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ABSTRACT

In this work, we explore the theoretical properties of conditional deep generative
models under the statistical framework of distribution regression where the re-
sponse variable lies in a high-dimensional ambient space but concentrates around
a potentially lower-dimensional manifold. More specifically, we study the large-
sample properties of a likelihood-based approach for estimating these models.
Our results lead to the convergence rate of a sieve maximum likelihood estimator
(MLE) for estimating the conditional distribution (and its devolved counterpart)
of the response given predictors in the Hellinger (Wasserstein) metric. Our rates
depend solely on the intrinsic dimension and smoothness of the true conditional
distribution. These findings provide an explanation of why conditional deep gen-
erative models can circumvent the curse of dimensionality from the perspective
of statistical foundations and demonstrate that they can learn a broader class of
nearly singular conditional distributions. Our analysis also emphasizes the impor-
tance of introducing a small noise perturbation to the data when they are supported
sufficiently close to a manifold. Finally, in our numerical studies, we demonstrate
the effective implementation of the proposed approach using both synthetic and
real-world datasets, which also provide complementary validation to our theoreti-
cal findings.

1 INTRODUCTION

Conditional distribution estimation provides a principled framework for characterizing the depen-
dence relationship between a response variable Y and predictors X , with the primary goal of es-
timating the distribution of Y conditional on X through learning the (conditional) data-generating
process. Conditional distribution estimation allows one to regress the entire distribution of Y on
X , which provides much richer information than the traditional mean regression and plays a central
role in various important areas ranging from causal inference (Pearl, 2009; Spirtes, 2010), graphical
models (Jordan, 1999; Koller and Friedman, 2009), representation learning (Bengio et al., 2013),
dimension reduction (Carreira-Perpinán, 1997; Van Der Maaten et al., 2009), to model selection
(Claeskens and Hjort, 2008; Ando, 2010). Their applications span across diverse domains such as
forecasting (Gneiting and Katzfuss, 2014), biology (Krishnaswamy et al., 2014), energy (Jeon and
Taylor, 2012), astronomy (Zhao et al., 2021), and industrial engineering (Simar and Wilson, 2015),
among others.

There is a rich literature in statistics and machine learning on conditional distribution estimation
including both frequentist and Bayesian methods (Hall and Yao, 2005; Norets and Pati, 2017). Tra-
ditional methods, however, suffer from the curse of dimensionality and often struggle to adapt to the
intricacies of modern data types such as the ones with lower-dimensional manifold structures.

Recent methodologies that leverage deep generative models have demonstrated significant advance-
ments in complex data generation. Instead of explicitly modeling the data distribution, these ap-
proaches implicitly estimate it through learning the corresponding data sampling scheme. Com-
monly, these implicit distribution estimation approaches can be broadly categorized into three types.
The first one is likelihood-based with notable examples including Kingma and Welling (2013),
Rezende et al. (2014), Burda et al. (2015), and Song et al. (2021) . The second approach, based
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on adversarial learning, matches the empirical distribution of the data with a distribution estimator
using an adversarial loss. Representative examples include Goodfellow et al. (2014), Arjovsky et al.
(2017), and Mroueh et al. (2017), among others. The third approach, which is more recent, reduces
the problem of distribution estimation to score estimation through certain time-discrete or contin-
uous dynamical systems. The idea of score matching was first proposed in Hyvärinen and Dayan
(2005) and Vincent (2011). More recently, score-based diffusion models have achieved state-of-the-
art performance in many applications (Sohl-Dickstein et al., 2015; Nichol and Dhariwal, 2021; Song
et al., 2020; Lipman et al., 2022).

On the theoretical front, recent works such as Liu et al. (2021), Chae et al. (2023), Altekrüger et al.
(2023), Stanczuk et al. (2024), Pidstrigach (2022) , and Tang and Yang (2023) demonstrate that dis-
tribution estimation based on deep generative models can adapt to the intrinsic geometry of the data,
with convergence rates dependent on the intrinsic dimension of the data, thus potentially circum-
venting the curse of dimensionality. Such advancement has naturally motivated us to employ and
investigate conditional deep generative model for conditional distribution estimation. Specifically,
we explore and study the theoretical properties of a new likelihood-based approach to conditional
sampling using deep generative models for data potentially residing on a low-dimensional mani-
fold corrupted by full-dimensional noise. More concretely, we consider the following conditional
distributional regression problem:

Y |X = V |X + ε, (1)
where X serves as a predictor in Rp, V |X represents the (uncorrupted) underlying response
supported on a manifold of dimension d ≤ D, Y |X represents the observed response, and
ε ∼ N(0, σ2

∗ID) denotes the noise residing in the ambient space RD. Our deep generative model fo-
cuses on the conditional distribution V |X by using a (conditional) generator of the form G∗(Z,X),
where G∗ is a function of a random seed Z and the covariate information X . This approach is
termed ‘conditional deep generative’ because the conditional generator is modeled using deep neu-
ral networks (DNNs). Observe that, when d < D, the distribution of G∗(Z,X) is supported on
a lower-dimensional manifold, making it singular with respect to the Lebesgue measure in the D-
dimensional ambient space. We study the statistical convergence rate of sieve MLEs in the condi-
tional deep general model setup and investigate its dependence on the intrinsic dimension, structure
properties of the model as well as the noise level of the data.

1.1 LIST OF CONTRIBUTIONS

We briefly summarise the main contributions made in this paper.

• To the best of our knowledge, our study is the first attempt to explore the likelihood-based ap-
proach for distributional regression using a conditional deep generative model, considering full-
dimensional noise and the potential presence of singular underlying support. We provide a solid
statistical foundation for the approach by proving the near-optimal convergence rates for this pro-
posed estimator.

• We derive the convergence rates for the conditional density estimator of the corrupted data Y
with respect to the Hellinger distance and specialize the obtained rate for two popular deep neural
network classes: the sparse and fully connected network classes. Furthermore, we characterize
the Wasserstein convergence rates for the induced intrinsic conditional distribution estimator on
the manifold (i.e., a deconvolution problem). Both rates turn out to depend only on the intrinsic
dimension and smoothness of the true conditional distribution.

• Our analysis in Corollary 2 suggests the need to inject a small amount of noise into the data when
they are sufficiently close to the manifold. Intuitively, this observation validates the underlying
structural challenges in related manifold estimation problems with noisy data, as outlined by Gen-
ovese et al. (2012).

• We show that the class of learnable (conditional) distributions of our method is broad. It encom-
passes not only the smooth distributions class, but also extends to the general (nearly) singular
distributions with manifold structures, with minimal assumptions.

1.2 OTHER RELEVANT LITERATURE

The problem of non-parametric conditional density estimation has been extensively explored in
statistical literature. Hall and Yao (2005), Bott and Kohler (2017), and Bilodeau et al. (2023) directly
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tackle this problem with smoothing and local polynomial-based methods. Fan and Yim (2004)
and Efromovich (2007) explore suitably transformed regression problems to address this challenge.
Other notable approaches include the nearest neighbor method (Izbicki et al., 2020; Bhattacharya
and Gangopadhyay, 1990), basis function expansion (Sugiyama et al., 2010; Izbicki and Lee, 2016),
tree-based boosting (Pospisil and Lee, 2018; Gao and Hastie, 2022), and Bayesian optimal transport
flow Chemseddine et al. (2024) among others.

In the context of conditional generation, we highlight recent work by Zhou et al. (2022) and Liu
et al. (2021). In Zhou et al. (2022), GANs were employed to investigate conditional density estima-
tion. While this work offers a consistent estimator, it lacks statistical rates or convergence analysis,
and its focus is on a low-dimensional setup. In Liu et al. (2021), conditional density estimation
supported on a manifold using Wasserstein-GANs was examined. However, their setup does not ac-
count for smoothness across either covariates or responses, nor do they address how deep generative
models specifically tackle the challenges of high-dimensionality. Moreover, their assumption that
the data lies exactly on the manifold can be restrictive. Our study shares some commonalities with
the work of Chae et al. (2023), as both investigate sieve maximum likelihood estimators (MLEs).
However, the fundamental problems addressed and the methodologies employed differ significantly,
and our work involves technical challenges that span multiple scales. While Chae et al. (2023) con-
centrates exclusively on unconditional distribution estimation, our theoretical analysis necessitates
much more nuanced techniques due to the conditional nature of our setup. This shift is noteworthy
because it demands a more refined analysis of entropy bounds, considering two potential sources
of smoothness - across the regressor and the response variables. Furthermore, our setting accom-
modates the possibility of an infinite number of x values, which gives rise to a dynamic manifold
structure, further compounding the intricacy of the problem at hand.

2 CONDITIONAL DEEP GENERATIVE MODELS FOR DISTRIBUTION
REGRESSION

We consider the following probabilistic conditional generative model, where for a given predictor
value x, the response Y is generated by

Y = G∗(Z, x) + ε, x ∈ X ⊂ Rp. (2)
Here, G∗(·, x) : Z → Mx is the unknown generator function, Z a latent variable with a known dis-
tribution PZ and support Z ⊂ Rd independent of the predictor X . The existence of the generator G∗
directly follows from Noise Outsourcing Lemma 3. This lemma enables the transfer of randomness
into the covariate and an orthogonal (independent) component through a generating function for any
regression response. We denote M : = ∪x∈XMx ⊂ RD as the support of the image of G∗(Z,X )
such as a (union of) d-dimensional manifold. We model G∗(·, ·) : Z × X ⊂ Rd × Rp → Y ⊂ RD

using a deep neural network, leading to a conditional deep generative model for (2).

In the next section, we present a more general result in terms of the entropy bound (variance) for
the true function class of G∗ and the approximability (bias) of the search class. We then proceed
to a simplified understanding in the context of conditional deep generative models in subsequent
sections.

2.1 CONVERGENCE RATES OF THE SIEVE MLE

In light of equation (2), it is evident that the distribution of Y |X = x results from the convolution
of two distinct distributions: the pushforward of Z through G∗ with X = x, and ε following an
independent D-dimensional normal distribution. The density corresponding to the true distribution
P∗(·|X = x) can thus be expressed as:

p∗(y|x) =
∫

ϕσ∗(y −G∗(z, x)) dPZ ,

where ϕσ∗ is the density of N(0, σ2
∗Id). We define the class of conditional distributions P as

P =
{
Pg,σ : g(·, x) ∈ F , σ ∈ [σmin, σmax]

}
, (3)

where Pg,σ represents the distribution with density pg,σ =
∫
ϕσ(y − g(z, x))dPZ . In this notation,

P∗ = PG∗,σ∗ and p∗ = pG∗,σ∗ . The elements of P comprise two components: g originating from
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the underlying function class F , and σ, which characterizes the noise component. This class enables
us to obtain separate estimates for G∗ and σ∗, furnishing us with both the canonical estimator for the
distribution of Y |X = x and enhancing our comprehension of the singular distribution of G∗(Z, x),
supported on a low-dimensional manifold.

Given a data set {(Xi, Yi)}ni=1, the log-likelihood function is defined as ℓn(g, σ) =
n−1

∑n
i=1 log pg,σ(Yi|Xi). For a sequence ηn ↓ 0 as n → ∞, a sieve maximum likelihood es-

timator (MLE) (Geman and Hwang, 1982) is any estimator (ĝ, σ̂) ∈ F × [σmin, σmax] that satisfies

ℓn (ĝ, σ̂) ≥ sup
σ∈[σmin,σmax]

g∈F

ℓn(g, σ)− ηn. (4)

Here ĝ ∈ F and σ̂ ∈ [σmin, σmax] are the estimators, and ηn represents the optimization error. The
dependence of ĝ and σ̂ on n illustrates the sieve’s role in approximating the true distribution when
optimization is performed over the class P . The estimated density p̂ = pĝ,σ̂ provides an estimator
for p∗(·|·), and Qĝ(·|X = x) serve as the estimator for Q∗(·|X = x).

