
Solving Linear Programs with Fast Online Learning Algorithms

Wenzhi Gao 1 Dongdong Ge 1 Chunlin Sun 2 Yinyu Ye 3

Abstract
This paper presents fast first-order methods for
solving linear programs (LPs) approximately.
We adapt online linear programming algorithms
to offline LPs and obtain algorithms that avoid
any matrix multiplication. We also introduce a
variable-duplication technique that copies each
variable K times and reduces the optimality gap
and constraint violation by a factor of

√
K. Fur-

thermore, we show how online algorithms can be
effectively integrated into sifting, a column gen-
eration scheme for large-scale LPs. Numerical
experiments demonstrate that our methods can
serve as either an approximate direct solver, or
an initialization subroutine for exact LP solving.

1. Introduction
First-order methods for large-scale linear programs are re-
ceiving increasing attention as problem sizes grow beyond
the capacity of traditional simplex (Dantzig, 2016) and in-
terior point methods (Ye, 2011). When a low or moderate-
accuracy solution is required, first-order methods often out-
perform simplex and interior point solvers as they only in-
volve matrix-vector multiplication and are free of matrix
decomposition. A recent practice (Applegate et al., 2021)
demonstrates that fine-tuned first-order methods are also
capable of solving LPs of millions of variables to high ac-
curacy. However, as (Nesterov, 2012) suggests, when the
problem size further reaches trillions of variables or more,
even storing the problem data in memory becomes pro-
hibitive, not to mention performing matrix-vector multipli-
cations. As a result, most first-order methods either resort
to distributed architecture (Basu et al., 2020; Fountoulakis

1School of Information Management and Engineering, Shang-
hai University of Finance and Economics 2Institute for Com-
putational and Mathematical Engineering, Stanford Univer-
sity 3Management Science & Engineering, Stanford Univer-
sity. Correspondence to: Wenzhi Gao <gwz@163.shufe.edu.cn>,
Dongdong Ge <ge.dongdong@mail.shufe.edu.cn>, Chunlin Sun
<chunlin@stanford.edu>, Yinyu Ye <yyye@stanford.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

and Gondzio, 2016) or rely on sparsity (Nesterov, 2012).

In contrast to the LPs discussed above, which we call “of-
fline” LPs, there is another type of LPs called “online” LPs
(Agrawal et al., 2014; Li and Ye, 2022). They come from
revenue management (Talluri et al., 2004) and model the
situation of making sequential decisions on the customer
orders that are described by LP columns. Here an LP col-
umn denotes a column in the constraint matrix together
with its corresponding objective value. Due to online na-
ture of the problem, generally an algorithm for online LPs
1). only accesses one LP column at a time; 2). makes deci-
sions instantly. Through making decisions, the behavior of
online algorithms gets refined and improved, which is why
they are also known as “online learning”.

In the line of online LP literature, state-of-the-art online
LP algorithms build on offline LPs as a subroutine (Jiang
et al., 2022; Li and Ye, 2022; Ma et al., 2022), and it seems
that online LP unilaterally benefits from offline LP. It is
therefore natural to ask:

Does online LP benefit offline LP?

In this paper, we answer this question positively by exploit-
ing a recent research direction on fast online algorithms (Li
et al., 2020; Balseiro et al., 2022). Unlike the offline LP-
based online algorithms, these methods build on stochas-
tic first-order oracles, make decisions and refinements in
linear time, and simultaneously estimate primal and dual
solutions in a single pass through the problem data. Also,
they achieve provable optimality guarantees under minimal
assumptions on the problem data. All these motivate us to
study if these time-efficient methods help offline LP solv-
ing. In particular, we investigate two popular online algo-
rithms: explicit subgradient (Li et al., 2020) and implicit
proximal point (Kulis and Bartlett, 2010).

First-order Methods for Linear Programming First-
order methods for LPs are recently developed and pre-
sented as optimization software. Some successful attempts
include ABIP (Lin et al., 2021; Deng et al., 2022), COSMO
(Garstka et al., 2021), ECLIPSE (Basu et al., 2020), PDLP
(Applegate et al., 2021) and SCS (O’donoghue et al., 2016).
The listed algorithms target large-scale LPs, and the ma-
jor computational bottleneck lies in matrix-vector multipli-
cation (sometimes one-time matrix decomposition). Com-

1

Fast online algorithms for offline LPs

pared to the aforementioned works, our work is more in
line with (block) subgradient-based or coordinate descent-
based approaches (Nesterov, 2012; 2014). What differen-
tiates our method is that they (Nesterov, 2012; 2014) have
to update primal and dual variables sequentially, while our
proposed method simultaneously updates both solutions.

Simple and Fast Online LP A simple and fast online LP
algorithm is recently proposed and analyzed by (Li et al.,
2020). It exploits the finite-sum structure of the LP dual
problem and runs stochastic subgradient method in the dual
space, while simultaneously estimating the primal solution
by optimality condition. Under mild assumptions, given an
LP of m constraints and n variables, the authors show that
their algorithm achieves O (

√
n log n+m

√
n) constraint

violation and an O(m
√
n) optimality gap (also known as

regret in online learning literature) under the random per-
mutation setting that we exploit in this paper. Concurrent
works (Balseiro et al., 2020; 2022) further generalize the
results to nonlinear objective using a mirror descent frame-
work and achieve O(m +

√
mn) gap with no constraint

violation under a weaker setting. We also note that (Bal-
seiro et al., 2022) covers an adversarial setting that is more
general than random permutation. However, the optimal-
ity gap is too pessimistic to be applied for offline LPs, and
therefore we exploit the setting of (Li et al., 2020).

Contributions In this paper, we show that online LP al-
gorithms can benefit offline LP both theoretically and prac-
tically. Specifically,

• We investigate how two online learning algorithms per-
form when they are used to solve offline LPs. These
two methods, known as explicit subgradient and implicit
proximal point in the online learning literature, are free of
any matrix-vector multiplication through sequential on-
line access to LP columns. We provide theoretical anal-
yses of the optimality gap and constraint violation lever-
aging the analysis from online LP literature. For both al-
gorithms, we obtain an O (m log n+

√
n log n+

√
mn)

optimality gap and O (m+
√
mn) constraint violation,

which improves the results from (Li et al., 2020). More-
over, to enhance the practical performance of the online
algorithms and to make them usable for offline LPs, we
take advantage of the offline LP setting and propose a
variable duplication scheme which further reduces the
gap and violation by a factor of

√
K, where K is the

number of copies of each variable.

• For exact LP solving, we identify that our algorithms can
perfectly fit into sifting (Bixby et al., 1992), an LP col-
umn generation framework targeting problems with far
more columns than constraints. We show online algo-
rithms provide both an initial basis guess and an approx-
imate dual solution. Numerical experiments show that

our online algorithms can accelerate sifting by providing
a good initialization and by stabilizing the dual solution.

Other Related Work Disregarding the complexity of
solving subproblems, offline LP-based algorithms achieve
state-of-the-art theoretical guarantees for online LPs. For
example, (Jiang et al., 2022; Ma et al., 2022; Bray, 2019)
all achieve O(log n) optimality gap (up to a log log term)
under different LP non-degeneracy assumptions.

Going beyond the online LP problem, which is classified
as online convex optimization with constraint (OCOwC),
there is substantial research on general online convex op-
timization (Hazan et al., 2016). While most online algo-
rithms are subgradient-based, there is also another line of
research based on the implicit proximal point update (Kulis
and Bartlett, 2010; Chen et al., 2022). In this paper, we
choose the implicit update as one of the fast algorithms.

Outline of the Paper This paper is organized as follows.
In Section 2, we introduce the basic problem setup and as-
sumptions; In Section 3, we provide theoretical analyses of
the performance of our algorithms; Section 4 briefly dis-
cusses the sifting procedure for large-scale LPs and how
online algorithms can be potentially combined with this
framework. Last we conduct numerical experiments in
Section 5 to verify our theory and to show the practical
efficiency of our proposed methods. In the appendix, we
further elaborate on some practical aspects of our methods.

2. Problem Setup and Assumptions
Notations Throughout the paper, we use ∥ · ∥ to denote
the Euclidean norm and ⟨·, ·⟩ to denote the Euclidean inner
product. Bold letters A,a are used to denote matrices and
vectors; the subdifferential of a convex function f is de-
noted by ∂f(x) and f ′(x) ∈ ∂f(x) is called a subgradient;
we use [·]+ := max{·, 0} to denote the element-wise pos-
itive part function; I{·} denotes the 0-1 indicator function
and δS is the indicator function of set S. Unless specified,
we use E[·] to denote expectation taken over a certain per-
mutation of LP columns. We use a[i:j] to denote indexing
of vector a from the i-th to j-th coordinate, or indexing of
a matrix from the i-th to j-th column.

2.1. Linear Programming and Duality

Given a linear program of m constraints and n variables

max
x∈Fp

⟨c,x⟩,

its dual problem is given by

min
(y,s)∈Fd

⟨b,y⟩+ ⟨1, s⟩

2

Fast online algorithms for offline LPs

Table 1. Previous optimality gap and constraint violation bounds. Ex: explicit update; Im: implicit proximal point update; Duplicate:
Algorithm 2; ρ: optimality gap; v: constraint violation. We note that the Duplicate setting is only available for offline LPs.

Work Algorithm Stochastic input (v & ρ) Random permutation (v & ρ)

(Li et al., 2020) Ex. Subgrad O (m+m
√
n) & O (m

√
n) O (m

√
n) & O (

√
n logn+m

√
n)

(Balseiro et al., 2022) Ex. Mirror O (m+
√
mn) & 0 —

Ex. Subgrad O (m+
√
mn) & O (

√
mn) O (m+

√
mn) & O(m logn+

√
n logn+

√
mn)

This work Im. Proximal O (m+
√
mn) & O (

√
mn) O (m+

√
mn) & O (m logn+

√
n logn+

√
mn)

Ex/Im. Duplicate O(m
K

+
√

mn
K

) & O(
√

mn
K

) O(m
K

+
√

mn
K

) & O(m logn
K

+
√

n
K

logn+
√

mn
K

)

where the primal and dual feasible sets are denoted by

Fp := {x : Ax ≤ b, 0 ≤ x ≤ 1}
Fd :=

{
(y, s) ≥ 0 : A⊤y + s ≥ c, s ≥ 0

}
,

with A ∈ Rm×n,b ∈ Rm, c ∈ Rn and 1 = (1, . . . , 1)⊤

denotes the column vector of all ones. By the same argu-
ment as in (Li et al., 2020), we remove the dual variable s
and rewrite the dual problem with a finite-sum formulation.

min
y≥0

1
n

n∑
j=1

⟨d,y⟩+ [cj − ⟨aj ,y⟩]+ =: 1
n

n∑
j=1

f(y, j) (1)

where d = b/n and aj denotes the j-th column of A.
Here, with a slight abuse of notation, we denote f(y, j) =
d,y⟩+[cj−⟨aj ,y⟩]+ as the stochastic function associated
with the LP column (cj ,aj) for all j without the explicit
mention of c and a in the function arguments. Given the
optimal dual solution y∗, the optimality conditions tell us

x∗
j ∈

 {0}, cj < ⟨aj ,y∗⟩
[0, 1], cj = ⟨aj ,y∗⟩
{1}, cj > ⟨aj ,y∗⟩

(2)

Taking into account this finite-sum structure of the dual
problem, together with the close relevance between pri-
mal and dual solutions, it is appealing to apply first-order
stochastic algorithms to the dual problem and simultane-
ously estimate primal solutions using the relation (2). This
is indeed what “simple and fast online algorithms” does.

2.2. Simple and Fast Online Algorithms

Now, we are ready to introduce online algorithms of our
interest in Algorithm 1.

In each iteration, let yk be the current estimation of the
dual solution. We choose ik ∈ [n], approxiamte f(y, ik)
by some function fyk(y, ik), which will be defined in Sec-
tion 3, and perform stochastic proximal updates on the dual
variable y. At the end of each iteration, we use the current
dual information, combined with (2) to estimate the primal
solution x̂ik . Since in each iteration, only one LP column
participates in the update, the cost of each iteration is very
low, thereby making the methods “simple and fast”.

