mechanical Turk
workers. While the authors put measures in-place
to ensure consistency of the annotations, we note
that they were likely performed by non-experts and
thus might be less comprehensive than the Gram-
matical Error Detection datasets. The dataset con-
tains no personally identifiable information, but
may contain offensive language. The dataset is

released under a personal and non-commercial li-
cense.

We note that our models do not provide explana-
tions of their decisions. They focus on extracting
rationale that is plausible to a human annotator, in-
stead of a faithful explanation. These two terms
can be easily confused by a non-expert reader and
can lead to incorrect application of the architecture.
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A Supervision of Weighted Soft Attention

We further recall that the Weighted Soft Attention
architecture uses the following loss functions:

Laoe = Yy _(y" = §¥7)? (10)
L= i(min(di) —0)? (11)
Ly = Z]j(max@) A ()

L= L]docw(f:l + Lo) (13)

where L4, optimizes the document-level perfor-
mance, L1 ensures the minimum attention score is
close to 0 and L2 optimizes the maximum attention
score to be close to the document label §).

B Compositional Soft Attention

We present the algorithm for Compositional Soft
Attention in Algorithm 1 and the overview of the
architecture in Figure 1.

Algorithm 1 Compositional Soft Attention

for sentence s;,; in document; do
s ; — Transformer(s;,;)

end for

tj <+ [s)1, ~~-75;',mﬂ

y9), a = SoftAttention(t;)

C Datasets

We present the summary statistics for the datasets
used in our experiments in Table 3.

D Experimental Setup

We use a pre-trained RoBERTa-base (Liu et al.,
2019) and Longformer-base (Beltagy et al., 2020)
models, available through the HuggingFace library
(Wolf et al., 2020). All experiments are performed
on Nvidia Tesla P100. Following Mosbach et al.
(2020), we train for 20 epochs, with the best per-
forming checkpoint chosen. Each experiment is re-
peated 3 times and the average results are reported.
We set k based on the percentage of evidence
present for the positive class. We use V,qnkeqd = 1.0
and v = 1.0 where appropriate. The Longformer-
based models have approximately 1.49 x 10® train-
able parameters, while the Compositional Soft At-
tention has 1.25 x 10® trainable parameters.

E Full Results

We present full results of the experiments in Tables
4,5,6and 7.

F Example Predictions

Furthermore, we provide more sample predictions
made by different models in Figures 2 and 3.
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Figure 1: Compositional Soft Attention architecture for rationale extraction and document classification. A standard
size transformer is applied to each sentence individually and the contextual token embeddings are then combined to

build a document-level representation.

FCE BEA 2019 IMDb-Pos IMDb-Neg
Number of train samples 722 1120 1200 1200
Number of dev samples 51 280 299 299
Number of test samples 66 200 300 300
Average text length (words) 441 213 686 686
Maximum text length (words) | 725 655 1935 1935
% of texts > 512 words 16% 2% 73% 73%
% positive samples 49% 46% 50% 50%
% negative samples 51% 54% 50% 50%
% evidence 13% 9% 8% 8%

Table 3: Statistics for the datasets used. All measured on the development datasets. We note the low proportion of

long texts in FCE and BEA 2019.



Doc Fi Ey Eos P R MAP
Random Uniform - 11.36 £ 0.32 12.00 12.47 10.42 16.68
Longformer Weighted Soft Attention | 93.79  21.224+0.17 14.59 12.08 88.38 16.38
Longformer Soft Attention Top-K 9439 14.75+3.21 14.99 15.16 14.40 13.76
Longformer Ranked Soft Attention 93.49 19.114+£2.92 19.65 20.12 18.53 18.55
Compositional Soft Attention 89.07 20.44+1.73 20.22 20.10 20.95 19.44

Table 4: Full results for BEA 2019. We note that while Weighted Soft Attention performs best on the token-level, it
is largely due to the model assigning scores of 1 to most tokens, as indicated by the high recall. Using Fj 5 as an
evaluation metric highlights this issue. Our proposed Compositional Soft Attention performs best on the token-level
in terms of both F{; 5 and MAP.

Doc Fy Ey Eos P R MAP
Random Uniform - 12.134+£0.36 13.70 14.99 10.18 15.91
Longformer Weighted Soft Attention | 89.34 24.81 £1.42 17.64 14.81 8335 16.17
Longformer Soft Attention Top-K 89.29 14.23+£2.25 15.57 16.61 12.46 14.67
Longformer Ranked Soft Attention 89.10 22.23+2.44 2340 2451 21.33 18.82
Compositional Soft Attention 81.32 21.08£2.02 23.19 2521 18.78 19.67

Table 5: Full results for FCE GED dataset. Similarly to BEA 2019, we note that the Weighted Soft Attention
performs best on the token-level, as evaluated by F} score. However, that is mainly because the model assigns 1
to most tokens, causing recall to be high. This is evident by the significantly lower Fj 5 metric. Our Ranked Soft
Attention and Compositional Soft Attention models achieve similar performance, significantly better than Weighted
Soft Attention if evaluated on the Fj 5 and MAP metrics.