In this section, we formulate the main results, which provide convergence rates in the Hellinger
distance for our sieve MLE estimator. The convergence rate was derived for any search functional
class F , with a brief emphasis on their entropy and approximation capabilities.
Assumption 1 (True distribution). Denote µ∗

X(x) as the distribution of X . We denote the true
conditional densities as p∗ = {p∗(·|x), x ∈ Rp}. It is natural to assume that the data is generated
from p∗ from model (2) with some true generator G∗ and σ∗. We denote Q∗(·|X = x) (or QG∗ ) as
the distribution of G∗(Z, x) for some distribution PZ .

A function g is said to have a composite structure (Schmidt-Hieber, 2020; Kohler and Langer, 2021)
if it takes the form as

g = fq ◦ fq−1 ◦ · · · ◦ f1 (5)

where fj : (aj , bj)
dj → (aj+1, bj+1)

dj+1 , d0 = p + d and dq+1 = D. Denote fj =

(f
(1)
j , . . . , f

(dj+1)
j ) as the components of fj , let tj be the maximal number of variables on which

each of the f
(i)
j depends and let f (i)

j ∈ Hβj ((aj , bj)
tj ,K) (see Section 2.4.1 for the definition of

the Hölder class Hβ). A composite structure is very general which includes smooth functions and
additive structure as special cases. In addition, in the next section, we show the class of conditional
distributions {QG∗(·|X = x) : x ∈ Rp, G∗ ∈ G} induced by the composite structure is broad.
Assumption 2 (composite structure ). Denote G = G (q,d, t,β,K) as a collection of functions
of form (5), where d = (d0, . . . , dq+1), t = (t0, . . . , tq+1), and β = (β0, . . . , βq+1). We regard
(q,d, t,β,K) as constants in our setup, and assume that the true generator G∗(·, x) as in (2)
belongs to G, for all x ∈ X . Additionally, we assume ∥|G∗|∞∥∞ ≤ K.

β̃j = βj

q∏
l=j+1

(βl ∧ 1) , j∗ = argmax
j∈{0,...,q}

tj

β̃j

, β∗ = β̃j∗ , t∗ = tj∗ .

The quantities t∗ and β∗ are called intrinsic dimension and smoothness of G∗ (or of G).
Remark 1 (Strength of the Composite Structure). The expression (aj , bj) ⊂ [−K,K] can be intu-
itively visualized by setting aj = −K and bj = K. To illustrate the impact of intrinsic dimensional-
ity and smoothness, consider a function f : Rd → R defined as f(x) = f1(x1)+. . .+fd(xd), where
x = (x1, . . . , xd) and fj ∈ Hβ((−K,K),K) for j = 1, . . . , d. While f ∈ Hβ((−K,K)d,K), its
intrinsic dimension is t∗ = 1 with intrinsic smoothness β. This mitigates the curse of dimensionality.

Assumption 3. Let M∗ be the closure of G∗(Z,X ). We assume that M∗ does not have an interior
point, and reach(M∗) = r∗ with r∗ > 0.

Assumption 2 permits low intrinsic dimensionality within the learnable function class. Assumption 3
imposes the strong identifiability condition necessary for efficient estimation, as seen in manifold
literature (Aamari and Levrard, 2019; Tang and Yang, 2023).

Given two conditional densities p1(·|x), p2(·|x) and µ∗
X denoting the density of X , we use in-

tegrated distances for a measure of evaluation. With a slight abuse of notation, we denote
d1(p1, p2) = EX [d1(p1(·|x), p2(·|x))] and dH(p1, p2) = EX [dH(p1(·|x), p2(·|x)], where d1 and
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dH represent the L1 and the Hellinger distance as d1(p1(·|x), p2(·|x)) =
∫
|p1(y|x)− p2(y|x)| dy

and dH(p1, p2) = (
∫ ∫

[
√
p1(y|x) −

√
p2(y|x)]2 dy)1/2 respectively. Denote N (δ,F , d) and

N[](δ,F , d) as covering and bracketing numbers of the function class F with respect to the (pseudo)-
metric d.

We first present Lemma 1, which establishes the bracketing entropy of the functional class P with
respect to Hellinger distance in terms of the covering entropy of the search class F . This enables us
to transfer the entropy control of the individual components F and σ to the entire P .
Lemma 1. Let F be class of functions from Z × X to RD such that ∥|g|∞∥∞ ≤ K for every
g ∈ F . Let P = {Pg,σ : g ∈ F , σ ∈ [σmin, σmax]} with σmin ≤ 1. Then, there exist constants
c = c(σmax,K,D) and C = C(σmax,K,D) and δ∗ = δ∗(D) such that for every δ ∈ (0, δ∗],

logN[](δ,P, dH) ≤ logN (cσD+3
min δ4,F , ∥| · |∞∥∞) + log

(
C

σD+2
min δ4

)
, (6)

The proof of Lemma 1 is provided in the Appendix E. Theorem 1 presents the convergence rate of
the sieve-MLE to the true distribution (see Appendix F for the proof).
Theorem 1. Let F ,P, σmin and δ∗ = δ∗(D) be given as in Lemma 1, and n ≥ 1. Suppose
that logN (δ,F , ∥| · |∞∥∞) ≤ ξ

{
A+ 1 ∨ log δ−1

}
for every δ ∈ (0, δ∗] and some A, ξ > 0.

Suppose that there exists a G ∈ F and some δapprox ∈ (0, δ∗] such that ∥|G−G∗|∞∥∞ ≤ δapprox.
Furthermore, suppose that s ≥ 1, A ≥ 1, σmin ≤ 1, δapprox ≤ 1 and σ∗ ∈ [σmin, σmax]. Then

P∗ (dH(p̂, p∗) > ε∗n) ≤ 5e−C1nε
∗2
n + C2n

−1 (7)

provided that ηn ≤ nε∗2n /6 and ε∗n ≤
√
2δ∗, where

ε∗n = C3

(√
ξ {A+ log (n/σmin)}

n
∨ δapprox

σ∗

)
, (8)

C1 is an absolute constant, C2 = C2(D) and C3 = C3(D,K, σmax).

The outlined rate has two components: the statistical component, expressed as an upper bound to
the metric entropy of F , and the approximation component, denoted as δapprox. The statistical
error is quantified by measuring the complexity of the class P , as formulated in Lemma 1. The
approximation error is assessed through the ability of the provided function class to approximate the
true distribution.

2.2 NEURAL NETWORK CLASS

We model G∗(·, ·) using a deep neural network. More specifically, we parameterize the true gener-
ator G∗ with a deep neural neural architecture (L, r) of the form

f : Rr0 → RrL+1 , z 7→ f(z) = WLρvLWL−1ρvL− . . .W1ρv1W0z, (9)

where Wj ∈ Rrj+1×rj , vj ∈ Rrj , ρvj (·) = ReLU(· − vj) and r = (r0, . . . , rL+1) ∈ NL+2. The
constant L is the number of hidden layers and r = (r0, . . . , rL+1) represents the number of nodes
in each layer.

We define the sparse neural architecture class Fs(L, r, s, B,K) as set of functions of form (9)
satisfying

max
0≤j≤L

|Wj |∞ ∨ |vj |∞ ≤ B,

L∑
j=1

|Wj |0 + |vj |0 ≤ s, ∥|f |∞∥∞ ≤ K,

with r0 = d + p and rL+1 = D, where | · |0 and | · |∞ stand for the L0 and L∞ vector norms, and
∥|f |∞∥∞ = supx∈Rr0 maxi=1,...,D |fi(x)|, s is sparsity parameter and K is functional bound.

The fully connected neural architecture class Fc = Fc (L, r, B,K) is set of functions of form (9)
satisfying

max
0≤j≤L

|Wj |∞ ∨ |vj |∞ ≤ B, ∥|f |∞∥∞ ≤ K.
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Both classes Fs and Fc for the deep generator will be considered in our analysis of the resulting sieve
maximum likelihood estimator. We denote the corresponding sieve-MLE as p̂s and p̂c, respectively.
When we use r instead of r, it refers to r1 = . . . = rL = r along with r0 = d+ p and rL+1 = D.

We can simplify and visualize the result stated in Theorem 1 in both cases: when the sieve-MLE is
obtained with optimization performed over the class Fs and Fc. To fulfill the conditions stated in
the Theorem 1, we need to establish entropy bounds for these function classes, Fs and Fc, and gain
insight into their approximation capabilities for the composite structure class described in Assump-
tion 2.

For the sparse neural architecture class Fs(L, r, s,K), the entropy, formally stated as Proposition 1
in Ohn and Kim (2019), is bounded as follows.

logN (δ,Fs, ∥| · |∞∥∞) ≲ sL {log(BLr) + log δ−1}. (10)
From an entropy perspective, the fully connected neural architecture class Fc(L, r,B,K) can be
viewed as Fs without any sparsity constraint, meaning s ≍ r2L. Therefore, we have

logN (δ,Fc, ∥| · |∞∥∞) ≲ L2r2{log(BLr) + log δ−1}. (11)

The approximation properties of the sparse and fully connected network are provided in Lemma 4.1
and Lemma 4.2 of the Appendix K, respectively.

Having established the essential components for Fc in (11) and Lemma 4.2, and for Fs in (10) and
Lemma 4.1, respectively, we can simplify Theorem 1 and state Corollary 1.
Corollary 1. Suppose that Assumptions 1 and 2 hold, and σ∗ ∈ [σmin, σmax] with σmin ≤ 1 and
σmax < ∞. Moreover, assume that the noise σ∗ decays at rate α, i.e., σ∗ ≍ n−α, and σmin = n−γ

for some γ ≥ α ≥ 0. Then, for every δapprox ∈ [0, 1], the following holds:

1. Let Fs = Fs (L, r, s, B,K) with δ∗ = δ∗(D) be as given in Lemma 1, and L ≍ log δ−1
approx,

r ≍ δ
−t∗/β∗
approx , s ≍ δ

−t∗/β∗
approx log δ−1

approx, B ≍ δ−1
approx. Then the sieve MLE p̂s satisfies (7)

with ε∗n as in (8) with ξ = δ
−t∗/β∗
approx log2(δ−1

approx) and A = log2(δ−1
approx) provided that

ηn ≤ nε∗2n /6 and ε∗n ≤
√
2δ∗.

2. Let Fc = Fc (L, r,B,K) with δ∗ = δ∗(D) be as given in Lemma 1, and L ≍ log δ−1
approx,

r ≍ δ
−t∗/2β∗
approx , B ≍ δ−1

approx. Then the sieve MLE p̂c satisfies (7) with ε∗n as in (8) with ξ =

δ
−t∗/β∗
approx log2(δ−1

approx) and A = log2(δ−1
approx) provided that ηn ≤ nε∗2n /6 and ε∗n ≤

√
2δ∗.

In particular, choosing δapprox :=
(
σ2
∗/n

)β∗/(2β∗+t∗) minimizes ε∗n ≍√
ξ {A+ log (n/σmin)} /n ∨ δapprox/σ∗, and gives

ε∗n ≍ n− β∗−t∗α
2β∗+t∗ log2(n). (12)

Remark 2. The convergence rate in (12) illustrates the influence of intrinsic dimensionality, smooth-
ness, and noise level on the estimation process. Note that α is upper bounded as ε∗n ≤

√
2δ∗(D).