Algorithm 1 Fast online algorithms for LP
Input: y0, {f(y, j)} from LP data A,b, c
for k = 1 to n do

Choose ik ∈ [n]

yk+1 = argmin
y≥0

{fyk(y, k) + 1
2γk
∥y − yk∥2} (3)

Estimate x̂ik based on (3).
end
Output: x̂

2.3. Assumptions

We make the following assumptions across the paper.

A1: maxi di = d̄ ≥ mini di = d > 0 (d = b/n)

A2: ∥aj∥∞ ≤ ā and |cj | ≤ c̄ for any j ∈ [n]

A3: For any dual solution y ≥ 0, no more than m
columns satisfy cj = ⟨aj ,y⟩

Remark 1. The above assumptions are standard in the lit-
erature of online LP (Li et al., 2020; Balseiro et al., 2022;
Li and Ye, 2022), and can also be easily satisfied by most
offline LPs. A1 is satisfied by a wide range of LPs such as
multi-knapsack, set-covering, and online resource alloca-
tion. Even if bi = 0, we can perturb it to make the assump-
tion hold; Bounds in A2 are only used for analysis and ā, c̄
can be computed by a single pass through data. A3 could be
satisfied by an arbitrarily small perturbation of b (Megiddo
and Chandrasekaran, 1989; Agrawal et al., 2014).

2.4. Performance Measure

We use optimality gap and constraint violation to measure
the quality of a given primal solution x̂.

ρ(x̂) := max
x∈Fp

⟨c,x⟩ − ⟨c, x̂⟩ (4)

v(x̂) := ∥[Ax̂− b]+∥ (5)

With all the tools in hand, we are ready to present several
realizations of Algorithm 1 and to analyze their perfor-
mance for offline LPs.

3

Fast online algorithms for offline LPs

3. Fast Online Algorithms for Offline LPs
In this section, we provide two realizations of Algorithm
1 and analyze their expected optimality gap and constraint
violation. We start by specifying the choice of ik in Al-
gorithm 1. Although stochastic input, namely sampling
ik from [n] randomly with replacement is a feasible op-
tion, a problem is that, with this method, some LP columns
(cj ,aj) might not be traversed within O(n) iterations,
and therefore we cannot get a solution estimate for those
columns. Therefore, random permutation, or choosing
ik by sampling without replacement from [n], is a better
choice for offline LP’s context. In other words, we can
safely stop after n iterations and ensure that all the columns
are associated with their estimated primal values.

To avoid the heavy notations from permutation, without
loss of generality we assume instead of sampling ik from
[n], we permute the columns of the offline LP, so that we
can simply let ik = k and get the same theoretical results.
Remark 2. As is shown in (Li et al., 2020), once we prove
the result for the random permutation setting, the analysis
can be directly applied to the stochastic input setting with
a slightly better bound for the optimality gap.

3.1. Online Explicit Update

In this section, we analyze the performance of the on-
line explicit subgradient update in the offline setting. The
(Sub)gadient-based update approximates f(y, k) by a lin-
ear function

fyk(y, k) = ⟨f ′(yk, k),y − yk⟩ (6)

= ⟨d− akI{ck > ⟨ak,yk⟩},y − yk⟩,

where we take d − akI{ck > ⟨ak,yk⟩} ∈ ∂f(yk, k) and
estimate the primal solution by xk = I{ck > ⟨ak,yk⟩}.
Specifically, the dual update (3) is given in the closed form

yk+1 = [yk − γ(d− akx
k)]+.

With this dual updating rule, our Algorithm 1 becomes the
method in (Li et al., 2020). Compared with (Li et al., 2020),
we provide a sharper analysis to achieve a better trade-off
between the optimality gap and constraint violation.

Lemma 1. Under assumptions A1 to A3, if we take γk ≡
γ, then solution x̂ output by Algorithm 1 using explicit sub-
gradient update (6) satisfies

E[ρ(x̂)] ≤ O(m log n+
√
n log n) + m(ā+d̄)2n

2 · γ

E[v(x̂)] ≤ m(ā+d̄)2

d +
√
m(ā+ d̄) + c̄

d · γ
−1,

where E[·] is taken over the random permutation.

Remark 3. Lemma 1 implies a trade-off between ρ and
v with respect to the stepsize of the subgradient update.

Since we know ā, c̄, d, d̄ in the offline case, it is, therefore,
possible to find an optimal γ to balance the two criteria.

Theorem 1. Under the same conditions as Lemma 1, if
we take γ =

√
2c̄

d(ā+d̄)2mn
, then Algorithm 1 using explicit

subgradient update (6) outputs a solution x̂ satisfying

E[ρ(x̂)] ≤ O(m log n+
√
n log n) +

(
(ā+d̄)2c̄

2d

)1/2√
mn

E[v(x̂)] ≤ m(ā+d̄)2

d +
√
m(ā+ d̄) +

(
(ā+d̄)2c̄

2d

)1/2√
mn,

where E[·] is taken over the random permutation.

Remark 4. We see the online algorithm givesO(m log n+√
n log n+

√
mn) gap andO(m+

√
mn) violation even if

we take γ to be a suboptimal value of O(1/
√
mn). Com-

pared with the O(
√
n log n + m

√
n) gap and O(m

√
n)

violation of (Li et al., 2020), the result is improved with
respect to m. The main reason why (Li et al., 2020) gets
a suboptimal result is that they choose γ = 1/

√
n, which

gives an unbalanced trade-off between gap and violation.
Remark 5. The online explicit updates can be implemented
in O(nnz(A)) time and is free of any matrix-vector opera-
tions. See Section B.1 for more details.

3.2. Online Implicit Update

In this section, we analyze the performance of the online
implicit update applied to offline LPs. Instead of approxi-
mating f(y, k), we keep all the information using

fyk(y, k) = f(y, k) = ⟨d,y⟩+ [ck − ⟨ak,y⟩]+ (7)

and the primal solution is estimated through proximal point

min
y,s

⟨d,y⟩+ s+ 1
2γk
∥y − yk∥2

subject to y ≥ 0, s ≥ ck − ⟨ak,y⟩, s ≥ 0

and we let xk = λ(s ≥ ck − ⟨ak,y⟩) be the Lagrangian
multiplier of s ≥ ck − ⟨ak,y⟩ in the optimal solution.
Remark 6. In the literature of online algorithms, the prox-
imal point update is known as implicit update, where “im-
plicit” comes from the optimality condition

0 ∈ ∂f(yk+1, k) + γ−1
k (yk+1 − yk) +NRn

+
(yk+1)

and yk+1 can be expressed implicitly as

yk+1 ∈ yk − γk(∂f(y
k+1, k) +NRn

+
(yk+1)),

where NRn
+
(yk+1) is the normal cone of the nonnegative

orthant at yk+1. Unlike explicit update which linearizes
f(y, k), implicit update preserves all the information and
it is shown to be more robust to stepsize selection than sub-
gradient (Asi and Duchi, 2019; Deng and Gao, 2021).

4

Fast online algorithms for offline LPs

The analysis of implicit update is similar, and we still have
a trade-off between gap and violation

Lemma 2. Under assumptions A1 to A3, if we take γk ≡
γ, then solution x̂ output by Algorithm 1 using implicit
proximal point update (7) satisfies

E[ρ(x̂)] ≤ O(m log n+
√
n log n) + 5m(ā+d̄)2n

2 · γ

E[v(x̂)] ≤ 3m(ā+d̄)2

d +
√
m(ā+ d̄) + c̄

d · γ
−1,

where E[·] is taken over the random permutation.

Choosing γ properly, we get bounds on gap and violation.

Theorem 2. Under the same condition as Lemma 2, if we
take γ =

√
2c̄

5d(ā+d̄)2mn
, then Algorithm 1 using implicit

proximal point update (7) outputs a solution x̂ satisfying

E[ρ(x̂)] ≤ O(m log n+
√
n log n) +

(
5(ā+d̄)2c̄

2d

)1/2√
mn

E[v(x̂)] ≤ 3m(ā+d̄)2

d +
√
m(ā+ d̄) +

(
5(ā+d̄)2c̄

2d

)1/2√
mn,

where E[·] is taken over the random permutation.

Remark 7. Although we do not see an improvement of
bounds using implicit update, as will be shown by our nu-
merical experiments, the implicit update often behaves bet-
ter empirically. One intuitive explanation is that, unlike the
explicit update which only outputs binary values, the im-
plicit update is capable of dealing with fractional values.
To illustrate this consider the following LP

max
0≤x1,x2≤1

x1 + x2 subject to x1 + x2 ≤ 0.5

whose optimal value is 0.5. If we do not allow constraint
violation greater than 0.1, then subgradient update will
never take x = 1 from arbitrary start. However, for the im-
plicit update, we recover the optimal solution if γ < 0.01.

3.3. Improvement by Variable Duplication

Despite the efficiency of online algorithms, the current
optimality gap and constraint violation guarantees are far
from enough to solve offline LPs, even approximately. To
address this issue, we take advantage of the offline setting
and propose to make a trade-off between time and accu-
racy, more specifically, by 1). duplicating each column K
times 2). running online algorithm on the augmented prob-
lem with nK variables 3). taking the average of primal
estimates. This scheme ends up giving an intuitive

√
K

reduction in the final bound.

Theorem 3. Under assumptions A1 to A3, if we ap-
ply Algorithm 2 with K duplications and take γ =
O(1/

√
Kmn), then both explicit and implicit updates out-

Algorithm 2 Online algorithm with duplication
Input: y0,K, {f(y, j)} from LP data A,b, c

• Duplicate each of f(y, j) K times and gener-
ate permutation for nK columns (including c)
{a1,1, . . . ,a1,n︸ ︷︷ ︸

Duplication 1

,a2,1, . . . ,a2,n︸ ︷︷ ︸
Duplication 2

, . . . ,aK,1, . . . ,aK,n︸ ︷︷ ︸
Duplication K

}

• Run Algorithm 1 and get x̂Dup = (x̂1, . . . , x̂K)

• Aggregate solution x̂ = 1
K

∑K
k=1 x̂k.

Output: x̂

put solutions x̂ satisfying

E[ρ(x̂)] ≤ O
(
m logn

K +
√

n
K log n+

√
mn
K

)
E[v(x̂)] ≤ O

(
m
K +

√
mn
K

)
.

Remark 8. There is an extra O(logK√
K

) term in the bound
for ρ, but note that we generally take K = O(n) and we
drop this term when presenting our results.
Remark 9. We provide an intuitive explanation of the im-
provement. Taking the explicit update as an example: when
each variable is duplicated K > 1 times, the final output
x̂k would be allowed to take i/K for i ≤ K, while K = 1
only allows x̂k ∈ {0, 1}. In other words, larger K offers
higher granularity to approximate fractional solutions.

Till now we have presented the theoretical results of the
online algorithms applied to offline LPs. In the following
sections, we will focus on how the online algorithms help
exact LP solving through sifting.

4. Application: Sifting for Linear Programs
In the previous sections, we have discussed the use of on-
line algorithms to approximately solve offline LPs. How-
ever, unlike the simplex method, first-order methods rarely
give accurate basis status and generally cannot be applied
for exact LP solving. In this section, we try to alleviate
this issue by identifying the use of our method in sifting,
a “column generation” framework for linear programming.
For ease of exposition, we temporarily switch to standard-
form LPs

max
x
⟨c,x⟩ subject to Ax = b,x ≥ 0.

Sifting for LP Sifting initially appeared in (Forrest,
1989) and was formally presented in (Bixby et al., 1992) to
solve LPs with n ≫ m. Mature LP solvers often use sift-
ing as a candidate solver (Pedroso, 2011; Manual, 1987; Ge
et al., 2022). Using the idea that the set of basic columns
B = {j : x∗

j > 0} is small relative to [n], sifting solves a

5

Fast online algorithms for offline LPs

sequence of working problems which restrict the problem
to a more tractable subset of columnsW ⊆ [n], |W| ≪ n

max
xW

⟨c,xW⟩ subject to AxW = b,xW ≥ 0.

Let y∗
W denote the optimal dual solution to the working

problem. If y∗
W is dual feasible for the original LP, say,

A⊤y∗
W ≥ c, then B ⊆ W (assuming the optimal solu-

tion is unique) and the original problem is solved. Oth-
erwise we price out the dual infeasible columns I =
{j : ⟨aj ,y∗

W⟩ < cj} and add them toW .