Doc F1 F1 F0_5 P R MAP
Random Uniform - 546 £0.18 427 3.72 10.24 8.46
Longformer Weighted Soft Attention | 93.41  6.89+0.19 4.43 3.58 9239 781
Longformer Soft Attention Top-K 9442 590+2.21 519 480 7.67 7.8
Longformer Ranked Soft Attention 92.63 14.13+2.27 1192 10.80 20.54 11.97
Compositional Soft Attention 91.85 25.46 =097 20.12 17.66 45.85 26.82

Table 6: Full results for the IMDb-Pos Sentiment Detection dataset. We note that our Compositional Soft Attention
architecture performs significantly better across all token-level metrics.

Doc F1 Fl Fo,g, P R MAP
Random Uniform - 6.02+0.23 4.80 423 10.46 9.90
Longformer Weighted Soft Attention | 93.52 834 +0.98 540 4.37 93.38 10.59
Longformer Soft Attention Top-K 94.60 571+3.63 502 465 740 9.03
Longformer Ranked Soft Attention 93.92 19.62+£0.61 16.98 15.63 27.27 16.44
Compositional Soft Attention 90.82 27.27+3.68 2270 2042 41.22 29.78

Table 7: Full results for the IMDb-Neg Sentiment Detection dataset. Similarly to IMDb-Pos, we note that our
Compositional Soft Attention architecture performs significantly better across all token-level metrics.



W-SA R-SA C-SA
We 0.99 0.00 0.07
have 0.99 0.01 0.23
our 0.99 0.00 0.20
knowledge 0.99 0.85 0.99
easier 0.99 0.96 0.87
and 0.99 0.00 0.80
we 0.99 0.06 0.59
learn 0.99 0.02 0.33
more 0.98 0.10 0.98
easier 0.61 0.78 0.92
too 0.99 0.81 0.00

0.85 0.01 0.48

(a) Sample token-level predictions for BEA 2019 posi-
tive sample (beginner learner). Compositional Soft Atten-
tion finds all evidence, but also scores neighboring tokens
highly. Ranked Soft Attention on the other hand attends to
less neighbouring tokens. We note that this might explain
the performance differences between Grammatical Error
Detection and Sentiment Detection datasets, as the the
former annotations are more concentrated than the latter.

W-SA R-SA C-SA
So 0.15 0.34 0.29
, 0.02 0.00
| 0.00 0.00
hope 0.00
| 0.02
will 0.00
get 0.37 0.00
my . 0.00
money 0.00
back 0.00 0.04
) 0.99 0.98 0.00
it 0.99 0.99 0.00
was 0.99 0.99 0.12
very 0.85 0.99 0.00
disappointing . . 0.00
evening 0.00
out 0.99 0.99 0.00
in 0.96 0.00
my 0.03 0.00
life 0.37 0.00 0.03
! 0.99 0.00 0.36

(c) Excerpt from a positive FCE document (beginner
learner). This sentence includes grammatical errors.
Ranked Soft Attention manages to pick up some manually
annotated rationale, while Compositional Soft Attention
fails. However, Ranked Soft Attention also finds many
false positives.

W-SA R-SA C-SA
You 0.05 0.02
said 0.05
that 0.04
it 0.13
was 0.05
a 0.10
perfect 0.08 0.00
evening 0.49 0.05
out 0.00 0.18
but 0.13 0.00
it 0.98 0.17
was 0.00 0.57
n't 0.00
like 0.16 0.01
that . 0.44
. 0.07 0.08

(b) Excerpt from an FCE positive document (beginner
learner) without any grammatical errors in the sentence.
We note that both Weighted Soft Attention and Ranked
Soft Attention find a lot of false positives. On the other
hand, Compositional Soft Attention correctly does not
much rationale.