For large values of α, estimation of G∗ is inherent difficult as the data is very close on the singu-
lar support. To address this, a small noise injection, as described in Corollary 2, can smooth the
estimation and ensure consistency.
The proof of Corollary 1 is provided in Appendix G. For the composite structural class G, the
effective smoothness is denoted by β∗, and the dimension is t∗. This effectively mitigates the curse
of dimensionality. The convergence rate at (12) also recovers the optimal rate when q = 1 and
α = 0, and there is a small lag of polynomial factor t∗α/(2β∗ + t∗) when α > 0 (Norets and Pati,
2017). This lag arises due to the presence of full-dimensional noise in the response observation Y .
Note that when the noise is small, that is α is large, achieving a sharp estimation of p∗ requires an
equally accurate estimate of G∗. This can be quite challenging. Our practically tractable approach
attempts to address this without initially estimating the singular support.

2.3 WASSERSTEIN CONVERGENCE OF THE INTRINSIC (CONDITIONAL) DISTRIBUTIONS

Using Wasserstein distance as a metric for distributions Qg is meaningful due to their singularity in
ambient space: when d < D, the conditional distribution is singular with respect to the Lebesgue
measure on RD.
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The integrated Wasserstein distance, for r ≥ 1, between P1(·|X) and P2(·|X) is defined as

Wr (P1, P2) = EX

[
inf

β∈Γ(P1,P2)

(
E(U1,U2)∼β

[
|U1 − U2|rr

])1/r]
,

where Γ(P1, P2) is the set of all couplings between P1 and P2 that preserves the two marginals. The
(dual) representation of this norm, Wr(P1, P2) = EX

[
sup∥f∥Lipr≤1 {EP1

[f ]− EP2
[f ] }

]
(Villani

et al., 2009) with ∥ · ∥Lipr
denoting the r-Lipschitz norm, is particularly useful in our proofs.

Theorem 2. Suppose that Assumption 3 holds. If dH(pg,σ, p∗) ≤ ε holds for some ε ∈ [0, 1] and
some pg,σ ∈ P , then we have

W1(Qg, Q∗) ≤ C
(
ε+ σ∗

√
log ε−1

)
,

where C = C(D,K, r∗) depends only on (D,K, r∗).

The proof of Theorem 2 is provided in Appendix H. Theorem 2 guarantees that W1

(
Q̂ĝ, Q∗

)
≲log

dH(p̂, p∗) + σ∗, where ≲log represents less than or equal up to a logarithmic factor of n. Following
from Corollary 1, the Wasserstein convergence rate, n−(β∗−t∗α)/(2β∗+t∗) log2(n) ∨ σ∗ log

1/2(n),
comprises two components: the convergence rate in the Hellinger distance and the standard deviation
of the true noise sequence. It is noteworthy that the first expression is influenced by the variance
of noise by the factor α. When α is very small, indicating that the data Yj lies very close to the
manifold, the second expression n−α in the overall rate dominates. Intuitively, this phenomenon
arises from the underlying structural challenges in related manifold estimation problems with noisy
data, as discussed by Genovese et al. (2012). To address this issue, we propose a data perturbation
strategy by transforming the data {(Yj , Xj)}nj=1 into {(Ỹj , Xj)}nj=1, where Ỹj = Yj + ϵj and
ϵj ∼ N

(
0D, n−β∗/(β∗+t∗) ID

)
. The resulting estimation error bound is summarized below, whose

proof is provided in Appendix I.

Corollary 2. Suppose that Assumption 1, 2, and 3 hold, and σ∗ ∈ [σmin, σmax] with σ∗ = n−α and
σmin = n−γ for some 0 ≤ α ≤ γ. Then for each of the network architecture classes (sparse and
fully connected) with the network parameters specified in Corollary 1, the sieve MLE p̂per and Q̂per

based on the perturbed data {(Ỹj , Xj)}nj=1 satisfies

P∗

[
W1

(
Q̂per, Q∗

)
≥
(
ε∗n + σ∗

√
log((ε∗n)

−1)
)]

≲ 5e−C1nε
∗
n
2

+
C2

n

where ε∗n can be chosen such that

ε∗n + σ∗
√
log((ε∗n)

−1) ≍

{
n− β∗−t∗α

2β∗+t∗ log2(n), if α < β∗/{2(β∗ + t∗)},
n− β∗

2(β∗+t∗) log2(n), otherwise.
(13)

2.4 CHARACTERIZATION OF THE LEARNABLE DISTRIBUTION CLASS

Section 2.2 focuses on the true generator G∗ within the class of functions with composite structures.
In this subsection, we show that such a conditional distribution class achieved by the push-forward
map G∗ is broad and includes many existing distribution classes for Q∗ as special cases.

2.4.1 SMOOTH CONDITIONAL DENSITY

For β > 0, let Hβ(D,M) be the class of all β-Hölder functions f : D ⊂ Rd → R with β-Hölder
norm bounded by M > 0. Let Hβ(D) = ∪M>0Hβ(D,M). See Appendix B for their formal
definitions.

Lemma 2. Suppose that (i) Z × X and Y are uniformly convex and (ii) pZ ∈ HβZ (Z), µ∗
X ∈

HβX (X ) and q∗ ∈ HβQ(Y) for some βZ , βX , βQ > 0 and are bounded above and below. Then,
there exists a map g(·, ·) : Z × X → Y such that Q∗(·|·) = Qg and g ∈ Hβmin+1(Z × X ), where
βmin = min{βZ , βX , βQ}.

7
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Lemma 2 establishes that the learnable distribution class includes Hölder-smooth functions with
smoothness parameter βmin and intrinsic dimension d. As a result, following Corollary 1, the con-
vergence rate for density estimation is given by ε∗n ≍ n−(βmin+1−dα)/(2βmin+2+d). A push-forward
map is a transport map between two distributions. The well-established regularity theory of transport
map in optimal transport is directly applicable here [see Villani et al. (2009) and Villani (2021)]. The
proof of Lemma 2 is based on Theorem 12.50 of Villani et al. (2009) and Caffarelli (1996), which
establishes the regularity of this transport map and its existence follows from Brenier (1991). When
pZ is selected as a well-behaved parametric distribution, the regularity of the transport map is deter-
mined by the smoothness of both µ∗

X and Q∗. For a more detailed discussion on this, please refer to
Appendix C.

2.4.2 A BROADER CONDITIONAL DISTRIBUTION CLASS WITH SMOOTHNESS DISPARITY

In Appendix L, we present a novel approximation result for the function class exhibiting smoothness
disparity in Theorem 5. This new result facilitates the study of theoretical properties of estimators
when the generator G∗ ∈ HβZ ,βX

d,p (Z,X ,K). Note that such a function class defined in (16) in
Appendix L is much broader compared to the smoothness class in Section 2.4.1 as Z and X do
not have to be jointly smooth and it allows for smoothness disparity among them. The subsequent
Theorem 3 combines our approximation result with (11) and enables us to specialize Theorem 1 to
this class (see Appendix J for the proof).

Theorem 3. Let G∗ ∈ HβZ ,βX

d,p (Z,X ,K). Suppose that Assumption 1 holds and σ∗ ∈ [σmin, σmax]

with σmin ≤ 1 and σmax < ∞. Moreover, we assume σ∗ ≍ n−α, and σmin = n−γ for some 0 ≤
α ≤ γ ≤ (β−1

Z d+ β−1
X p)−1. Then, for every δapprox ∈ [0, 1], we have: Let Fs = Fs (L, r, s, 1,K)

with L ≍ log δ−1
approx, r ≍ δ

−(β−1
Z d+β−1

X p)
approx , s ≍ δ

−(β−1
Z d+β−1

X p)
approx log δ−1

approx. Then the sieve MLE p̂s

satisfies (7) with the rate outlined in (8) with ξ = δ
−(β−1

Z d+β−1
X p)

approx log2 δ−1
approx and A = log2 δ−1

approx,

provided that ηn ≤ nε∗2n /6. In particular, choosing δapprox :=
(
σ2
∗/n

)1/(2+β−1
Z d+β−1

X p) ≤ 1

minimizes ε∗n ≍
√
ξ {A+ log (n/σmin)} /n ∨ δapprox/σ∗, and gives

ε∗n ≍ n
−

1−α(β
−1
Z

d+β
−1
X

p)

2+β
−1
Z

d+β
−1
X

p log2(n). (14)

The proof of Theorem 3 is provided in Appendix J. In the special case when α = 0 and d = D, our
convergence rate in (14) recovers the minimax optimal rate for conditional density estimation based
on kernel smoothing, as established in Li et al. (2022).

2.4.3 CONDITIONAL DISTRIBUTION ON MANIFOLDS

In this part, we extend Lemma 2 and provide the existence of the generator when the conditional
distribution is supported on a compact manifold with dimension d∗ ≤ D. Due to space constraints,
we provide only a sketched proof here; the detailed proof can be found in Appendix D. Specifically,
we first present arguments for the existence of the generator when Y is covered by a single chart.
We then extend this to the multiple chart case using the technique of partition of unity.

In the simpler case when there exists a single (Y, φ) covering Y , where φ : B1(0d∗) → Y is a
homeomorphism, we assume φ ∈ Hβmin+1. In this case, we use the change of variable formula
to transfer the measure on B1(0d∗) (unit ball in Rd∗ ) from Y . Following Lemma 2, we can find
a transport map g ∈ Hβmin mapping from Z × X to B1(0d∗). The map g ◦ φ then serves as our
generator.

In the general case where the compact manifold Y needs to be covered by multiple charts, demon-
strating the existence of a transport or push-forward map is challenging because Y is not uniformly
convex. Suppose that {(Uk, φk)}Kk=1 forms a cover of Y . Due to the compactness of Y , the number
of charts K is finite. Analogous to the single chart scenario, we first construct gk ◦ φk to transport
the measure on each chart. We then patch these local transport maps together to construct a global
transport map; see Appendix D for full details. As a result, following Corollary 1, the convergence
rate for density estimation shall be given by ε∗n ≍ n−(βmin−dα)/(2βmin+d).
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3 NUMERICAL RESULTS

In this section, we present numerical experiments to validate and complement our theoretical find-
ings using two synthetic dataset examples. These experiments cover a range of scenarios, including
full-dimensional cases as well as benchmark examples involving manifold-based data. Additionally,
we provide a real data example to further enrich our experimentation and validation process. It is
worth noting that, although not significant, the computational cost of fitting a conditional generative
model is higher compared to fitting an unconditional one, as the input dimension of the deep neural
network (DNN) is p+ d rather than just d.

Learning algorithm to compute sieve MLE. For the computational algorithm, we adopt a
common conditional variational auto-encoder (VAE) architecture to maximize the following log-
likelihood term:

∑n
j=1 LVAE(g, σ, ϕ;Yj , Xj), where

LVAE(g, σ, ϕ; y, x) = log

(
pg,σ(y, x, z)

qϕ(Z|y, x)

)
.

The variational distribution qϕ(Z|y, x) is chosen as the standard normal family
N(µϕ(y, x),Σϕ(y, x)).

We examine two classes of datasets: (i) full-dimensional response and (ii) response residing on a
low-dimensional manifold. The first highlights the generality of our proposed approach, while the
second underscores its efficiency in terms of the Wasserstein metric and validates the small noise
perturbation strategy outlined in Corollary 2.

Simulation from full dimension distribution. We use the following models for data generation.

• FD1 : Y = I{U<0.5} N
(
−X, 0.252

)
+ I{U>0.5} N

(
X, 0.252

)
; U ∼ Unif(0, 1), X ∼ N(3, 1).

• FD2 : Y = X2
1 + e(X2+X3/3) + sin(X4 +X5) + ε; {Xj}5j=1

i.i.d∼ N(0, 1), ε ∼ N(0, 1).

• FD3 : Y = X2
1 + e(X2+X3/3) + X4 − X5 + 0.5 (1 + X2

2 + X2
5 ) × ε; {Xj}5j=1

i.i.d∼ N(0, 1),
ε ∼ N(0, 1).