Algorithm 3 Sifting procedure for LPs
Input: Initial working setW
while I is nonempty do

Solve working problem
maxAWxW=b,xW≥0 ⟨cW ,xW⟩ and get y∗

W
Update I = {j : ⟨aj ,y∗

W⟩ < cj}
W =W ∪ I

end
Output: Optimal solution to LP

As a special case of column generation, sifting faces chal-
lenges that are similar to column generation (Lübbecke,
2010)

• (heading-in) a good initialization ofW is often hard

• (dual-oscillation) solution y∗
W is unstable at the end

Dual Stabilization Among the techniques for sifting,
dual stabilization (Du Merle et al., 1999; Amor et al., 2004;
Pessoa et al., 2018) has been one of the most successful at-
tempts. In a word, most of the dual stabilization techniques
work by finding some anchor point ŷ that lies at the center
of dual feasible region (Lee and Park, 2011; Gondzio et al.,
2013) and then by stablilizing the dual iterations by taking
convex combination

ŷW = αyW + (1− α)ŷ. (8)

However, computing an interior point or some center of the
dual feasible region is often too costly for huge LPs.

Accelerate Sifting by Online Algorithm Generally
speaking, to accelerate sifting one needs

• a good estimate of {j : x∗
j > 0}.

• some approximate ŷ ≈ y∗

• an inexpensive algorithm that obtains them

To this point it’s not hard to see that our online algorithm is
a perfect candidate to fulfill all three requirements above.
First, we can use x̂ as a score function to build initial W .

For example, we can choose some threshold value τ and
initializeW = {j : x̂j ≥ τ}. During the sifting procedure,
we can use the approximate dual solution from online al-
gorithm to stabilize the dual iterations. Most importantly,
online algorithm is effcient and its running time is negligi-
ble compared to the whole sifting procedure.

In practice, we can efficiently embed sifting into the LP
pre-solver by going through the problem data several times
before sifting starts. As our experiments suggest, online
algorithm manages to identify the basis status for a wide
range of real-life LPs.
Remark 10. Though the online algorithms work for prob-
lems with inequality constraints and upper-bounded vari-
ables, as the experiments suggest, it often suffices to use
the online algorithm as a heuristic in practice even if these
constraints are not necessarily satisfied.

Due to space limit we leave a more detailed discussion of
sifting to Section B.4.

5. Experiments
In this section, we conduct numerical experiments to val-
idate the efficiency of our proposed methods. The exper-
iment is divided into two parts. In the first part we ver-
ify our theoretical results on multi-knapsack benchmark
dataset and its variants. In the second part, we turn to exact
LP solving and test large-scale LP benchmark datasets to
see how online algorithms benefit sifting solvers.

5.1. Approximate Solver

In this part we test online algorithms in approximate LP
solving. We also compare the performance of explicit and
implicit updates in practice.

Data Description We use synthetic data from multi-
knapsack benchmark. More detailedly, we generate bench-
mark multi-knapsack problems maxAx≤b,0≤x≤1 ⟨c,x⟩ as
discussed in (Chu and Beasley, 1998): we generate each
element of aij uniformly from {1, . . . , 1000}. After gen-
erating A, we zero out each element of A with proba-
bility (1 − σ), where σ ∈ (0, 1] controls the sparsity of
A. b is generated by bi = τ

n

∑
j aij , where τ is called

tightness coefficient. Each element of c is generated by
ci =

1
m

∑
i aij + δi, where δi is sampled uniformly from

{1, . . . , 500}.

Performance Metric In the first part of our experiment,
given a feasible approximate solution x̂, we use relative
optimality to measure its quality

r(x̂) :=
∣∣∣ ⟨c,x̂⟩
⟨c,x∗⟩

∣∣∣.
6

Fast online algorithms for offline LPs

Testing Configuration and Setup

1). Dataset. We test (m,n) ∈ {(5, 102), (8, 103), (16, 2×
103), (32, 4× 103)}, τ ∈ [10−2, 1], σ = 1.

2). Initial Point. We let online algorithms start from 0.

3). Feasibility. We force the algorithms to respect con-
straints (take x̂k = 1 only if b−

∑k
j=1 ajxj ≥ 0).

4). Duplication. We allow K ∈ {1, 2, 4, 8, 16, 32}
5). Stepsize. We take γ = 1/

√
Kmn.

6). Subproblem. We discuss the way to efficiently com-
pute implicit update in the appendix Section B.2.

First we compare the performance of the two algorithms
through their relative optimality under different data set-
tings. For LPs of the same size, we fix (m,n,K) and test
τ ∈ [10−2, 1] for ten values evenly distributed on the log-
scale. Figure 1 illustrates the performance of both explicit
and implicit updates. It can be clearly seen that implicit up-
date, in most cases, outperforms the explicit update. Espe-
cially when the constraint is tight (τ close to 0) and K = 1,
we see that the performance of implicit updates are domi-
nant. Besides, we observe that with K increasing, explicit
update starts to catch up.

Next we examine the efficiency of the variable dupli-
cation scheme by fixing (m,n, τ) and increasing K ∈
{1, 2, 4, 8, 16, 32}. Figure 2 illustrates how variable dupli-
cation improves performance of the online algorithms and
shows its potential in approximate LP solving. It can be
seen that as K increases, relative optimality is gradually
improved and we can achieve higher than 90% relative op-
timality given moderate K. Therefore, it suffices to adopt
the online algorithm with variable duplication in the appli-
cations where an approximately optimal solution is accept-
able. In the appendix Section B.3 we further investigate the
performance of online algorithms for direct LP solving.

Another observation from Figure 2 is that when τ is close
to 0, as we just mentioned, explicit update is dominated by
the implicit update due to the restriction of constraint vio-
lation. However, as we increase K, this gap is soon filled.
This suggests in practice we can alternatively combine vari-
able duplication with explicit update to achieve comparable
performance to the implicit update. Especially when the
constraint matrix is sparse, an O(nnz(A)) implementation
would be fairly competitive.

5.2. Sifting and Large LPs

In this part, we turn to sifting in exact LP solving and see
how much online algorithms can help.

Data Description We test both synthetic data and real-
life large-scale LPs. For the synthetic data, we generate LP

instances in the same way as in Section 5.1. Besides, we
collect 13 instances from (Mittelmann, 2022).

Table 2. Datasets collected from large-scale LP benchmark
Dataset Row Column Dataset Row Column

rail507 507 6.4e+04 rail516 516 4.8e+04
rail582 582 5.6e+04 rail2586 2586 9.2e+05
rail4284 4284 1.0e+06 scpm1 5000 5.0e+05
scpn2 5000 1.0e+06 scpl4 2000 2.0e+05

scpj4scip 1000 1.0e+05 scpk4 2000 1.0e+05
s82 87878 1.7e+06 s100 14733 3.6e+05

s250r10 10962 2.7e+05 - - -

Performance Metric We mention in Section 4 that on-
line algorithm helps sifting in 1). working problem initial-
ization 2). dual stabilization, and we test these two aspects
using different criteria. For working problem initialization,
assume that we get an initial working problem estimateW
from the online algorithm and denote by B the set of basic
columns, then we use

acc(x̂) :=
|B ∩W|
|B|

and rdc(x̂) :=
|W|
n

to respectively evaluate 1). how many basic columns are
found out. 2). size of the initialized working problem
relative to the original LP. On the other hand, we also
need to evaluate how much, overall, online algorithm can
accelerate a sifting solver. To this end we directly use CPU
seconds T (x̂) as the metric.

Testing Configuration and Setup

1). Dataset. We use (m,n) ∈ {(102, 105), (102, 106)},
τ ∈ {(0.05, 0.1)} and σ ∈ {(0.01, 0.1, 0.15, 0.2)}

2). Algorithm Selection. Since the problems are all
sparse, only explicit update is used.

3). Initial Point. We let online algorithm start from 1.
4). Duplication. We take K = 2 for all the datasets.
5). Stepsize. We take γ = 1/

√
Kmn.

6). Basis Prediction. Given the output of online algorithm
x̂, we use W = {j : x̂j ≥ 1/K} to initialize the
working problem.

7). Dual Stabilization. We implement a basic dual stabi-
lization procedure which takes α = 0.4 in (8).

8). Sifting Solver. We adopt the sifting solver in CPLEX
12.10 as our benchmark solver.

Table 3 describes the practical performance of the the on-
line algorithm applied to practical large-scale LPs. We can
see that on the collected benchmark datasets, online algo-
rithm successfully identifies more than 90% of the basic

7

Fast online algorithms for offline LPs

10-2 10-1 100
0.5

0.6

0.7

0.8

0.9

1

Explicit
Implicit

10-2 10-1 100
0.5

0.6

0.7

0.8

0.9

1

Explicit
Implicit

10-2 10-1 100
0.5

0.6

0.7

0.8

0.9

1

Explicit
Implicit

10-2 10-1 100
0.5

0.6

0.7

0.8

0.9

1

Explicit
Implicit

10-2 10-1 100
0.7

0.75

0.8

0.85

0.9

0.95

1

Explicit
Implicit

10-2 10-1 100
0.7

0.75

0.8

0.85

0.9

0.95

1

Explicit
Implicit

10-2 10-1 100
0.7

0.75

0.8

0.85

0.9

0.95

1

Explicit
Implicit

10-2 10-1 100
0.7

0.75

0.8

0.85

0.9

0.95

1

Explicit
Implicit

Figure 1. First row from left to right (m,n,K) ∈ {(5, 102, 1), (5, 102, 8), (8, 103, 1), (8, 103, 8)}. Second row from left to right
(m,n,K) ∈ {(16, 2 × 103, 1), (16, 2 × 103, 8), (32, 4 × 103, 1), (32, 4 × 103, 8)}. The x-axis represents τ parameter ranging from
10−2 to 1; The y-axis represents the relative optimality.

0 5 10 15 20 25 30
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ex = 0.01
Im = 0.01
Ex = 0.05
Im = 0.05
Ex = 0.1
Im = 0.1
Ex = 0.2
Im = 0.2

0 5 10 15 20 25 30
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ex = 0.01
Im = 0.01
Ex = 0.05
Im = 0.05
Ex = 0.1
Im = 0.1
Ex = 0.2
Im = 0.2

0 5 10 15 20 25 30
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ex = 0.01
Im = 0.01
Ex = 0.05
Im = 0.05
Ex = 0.1
Im = 0.1
Ex = 0.2
Im = 0.2

0 5 10 15 20 25 30
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ex = 0.01
Im = 0.01
Ex = 0.05
Im = 0.05
Ex = 0.1
Im = 0.1
Ex = 0.2
Im = 0.2

Figure 2. From left to right (m,n) ∈ {(5, 102), (8, 103), (16, 2× 103), (32, 4× 103)}. The x-axis represents K parameter ranging in
{1, 2, 4, 8, 16, 32}. The y-axis represents the relative optimality.

columns in most cases while restricting the size of initial-
ization less than 20% of the original LP size. Especially for
the scp instances, online algorithm identifies all the basic
columns with fewer than 5% of columns. In this case, the
original LP is solved after the first sifting iteration and we
only need to solve a much smaller LP. For the overall LP
solving time, we observe a clear speedup on 6 out of the
13 instances, neutral performance on 3 instances and slow
down on 4 of the instances. We interpret this slow-down as
the effect of our preliminary implementation of the sifting
solver compared to CPLEX.

Finally, we experiment on synthetic datasets that satisfy the
assumptions A1 to A3. As Table 4 shows, sifting solver,
combined with our online algorithm, often outperforms the
commercial sifting solvers by more than 50%. This further
illustrates the practical efficiency of our proposed method.

6. Conclusions
We adapt two fast online algorithms for offline LPs and ob-
tain algorithms that are free of any matrix multiplication or
access to the full LP constraint matrix. We theoretically an-

alyze the optimality gap and constraint violation of the two
algorithms and propose a variable-duplication scheme to
improve their practical performance. In addition, we iden-
tify the potential of online algorithms in exact LP solving
when combined with sifting, an LP column generation pro-
cedure. Our numerical experiments demonstrate the effi-
ciency of online algorithms, both as an approximate direct
solver and as an auxiliary routine in sifting. We believe that
it is an interesting direction to introduce online algorithms
to the context of offline LP solving.