W-SA R-SA C-SA

In 0.00

the 0.00

end 0.1 0.01

, 0.00 0.40
the 0.00 0.52
restaurant 0.00 0.46
was 0.00 0.53
closed 0.00 0.14
because 0.01 0.27
you 0.18 0.28
did 0.04 0.00 0.26
n't . 0.14 0.09
have 0.00 0.18
enough 0.27 0.00 0.28
staffs 0.99 0.00 0.27
| 0.15 0.00 0.56
this 0.99 0.00 0.39
evening . 0.00 0.33
! 0.00 0.30

(d) An excerpt from a FCE positive document (beginner
learner), for a sentence with grammatical errors. Ranked
Soft Attention fails to provide any rationale, while Com-

positional Soft Attention correctly finds ”," as rationale,
but fails to attend to neighboring tokens.

Figure 2: Example predictions for Grammatical Error Detection datasets. W-SA corresponds to Weighted Soft
Attention, R-SA to Ranked Soft Attention, while C-SA to Compositional Soft Attention. We highlight words that
human annotators marked as rationale in orange, while also marking true positives in green and false positives as

red.
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W-SA R-SA C-SA

jack 0.14 0.00 0.00
frost 0.99 0.00 0.16
. 0.13 0.00 0.00
" 099 097 0.99
is plEs 0.00 0.99
one 0.99 0.00 0.99
of 0.96 0.00 0.99
those 0.99 0.93 0.98
dumb 0.99 0.00 0.01
| 0.99 0.07 0.87
corny 0.99 0.95 0.99
concoctions 0.96 0.00 0.99
that g8 0.0 0.95
attempts 0.99 0.00 0.50
to 0.99 0.00 0.00
be 0.99 0.00 0.04
a 0.99 0.00 0.19
heartwarming  0I98 0.00 0.01
tamily 0.99 0.05 0.89
film 0.91 0.00 0.38
. 097 099 099
but g8 0.00 0.99
is o8 o0.01 0.99
too 0.99 0.98  0.99
muddled 0.99 0.19 0.99
in 0.99 0.00 0.99
its 0.95 0.00 0.96
own 1.00 0.51 0.98
cliches 0.99 0.95 0.94
and 0.99 0.74 0.84
predictability 0.97 0.00 0.99
to 0.98 0.19 0.91
be 0.04 0.02 0.93
the 0.00 0.00 0.00
least 0.00 0.00 0.36
bit 0.98 0.01 0.43

0.99 0.00 0.69

touching
. p@s 000 000

(a) Sample predictions for a sample negative review in the
IMDb-Neg dataset. We find that Weighted Soft Attention
assigns similar scores to most tokens, while Ranked Soft
Attention and Compositional Soft Attention manage to
provide more fine-grained predictions. Compositional
Soft Attention appears to recover spans of rationale better
than Ranked Soft Attention.

W-SA

it

is

one

of

the

most
ludicrously
conceived
efforts

in

recent
history

W-SA R-SA C-SA

we 0.02

go 0.00

to 0.00

see 0.00

jet 0.00

li 0.29

movies 0.41

because 0.37

we 0.00

want 0.00

to 0.00

see 0.00

jet 0.00

li 0.01

kicking 0.14 0.49

a 0.21

lot 0.05

of 0.86

ass 0.00

from 0.00

side 0.14 0.00

to

side

s 0.73 0.39

and 0.99 0.69

this 0.99 0.99 0.72

film 0.99 0.87 0.92

delivers 0.99 0.92 0.68

gangbusters 0.99 0.98 0.91

on 0.99 0.98 0.82

that 0.99 0.99 0.97

front 0.99 0.99 0.91
0.99 0.67

(b) Sample prediction for a positive movie review in the
IMDb-Pos review. Here we note how Compositional
Soft Attention learns the correct ranking of tokens, as
evidenced by the higher scores for true positives than false
positives. However, it still failed to optimize correctly
for the classification threshold, leading numerous false
positives. This problem is not present in the Ranked Soft
Attention for this sample.

R-SA C-SA
0.00 0.02
0.00 0.02
0.00 0.08
0.00 0.08
0.00 0.05
0.00 0.00
0.00 0.00
0.00 0.01
0.00 0.06
0.00 0.02
0.00 0.03
0.00 0.14
0.00 0.02

(c) Sample predictions for a negative review in the IMDb-Pos
dataset. The gold token-level labels are all 0, as there are no
positive rationale in the negative review. Weighted Soft Attention
still assigns scores close to 1 to most tokens, while both Ranked
Soft Attention and Compositional Soft Attention learns not to
attend to any tokens. This shows how the increased token-level
supervision signal helps these architectures to learn to provide

better token-level rationale.

Figure 3: Example predictions for Sentiment Detection IMDb datasets. W-SA corresponds to Weighted Soft
Attention, R-SA to Ranked Soft Attention, while C-SA to Compositional Soft Attention. We highlight words that
human annotators marked as rationale in orange, while also marking true positives in green and false positives as

red.
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