These are examples of a mixture model, an additive noise model, and a multiplicative noise model,
respectively. The neural architecture for both the encoder and decoder consists of two deep layers,
i.e., L = 2. The hyperparameters are as follows: renc = (p + 1, 10, 10) for µϕ and Σϕ, and
rdec = (10 + p, 10, 1) for g. The sample size used for simulation is 5000, with a training-to-testing
ratio of 4 : 1. We employ a batch size of 64 with a learning rate of 10−3.

We compare the sieve MLE with CKDE (Hall et al., 2004) and FlexCode proposed by Izbicki and
Lee (2017). To evaluate their performance, we compute the mean squared error (MSE) for both
the mean and the standard deviation. We use Monte Carlo approximation to compute the mean
and standard deviation for the sieve MLE, and numerical integration for CKDE and Flexcode. This
evaluation strategy resembles that implemented by Zhou et al. (2022). Table 1 summarizes the
findings.

Table 1: MSE for the estimated conditional mean and the standard deviation.

Sieve MLE CKDE FlexCode

FD1 MEAN 0.0379± 0.0170 1.0053± 0.1004 1.1660± 0.1076
SD 0.0280± 0.0045 0.9887± 0.0347 1.2000± 0.0126

FD2 MEAN 0.1943± 0.0427 0.2640± 0.0515 0.3954± 0.0571
SD 0.2843± 0.0093 0.2853± 0.0213 5.8278± 0.1607

FD3 MEAN 0.2337± 0.0453 0.2967± 0.0537 1.3419± 0.1087
SD 1.6394± 0.0861 0.6334± 0.0460 11.4898± 0.1559

Note that the sieve MLE outperforms all other methods in all scenarios except for the MSE(SD) for
the FD3 dataset. However, for the FD3 dataset, we found that as the training sample size increases
further, the MSE(SD) of the sieve MLE achieves performance increasingly comparable to CKDE.
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Simulation from distributions on manifolds. We consider two examples of manifolds with an
intrinsic dimension d = 1, while the ambient dimension is D = 2.

• M1 : Y = G∗(Z,U) + ε, G∗ = (G
(1)
∗ , G

(2)
∗ ), G(1)

∗ = I{U<0.5} (1− cos(Z)) + I{U>0.5} cos(Z),
G

(2)
∗ = I{U<0.5} (0.5− sin(Z)) + I{U>0.5} sin(Z); Z ∼ Unif(0, π), U ∼ Unif(0, 1).

• M2 : Y = G∗(Z,U) + ε, G∗ =
(
G

(1)
∗ , G

(2)
∗

)
, G(1)

∗ = I{U<0.5} cos(Z) + I{U>0.5} 2 cos(Z),

G
(2)
∗ = I{U<0.5} 0.5 sin(Z) + I{U>0.5} sin(Z); Z ∼ Unif(0, 2π), U ∼ Unif(0, 1).

The manifold M1 consists of two moons. The manifold M2 comprises ellipses, with conditions
distinguishing the inner and outer confocal ellipses. The noise sequence follows a two-dimensional
centered Gaussian distribution, ε ∼ N(02, σ

2
∗I2). We investigated this setup across various noise

variances σ2
∗. Our neural architecture employed renc = (p + 2, 100, 100, 2) for µϕ and Σϕ, and

rdec = (2 + p, 100, 100, 2) for g. We utilized a sample size of 5000 for simulation, with a training-
to-testing ratio of 4 : 1. A batch size of 100 was employed, with a learning rate of 10−3. We

Figure 1: Generated samples from manifold M1 and M2 are displayed in the left panel. The right
panel shows box plots for the empirical Wasserstein distance at different noise levels σ∗.

computed the empirical W1 distance using the algorithm proposed by Cuturi (2013) to evaluate the
performance. The right panel of Figure 1 presents the boxplots of W1 between the true and learned
distribution for M1 and M2 across 20 repetitions. The left panel highlights the following general
behaviors:

• When α is small and close to zero, the noise variance is large, making estimation challenging due
to the singularity of the true data distribution.

• When α is large, the noise variance is small, and the perturbed data facilitates efficient estimation.

This observed pattern, as emphasized in Corollary 2, closely aligns with the results achieved in
(13). An additional numerical experiment on real data has been performed and can be found in
Appendix A.

4 DISCUSSION

We investigated statistical properties of a likelihood-based conditional deep generative model for
distribution regression in a scenario where the response variable is situated in a high-dimensional
ambient space but is centered around a potentially lower-dimensional intrinsic structure. Our anal-
ysis established favorable rates in both the Hellinger and Wasserstein metrics which are dependent
on only the intrinsic dimension of the data. Our theoretical findings show that the conditional deep
generative models can circumvent the curse of dimensionality for high-dimensional distribution re-
gression. To the best of our knowledge, our work is the first of its kind.

Given the novelty of emerging statistical methodologies with intricate structural considerations in
the study of deep generative models, there exist numerous paths for future exploration. Among
these potential directions, we are particularly interested in investigating controllable generation via
penalized optimization methods, studying statistical properties of deep generative models trained
via matching flows, as well as delving into the hypothesis testing problem within the framework of
deep generative models, among others. Another interesting direction is to explore residual neural
network structure for modeling time series of distributions with interesting temporal dependence
structures.
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Supplementary Materials for “A Likelihood Based Approach to
Distribution Regression Using Conditional Deep Generative

Models”

A NUMERICAL RESULT FOR REAL DATA

We utilized the widely used MNIST dataset for two purposes: to demonstrate the generalizability of
our approach to a benchmark image dataset where the intrinsic dimension d is much lesser than the
ambient dimension D = 784 and to underscore the effectiveness of sparse networks as outlined in
Lemma 4.1 and Corollary 1.1.

For the fully connected architecture, we set renc = (10 + 784, 512, 2) for µϕ and Σϕ, and rdec =
(10 + 2, 512, 784) for g. For the sparse architecture, we use renc = (10 + 784, 608, 432, 256, 2) for
µϕ and Σϕ, and rdec = (10 + 2, 256, 432, 608, 784) for g. The input dimension of 10 for both the
encoder and decoder corresponds to the one-hot encoding of the labels. We employ a batch size of
64 with a learning rate of 10−3.

Figure 2 presents a visual comparison between real and generated images, organized according to
their respective labels. The real images were randomly sampled from the training set along with their
corresponding labels, while the generated images were produced using these labels (conditions) and
random seeds.

Figure 2: MNIST images: real images (left panel), generated images with sparse architecture (cen-
tral panel), and generated images with fully connected architecture (right panel)

This MNIST example highlights a case where the intrinsic dimension is significantly smaller than
the ambient data dimension. This example serves to validate the proposed methodology in high-
dimensional settings.

B NOTATION

We denote a∨ b and a∧ b as the maximum and minimum of two real numbers a and b, respectively.
The notation ⌈a⌉ represents the smallest integer greater than or equal to a. The inequality a ≲ b
indicates that a is less than or equal to b up to a multiplicative constant. When we write a ≲log b,
it means that a is less than or equal to b up to a logarithmic factor, specifically log(n). We denote
a ≍ b when both a ≲ b and b ≲ a hold. For vector norms, | · |p represents the ℓp norm, while ∥ · ∥p
denotes the Lp-norm of a function for 1 ≤ p ≤ ∞. Lastly, Bϵ(u) signifies the Euclidean open ball
with radius ϵ centered at u.

We use the multi-index notation through the main paper and the appendix. Denote N as the
set of natural numbers and N0 as N ∪ {0}. For a vector x ∈ Rr, we denote the components
as x = (x(1), . . . , x(r)). Given a function f : D ⊂ Rr → R, the operator is defined as
∂α := ∂α(1)

. . . ∂α(r)

with α ∈ Nr
0, where ∂α(j)

f := ∂α(j)

f(x)/∂x(j). For α ∈ Nr
0, the ex-

pression |α| =
∑r

j=1 |α(j)|. Given a function f(·, ·) : D × D′ ⊂ Rr × Rr′ → R, we de-

note the operator ∂α+α′ := ∂α(1)

. . . ∂α(r)

∂α
(1)
′ . . . ∂α

(r′)
′ , with α ∈ Nr

0 and α′ ∈ Nr′
0 , where
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∂α(j)

f(x,y) = ∂α(j)

f(x,y)/∂α(j)

x(j) and ∂α
(j)
′ f(x,y) = ∂α

(j)
′ f(x,y)/∂y(j), with x ∈ D and

y ∈ D′. This notation allows us to represent the derivative with variable x and y separately through
the vector α and α′ which is required to tackle the smoothness disparity along x and y variable. The
β−Hölder class functions are defined as

Hβ
r (D,M) =

{
f : D ⊂ Rr → R :∑

α:|α|<β

∥∂αf∥∞ +
∑

α:|α|=⌊β⌋

sup
u1,u2∈D
u1 ̸=u2

|∂αf(u1)− ∂αf(u2)|
|u1 − u2|β−⌊β⌋

∞
≤ M

}
,

(15)

We extend this definition to include the Hölder class of functions with differences in smoothness
(smoothness disparity) along two variables. This class is defined as

Hβ,β′
r,r′ (D,D′,M) =

{
f(·, ·) : D ×D′ ⊂ Rr × Rr′ → R :∑

α:|α|<β
α′:|α′|<β′

∥∂α+α′f∥∞ +
∑

α:|α|=⌊β⌋
α′:|α′|=⌊β′⌋

sup
u1,u2∈DX
v1,v2∈DY
u1 ̸=u2
v1 ̸=v2

|∂α+α′f(v1,u1)− ∂α+α′f(v2,u2)|
|u1 − u2|β−⌊β⌋

∞ ∨ |v1 − v2|β′−⌊β′⌋
∞

≤ M
}
.

(16)
We denote Hβ

r (D) = ∪M>0Hβ
r (D,M) and Hβ,β′

r,r′ (D,D′) = ∪M>0Hβ,β′
r,r′ (D,D′,M).

C MORE ON SMOOTH CONDITIONAL DENSITY

Theorem 4 (Villani et al. (2009) Theorem 12.50). Suppose that

(i) A1 and A2 are uniformly convex, bounded, open subsets of Rd with C⌊β⌋+2 (continuously
differentiable up to order ⌊β⌋+ 2) boundaries,

(ii) h1 ∈ Hβ(A1) and h2 ∈ Hβ(A2) for some β > 0, are probability densities bounded above
and below.

Then, there exists a unique map (up to an additive constant) g : A1 → A2 with g ∈ Hβ+1(A1),
such that if U ∼ h1 then g(U) ∼ h2.

Proof of Lemma 2. Given that Z and X is independent, the product measure on Z × X is pZµ
∗
X .

Following the smoothness from pZ and µ∗
X , the map pZ(·)µ∗

X(·) ∈ Hmin{βZ ,βX}(Z × X ).
This implies that pZ(·)µ∗

X(·) ∈ Hmin{βZ ,βX ,βQ}(Z × X ). Again q∗ ∈ HβQ(Y) implies q∗ ∈
Hmin{βZ ,βX ,βQ}(Y). The result now follows directly from Theorem 4.

Many of the problems in the conditional setting have an analog in the joint setup. Our proposed
approach has a direct statistical extension to this setup. The sufficiency of such extension follows
from the observation in the subsequent Lemma 3 which is based on Lemma 2.1 and Lemma 2.2 of
Zhou et al. (2022) (see also Theorem 5.10 of Kallenberg (1997)).
Lemma 3 (Noise Outsourcing Lemma). Let (Y,X) ∈ Y ×X with joint distribution PY,X . Suppose
Y is standard Borel space, then there exists Z ∼ N(0, Im) for any given m ≥ 1, independent of X ,
and a Borel measurable function G : Rm ×X → Y such that

(X,G(Z,X)) ∼ (Y,X). (17)

Moreover, the condition (17) is equivalent of

G(Z, x) ∼ PY |X=x.