7. Acknowledgement
We thank Yuyang Ye, Xiaocheng Li, and the seminar par-
ticipants at Shanghai University of Finance and Economics
for their fruitful discussions and comments. Especially, we
thank Dr. Qi Huangfu for proposing an O(nnz(A)) imple-
mentation of the explicit update method and testing it in the
state-of-the-art commercial solver COPT (Ge et al., 2022).

Finally, we sincerely appreciate the efforts the Area Chairs
and all the reviewers put into the review process.

8

Fast online algorithms for offline LPs

Table 3. Performance of initializing working problem and CPU solution time of the large-scale LPs

Dataset acc(x̂) rdc(x̂) TCPLEX T (x̂)

rail507 271/301 11862/62171 0.50 0.72
rail516 121/138 8572/46978 0.38 0.73
rail582 325/347 12465/54315 0.60 1.15
rail2586 1536/1672 145373/909940 5.44 10.65
rail4284 1951/2042 348135/1090526 14.13 22.64
scpm1 2754/2754 10352/500000 19.08 8.74
scpn2 3411/3411 20860/1000000 51.38 12.99
scpl4 1149/1149 5718/200000 0.94 0.78

scpj4scip 552/552 3635/99947 0.47 0.39
scpk4 930/930 4077/100000 0.60 0.58
s82 1992/3020 52383/1687859 >3600 >3600
s100 150/487 835/364203 151.65 38.30

s250r100 415/747 3080/270323 23.07 21.55

Table 4. CPU time of sifting on synthetic datasets

(m,n) = (102, 105) (m,n) = (102, 106)

τ σ TCPLEX T (x̂) τ σ TCPLEX T (x̂)

0.05 0.1% 8.08 3.43 0.05 0.1% 82.79 38.20
0.05 0.5% 7.73 4.45 0.05 0.5% 117.02 73.39
0.05 1% 7.86 2.81 0.05 1% 61.52 35.94
0.05 5% 7.76 3.88 0.05 5% 82.77 35.84
0.05 10% 7.82 3.52 0.05 10% 74.89 37.67
0.05 15% 7.96 6.30 0.05 15% 65.03 40.75
0.05 20% 7.57 3.89 0.05 20% 70.21 37.13
0.10 0.1% 9.19 5.57 0.10 0.1% 79.35 67.30
0.10 0.5% 7.57 2.71 0.10 0.5% 58.34 47.50
0.10 1% 7.63 4.48 0.10 1% 54.69 42.73
0.10 5% 9.08 6.51 0.10 5% 56.13 52.58
0.10 10% 8.30 5.51 0.10 10% 56.96 47.71
0.10 15% 8.93 4.33 0.10 15% 52.40 53.79
0.10 20% 7.82 5.18 0.10 20% 57.77 42.21

8. Disclosure of Funding
This research is partially supported by the National Nat-
ural Science Foundation of China (NSFC) [Grant NSFC-
72150001, 72225009, 11831002].

References
S. Agrawal, Z. Wang, and Y. Ye. A dynamic near-optimal

algorithm for online linear programming. Operations
Research, 62(4):876–890, 2014.

H. B. Amor, J. Desrosiers, and A. Frangioni. Stabilization
in column generation. Groupe d’études et de recherche
en analyse des décisions, 2004.

D. Applegate, M. Díaz, O. Hinder, H. Lu, M. Lubin,

B. O’Donoghue, and W. Schudy. Practical large-scale
linear programming using primal-dual hybrid gradient.
Advances in Neural Information Processing Systems, 34:
20243–20257, 2021.

H. Asi and J. C. Duchi. Stochastic (approximate) proximal
point methods: Convergence, optimality, and adaptivity.
SIAM Journal on Optimization, 29(3):2257–2290, 2019.

S. Balseiro, H. Lu, and V. Mirrokni. Dual mirror descent
for online allocation problems. In International Con-
ference on Machine Learning, pages 613–628. PMLR,
2020.

S. R. Balseiro, H. Lu, and V. Mirrokni. The best of many
worlds: Dual mirror descent for online allocation prob-
lems. Operations Research, 2022.

9

Fast online algorithms for offline LPs

K. Basu, A. Ghoting, R. Mazumder, and Y. Pan.
Eclipse: An extreme-scale linear program solver for
web-applications. In International Conference on Ma-
chine Learning, pages 704–714. PMLR, 2020.

R. E. Bixby, J. W. Gregory, I. J. Lustig, R. E. Marsten, and
D. F. Shanno. Very large-scale linear programming: A
case study in combining interior point and simplex meth-
ods. Operations Research, 40(5):885–897, 1992.

R. L. Bray. Logarithmic regret in multisecretary and on-
line linear programming problems with continuous val-
uations. arXiv e-prints, pages arXiv–1912, 2019.

K. Chen, A. Cutkosky, and F. Orabona. Implicit parameter-
free online learning with truncated linear models. In
International Conference on Algorithmic Learning The-
ory, pages 148–175. PMLR, 2022.

P. C. Chu and J. E. Beasley. A genetic algorithm for the
multidimensional knapsack problem. Journal of heuris-
tics, 4(1):63–86, 1998.

G. Dantzig. Linear programming and extensions. In Linear
programming and extensions. Princeton university press,
2016.

Q. Deng and W. Gao. Minibatch and momentum model-
based methods for stochastic weakly convex optimiza-
tion. Advances in Neural Information Processing Sys-
tems, 34:23115–23127, 2021.

Q. Deng, Q. Feng, W. Gao, D. Ge, B. Jiang, Y. Jiang, J. Liu,
T. Liu, C. Xue, Y. Ye, et al. New developments of admm-
based interior point methods for linear programming and
conic programming. arXiv preprint arXiv:2209.01793,
2022.

O. Du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen.
Stabilized column generation. Discrete Mathematics,
194(1-3):229–237, 1999.

J. Forrest. Mathematical programming with a library of
optimization subroutines. In ORSA/TIMS Joint National
Meeting, New York, 1989.

K. Fountoulakis and J. Gondzio. Performance of first-and
second-order methods for l1-regularized least squares
problems. Computational Optimization and Applica-
tions, 65(3):605–635, 2016.

M. Garstka, M. Cannon, and P. Goulart. Cosmo: A conic
operator splitting method for convex conic problems.
Journal of Optimization Theory and Applications, 190
(3):779–810, 2021.

D. Ge, Q. Huangfu, Z. Wang, J. Wu, and Y. Ye. Car-
dinal optimizer (copt) user guide. arXiv preprint
arXiv:2208.14314, 2022.

J. Gondzio, P. González-Brevis, and P. Munari. New de-
velopments in the primal–dual column generation tech-
nique. European Journal of Operational Research, 224
(1):41–51, 2013.

E. Hazan et al. Introduction to online convex optimization.
Foundations and Trends® in Optimization, 2(3-4):157–
325, 2016.

J. Jiang, W. Ma, and J. Zhang. Degeneracy is OK: Loga-
rithmic Regret for Network Revenue Management with
Indiscrete Distributions. arXiv, 2022. doi: 10.48550/
arxiv.2210.07996.

B. Kulis and P. L. Bartlett. Implicit online learning. In Pro-
ceedings of the 27th International Conference on Ma-
chine Learning (ICML-10), pages 575–582, 2010.

C. Lee and S. Park. Chebyshev center based column gen-
eration. Discrete Applied Mathematics, 159(18):2251–
2265, 2011.

X. Li and Y. Ye. Online linear programming: Dual conver-
gence, new algorithms, and regret bounds. Operations
Research, 70(5):2948–2966, 2022.

X. Li, C. Sun, and Y. Ye. Simple and fast algorithm for bi-
nary integer and online linear programming. Advances in
Neural Information Processing Systems, 33:9412–9421,
2020.

T. Lin, S. Ma, Y. Ye, and S. Zhang. An admm-based
interior-point method for large-scale linear program-
ming. Optimization Methods and Software, 36(2-3):
389–424, 2021.

M. E. Lübbecke. Column generation. Wiley encyclopedia
of operations research and management science, 2010.

W. Ma, Y. Cao, D. H. K. Tsang, and D. Xia. Optimal
Regularized Online Convex Allocation by Adaptive Re-
Solving. arXiv, 2022. doi: 10.48550/arxiv.2209.00399.

C. U. Manual. Ibm ilog cplex optimization studio. Version,
12(1987-2018):1, 1987.

N. Megiddo and R. Chandrasekaran. On the ε-perturbation
method for avoiding degeneracy. Operations Research
Letters, 8(6):305–308, 1989.

H. Mittelmann. Benchmark of barrier lp solvers, 2022.

Y. Nesterov. Efficiency of coordinate descent methods on
huge-scale optimization problems. SIAM Journal on Op-
timization, 22(2):341–362, 2012.

Y. Nesterov. Subgradient methods for huge-scale opti-
mization problems. Mathematical Programming, 146
(1):275–297, 2014.

10

Fast online algorithms for offline LPs

B. O’donoghue, E. Chu, N. Parikh, and S. Boyd. Conic op-
timization via operator splitting and homogeneous self-
dual embedding. Journal of Optimization Theory and
Applications, 169(3):1042–1068, 2016.

J. P. Pedroso. Optimization with gurobi and python. INESC
Porto and Universidade do Porto„ Porto, Portugal, 1,
2011.

A. Pessoa, R. Sadykov, E. Uchoa, and F. Vanderbeck. Au-
tomation and combination of linear-programming based
stabilization techniques in column generation. IN-
FORMS Journal on Computing, 30(2):339–360, 2018.

K. T. Talluri, G. Van Ryzin, and G. Van Ryzin. The the-
ory and practice of revenue management, volume 1.
Springer, 2004.

Y. Ye. Interior point algorithms: theory and analysis. John
Wiley & Sons, 2011.

11

Fast online algorithms for offline LPs

Appendix

Table of Contents
A Theoretical Aspects of Online Linear Programming 13

A.1 Auxiliary Results . 13

A.2 Proof of Results in Section 3.1 . 14

A.3 Proof of Results in Section 3.2 . 15

A.4 Proof of Results in Section 3.3 . 19

A.5 Proof of Theorem 3 . 19

A.6 Additional Experiment on Violated Assumption . 20

B Practical Aspects of Online Linear Programming 21
B.1 Fast O(nnz(A)) Implementation For the Explicit Update . 21

B.2 Cases of Simple Implicit Update . 21

B.3 Direct Approximate LP Solving . 22

B.4 Sifting and Column Generation . 23

B.5 Integer Programming . 26

Structure of the Appendix

The appendix is organized as follows. Section A introduces auxiliary results and proves our main results from Section
3. As a complement to our discussions in Section 5, Section B gives a more comprehensive treatment of online linear
programming applied to 1). Direct LP solving. 2). LP sifting and column generation. 3). Integer programming. Particularly
we discuss the practical implementation of both explicit and implicit update in Section B.1 and Section B.2.

12

Fast online algorithms for offline LPs

A. Theoretical Aspects of Online Linear Programming
A.1. Auxiliary Results

In this section, we present some auxiliary results from (Li et al., 2020) that will help in the proof. Recall that given an
index set S ⊆ [n], we use AS to denote the sub-matrix indexed from columns of A and use cS to denote a sub-vector
indexed from c. Then we introduce two auxiliary LPs as follows.

Auxiliary LPs from Proposition 1 of (Li et al., 2020)

F ∗
s := max

x[1:s]

⟨c[1:s],x[1:s]⟩

subject to A[1:s]x[1:s] ≤ sb
n

0 ≤ x[1:s] ≤ 1

F̂ ∗
k := max

x[k:n]

⟨c[k:n],x[k:n]⟩

subject to A[k:n]x[k:n] ≤ (1− k−1
n)b

0 ≤ x[k:n] ≤ 1,

The optimal values of of the two LPs are denoted by F ∗
s and F̂ ∗

k respectively. The following lemma provides a lens to deal
with random permutation.

Lemma 3 (Optimality gap (Li et al., 2020)). We have the following bound on the optimality gap of the online algorithm

F ∗
n −

n∑
k=1

E[ckxk] ≤ mc̄+
c̄
√
n log n

d
+mc̄ log n+

αc̄

n
+

n∑
k=1

E
[
F̂∗

n−k+1

n−k+1 − ckx
k
]

= O(m log n+
√
n log n) +

n∑
k=1

E
[
F̂∗

n−k+1

n−k+1 − ckx
k
]
,

where α = max{e, e16ā2

, 16ā2} and the expectation is taken over the random permutation.

Remark 11. Given Lemma 3, it remains to analyze the quantity
∑n

k=1 E
[
F̂∗

n−k+1

n−k+1 − ckx
k
]

to bound the optimality gap,
and in our proof we analyze it under explicit and implicit updates respectively.

We also need a well-known three-point lemma in the analysis of implicit updates.

Lemma 4 (Three-point lemma (Beck, 2017)). Let f be a convex function and

y+ = argmin
y

{
f(y) +

1

2γ
∥y − z∥2

}
,

where γ > 0. Then we have

f(y+) +
1

2γ
∥y+ − z∥2 ≤ f(y) +

1

2γ
∥y − z∥2 − 1

2γ
∥y − y+∥2.

Clue of proof With the tools in hand, now we get down to the analysis of different algorithms. Our proof basically
follows three steps as follows:

• Tracking the dual iteration {yk}

• Tracking constraint violation and optimality gap

• Taking trade-off between optimality gap and constraint violation by properly choosing γ.

13

Fast online algorithms for offline LPs

A.2. Proof of Results in Section 3.1

In this section, we present the proof for subgradient-based explicit online algorithm.

The following lemma tracks the dual iterations of Algorithm 1 with explicit update.

Lemma 5 (Tracking the dual iteration). Under A1 and A2, if we let {yk} be the sequence of dual iterates generated by
Algorithm 1 with explicit update and γk ≡ γ, then

∥yk∥ ≤ m(ā+ d̄)2γ

d
+
√
m(ā+ d̄)γ +

c̄

d
.

Boundedness of dual iterations turns out to be important for limiting the constraint violation. Now we state the detailed
proof of the theoretical results.

A.2.1. PROOF OF LEMMA 5

The proof is adapted from (Li et al., 2020) and is improved via a sharper analysis. First recall that we update the dual
iterations by

yk+1 = [yk + γ(akI{ck > ⟨ak,yk⟩} − d)]+ = [yk + γ(akx
k − d)]+

and we successively deduce that

∥yk+1∥2 − ∥yk∥2

≤ ∥yk + γ(akx
k − d)∥2 − ∥yk∥2 (9)

≤ −2γ⟨d− akx
k,yk⟩+m(ā+ d̄)2γ2 (10)

≤ m(ā+ d̄)2γ2 + 2γc̄− 2γd∥yk∥, (11)

where (9) is due to ∥[x]+∥ ≤ ∥x∥; (10) uses A1, A2 to get γ2∥akxk−d∥2 ≤ m(ā+ d̄)2γ2 since ∥ak∥∞ ≤ ā, 0 < d ≤ d̄ ·1
and |xk| ≤ 1; (11) uses the relation

−2γ⟨d,yk⟩ ≤ −2γd∥yk∥1 ≤ −2γd∥yk∥2

and ⟨akxk,yk⟩ ≤ ck ≤ c̄.

On the other hand, we have, by triangle inequality that

∥yk+1∥ ≤ ∥yk + γ(akx
k − d)∥ ≤ ∥yk∥+ γ∥akxk − d∥ ≤ ∥yk∥+ γ

√
m(ā+ d̄)

and if ∥yk∥ ≥ m(ā+d̄)2γ+2c̄
2d , by (11) we know that

∥yk+1∥2 − ∥yk∥2 ≤ m(ā+ d̄)2γ2 + 2γc̄− 2γd∥yk∥ ≤ 0.

Therefore, if ∥y1∥ ≤ m(ā+d̄)2γ+2c̄
2d , then ∥yk∥ never exceeds m(ā+d̄)2γ+2c̄

2d + γ
√
m(ā+ d̄) and this completes the proof.

A.2.2. PROOF OF LEMMA 1

By the updating formula of subgradient,

yk+1 = [yk + γ(axk − d)]+ ≥ yk + γ(akx
k − d)

and telescoping over k = 1, . . . , n gives

Ax̂ =

n∑
k=1

akx
k ≤ b+ γ−1

n∑
k=1

(yk+1 − yk) ≤ b+ γ−1yn+1.

14

Fast online algorithms for offline LPs

Re-arranging the term, taking positive part and taking expectation with respect to the random permutation, we have

E[∥[Ax̂− b]+∥] ≤ γ−1E[∥yn+1∥]

≤ γ−1

[
m(ā+ d̄)2γ

d
+ γ
√
m(ā+ d̄) +

c̄

d

]
(12)

=
m(ā+ d̄)2

d
+
√
m(ā+ d̄) +

c̄

γd
,

where (12) invokes Lemma 5 to bound the constraint violation.

Next we bound
∑n

k=1 E
[
F̂∗

n−k+1

n−k+1 − ckx
k
]

and deduce that

∥yk+1∥2 − ∥yk∥2

= ∥[yk + γ(akx
k − d)]+∥2 − ∥yk∥2

≤ ∥yk + γ(akx
k − d)∥2 − ∥yk∥2

= −2γ⟨d− akx
k,yk⟩+ γ2∥akxk − d∥2

≤ −2γ⟨d− akx
k,yk⟩+m(ā+ d̄)2γ2,

where the last inequality again uses the relation γ2∥akxk − d∥2 ≤ m(ā+ d̄)2γ2. Then we take expectation and telescope
over k = 1, . . . , n to obtain

n∑
k=1

E[∥yk+1∥2 − ∥yk∥2] = E[∥yn+1∥2]− ∥y1∥2

≤
n∑

k=1

E[−2γ⟨d− akx
k,yk⟩+m(ā+ d̄)2γ2].

Re-arranging the terms, we have

E
[n∑
k=1

2γ⟨d− akx
k,yk⟩

]
≤

n∑
k=1

m(ā+ d̄)2γ2 − E[∥yn+1∥2] ≤ mn(ā+ d̄)2γ2,

Last we observe that (Li et al., 2020)

n∑
k=1

E

[
F̂ ∗
n−k+1

n− k + 1
− ckx

k

]
≤

n∑
k=1

E[⟨d− akx
k,yk⟩] ≤ m(ā+ d̄)2γn

2

and plugging the bound back completes the proof.

A.2.3. PROOF OF THEOREM 1

We have, for some ∆ independent of γ, that

E[ρ(x̂) + v(x̂)] ≤ ∆+
m(ā+ d̄)2γn

2
+

c̄

γd

(Taking γ =
√

2c̄
d(ā+d̄)2mn

) = ∆+ 2

(
(ā+ d̄)2c̄

2d

)1/2√
mn,

where m(ā+d̄)2γn
2 = c̄

γd minimizes the right hand side and this completes the proof.

A.3. Proof of Results in Section 3.2

In this section, we prove the results for implicit update. First we recall the update of Algorithm 1 under the implicit update.

15

Fast online algorithms for offline LPs

Update of Online Implicit Update

yk+1 = argmin
y≥0

{
⟨d,y⟩+ [ck − ⟨ak,y⟩]+ +

1

2γ
∥y − yk∥2

}
= argmin

y≥0

{
⟨d,y⟩+ s+

1

2γ
∥y − yk∥2 : s ≥ ck − ⟨ak,y⟩, s ≥ 0

}
xk = λ(s ≥ ck − ⟨ak,y⟩),

where λ(s ≥ ck − ⟨ak,y⟩) denotes the Lagrangian multiplier of the constraint s ≥ ck − ⟨ak,y⟩. As in the explicit case,
we track the dual solution.

Lemma 6 (Tracking the dual iteration). Under A1 and A2, letting {yk} be the sequence of dual iterates generated by
Algorithm 1 with implicit update and γk ≡ γ, then

∥yk+1 − yk∥ ≤
√
m(ā+ d̄)γ

∥yk∥ ≤ m(ā+ d̄)2γ

d
+
√
m(ā+ d̄)γ +

c̄

d
.

After bounding the dual iterations, we can move on to tracking constraint violation and establish a bound of optimality
gap, thus giving Lemma 2 and Theorem 2.

A.3.1. PROOF OF LEMMA 6

First we prove that ∥yk+1 − yk∥ ≤ γ
√
m(ā+ d̄). Note that

g(y) = ⟨d,y⟩+ [ck − ⟨ak,y⟩]+ + δy≥0

is convex, where δy≥0 denotes the indicator function of Rm
+ . Then we invoke three-point lemma and

⟨d,yk+1⟩+ [ck − ⟨ak,yk+1⟩]+ +
1

2γ
∥yk+1 − yk∥2 ≤ ⟨d,yk⟩+ [ck − ⟨ak,yk⟩]+ −

1

2γ
∥yk+1 − yk∥2.

Re-arranging the terms, we successively deduce that

γ−1∥yk+1 − yk∥2 ≤ ⟨d,yk − yk+1⟩+ [ck − ⟨ak,yk⟩]+ − [ck − ⟨ak,yk+1⟩]+
≤ ∥d∥ · ∥yk − yk+1∥+

∣∣⟨ak,yk − yk+1⟩
∣∣ (13)

≤
√
md̄∥yk − yk+1∥+

√
mā∥yk − yk+1∥ (14)

=
√
m(ā+ d̄)∥yk − yk+1∥,

where (13) uses Cauchy’s inequality ⟨a,b⟩ ≤ ∥a∥·∥b∥ and the relation [x]+−[y]+ ≤ |x−y|+; (14) again applies Cauchy’s
inequality together with A1, A2. Dividing both sides of the inequality by ∥yk−yk+1∥ shows ∥yk+1−yk∥ ≤ γ

√
m(ā+d̄).

Next we bound ∥yk∥. Due to the complication of implicit update, we resort to a constrained smooth formulation of the
proximal subproblem

min
y

⟨d,y⟩+ s+ 1
2γ ∥y − yk∥2 Dual

subject to s ≥ ck − ⟨ak,y⟩ x

s ≥ 0,y ≥ 0 v,w,

which is a convex quadratic programming problem. Now we check the Lagrangian function

L(y, x, s, x, v) = ⟨d,y⟩+ s+
1

2γ
∥y − yk∥2 + x(ck − ⟨ak,y⟩ − s)− vs− ⟨y,w⟩,

16

Fast online algorithms for offline LPs

where w is the multiplier of y and v is the multiplier of s. Writing the KKT conditions, we have

s ≥ ck − ⟨ak,yk+1⟩
s ≥ 0

d+ γ−1(yk+1 − yk)− akx
k −w = 0 (15)

v + xk = 1

⟨yk+1,w⟩ = 0

xk(ck − ⟨ak,yk+1⟩ − s) = 0 (16)
vs = 0

(xk, v,yk+1,w) ≥ 0

and from (15) we know that

yk+1 = yk − γ(d− akx
k) + γw (17)

for some w ≥ 0. Also we notice that since ⟨yk+1,w⟩ = 0, wi = 0 whenever yk+1
i > 0, which implies

∥yk+1∥2 = ∥yk − γ(d− akx
k) + γw∥2

≤ ∥yk − γ(d− akx
k)∥2

= ∥yk∥2 − 2γ⟨d− akx
k,yk⟩+ γ2∥d− akx

k∥2 (18)

≤ ∥yk∥2 + 3m(ā+ d̄)2γ2 + 2γc̄− 2γd∥yk∥. (19)

where (19) is again by Cauchy’s inequality and A1, A2, −2γ⟨d,yk⟩ ≤ 2γd∥yk∥1 ≤ −2γd∥yk∥, and that

⟨akxk,yk⟩ = ⟨akxk,yk+1⟩ − ⟨akxk,yk+1 − yk⟩
≤ ⟨akxk,yk+1⟩+ ∥ak∥ · ∥yk+1 − yk∥ · |xk|
≤ c̄+ γmā(ā+ d̄) (20)

≤ c̄+ γm(ā+ d̄)2,

where (20) uses ⟨akxk,yk+1⟩ ≤ c̄ from (16) and we invoke the bound ∥yk+1 − yk∥ ≤ γ
√
m(ā+ d̄).