D MORE ON CONDITIONAL DISTRIBUTION ON MANIFOLDS

Suppose (Y, φ) is the single chart covering Y , where φ : B1(0d∗) → Y is a homeomorphism. We
assume that φ ∈ Hβmin+1, and that infu∈B1(0d∗ )

|Jφ(u)| is bounded below by a positive constant,
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where

|Jφ(u)| =

√
det

(
∂φ

∂u⊤
∂φ

∂u

)
is the Jacobian determinant of φ.

Note that when d∗ < D, the distribution Q∗ cannot possess a Lebesgue density because of the
singularity of Y . We, therefore consider a density with respect to the d∗−dimensional Hausdorff
measure in RD, denoted by Hd∗ . Suppose that Q allows the Radon-Nikodym derivative q with
respect to Hd∗ . We further assume that q is bounded from above and below and that q ◦ φ ∈ Hβmin .
Then by change of variable formula, the Lebesgue density of Q̃, the push-forward measure on
B1(0d∗) through the map φ−1, is given as

q̃(u) = q(φ(u))|Jφ(u)|.

Following the assumptions on the Jacobian determinant and φ ∈ Hβmin+1, it follows that |Jφ(u)|
is bounded from above and below, and the map u 7→ |Jφ(u)| belongs to Hβmin . Therefore, q̃ is
bounded above and below, belongs to Hβmin(B1(0d∗)). By Lemma 2, assuming βmin ≤ βZ ∧ βX ,
there exists g ∈ Hβmin+1 such that Q̃ = Qg . Thus, we have Q = Qφ◦g , where φ ◦ g : Z ×X → Y .
Following Lemma 4, it is possible to find the appropriate neural network approximating them.

Suppose Y is covered by the charts {(Uk, φk)}Kk=1, with 1 < K < ∞, where φk : B1(0d∗) → Uk

is a homeomorphism. As before, we assume φk ∈ Hβmin+1, |Jφk
(u)| is bounded below by a

positive constant, Q possesses density q with respect to Hd∗ that is bounded above and below, and
that q ◦ ϕk ∈ Hβmin . Let Qk(·) = Q(·)/Q(Uk) be the normalized measure of Q over Uk.

We denote qk as the corresponding density with respect to Hd∗ . For u ∈ Uk ∩ Uℓ, qk(u)Q(Uk) =
qℓ(u)Q(Uℓ) = q(u) holds due to the measure Q(·) being compatible with the charts. This is ensured
because the densities Q(Uk)qk(·) and Q(Uℓ)qℓ(·) are consistent and align with the measure Q over
the overlapping regions of the charts. This compatibility is essential for constructing a coherent
global measure from local chart densities.

A compact manifold Y can be covered by a finite partition of unity {τk, k = 1, . . . ,K}, each
sufficiently smooth (Lee, 2012). By definition, each function in this partition satisfies τk(u) = 0

for u /∈ Uk and
∑K

k=1 τk(u) = 1 for all u ∈ Y . Given that q(u) = Q(Uk)qk(u) for each k and
u ∈ Uk, we can express q(u) as:

q(u) =

K∑
k=1

Q(Uk)τk(u)qk(u).

Defining πk = Q(Uk), we can express q(u) as a mixture of weighted distributions:

q(u) =

K∑
k=1

πkτk(u)qk(u),

With all the necessary tools at our disposal, we are ready to begin the construction of the desired
map. We start by partitioning the measure on Z ×X into subsets with weights {πk}Kk=1, denoted as
{Vk}Kk=1. By following a similar approach to the single chart scenario and utilizing Lemma 2, we
obtain the push-forward maps φk ◦ gk : Vk ⊂ Z × X → Uk ⊂ Y , which transport the normalized
measure from Vk to the measure Qk restricted to the support on Uk, with the corresponding density
qk for each 1 ≤ k ≤ K.

The final step is to combine these local maps into a single coherent global map. This is achieved
by summing the local maps weighted by their corresponding measures and the the partition of unity
functions:

G =

K∑
k=1

πk [τk(φk ◦ gk(·))] (φk ◦ gk(·)),

This ensures that the push-forward map accurately transports the measure from Z × X to Y while
maintaining the necessary smoothness and compatibility across different charts.
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E PROOF OF LEMMA 1

Proof. For g1(·|x), g2(·|x) ∈ F with ∥|g1 − g2|∞∥∞ ≤ η1. Then
pg1,σ(y|x)− pg2,σ(y|x)

=

∫
ϕσ(y − g1(x, z))

(
1− ϕσ(y − g2(x, z))

ϕσ(y − g1(x, z))

)
dPZ(z)

=

∫
ϕσ(y − g1(x, z))

(
1− exp

{
−|y − g2(x, z)|22 − |y − g1(x, z)|22

2σ2

})
dPZ(z)

≤
∫

ϕσ(y − g1(x, z))

(
|y − g2(x, z)|22 − |y − g1(x, z)|22

2σ2

)
dPZ(z) (18)

=

∫
ϕσ(y − g1(x, z))

(
|g2(x, z)− g1(x, z)|22 − 2(y − g1(x, z))

T (g2(x, z)− g1(x, z))

2σ2

)
dPZ(z)

≤
∫

ϕσ(y − g1(x, z))

(
|g2(x, z)− g1(x, z)|22

2σ2
+

2|y − g1(x, z)|1|g2(x, z)− g1(x, z)|∞
2σ2

)
dPZ(z)

≤
∫

ϕσ(y − g1(x, z))
2KDη1
2σ2

dPZ(z) +
2η1
2σ2

∫
|y − g1(x, z)|1ϕσ(y − g1(x, z))dPZ(z) (19)

≤2KDη1
2σ2

1(√
2πσ2

)D +
η1
σ2

∫ √
D

2πe

1

(
√
2πσ2)D−1

dPZ(z) (20)

≤c1(K,D)σ
−(D+2)
min η1. (21)

For the last line, we use the fact that σmin ≤ 1. The inequality at (18) follows from e−x ≥ (1− x).
The ones at (19) follows using

|g2(x, z)− g1(x, z)|22 ≤ 2K|g2(x, z)− g1(x, z)|1 ≤ 2KD|g2(x, z)− g1(x, z)|∞
≤ 2KD∥|g1 − g2|∞∥∞ ≤ 2KDη1

and |g2(x, z)−g1(x, z)|∞ ≤ η1. The change at (20) follows from ϕσ(y−g1(x, z)) ≤
(√

2πσ2
)−D

and the bound

|v|1ϕσ(v) ≤
√

D

2πe

1

(
√
2πσ2)D−1

.

Now for σ1, σ2 ∈ [σmin, σmax] with |σ1 − σ2| ≤ η2. It holds that
∣∣σ−2

1 − σ−2
2

∣∣ ≤
σ−2
1 σ−2

2 (σ1 + σ2) η2 and
∣∣∣log (σ2

σ1

)∣∣∣ ≤ η2

min{σ1,σ2} . We have

pg,σ1
(y|x)− pg2,σ2

(y|x)

=

∫
ϕσ1(y − g(x, z)

(
1−

(
σ1

σ2

)D

exp

{
|y − g(x, z)|22

2

(
1

σ2
1

− 1

σ2
2

)})
dPZ(z)

≤
∫

ϕσ1(y − g(x, z)

[
|y − g(x, z)|22

2

(
1

σ2
2

− 1

σ2
1

)
−D log

(
σ1

σ2

)]
dPZ(z) (22)

≤
∫

ϕσ1(y − g(x, z)

[
|y − g(x, z)|22

2

(
σ1 + σ2

σ2
1σ

2
2

)
η2 +

Dη2
min{σ1, σ2}

]
dPZ(z)

≤ 1

(
√

2πσ2
1)

D

σ1 + σ2

eσ2
2

η2 +
1(√

2πσ2
1

)D Dη2
min{σ1, σ2}

(23)

≤c2(D)σ
−(D+1)
min η2. (24)

The (22) follows from 1 − e−α ≤ α. The change at (23) follows from ϕσ1
(y − g(x, z)) ≤(√

2πσ2
1

)−D

and

|v|22ϕσ(v) ≤
σ2

(
√
2πσ2)D

2

e
.
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Let ε > 0. Let {g1, . . . , gN1
} be η1−covering of F and {σ1, . . . , σN2

} be η2−covering of
[σmin, σmax] with respect to ∥| · |∞∥∞ and | · |∞. By (21) and (24), η1 = c−1

1 σD+2
min ε/4 and

η2 = c−2
2 σD+1

min ε/4 implies{
Pgi,σj (·|·) : i = 1, . . . , N1, j = 1, . . . , N2

}
forms an ε/2−covering for P with respect to ∥ · ∥∞. Denote the envelope function of F

H(y, x) = sup
p∈P

p(y|x) ≤ 1

(2πσ2
min)

−D/2
exp

{
−|y|22 − 4K2D

4σ2
max

}

= eK
2D/2σ2

max2D/2

(
σmax

σmin

)D

ϕ√
2σmax

(y).

Following from
∫
|y|∞>t

ϕσ(y)dy ≤ 2De−t2/2σ2

, we have∫ ∫
|y|∞>B

H(y, x)µ(y, x)dydx =

∫ (∫
|y|∞>B

H(y, x)µ(y|x)dy

)
µ∗
X(x)dx < ε,

where

B = 2σmax

(
log

1

ε
+D log

σmax

σmin
+

K2D

2σ2
max

+ log 2D

)1/2

.

For each (i, j) define
lij(y, x) = max

{
pgi,σj (y, x)− ε/2, 0

}
and uij(y, x) = min

{
pgi,σj (y, x) + ε/2, H(y, x)

}
.

It follows that ∫ ∫
{uij(y, x)− lij(y, x)}µ∗

X(x)dydx

≤
∫ ∫

|y|∞≤B

εµ∗
X(x)dydx+

∫ ∫
|y|∞>B

H(y, x)µ∗
X(x)dydx

≤
{
(2B)D + 1

}
ε.

(25)

Denote δ2 :=
{
(2B)D + 1

}
. With d2H(uij , lij) ≤ d1(uij , lij), we have

N[](δ,P, dH) ≤ N[](δ
2,P, d1) ≤ N1N2 ≤ σmax − σmin

η2
N (η1,F , ∥| · |∞∥∞). (26)

It is possible to write

δ2 = ε ≤ C1(σmax, D)

[
ε(log ε−1)D/2 + εC2(K) + ε

(
log

σmax

σmin

)D/2
]
,

where C1(σmax, D) and C2(K) is a constant. There exists small enough ε∗(D) such that for all
ε ∈ (0, ε∗]

δ2 ≤ C3(σmax, D,K)
√
ε

(
log

σmax

σmin

)D/2

.

Consequently, there exists δ∗ = δ∗(D), such that for all δ ≤ δ∗, we have

C2
3 (σmax,K,D)δ4

(
log

σmax

σmin

)−D

≤ ε.

It lead us to, for all δ ≤ δ∗

η1 ≥ c−1
1 C2

3σ
D+3
min δ4

σmin{log(σmax/σmin)}D
≥ cσD+3

min δ4, (27)

where c(σmax,K,D) is a constant. We use the fact that σmin{log(σmax/σmin)}D is bounded above
by some constant depending only upon σmax as σmin ≤ 1. Similar to (27), it is possible to write for
all δ > δ∗

η2 ≥ c′σD+2
min δ4, for all δ ≤ δ∗, (28)

where c′(σmax,K,D) is some constant.