On the other hand, we know that

∥yk+1∥ = ∥yk+1 − yk + yk∥
≤ ∥yk+1 − yk∥+ ∥yk∥
≤ ∥yk∥+ γ

√
m(ā+ d̄), (21)

where (21) again uses ∥yk+1 − yk∥ ≤ γ
√
m(ā+ d̄). By exactly the same argument as in Lemma 5, we know that

∥yk∥ ≤ 3m(ā+ d̄)2γ

d
+
√
m(ā+ d̄)γ +

c̄

d

and this completes the proof.

A.3.2. PROOF OF LEMMA 2

First we consider constraint violation and recall that we run implicit update (17)

yk+1 = yk − γ(d− akx
k) + γw ≥ yk − γ(d− akx

k).

Hence telescoping gives

E[∥Ax̂− b∥+] ≤ γ−1E[∥yk+1∥] ≤ 3m(ā+ d̄)2

d
+
√
m(ā+ d̄) +

c̄

γd
.

17

Fast online algorithms for offline LPs

As for the optimality gap, we have, similar to (Li et al., 2020), that

n∑
k=1

E
[F̂ ∗

n−k+1

n− k + 1
− ckx

k
]
≤

n∑
k=1

E[⟨d,yk⟩+ [ck − ⟨ak,yk⟩]+ − ckx
k]

Now we look again into the KKT conditions, which, after simplification, gives

s ≥ [ck − ⟨ak,yk+1⟩]+ (22)

xk(ck − ⟨ak,yk+1⟩ − s) = 0 (23)

(1− xk)s = 0. (24)

Combining the above relations, we successively deduce that

ckx
k = (⟨ak,yk+1⟩+ s)xk (25)

= ⟨ak,yk+1⟩xk + sxk (26)

= ⟨ak,yk+1⟩xk + s (27)

≥ ⟨ak,yk+1⟩xk + [ck − ⟨ak,yk+1⟩]+,

where (25) re-arranges (23) and (27) uses (24). Plugging it back, we can derive the following bound.

n∑
k=1

E[⟨d,yk⟩+ [ck − ⟨ak,yk⟩]+ − ckx
k]

≤
n∑

k=1

E[⟨d,yk⟩+ [ck − ⟨ak,yk⟩]+ − ⟨ak,yk+1⟩xk − [ck − ⟨ak,yk+1⟩]+]

=

n∑
k=1

E[⟨d− akx
k,yk⟩] +

n∑
k=1

E[⟨akxk,yk − yk+1⟩] +
n∑

k=1

E{[ck − ⟨ak,yk⟩]+ − [ck − ⟨ak,yk+1⟩]+}

Next we bound the last two summations by

n∑
k=1

E[⟨akxk,yk − yk+1⟩] ≤
n∑

k=1

E[∥ak∥ · ∥yk − yk+1∥] ≤ mnγā(ā+ d̄)

n∑
k=1

E{[ck − ⟨ak,yk⟩]+ − [ck − ⟨ak,yk+1⟩]+} ≤
n∑

k=1

E[|⟨ak,yk − yk+1⟩|]

≤
n∑

k=1

E[∥ak∥ · ∥yk − yk+1∥]

≤ mnγā(ā+ d̄)

with Cauchy’s inequality, Lemma 6 and A2. Then we re-arrange (18) and obtain

2γ⟨d− akx
k,yk⟩

≤ ∥yk∥2 − ∥yk+1∥2 + γ2∥d− akx
k∥2

≤ ∥yk∥2 − ∥yk+1∥2 + γ2m(ā+ d̄)2 (28)

and (28) uses A1 and A2 and the fact that |xk| ≤ 1. Finally, we telescope

2γ⟨d− akx
k,yk⟩ ≤ ∥yk∥2 − ∥yk+1∥2 + γ2m(ā+ d̄)2,

as in the previous analysis to get
n∑

k=1

E[⟨d− akx
k,yk⟩] ≤ m(ā+ d̄)2nγ

2
.

18

Fast online algorithms for offline LPs

Putting all the bounds together, we have

E[ρ(x̂)] ≤ mn(ā+ d̄)2

2
γ + 2mnγā(ā+ d̄) ≤ 5m(ā+ d̄)2nγ

2

and this completes the proof.

A.3.3. PROOF OF THEOREM 2

The proof works exactly in the same way as Theorem 1 by observing that

E[ρ(x̂) + v(x̂)] ≤ ∆+
5mn(ā+ d̄)2

2
γ +

c̄

γd

and taking optimal γ∗ =
√

2c̄
5d(ā+d̄)2mn

to minimize the right hand side.

A.4. Proof of Results in Section 3.3

A.5. Proof of Theorem 3

In this section we consider the variable duplication scheme. Given an LP

max
x

⟨c,x⟩

subject to Ax ≤ b

0 ≤ x ≤ 1

and its duplicated version

max
{xj}

∑K
j=1⟨c,xj⟩

subject to
∑K

j=1 Axj ≤ Kb

0 ≤ xj ≤ 1,

It’s clear that the duplicated LP also satisfies A1, A2. Also we know that A3 can be satisfied by an arbitrarily small
perturbation of the objective coefficients. Then we immediately have

∑K
j=1⟨c,x∗

j ⟩ = K⟨c,x∗⟩ up to some arbitrarily
small perturbation. Suppose that we apply Theorem 1 or Theorem 2 to get {x′

j} such that

E[K⟨c,x∗⟩ −
K∑
j=1

⟨c,x′
j⟩] = O(m log n+

√
nK log n+

√
mnK +

√
nK logK)

E
[∥∥∥[K∑

j=1

Ax′
j −Kb

]
+

∥∥∥] = O(m+
√
mnK).

Then in view of x̂ = 1
K

∑K
j=1 x

′
j we have

E[ρ(x̂)] = E
[
⟨c,x∗⟩ − ⟨c, 1

K

K∑
k=1

x′
k⟩
]
= O

(
m log n

K
+

√
n

K
log n+

√
mn

K
+

√
n

K
logK

)

E[v(x̂)] = E
[∥∥∥[A(1

K

K∑
j=1

x′
j

)
− b

]
+

∥∥∥] = O
(
m

K
+

√
mn

K

)
assuming that K = O(n), and this completes the proof.

19

Fast online algorithms for offline LPs

A.6. Additional Experiment on Violated Assumption

In this section, we carry out additional experiment to see what happens when some of our assumptions are (nearly) violated.
Specifically we consider the MKP problem with b = 1.

max
x

⟨c,x⟩

subject to Ax ≤ 1
0 ≤ x ≤ 1,

Note that when n is large, A1 becomes asymptotically violated since d = 1
n becomes closer to 0.

Testing Configuration and Setup We configure the algorithm as follows (Section 5 gives a more detailed description).

1). Dataset. We take (m,n) ∈ {(5, 100), (8, 1000), (16, 2000), (32, 4000)}, σ = 1.

2). Initial Point. We let online algorithms start from 0.

3). Feasibility. We force the algorithm to respect constraint violation.

4). Duplication. We allow K ∈ {1, 2, 4, 8, 16, 32, 64, 128}

5). Stepsize. We take γ = (Kmn)−1/2.

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1
Ex
Im

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1
Ex
Im

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1
Ex
Im

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1
Ex
Im

Figure 3. From left to right: (m,n) ∈ {(5, 100), (8, 1000), (16, 2000), (32, 4000)} The axis represents K parameter ranging from 1 to
128. y-axis, relative optimality gap

We see that as suggested by our theory, as d = 1
n gets smaller, online algorithms perform poorly when K = 1, but when

we increase K, both explicit and implicit update gradually retrieve better solutions.

20

Fast online algorithms for offline LPs

B. Practical Aspects of Online Linear Programming
In this section, we discuss the practical aspects of online linear programming in more details. In Section B.1 and Section
B.2, we show when and how online updates can be carried out efficiently; In Section B.2, we apply online explicit update
to more LP problem types and compare its performance with other LP solvers; In Section B.4, we formalize the contents
of LP sifting and present more implementation details. Finally we show in Section B.5 that online LP is applicable to
speedup mixed integer programming.

B.1. Fast O(nnz(A)) Implementation For the Explicit Update

In this section, we discuss the practical aspects of implementing the explicit update. The computation of explicit update
comes from the following two steps

xk ← I{ck > ⟨ak,y⟩}
yk+1 ← [yk + akx

k − d]+,

where we take γ = 1, di ≡ d without loss of generality. Due to the axpy operation y + akx
k − d and the full density of

d, a direct implementation of axpy and [x]+ will immediately result in O(mn) flops and is undesirable. To address this,
we define pj(k) := maxl{l < k : al,j ̸= 0}, the latest iteration l where al,j is nonzero. Then we observe that

yk+1
j = [ykj − ak,jx

k − d]+

= [[yk−1
j − ak−1,jx

k−1 − d]+ − ak,jx
k − d]+

= · · ·

= [[y
p(k)
j − ap(k),jx

pj(k) − d]+ − (k − p(k))d]+,

where we use the relation [[a− b]+ − b]+ = [a− 2b]+, b ≥ 0 recursively. Further we observe that

ak+1
j yk+1

j = ak+1
j [[y

p(k)
j − ap(k),jx

pj(k) − d]+ − (k − p(k))d]+,

which implies that we only need to evaluate [[y
p(k)
j − ap(k),jx

pj(k) − d]+ − (k − p(k))d]+ if ak+1
j ̸= 0 and the operation

takes O(1). Hence we have overall complexity of O(nnz(A)) to compute all the primal estimates and O(m) to recover
yn+1. In practice we can maintain an Nm array lastUpdate[m] to record and to update pj(k) for each j ∈ [m].

B.2. Cases of Simple Implicit Update

In this section we focus on the practical implementation of the online implicit update and discuss the case where the implicit
is easier to compute. Here we consider

min
y

⟨d,y⟩+ [c− ⟨a,y⟩]+ + 1
2γ ∥y − z∥2

subject to y ≥ 0.

where a ≥ 0. Let y+ be the optimal solution to the problem and we do case analysis.

Case 1. c− ⟨a,y+⟩ > 0. Then y+ = z− γ−1 (a− d).

Case 2. c− ⟨a,y+⟩ < 0. Then y+ = z− γ−1d.

Case 3. c− ⟨a,y+⟩ = 0. Then we have, equivalently, that y+ is the optimal solution to the following problem.

min
y

⟨d,y⟩+ 1
2γ ∥y − z∥2

subject to ⟨a,y⟩ = c

y ≥ 0.

Since a ≥ 0, letting (A, Ā) be the partition of [m] such that aA > 0 and we can separate the problem into

min
yĀ

⟨dĀ,yĀ⟩+ 1
2γ ∥yĀ − zĀ∥2

subject to yĀ ≥ 0

21

Fast online algorithms for offline LPs

and

min
yA

⟨dA,yA⟩+ 1
2γ ∥yA − zA∥2

subject to ⟨aA,yA⟩ = c

yA ≥ 0,

where yĀ can be efficiently updated and yA can be written as

yA = Proj∆aA/c
(zA − γ−1dA),

where Proj∆aA
denotes orthogonal projection onto the weighted simplex

∆c−1aA
:= {yA : ⟨c−1aA,yA⟩ = 1,yA ≥ 0}

and can be efficiently solved using sorting-based method proposed in (Perez et al., 2022).
Remark 12. In practice, we can try the solutions from the first two cases and verify if they satisfy the conditions from case
analysis. If in both cases the condition is violated, we invoke the above subroutine and compute the projection.

B.3. Direct Approximate LP Solving

In this section, we evaluate the performance of online LP solver for direct LP solving. The experiments in this section
consist of two parts. First we focus on the CPU running time of our proposed method, and then we turn to more LP
instances as an extension of the experiments in Section 5.

CPU Time Evaluation First we evaluate the CPU running time of our methods. As we already discussed, we can
implement the online LP algorithm in O(nnz(A)) time, which implies our method is highly scalable. The following table
summarizes the total CPU time of Algorithm 2 with K = 100 under different settings of m,n and nnz(A). Now that
explicit update is independent of specific numerical values of the matrices, we use the same way of data generation as in
Section 5.