The result now follows directly (28) and (27) with (26).
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F PROOF OF THEOREM 1

Proof. Choose four absolute constants c1, . . . , c4 as in Theorem 1 of Wong and Shen (1995). Define
c and C in the statement of Lemma 1. The proof closely follows Chae et al. (2023). We have therein
the proof of Theorem 3 that∫ √

2ε

ε2/28

√
logN[](δ/c3,P, dH)dδ

≤
√
2ε

√
ξA+ (D + 3)(s+ 1) log σ−1

min + c5ξ +
√
2ε
√

4(ξ + 1)
√
log(28/ε2),

(29)

for every ε ≤
√
2 ≤ c3δ∗/

√
2, where c5 = c5(c, C, c3). Observe that c4

√
nε2n is upper bound to

(29) and Eq. (3.1) of Wong and Shen (1995) is satisfied.

Using B.12 of Ghosal and van der Vaart (2017), we have

K(pG∗,σ∗ , pg,σ∗) ≤
∫ ∫

K
(
N
(
G∗(z, x), σ

2
∗
)
, N
(
g(z, x), σ2

∗
) )

µ∗
X(x) dx dPZ(z)

=

∫ ∫
|G∗(z, x)− g(z, x)|22

2σ2
∗

µ∗
X(x) dx dPZ(z) ≤

Dδ2approx
2σ2

∗
=: δn.

One may easily see that∫ (
log

ϕσ(x)

ϕσ(x− y)

)2

ϕσ(x)dx =

∫
|y|42 + 4|xT y|2

4σ2
ϕσ(x)dx ≤ |y|42

4σ2
+ |y|22

∫
|x|22
σ2

ϕσ(x)dx.

Combining this with Example B.12, (B.17) and Exercise B.8 of Ghosal and van der Vaart (2017),
we have ∫ ∫ (

log
pG∗,σ∗(y|x)
pg,σ∗(y|x)

)2

dP∗(y|x)µ∗
X(x)dx

≤
∫ ∫ ∫ (

log
ϕσ(y −G∗(z, x)

ϕσ(y −G(z, x)

)2

ϕσ(y −G∗(z, x)) dy dPZ(z)µ
∗
X(x)dx

≤
D2δ4approx

4σ2
∗

+Dδ2approx

∫
|x|22
σ2
∗
ϕσ∗(y)dy +

2Dδ2approx
σ2
∗

≤ c7
δ2approx
σ2
∗

=: τn,

where c7 = c7(D). We are using δn and τn, although they are independent of n, for notational
consistency with Theorem 4 of Wong and Shen (1995). Let ε∗n = εn∨

√
12δn. Then, using Theorem

4 of Wong and Shen (1995), we have

P∗ (dH(p̂, p∗) > εn) ≤ 5e−c2nε
∗2
n +

τn
nδn

= 5e−c2nε
∗2
n +

2c27
Dn

.

The proof is complete after redefining constants.

G PROOFS OF COROLLARY 1

Proof. For the sparse case in 1.1, utilizing the entropy bound from (10), we observe that

ξ{A+ log(n/σmin)} ≍ δ−t∗/β∗
approx log3(δ−1

approx),

which naturally leads to the required convergence rate.

Similarly for the fully connected case 1.2, utilizing the entropy bound from (11) , we observe that

ξ{A+ log(n/σmin)} ≍ δ−t∗/β∗
approx log3(δ−1

approx),

which naturally leads to the required convergence rate.
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H PROOF OF THEOREM 2

Proof. It is suffice to assume that ε and σ∗
√
log ε−1 are sufficiently small. If not, let ε +

σ∗
√
log ε−1 ≥ c0, where c0(K,D, r∗). Then Theorem 2 holds trivially by taking a large enough

constant depending just on D, K, and r∗.

Let V ∼ Q(·|X = x), V∗ ∼ Q(·|X = x), ϵ ∼ N(0D, σ2Id) and ϵ∗ ∼ N(0D, σ2
∗Id) be independent

with underlying probability density ν. We truncate the random variable ϵ and ϵ∗ componentwise
as (ϵK)j = max{−K,min{K, ϵj}} and (ϵ∗K)j = max{−K,min{K, (ϵ∗)j}} respectively. We

denote Pg,σ as P , Qg as Q, P̃ as distribution of V + ϵK and P̃∗ as the distribution of V∗ + ϵ∗K .

One may note that W1(P̃∗, Q∗) ≤ W2(P̃∗, Q∗) ≤
√

E
[
|ϵ∗K |22

]
≤
√
E
[
|ϵ∗|22

]
≤ σ∗

√
D. Similarly,

W1(P̃ , Q) ≤ σ
√
D. The ℓ1 diameter of [−2K, 2K]D, where the support of P̃ and P̃∗, is 4KD.

Observe that

W1

(
P̃∗, P̃

)
≤ 4KDd1

(
P̃∗, P̃

)
≤ 4KDd1(P∗, P ) ≤ 8KDdH(P∗, P ),

where the first inequality follows from Theorem 4 of Gibbs and Su (2002), the second inequality
follows from the fact the distance between two truncated distributions is always lesser than the
original distributions and the last inequality follows from d1 ≤ 2dH . Hence,

W1 (Q∗, Q) ≤ W2

(
Q∗, P̃∗

)
+W1

(
P̃∗, P̃

)
+W2

(
P̃ , Q

)
≤ σ∗

√
D + 8KDε+ σ

√
D.

Now it is suffice to show that σ ≤ c σ∗
√

log ε−1, where c = c(D,K, r∗) is a constant, because
we have assumed that ε is small enough. We establish this in the rest of the proof. Let t∗ =[
2σ2

∗ D log
(
2D
ε

)]1/2
. Observe that∫

|x|2>t∗

ϕσ∗(x)dx ≤
∫
|x|∞>t∗/

√
D

ϕσ∗(x)dx ≤ 2De−t2∗/2Dσ2

≤ ε.

Let Mt∗
∗ = M∗ ⊕ Bt∗(0D). We may write

1− P∗
(
Mt∗

∗
)
= ν

(
Y∗ + ϵ∗ /∈ Mt∗

∗
)
≤ ν (|ϵ∗|2 > t∗)

=⇒ P
(
Mt∗

∗
)
≥ 1− 2ε,

(30)

the implication in the last line follows from supB |P (B)− P∗(B)| ≤ dH(P, P∗) ≤ ε. For the sake
of contradiction, let σ ∈ [2t∗, r

∗/2] ∪ (r∗/2,∞) (t∗ is sufficiently small, from the assumption we
made at the beginning of this proof). If σ > r∗/2, then

2ε ≥ 1− P
(
Mt∗

∗
)
≥ 1− P

(
[−K,K]D

)
≥ c2(K,D, r∗)

where c2 is some positive constant. It is a contradiction following from the smallness of ε. Lets
make a claim that if σ ∈ [2t∗, r∗/2], then for every y ∈ RD, there is some z ∈ RD such that
|z − y|2 ≤ σ and Bσ/2(z) ∩Mt∗

∗ = ∅.

Following from the claim, we have

ν
(
Y + ϵ /∈ Mt∗

∗
∣∣Y = y

)
≥ ν

(
ϵ ∈ Bσ/2(z − y)

)
.

Since |z − y|2 ≤ σ, the right hand side is bounded below by a positive constant depending just on
D which is again a contradiction to (30). This proves the assertion made in the theorem.

The proof of the claim is divided into three cases. Let ρ (y,M∗) = inf{|y− y′|2 : y′ ∈ M∗} be the
ℓ2 set distance.

Case 1. ρ(y,M∗) ≥ σ : We may choose z = y.

Case 2. ρ(y,M∗) ∈ (0, σ) : Let y0 be the unique Euclidean projection of y onto M∗. Such a
unique projection exists because σ < r∗ is within the reach and y ∈ M∗, since M∗ is closed.
Suppose yt = y0 + t(y − y0). We shall define two continuous functions d0(t) = |yt − y0|2 and
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d(t) = ρ(yt,M∗). It is obvious that d(t) ≤ d0(t). For t ∈
[
0, 1 + σ/|y − y0|2

]
, d0(t) ≤ d(t)

because y0 is the unique projection for all the points that lie on the line segment including the farthest
point with t = 1 + σ/|y − y0|2. Otherwise, say d(t) = ρ(yt, z) and

|y − y0|2 = |y − yt|2 + |yt − y0|2 > |y − yt|+ |yt − z| ≥ |y − z|2
which contradicts y0 being a unique projection. The claim holds for the point z = y1+σ/|y−y0|2 . To
see this, observe |z−y| = σ and Bσ/2(z)∩Mt∗

∗ = ∅ because t∗ ≤ σ/2 and the ball Bσ/2(z) ⊂ Mr∗
∗

is within the reach of the manifold.

Case 3. ρ(y,M∗) = 0 : Because M∗ has empty interior, for all γ > 0, we always find a point yγ ,
which in Bγ(y) which away from M∗. For small enough γ, we reduce to case 2 by taking γ → 0,
the limit point of yγ has the required behavior.

I PROOF OF COROLLARY 2

Proof. The effective noise variance after the perturbation would be

σ̃∗ = n−α + n−β∗/2(β∗+t∗) ≍
{
n−α, α < β∗/{2(β∗ + t∗)}
nβ∗/2(β∗+t∗), otherwise.

Following this and the Theorem 2, for the rate we have

ε∗n + σ∗
√

log((ε∗n)
−1) ≍

(
n− β∗−t∗α

2β∗+t∗ + n−α
)
log2(n)

≍

{
n− β∗−t∗α

2β∗+t∗ log2(n), if α < β∗/{2(β∗ + t∗)},
n− β∗

2(β∗+t∗) log2(n), otherwise.

J PROOF OF THEOREM 3

Proof. With m = ⌈log2(n)⌉ and N =
(
n(β−1

Z d+β−1
X p)[1+α(β−1

Z d+β−1
X p)]/[2+β−1

Z d+β−1
X p]

)
in Theo-

rem 5, we can find a network G with the mentioned architecture such that
∥|G−G∗|∞∥∞ ≤ δapprox.

Following the entropy bound from (10), we have
logN (δ,Fs, ∥| · |∞∥∞) ≲ sL {log(rL) + log δ−1}

≲ δ
−(β−1

Z d+β−1
X p)

approx log2 δ−1
approx

{
log
(
δ−1
approx log

(
δ−1
approx

))
+ log

(
δ−1
approx

)}
.

The rest directly follows from the Theorem 1

K APPROXIMATION PROPERTIES OF THE SPARSE AND FULLY CONNECTED
DNNS

The approximability of the sparse network is detailed in Lemma 4.1, which restates Lemma 5 from
Chae et al. (2023). For the fully connected network, Lemma 4.2 demonstrates its approximation
capabilities, derived directly from Theorem 2 and the proof of Theorem 1 in Kohler and Langer
(2021). Additionally, the inclusion of the class G in the fully connected setup is supported by the
discussion in Section 1 of Kohler and Langer (2020).
Lemma 4. Suppose that G∗ ∈ G. Then, for every small enough δ ∈ (0, 1),

1. there exists a sparse network G ∈ Fs = Fs (L, r, s,K ∨ 1) with L ≲ log δ−1, r ≲
δ−t∗/β∗ , s ≲ δ−t∗/β∗ log δ−1 satisfying ∥|G−G∗|∞∥∞ ≤ δ.

2. there exists a fully connected network G ∈ Fc with L ≲ log δ−1, r ≲ δ−t∗/2β∗ , B ≲ δ−1

satisfying ∥|G−G∗|∞∥∞ ≤ δ.
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L A NEW APPROXIMATION RESULT FOR FUNCTIONS WITH SMOOTHNESS
DISPARITY

In this section, we prove the approximability of the sparse neural network for the Hölder class of
function f ∈ Hβ,β′

r,r′ (D,D′,K).