Table 5. CPU Time evaluation of explicit update. Time given in CPU seconds.

m n nnz Time m n nnz Time m n nnz Time

102 102 103 0.00 103 102 104 0.00 104 102 104 0.01
102 103 104 0.00 103 103 104 0.00 104 103 105 0.04
102 104 104 0.02 103 104 105 0.05 104 104 106 0.38
102 105 105 0.26 103 105 106 0.51 104 105 105 0.28
102 106 106 2.61 103 106 105 0.72 104 106 106 2.77

m n nnz Time m n nnz Time

105 102 105 0.09 106 102 106 1.54
105 103 106 0.57 106 103 105 0.57
105 104 105 0.11 106 104 106 1.61
105 105 106 0.79 106 105 107 11.01
105 106 107 8.08 106 106 108 120.00

Table 5 suggests, for the same n, CPU time our method increases almost linearly with respect to nnz(A), which verifies
that the implementation from Section B.1 is highly scalable to huge linear programs.

Real and synthetic LPs Now we switch to a more practical setting where we employ online algorithms to solve real-life
instances and compare performance of online algorithms with LP solvers. Our setup is given as follows.

Testing configuration and setup

22

Fast online algorithms for offline LPs

1). Dataset. Our dataset comes from three sources. 1). 7 instances that are LP relaxations from MIPLIB. 2). 4 MKP
instances generated according to the statistics in Table 5. 3). Modified Netlib instances.

2). Initial point. We let online algorithm start from 0

3). Feasibility. We do not enforce feasibility of the constraints

4). Duplication. We allow a maximum of K = 5000 variable duplications

5). Stopping criterion. We let the algorithm stop if

max

{
∥[Ax− b]+∥
∥b∥1 + 1

,
⟨b⊤y⟩+ ⟨u, [c−A⊤y]+⟩ − ⟨c,x⟩

|⟨b⊤y⟩+ ⟨u, [c−A⊤y]+)|+ |⟨c,x⟩|+ 1

}
≤ ε = 5× 10−3

6). Modification of Netlib instances. Some Netlib instances do not meet assumptions for the online algorithm and
thus prohibits direct solving. We modify Netlib instances by 1). Taking b̂i = max{bi, 10−3}. 2). Enforcing
upperbound ui = min{ui, 10

2}. 3). Changing constraint senses into ≤.

Table 6. Time of solving MIPLIB instances to an 1e-03 relative accuracy solution and comparison with Gurobi v9.5. Synthetic
MKP instance mkp-{i}-{j} stands for MKP instance of 10i rows and 10j columns. GTime: Gurobi solution time.

Instance pInf Gap Time GTime Instance pInf Gap Time GTime

2club200v15p5scn 1.7e-04 5.5e-02 3.44 0.32 mkp-2-5 4.4e-03 4.2e-03 0.03 0.44
cdc7-4-3-2 5.6e-05 5.0e-03 1.27 24.00 mkp-2-6 5.3e-05 4.9e-03 0.17 0.22

cod105 1.0e-06 9.6e-03 1.29 0.99 mkp-2-7 5.3e-05 5.0e-03 0.62 5.70
p6b 1.0e-04 1.2e-05 0.09 0.16 mkp-3-5 1.8e-03 4.9e-03 0.06 0.11

m100n500k4r1 9.7e-05 3.4e-03 0.12 0.08 mkp-3-6 1.8e-03 4.9e-03 0.29 0.54
manna81 1.0e-04 4.9e-03 0.62 0.08 mkp-3-7 4.4e-03 2.7e-03 1.38 44.70

queens-30 4.0e-05 4.8e-03 0.22 0.63

Remark 13. Since our modification of Netlib instances destroys the original bound and coefficients, our experiment on
Netlib is presented only for reference.

B.4. Sifting and Column Generation

This section discusses online LP in relation to sifting and column generation. We first explain the basic idea and history of
the sifting algorithm. Then we identify some common challenges and solutions for sifting solvers. Finally, we show that
our methods fit well with sifting and how we can make use of outputs of the online algorithms to speed up sifting.

B.4.1. SIFTING: COLUMN GENERATION FOR LINEAR PROGRAMMING

Assume we are solving a standard-form LP

max
x

⟨c,x⟩

subject to Ax = b

x ≥ 0

where A ∈ Rm×n and suppose n≫ m. By the theory of LP, we know that given an optimal basis B∗ and the corresponding
solution x∗, |{i|x∗

i > 0}| ≤ m ≪ n. This property tells us one important fact that most columns are redundant for
achieving the optimal solution. One illustration of this property is that if we somehow manage to find a subset B∗ ⊆ W ⊆
[n] and solve a smaller LP

max
xW

⟨cW ,xW⟩

subject to AWxW = b

xW ≥ 0,

23

Fast online algorithms for offline LPs

then ⟨cW ,x∗
W⟩ = ⟨cW ,x∗

W⟩ + ⟨cW̄ ,x∗
W̄⟩ = ⟨c,x

∗⟩ and we solve the original LP at lower cost by concatenating x∗ =
(x∗

W ,x∗
W̄ = 0). The very intuition behind sifting is to iteratively updateW till B∗ ⊆ W , while in hope of |W| ≪ [n].

Although we solve for the optimal primal solution x∗, one of the most important components of sifting instead lies in the
dual solution y∗, as dual solutions tell us how to updateW if B∗ ⊈ W . Given optimal (x∗

W ,y∗
W) to the aforementioned

LP but W does not contain any optimal bases, we know that c − A⊤y∗
W ≰ 0, and otherwise x∗ = (x∗

W ;x∗
W̄ = 0) is

certificated as optimal. In other words, we know some dual infeasibility hides in W̄:

cj − ⟨aj ,y∗
W⟩ > 0, for some j ∈ I ⊆ W̄.

and this information guides us to eliminate such dual infeasibility by updating W ← W ∪ I. Now that (x∗
W ;x∗

W̄) is
feasible for the updated LP problem, sifting subproblems can be efficiently warm-started from the previous iterations.

Now we are ready to formalize the LP sifting procedure. Given W ⊆ [n], the smaller LP is called a working problem
and the procedure finding I ⊆ W̄ is called pricing. Sifting iteratively updates the working problem by pricing out dual
infeasible columns, till I = ∅.

Development of LP Sifting The idea of sifting was initially proposed in (Forrest, 1989) and formalized in a case study
(Bixby et al., 1992) to solve the LP relaxation of a huge airline crew scheduling problem. One advantage of sifting is the
freedom to choose solvers for the working problems, such as simplex and the interior point method. Since then, sifting has
been adopted as a common framework for huge LPs and applied in different fields (Kasirzadeh et al., 2017; Moharrami
et al., 2015; Yanover et al., 2006). State-of-the-art mathematical programming softwares (Berthold et al., 2018; Pedroso,
2011; Ge et al., 2022; Manual, 1987) these days implement their own sifting solvers and trigger it when the ratio n/m is
large. In a word, sifting has evolved into a mature engineering technique for huge LPs.

Connection with Column Generation It’s not hard to see sifting bears great resemblance to column generation
(Lübbecke and Desrosiers, 2005) from early LP/MIP literature. To some extent sifting is a special case of column genera-
tion and one major difference lies in the treatment of the pricing problem. In sifting we can enumerate all the columns to
find I = {j ∈ W̄ : cj − ⟨aj ,y∗

W⟩ > 0}, while in the traditional setting of column generation (for example, cutting stock
(Ben Amor and Valério de Carvalho, 2005)) we often resort to heuristics or combinatorial approaches to identify “the most
infeasible column”

max
j∈W̄

cj − ⟨aj ,y∗
W⟩.

Due to the deep connection between sifting and column generation, most techniques developed for column generation can
be smoothly applied to sifting. In the next section, we discuss the difficulties of implementing a sifting solver and some
widely known solutions from the column generation literature.

B.4.2. DIFFICULTIES AND SOLUTIONS

In this section, we discuss the difficulties when implementing a sifting solver. There are three major difficulties (Lübbecke
and Desrosiers, 2005) well-known as 1). heading-in 2). tailing-off and 3). dual oscillation. And we would like to further
ascribe these difficulties to a lack of prior knowledge.

Lack of Prior Primal Knowledge We refer to prior primal knowledge as a measure of likelihood that each column
participates in the optimal, or simply a feasible basis. We believe a lack of this knowledge is partially responsible for the
heading-in and tailing-off effect.

Heading-in effect appears in the initialization of sifting, where we have to start from some initial working problem W
and move on. However, if we are given no prior knowledge, how to pick W becomes a problem: it’s unlikely that arbi-
trarily initializedW would produce a feasible, not to mention an approximately optimal solution to the original problem.
Therefore most sifting implementations resort to big-M method, where the original problem is augmented by two blocks
of artificial variables associated with big-M penalties.

max
xW ,sl,su

⟨cW ,xW⟩ −M ⟨e, sl⟩ −M ⟨e, su⟩

subject to AWxW − sl + su = b

xW , sl, su ≥ 0

24

Fast online algorithms for offline LPs

The augmented problem is equivalent to the original problem if M is sufficiently large, and it admits a trivial initial feasible
solution. However, whenever sl or su has an entry in the basis, M ⟨e, sl⟩+M ⟨e, su⟩ would make the objective value from
sifting far from the true approximate objective, and thus the initial sifting iterations provide little information about the
original problem: we get little information until we kick sl and su out of basis. This effect is known as heading-in and can
be addressed by the prior knowledge about an approximate feasible primal solution.

Tailing-off refers to the phenomenon where consecutive sifting iterations bring little progress when sifting converges.
In other words, at the end of sifting we keep pricing out “useless” columns that bring no actual improvement, and the
true optimal basic columns stay in W̄ . While several factors may contribute to tailing-off, prior knowledge about some
approximate optimal solution can efficiently alleviate this effect. Namely given some approximate optimal solution x̂, we
could either incorporate x̂ in the pricing rule, or simply keep all the basic columns from x̂ in the working problem.

Lack of Prior Dual Knowledge We refer to dual prior knowledge as an approximate dual optimal solution. A lack of
this knowledge directly results in the notorious dual oscillation effect in sifting. For a more rigorous definition and analysis
of dual oscillation, we refer the interested readers to (Lübbecke and Desrosiers, 2005; Desrosiers and Lübbecke, 2005),
and in a word dual oscillation refers to the unstable behavior of the dual sequence {y∗

W}, which is also one important
reason why tailing-off happens. There is vast literature attacking the issue of dual oscillation, and a systematic approach,
known as dual stabilization, has been proposed and successfully applied to many applications. An important aspect of dual
stabilization is to make {y∗

W} go more smoothly by taking average

y∗
W ← αy∗

W + (1− α)ŷ, α ∈ (0, 1]

where ŷ is an anchor point in the dual space obtained either before or during sifting. Some common choices of ŷ are
geometric centers of the primal polytope {x : Ax = b,x ≥ 0}, such as analytic center (Luo and Sun, 1998) and Chebyshev
center (Lee and Park, 2011). But these centers are generally too costly to be computed and less practical for really huge-
scale problems.

So far we have discussed several issues sifting faces and their solutions. Overall we should find some approximate pri-
mal/dual optimal solution at low cost, and our online algorithms has a role to play here.

B.4.3. ACCELERATED SIFTING VIA ONLINE ALGORITHMS

Finally, we are ready to present our accelerated sifting procedure using online algorithms. Recall that our method 1).
outputs an approximate primal estimate x̂. 2). outputs a dual approximate solution. 3). runs in O (nnz (A)) time.
Therefore our method can provide both primal and dual estimates at very low cost.

6 8 10 12 14 16 18

6

8

10

12

14

yk

y$

Figure 4. Convergence of the dual solution yk to the optimal y∗

Remark 14. Generally online algorithm does not address heading-in since the problem structure we target admits a trivial
primal feasible solution x = 0. But providing an initial good guess of optimal basis can still speed up sifting.

25

Fast online algorithms for offline LPs

B.5. Integer Programming

Finally, we remark that our method can be naturally extended to binary (and integer) programming. Let x∗
Bin denote the

optimal solution to the binary problem and let x∗
LP,y

∗
LP be the optimal solution to the LP relaxation. Also let x̂Bin be some

integer feasible solution and ŷLP be some dual feasible solution, then the following chain of inequalities hold

⟨c, x̂Bin⟩ ≤ ⟨c,x∗
Bin⟩ ≤ ⟨c,x∗

LP⟩ ≤ ⟨b,y∗
LP⟩+ ⟨1, [c−A⊤y∗

LP]+⟩ ≤ ⟨b, ŷLP⟩+ ⟨1, [c−A⊤ŷLP]+⟩

and
⟨c,x∗

LP⟩ − ⟨c, x̂Bin⟩ ≤ ⟨b, ŷLP⟩+ ⟨1, [c−A⊤ŷLP]+⟩ − ⟨c, x̂Bin⟩,
which implies ŷ provides a valid dual bound for the binary programming problem. Combined with x̂ obtained by rounding
the solution from online algorithm x̂LP, we can expect approximately solving a binary programming problem without
resorting to branch and bound. As with general integer problems, we can split xj ∈ {0, . . . , U} into xj =

∑U
k=1 xjk and

re-apply the algorithm for binary problems.

References in the Appendix
A. Beck. First-order methods in optimization. SIAM, 2017.

H. Ben Amor and J. Valério de Carvalho. Cutting stock problems. In Column generation, pages 131–161. Springer, 2005.

T. Berthold, J. Farmer, S. Heinz, and M. Perregaard. Parallelization of the fico xpress-optimizer. Optimization Methods
and Software, 33(3):518–529, 2018.

R. E. Bixby, J. W. Gregory, I. J. Lustig, R. E. Marsten, and D. F. Shanno. Very large-scale linear programming: A case
study in combining interior point and simplex methods. Operations Research, 40(5):885–897, 1992.

J. Desrosiers and M. E. Lübbecke. A primer in column generation. In Column generation, pages 1–32. Springer, 2005.

J. Forrest. Mathematical programming with a library of optimization subroutines. In ORSA/TIMS Joint National Meeting,
New York, 1989.

D. Ge, Q. Huangfu, Z. Wang, J. Wu, and Y. Ye. Cardinal optimizer (copt) user guide. arXiv preprint arXiv:2208.14314,
2022.

A. Kasirzadeh, M. Saddoune, and F. Soumis. Airline crew scheduling: models, algorithms, and data sets. EURO Journal
on Transportation and Logistics, 6(2):111–137, 2017.

C. Lee and S. Park. Chebyshev center based column generation. Discrete Applied Mathematics, 159(18):2251–2265, 2011.

X. Li, C. Sun, and Y. Ye. Simple and fast algorithm for binary integer and online linear programming. Advances in Neural
Information Processing Systems, 33:9412–9421, 2020.

M. E. Lübbecke and J. Desrosiers. Selected topics in column generation. Operations research, 53(6):1007–1023, 2005.

Z.-Q. Luo and J. Sun. An analytic center based column generation algorithm for convex quadratic feasibility problems.
SIAM Journal on Optimization, 9(1):217–235, 1998.

C. U. Manual. Ibm ilog cplex optimization studio. Version, 12(1987-2018):1, 1987.

H. Moharrami, M. Mahini, and G. Cocchetti. Elastoplastic analysis of plane stress/strain structures via restricted basis
linear programming. Computers & Structures, 146:1–11, 2015.

J. P. Pedroso. Optimization with gurobi and python. INESC Porto and Universidade do Porto„ Porto, Portugal, 1, 2011.

G. Perez, S. Ament, C. Gomes, and M. Barlaud. Efficient projection algorithms onto the weighted l1 ball. Artificial
Intelligence, 306:103683, 2022.

C. Yanover, T. Meltzer, Y. Weiss, K. P. Bennett, and E. Parrado-Hernández. Linear programming relaxations and belief
propagation–an empirical study. Journal of Machine Learning Research, 7(9), 2006.

26

Fast online algorithms for offline LPs

Table 7. Experiment on modified Netlib LP datasets. GTime: Gurobi solution time

Instance pInf Gap Time GTime Instance pInf Gap Time GTime

25fv47 9.9e-05 4.94-03 0.45 0.02 osa-30 0.0e+00 0.00+00 0.00 0.13
80bau3b 6.4e-04 2.18-02 1.13 0.10 osa-60 0.0e+00 0.00+00 0.00 0.15
adlittle 2.8e-03 1.92-02 0.60 0.08 pds-02 0.0e+00 2.41-05 0.00 0.07
afiro 0.0e+00 4.92-03 0.01 0.07 pds-06 4.1e-05 1.10-05 0.00 0.13
agg 0.0e+00 0.00+00 0.00 0.07 pds-10 2.4e-05 5.88-05 0.00 0.14

agg2 0.0e+00 0.00+00 0.00 0.07 pds-20 1.7e-05 1.44-04 0.00 0.12
agg3 0.0e+00 0.00+00 0.00 0.07 perold 0.0e+00 1.49-02 0.69 0.08

bandm 1.6e-03 4.57-02 0.62 0.08 pilot.ja 9.2e-05 4.25-04 0.01 0.08
beaconfd 0.0e+00 0.00+00 0.00 0.07 pilot 4.9e-05 1.32-02 1.14 0.13

blend 2.8e-04 1.63-03 0.60 0.08 pilot.we 0.0e+00 3.56-05 0.00 0.07
bnl1 8.2e-04 1.28-01 0.67 0.08 pilot4 0.0e+00 1.07-02 0.66 0.08
bnl2 1.1e-04 8.20-02 0.77 0.08 pilot87 1.4e-05 6.69-03 1.55 0.14

boeing1 3.2e-04 5.32-02 0.64 0.08 pilotnov 0.0e+00 0.00+00 0.00 0.08
boeing2 6.1e-04 1.31-02 0.61 0.08 qap8 0.0e+00 0.00+00 0.00 0.07
bore3d 3.3e-05 4.98-03 0.03 0.08 qap12 0.0e+00 0.00+00 0.00 0.10
brandy 5.7e-05 1.07-03 0.00 0.08 qap15 0.0e+00 0.00+00 0.00 0.10
capri 0.0e+00 1.60-03 0.00 0.07 recipe 0.0e+00 1.23-03 0.00 0.07
cre-a 0.0e+00 0.00+00 0.00 0.07 sc50a 0.0e+00 4.92-03 0.02 0.08
cre-b 0.0e+00 0.00+00 0.00 0.11 sc50b 0.0e+00 4.69-03 0.01 0.07
cre-c 0.0e+00 0.00+00 0.00 0.07 sc105 0.0e+00 4.99-03 0.04 0.07
cre-d 0.0e+00 0.00+00 0.00 0.11 sc205 0.0e+00 4.99-03 0.34 0.07
cycle 6.0e-03 2.73-01 0.80 0.08 scagr7 2.1e-05 1.43-05 0.00 0.08

czprob 7.1e-05 4.99-03 0.11 0.10 scagr25 1.3e-05 1.91-05 0.00 0.09
d2q06c 1.3e-04 1.37-02 1.20 0.14 scfxm1 9.2e-05 2.79-03 0.01 0.08
d6cube 0.0e+00 0.00+00 0.00 0.11 scfxm2 9.8e-05 4.65-03 0.01 0.08
degen2 6.3e-04 9.83-03 0.65 0.09 scfxm3 8.0e-05 4.93-03 0.01 0.09
degen3 3.9e-04 3.62-03 1.00 0.09 scorpion 0.0e+00 0.00+00 0.00 0.07
dfl001 0.0e+00 2.83-03 0.09 0.11 scrs8 1.6e-03 1.88-01 0.65 0.08
e226 2.5e-02 1.00-02 0.63 0.09 scsd1 0.0e+00 0.00+00 0.00 0.07

etamacro 3.9e-04 5.43-03 0.63 0.08 scsd6 0.0e+00 0.00+00 0.00 0.07
fffff800 2.9e-06 4.46-03 0.54 0.09 scsd8 0.0e+00 0.00+00 0.00 0.07
finnis 0.0e+00 0.00+00 0.00 0.07 sctap1 0.0e+00 0.00+00 0.00 0.07
fit1d 8.3e-01 8.90-01 0.76 0.08 sctap2 0.0e+00 0.00+00 0.00 0.08
fit1p 0.0e+00 0.00+00 0.00 0.07 sctap3 0.0e+00 0.00+00 0.00 0.08
fit2d 4.2e-02 6.04-01 2.65 0.20 seba 0.0e+00 0.00+00 0.00 0.07
fit2p 0.0e+00 0.00+00 0.00 0.10 share1b 0.0e+00 3.22-02 0.61 0.08

forplan 8.6e-05 1.32-03 0.01 0.08 share2b 9.5e-04 3.47-01 0.60 0.08
ganges 0.0e+00 6.45-04 0.00 0.07 shell 0.0e+00 0.00+00 0.00 0.07

gfrd-pnc 0.0e+00 2.35-16 0.00 0.07 ship04l 5.8e-04 5.57-02 0.69 0.09
greenbea 1.2e-05 6.78-05 0.00 0.08 ship04s 2.5e-04 5.57-03 0.66 0.09
greenbeb 4.4e-05 8.66-05 0.00 0.09 ship08l 0.0e+00 0.00+00 0.00 0.07

grow7 0.0e+00 0.00+00 0.00 0.07 ship08s 2.4e-04 3.72-03 0.68 0.08
grow15 0.0e+00 0.00+00 0.00 0.07 ship12l 0.0e+00 0.00+00 0.00 0.08
grow22 0.0e+00 0.00+00 0.00 0.07 ship12s 1.0e-04 3.76-03 0.51 0.09
israel 2.0e-05 4.50-03 0.04 0.08 sierra 0.0e+00 1.87-01 0.72 0.09
kb2 0.0e+00 5.69-02 0.63 0.08 stair 0.0e+00 4.31-03 0.00 0.08

ken-07 2.4e-04 4.72-04 0.76 0.08 standata 0.0e+00 0.00+00 0.00 0.08
ken-11 7.8e-05 1.95-04 0.00 0.09 standgub 0.0e+00 0.00+00 0.00 0.07
ken-13 1.9e-05 6.17-05 0.00 0.14 stan. 0.0e+00 0.00+00 0.00 0.07
ken-18 1.6e-05 4.42-05 0.00 0.18 stocfor1 9.3e-03 3.47-03 0.61 0.07

lotfi 0.0e+00 3.45-02 0.62 0.08 stocfor2 9.4e-04 5.08-04 0.72 0.08
maros-r7 0.0e+00 0.00+00 0.00 0.11 stocfor3 2.2e-04 1.79-04 1.66 0.13

maros 6.3e-04 2.48-03 0.67 0.08 truss 0.0e+00 0.00+00 0.00 0.07
modszk1 0.0e+00 0.00+00 0.00 0.07 tuff 0.0e+00 0.00+00 0.00 0.08

nesm 0.0e+00 0.00+00 0.00 0.08 vtp.base 0.0e+00 0.00+00 0.00 0.07
osa-07 0.0e+00 0.00+00 0.00 0.11 wood1p 0.0e+00 0.00+00 0.00 0.10
osa-14 0.0e+00 0.00+00 0.00 0.11 woodw 0.0e+00 0.00+00 0.00 0.07

27

	Introduction
	Problem Setup and Assumptions
	Linear Programming and Duality
	Simple and Fast Online Algorithms
	Assumptions
	Performance Measure

	Fast Online Algorithms for Offline LPs
	Online Explicit Update
	Online Implicit Update
	Improvement by Variable Duplication

	Application: Sifting for Linear Programs
	Experiments
	Approximate Solver
	Sifting and Large LPs

	Conclusions
	Acknowledgement
	Disclosure of Funding
	
	Appendix

	 Appendix
	Theoretical Aspects of Online Linear Programming
	Auxiliary Results
	Proof of Results in Section 3.1
	Proof of Lemma 5
	Proof of Lemma 1
	Proof of Theorem 1

	Proof of Results in Section 3.2
	Proof of Lemma 6
	Proof of Lemma 2
	Proof of Theorem 2

	Proof of Results in Section 3.3
	Proof of Theorem 3
	Additional Experiment on Violated Assumption

	Practical Aspects of Online Linear Programming
	Fast O(nnz(A)) Implementation For the Explicit Update
	Cases of Simple Implicit Update
	Direct Approximate LP Solving
	Sifting and Column Generation
	Sifting: Column Generation for Linear Programming
	Difficulties and Solutions
	Accelerated Sifting via Online Algorithms

	Integer Programming