Theorem 5. Let f ∈ Hβ,β′
r,r′ ([0, 1]r, [0, 1]r′ ,K). Denote rsum = r + r′ and βsum = β + β′. Then

for any integers m ≥ 1 and N ≥ (βsum + 1)rsum ∨ (K + 1)ersum , there exists a network

f̃ ∈ Fs

(
L,
(
rsum, 6(rsum + ⌈βsum⌉)N, . . . , 6(rsum + ⌈βsum⌉)N, 1

)
, s,∞

)
with depth

L = 8 + (m+ 5)
(
1 +

⌈
log2

(
rsum ∨ βsum

)⌉)
and the number of parameters

s ≤ 109
(
rsum + βsum + 1

)3+rsum
N(m+ 6),

such that

∥f̃ − f∥L∞([0,1]rsum ) ≤ (2K + 1)
(
1 + r2sum + β2

sum

)
6rsum N 2−m +K 3rsum/(β−1r+β−1

′ r′) N−1/(β−1r+β−1
′ r′).

We denote β̃ = (β + β′)
−1ββ′ and r̃ = (β + β′)

−1(rβ + r′β′). Before presenting the proof of
Theorem 5, we formulate some required results.

We follow the classical idea of function approximation by local Taylor approximations that have
previously been used for network approximations in Yarotsky (2017) and Schmidt-Hieber (2020).
For a vector a ∈ [0, 1]r define

P β,β′
a,b f(u,v) =

∑
0≤|α|<β
0≤|α′|<β′

(∂α+α′f)(a,b)
(u− a)α(v − b)α′

α!α′!
. (31)

We use the notation the u = (u(j))j to represent the component of the vector when the index j is
well understood. Accordingly we have v = (v(j))j , a = (a(j))j and b = (b(j))j . By Taylor’s
theorem for multivariate functions, we have for a suitable ξ ∈ [0, 1],

f(u,v) =
∑

α:|α|<β−1
α′:|α′|<β′−1

(∂α+α′f)(a,b)
(u− a)α(v − b)α′

α!α′!

+
∑

β−1≤|α|<β
β′−1≤|α′|<β′

(∂α+α′f)(a+ ξ(u− a),b+ ξ(v − b))
(u− a)α(v − b)α′

α!α′!
.

We have |(u − a)α| =
∏r

j=1 |uj − aj |α
(j) ≤ |u − a||α|

∞ and |(v − b)α′ | =
∏r′

j=1 |vj − bj |α
(j)
′ ≤

|v − b||α′|
∞ . Consequently, for f ∈ Hβ,β′

r,r′ ([0, 1]r, [0, 1]r′ ,K),∣∣f(u,v)− P β,β′
a,b f(u,v)

∣∣
≤

∑
β−1≤|α|<β

β′−1≤|α′|<β′

(
∂α+α′f(a+ ξ(u− a),b+ ξ(v − b))− ∂α+α′f(a,b)

) (u− a)α(v − b)α′

α!α′!

(32)

≤K
(
|u− a|β∞ ∨ |v − b|β′

∞
)

We may also write (31) as a linear combination of monomials

P β,β′
a,b f(u,v) =

∑
0≤|γ|<β
0≤|γ′|<β′

cγ,γ′u
γvγ′ , (33)
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for suitable coefficients cγ,γ′ . For convenience, we omit the dependency on a and b in cγ,γ′ . Since
∂γ,γ′P β,β′

a,b f(u,v) |(u=0,v=0) = γ!γ′! cγ,γ′ , we must have

cγ,γ′ =
∑

γ≤α&|α|<β
γ′≤α′&|α′|<β′

(∂α+α′f)(a,b)
(−a)α−γ (−b)α′−γ′

γ!γ′! (α− γ)! (α′ − γ′)!
.

Notice that since a ∈ [0, 1]r, b ∈ [0, 1]r′ , and f ∈ Hβ,β′
r,r′ ([0, 1]r, [0, 1]r′ ,K),

|cγγ′ | ≤ K/(γ!γ′!) and
∑
γ≥0
γ′≥0

|cγ,γ′ | ≤ K

r∏
i=1

r′∏
j=1

∑
γ(i)≥0

∑
γ
(j)
′ ≥0

1

γ(i)!

1

γ
(j)
′ !

= Ker+r′ , (34)

where γ = (γ(1), . . . , γ(r)) and γ′ = (γ
(1)
′ , . . . , γ

(r′)
′ ).

Consider the set of grid points

D(M) := {uℓ(1) =(ℓ
(1)
j /M1)j=1,...,r and vℓ(2) = (ℓ

(2)
j /M2)j=1,...,r′

: ℓ(1) = (ℓ
(1)
1 , . . . , ℓ(1)r ) ∈ {0, 1, . . . ,M1}r,

ℓ(2) = (ℓ
(2)
1 , . . . , ℓ(2)r ) ∈ {0, 1, . . . ,M2}r′ ,M1 = M β̃/β ,M2 = M β̃/β′}.

The cardinality of this set is (M1 + 1)r · (M2 + 1)r′ . We write uℓ(1) = (u
(j)

ℓ(1)
)j=1,...,r

and vℓ(2) = (v
(j)

ℓ(2)
)j=1,...,r′ to denote the components of uℓ(1) and vℓ(2) respectively. With

slight abuse of notation we denote w = (u,v) = (u(1), . . . , u(r), v(1), . . . , v(r′)), ℓ =

(ℓ(1), ℓ(2)) = (ℓ
(1)
1 , . . . , ℓ

(1)
r , ℓ

(2)
1 , . . . , ℓ

(2)
r′ ) and wℓ = (w

(j)
ℓ )j=1,...,r+r′ = (uℓ(1) ,vℓ(2)) =

(u
(1)

ℓ(1)
, . . . , u

(r)

ℓ(1)
, v

(1)

ℓ(2)
, . . . , u

(r′)

ℓ(2)
). Define

P β,β′f(u,v)

=P β,β′f(w)

:=
∑

wℓ∈D(M)

P β,β′
wℓ

f(w)

r+r′∏
j=1

(1−Mj |w(j) − w
(j)
ℓ |)+

=
∑

u
ℓ(1)

,v
ℓ(2)

∈D(M)

P β,β′
u

ℓ(1)
,v

ℓ(2)
f(u,v)

 r∏
j=1

(1−M1|u(j) − u
(j)

ℓ(1)
|)+

 r′∏
j=1

(1−M2|v(j) − v
(j)

ℓ(2)
|)+

 ,

where Mj = M1 for j = 1, . . . , r and Mj = M2 for j = r + 1, . . . , r + r′.

Lemma 5. If f ∈ Hβ,β′
r,r′ ([0, 1]r, [0, 1]r′ ,K), then ∥P β,β′f − f∥L∞[0,1]r+r′ ≤ KM−β̃ .

Proof. Since for all w = (w(1), . . . , w(r+r′)) ∈ [0, 1]r+r′ ,∑
wℓ∈D(M)

r+r′∏
j=1

(1−Mj |w(j) − w
(j)
ℓ |)+ =

r+r′∏
j=1

Mj∑
ℓ=0

(1−Mj |w(j) − ℓ/Mj |)+ = 1, (35)

we have

f(w) = f(u,v)

=
∑

u
ℓ(1)

,v
ℓ(2)

∈D(M):

∥u−u
ℓ(1)

∥∞≤1/M1

∥v−v
ℓ(2)

∥∞≤1/M2

f(u,v)

 r∏
j=1

(1−M1|u(j) − u
(j)

ℓ(1)
|)+

 r′∏
j=1

(1−M2|v(j) − v
(j)

ℓ(2)
|)+


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and with (32),∣∣P β,β′f(u,v)− f(u,v)
∣∣ ≤ max

u
ℓ(1)

,v
ℓ(2)

∈D(M):

∥u−u
ℓ(1)

∥∞≤1/M1

∥v−v
ℓ(2)

∥∞≤1/M2

∣∣P β,β′
u

ℓ(1)
,v

ℓ(2)
f(u,v)− f(u,v)

∣∣

≤ K
(
M−β

1 ∨M−β′
2

)
= KM−β̃ .

In the next few steps, we describe how to build a network that approximates P β,β′f .

Lemma 6. Let M,m, be any positive integer. Denote M1 = M β̃/β , M2 = M β̃/β′ , M = (M1 +
1)r(M2 + 1)r′ and rsum = r + r′. Then there exists a network

Hatrsum ∈ F (2 + (m+ 5)⌈log2(rsum)⌉, rsum, 2rsumM, rsumM, 6rsumM, . . . , 6rsumM,M), s, 1)

with s ≤ 37rsum
2M(m + 5)⌈log2(rsum)⌉, such that Hatr ∈ [0, 1]M and for any u =

(u(1), . . . , u(j)) ∈ [0, 1]r and for any v = (v(1), . . . , v(j)) ∈ [0, 1]r′∣∣∣∣∣Hatrsum(u,v)−

{( r∏
j=1

(1/M1 − |u(j) − u
(j)

ℓ(1)
|)+
)
×

( r′∏
j=1

(1/M2 − |v(j) − v
(j)

ℓ(2)
|)+
)}

u
ℓ(1)

,v
ℓ(2)

∈D(M)

∣∣∣∣∣
∞

≤ rsum
22−m.

For any uℓ(1) ,vℓ(2) ∈ D(M), the support of the function (u,v) 7→ (Hatr+r′(u,v))u
ℓ(1)

,v
ℓ(2)

is
moreover contained in the support of the function

(u,v) 7→


( r∏

j=1

(1/M − |u(j) − u
(j)

ℓ(1)
|)+
)( r′∏

j=1

(1/M − |v(j) − v
(j)

ℓ(2)
|)+
) .

Proof. Step 1: (For r + r′ = 1) Without loss of generality we consider the case when r = 1 and
r′ = 0. We compute the functions {(u(j) − ℓ/M1)+}r,M1

j=1,ℓ=0 and {(ℓ/M1 − u(j))+}r,M1

j=1,ℓ=0 for the
first hidden layer of the network. This requires 2r(M1 + 1) units (nodes) and 2r(M1 + 1) non-zero
parameters.

For the second hidden layer we compute the functions (1/M1−|u(j)−ℓ/M1|)+ = (1/M1−(u(j)−
ℓ/M1)+− (ℓ/M1−u(j))+)+ using the output (u(j)− ℓ/M1)+ and (ℓ/M1−u(j))+ from the output
of the first hidden layer. This requires r(M1 + 1) + r′(M2 + 1) units (nodes) and 2r(M1 + 1)
non-zero parameters. This proves the result for the base case when r + r′ = 1.

Step 2: For r+r′ > 1, we compose the obtained network with networks that approximately compute
the following

 r∏
j=1

(1/M1 − |u(j) − u
(j)

ℓ(1)
|)+

 r′∏
j=1

(1/M2 − |v(j) − v
(j)

ℓ(2)
|)+


u

ℓ(1)
,v

ℓ(2)
∈D(M)

.

For fixed uℓ(1) and vℓ(2) , and from the use of Lemma 8 there exist Multr+r′
m networks in the class

F (2 + (m+ 5)⌈log2(r + r′)⌉, (r + r′, 2(r + r′), r + r′, 6(r + r′), 6(r + r′), . . . , 6(r + r′), 1))

computing (
∏r

j=1(1/M1 − |u(j) − uℓ(1) |)+)× (
∏r′

j=1(1/M2 − |v(j) − vℓ(2) |)+) up to an error that
is bounded by (r + r′)

2 2−m. Observe that we have two extra hidden layers to compute (1/M1 −
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|u(j) − uℓ(1) |)+) and (1/M2 − |v(j) − vℓ(2) |)+) for fixed uℓ(1) and vℓ(2) respectively, before we
enter into the multinomial computation by regime invoking Lemma 8. Observe that the number of
parameters in this network is upper bounded by 37(r + r′)

2(m+ 5)⌈log2(r + r′)⌉.

Now we use the parallelization technique to have (M1 + 1)r · (M1 + 1)r parallel architecture for
all elements of D(M). This provides the existence of the network with the number of non-zero
parameters bounded by 37(r + r′)

2(M1 + 1)r(M2 + 1)r′(m+ 5)⌈log2(r + r′)⌉
By Lemma 8, for any x ∈ Rr, Multrm(x) = 0 if one of the components of x
is zero. This shows that for any uℓ(1) ,vℓ(2) ∈ D(M), the support of the function
(u,v) 7→ (Hatr+r′(u,v))u

ℓ(1)
,v

ℓ(2)
is contained in the support of the function (u,v) 7→(∏r

j=1(1/M − |u(j) − u
(j)

ℓ(1)
|)+
∏r′

j=1(1/M − |v(j) − v
(j)

ℓ(2)
|)+
)

.

Proof of Theorem 5. All the constructed networks in this proof are of the form F(L,p, s) =

F(L,p, s,∞) with F = ∞. Denote M1 = M β̃/β , M2 = M β̃/β′ , βsum = β + β′, and
rsum = r + r′. Let M be the largest integer such that M = (M1 + 1)r(M2 + 1)r′ ≤ N and
define L∗ := (m + 5)⌈log2(βsum ∨ rsum)⌉. Thanks to (34), (33) and Lemma 9, we can add one
hidden layer to the network Monrsum

m,βsum
to obtain a network

Q1 ∈ F
(
2 + L∗, (r, 6⌈β⌉Crsum,βsum

, . . . , 6⌈β⌉Crsum,βsum
, Crsum,βsum

,M)
)
,

such that Q1(u,v) ∈ [0, 1]M and for any u ∈ [0, 1]r and for any v ∈ [0, 1]r′∣∣∣Q1(u,v)−
(P β,β′f(u,v)

B
+

1

2

)
u

ℓ(1)
,v

ℓ(2)
∈D(M)

∣∣∣
∞

≤ β2
sum2

−m (36)

with B := ⌈2Kersum⌉. The total number of non-zero parameters in the Q1 network is 6rsum(βsum+
1)Crsum,βsum

+ 42(βsum + 1)2C2
rsum,βsum

(L∗ + 1) + Crsum,βsum
M.

Recall that the network Hatrsum computes the products of hat functions (splines) (
∏r

j=1(1/M1 −
|u(j) − uℓ(1) |)+)(

∏r′
j=1(1/M2 − |v(j) − vℓ(2) |)+) up to an error that is bounded by r2sum2

−m. It
requires at most 37r2sumNL∗ active parameters. Observe that Crsum,βsum ≤ (βsum + 1)rsum ≤ N
by the definition of Cr,β and the assumptions on N. By Lemma 6, the networks Q1 and Hatrsum

can be embedded into a joint parallel network (Q1,Hatrsum) with 2 + L∗ hidden layers of size
(rsum, 6(rsum + ⌈βsum⌉)N, . . . , 6(rsum + ⌈βsum⌉)N, 2M). Using Cr,β ∨ (M + 1)r ≤ N again, the
number of non-zero parameters in the combined network (Q1,Hatr) is bounded by

6rsum(βsum + 1)Crsum,βsum
+ 42(βsum + 1)2C2

rsum,βsum
(L∗ + 1) + Crsum,βsum

M+ 37r2sumNL∗

≤ 42(rsum + βsum + 1)2Crsum,βsum
N(1 + L∗)

≤ 84(rsum + βsum + 1)3+rsumN(m+ 5),
(37)

where for the last inequality, we used Crsum,βsum
≤ (βsum +1)rsum , the definition of L∗ and that for

any x ≥ 1, 1 + ⌈log2(x)⌉ ≤ 2 + log2(x) ≤ 2(1 + log(x)) ≤ 2x.

Next, we pair the (uℓ(1) ,vℓ(2))-th entry of the output of Q1 and Hatr and apply to each of the M
pairs the Multm network described in Lemma 7. In the last layer, we add all entries. By Lemma 7
this requires at most 24(m+5)M+M ≤ 25(m+5)N active parameters for the M multiplications and
the sum. Using Lemma 7, Lemma 6, (36) and triangle inequality, there exists a network Q2 ∈ F(2+
L∗ +m+ 6, (rsum, 6(rsum + ⌈βsum⌉)N, . . . , 6(rsum + ⌈βsum⌉)N, 1)) such that for any u ∈ [0, 1]r

and for any v ∈ [0, 1]r′

∣∣∣∣∣Q2(u,v)−
∑

u
ℓ(1)

,v
ℓ(2)

∈D(M)

(P β,β′f(u,v)

B
+

1

2

)( r∏
j=1

(1/M1 − |u(j) − u
(j)

ℓ(1)
|)+
)

( r′∏
j=1

(1/M2 − |v(j) − v
(j)

ℓ(2)
|)+
)∣∣∣∣∣
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≤
∑

u
ℓ(1)

,v
ℓ(2)

∈D(M):

∥u−u
ℓ(1)

∥∞≤1/M1

∥v−v
ℓ(2)

∥∞≤1/M2

(1 + r2sum + β2
sum)2

−m

≤ (1 + r2sum + β2
sum)2

r−m. (38)

Here, the first inequality follows from the fact that the support of (Hatr+r′(u,v))u
ℓ(1)

,v
ℓ(2)

is

contained in the support of
(∏r

j=1(1/M − |u(j) − u
(j)

ℓ(1)
|)+
∏r′

j=1(1/M − |v(j) − v
(j)

ℓ(2)
|)+
)

(see
Lemma 6). Because of (37), the network Q2 has at most

109(rsum + βsum + 1)3+rsumN(m+ 5) (39)

non-zero parameters.

To obtain a network reconstruction of the function f , it remains to scale and shift the output entries.
This is not entirely trivial because of the bounded parameter weights in the network. Recall that
B = ⌈2Ker⌉. The network x 7→ BMr

1M
r′
2 x is in the class F(3, (1,Mr

1M
r′
2 , 1, ⌈2Ker⌉, 1)) with

shift vectors vj are all equal to zero and weight matrices Wj with all entries equal to one. Because of
N ≥ (K+1)ersum , the number of parameters of this network is bounded by 2Mr

1M
r′
2 +2⌈2Ker⌉ ≤

6N . This shows existence of a network in the class F(4, (1, 2, 2Mr
1M

r′
2 , 2, 2⌈2Ker⌉, 1)) computing

a 7→ BMr
1M

r′
2 (a − c) with c := 1/(2Mr

1M
r′
2 ). This network computes in the first hidden layer

(a−c)+ and (c−a)+ and then applies the network x 7→ BMr
1M

r′
2 x to both units. In the output layer,

the second value is subtracted from the first one. This requires at most 6 + 12N active parameters.

Because of (38) and (35), there exists a network Q3 in

F
(
(m+ 13) + L∗, (rsum, 6(rsum + ⌈βsum⌉)N, . . . , 6(rsum + ⌈βsum⌉)N, 1)

)
such that∣∣∣∣∣Q3(u,v)−

∑
u

ℓ(1)
,v

ℓ(2)
∈D(M)

P β,β′f(u,v)
( r∏

j=1

(1/M1 − |u(j) − u
(j)

ℓ(1)
|)+
)

( r′∏
j=1

(1/M2 − |v(j) − v
(j)

ℓ(2)
|)+
)∣∣∣∣∣

≤ (2K + 1)Mr
1M

r′
2 (1 + r2sum + β2

sum)(2e)
rsum2−m, for all (u,v) ∈ [0, 1]rsum .

With (39), the number of non-zero parameters of Q3 is bounded by

109(rsum + βsum + 1)3+rsumN(m+ 6).

Observe that by construction M = (M1 + 1)r(M2 + 1)r′ ≤ N ≤ (3M1)
r(3M2)

r′ = 3rsumM r̃ and
hence M−β̃ ≤ N−β̃/r̃3rsumβ̃/r̃. Together with Lemma 5, the result follows.

L.1 EMBEDDING PROPERTIES OF NEURAL NETWORK FUNCTION CLASSES

We denote F(L,p) as the class of neural networks with L hidden layers and p ∈ NL+2 nodes per
layer. The class F(L,p) is subset of F(L,p) with the sparsity parameter s.

For the approximation of a function by a network, we first construct smaller networks computing
simpler objects. Let p = (p0, . . . , pL+1) and p′ = (p′0, . . . , p

′
L+1). To combine networks, we make

frequent use of the following rules.

Enlarging: F(L,p, s) ⊆ F(L,q, s′) whenever p ≤ q componentwise and s ≤ s′.

Composition: Suppose that f ∈ F(L,p) and g ∈ F(L′,p′) with pL+1 = p′0. For a vec-
tor v ∈ RpL+1 we define the composed network g ◦ σv(f) which is in the space F(L + L′ +
1, (p, p′1, . . . , p

′
L′+1)). In most of the cases that we consider, the output of the first network is non-

negative and the shift vector v will be taken to be zero.
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Additional layers/depth synchronization: To synchronize the number of hidden layers for two net-
works, we can add additional layers with an identity weight matrix, such that

F(L,p, s) ⊂ F(L+ q, (p0, . . . , p0︸ ︷︷ ︸
q times

,p), s+ qp0). (40)

Parallelization: Suppose that f, g are two networks with the same number of hidden layers and the
same input dimension, that is, f ∈ F(L,p) and g ∈ F(L,p′) with p0 = p′0. The parallelized
network (f, g) computes f and g simultaneously in a joint network in the class F(L, (p0, p1 +
p′1, . . . , pL+1 + p′L+1)).

L.2 TECHNICAL LEMMAS FOR THE PROOF OF THEOREM 5

We use F(L, r) to denote a fully connected network with L deep layers and r ∈ NL+2
0 representing

the nodes in each layer.

The following technical lemmas are required for the proof of Theorem 5. Lemma 7, Lemma 8, and
Lemma 9 restate Lemma A.2, Lemma A.3, and Lemma A.4 from Schmidt-Hieber (2020), respec-
tively.
Lemma 7. For any positive integer m, there exists a network Multm ∈ F(m+4, (2, 6, 6, . . . , 6, 1)),
such that Multm(x, y) ∈ [0, 1],∣∣Multm(x, y)− xy

∣∣ ≤ 2−m, for all x, y ∈ [0, 1],

and Multm(0, y) = Multm(x, 0) = 0.

Lemma 8. For any positive integer m, there exists a network

Multrm ∈ F((m+ 5)⌈log2 r⌉, (r, 6r, 6r, . . . , 6r, 1))

such that Multrm ∈ [0, 1] and∣∣∣Multrm(x)−
r∏

i=1

xi

∣∣∣ ≤ r22−m, for all x = (x1, . . . , xr) ∈ [0, 1]r.

Moreover, Multrm(x) = 0 if one of the components of x is zero.

The number of monomials with degree |α| < γ is denoted by Cr,γ . Obviously, Cr,γ ≤ (γ + 1)r

since each αi has to take values in {0, 1, . . . , ⌊γ⌋}.
Lemma 9. For γ > 0 and any positive integer m, there exists a network

Monrm,γ ∈ F
(
1 + (m+ 5)⌈log2(γ ∨ 1)⌉, (r, 6⌈γ⌉Cr,γ , . . . , 6⌈γ⌉Cr,γ , Cr,γ)

)
,

such that Monrm,γ ∈ [0, 1]Cr,γ and∣∣∣Monrm,γ(x)− (xα)|α|<γ

∣∣∣
∞

≤ γ22−m, for all x ∈ [0, 1]r.
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