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Abstract

How the stochastic gradient descent (SGD) navigates the loss landscape of a neu-1

ral network remains poorly understood. This work shows that the minibatch noise2

of SGD regularizes the solution towards a noise-balanced solution whenever the3

loss function contains a rescaling symmetry. We prove that when the rescaling4

symmetry exists, the SGD dynamics is limited to only a low-dimensional sub-5

space and prefers a special set of solutions in an infinitely large degenerate man-6

ifold, which offers a partial explanation of the effectiveness of SGD in training7

neural networks. We then apply this result to derive the stationary distribution8

of stochastic gradient flow for a diagonal linear network with arbitrary depth and9

width, which is the first analytical expression of the stationary distribution of SGD10

in a high-dimensional non-quadratic potential. The stationary distribution exhibits11

complicated nonlinear phenomena such as phase transitions, loss of ergodicity,12

memory effects, and fluctuation inversion. These phenomena are shown to exist13

uniquely in deep networks, highlighting a fundamental difference between deep14

and shallow models. Lastly, we discuss the implication of the proposed theory for15

the practical problem of variational Bayesian inference.16

1 Introduction17

In natural and social sciences, one of the most important objects of study of a stochastic system is18

its stationary distribution, which is often found to offer fundamental insights into understanding a19

given stochastic process [36, 29]. Arguably, a great deal of insights into SGD can be obtained if we20

have an analytical understanding of its stationary distribution, which remains unknown until today.21

The stochastic gradient descent (SGD) algorithm is defined as ∆θt = − η
S ∑x∈B ∇θℓ(θ, x), where θ22

is the model parameter and ℓ(θ, x) is a per-sample loss whose expectation over x gives the training23

loss: L(θ) = Ex[ℓ(θ, x)]. B is a randomly sampled minibatch of data points, each independently24

sampled from the training set, and S is the minibatch size. Two aspects of the algorithm make it25

difficult to understand this algorithm: (1) its dynamics is discrete in time, and (2) the randomness is26

highly nonlinear and parameter-dependent. This work relies on the continuous-time approximation27

and deals with the second aspect.28

The main contributions are29

1. the derivation of the “law of balance,” which shows that SGD converges to a special subset of30

noised-balanced solutions when the rescaling symmetry is present;31

2. the first-of-its-kind solution of the stationary distribution of an analytical model trained by SGD;32

3. discovery of novel phenomena such as phase transitions, loss of ergodicity, memory effects, and33

fluctuation inversion, all implied by our theory.34

Organization. The next section discusses the closely related works. In Section 3, we prove the35

law of balance, the first main result of this work, and discuss its implications for common neural36
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networks. In Section 4, we apply the law of balance to derive the stationary distribution of SGD for37

a highly nontrivial loss landscape. The last section concludes this work. All proofs and derivations38

are given in Appendix A.39

2 Related Works40

Solution of the Fokker Planck (FP) Equation. The FP equation is a high-dimensional partial41

differential equation whose solution (and its existence) is an open problem in mathematics and many42

fields of sciences and only known for a few celebrated special cases [28]. Our solution is the first of43

its kind in a deep-learning setting. Stationary distribution of SGD. One of the earliest works that44

computes the stationary distribution of SGD is the Lemma 20 of Ref. [3], which assumes that the45

noise has a constant covariance and shows that if the loss function is quadratic, then the stationary46

distribution is Gaussian. Similarly, using a saddle point expansion and assuming that the noise is47

parameter-independent, a series of recent works showed that the stationary distribution of SGD is48

exponential in the model parameters close to a local minimum: p(θ) ∝ exp[−aθTHθ], for some49

constant a and matrix H [21, 41, 19]. Assuming that the noise covariance only depends on the loss50

function value L(θ), Refs. [24] and [39] showed that the stationary distribution is power-law-like51

and proportional to L(θ)−c0 for some constant c0. A primary feature of these previous results is that52

stationary distribution does not exhibit any memory effect and also preserves ergodicity. Until now,53

no analytical solution to the stationary distribution of SGD is known, making it impossible to judge54

how good the previous approximate results are. Our result is the first to derive an exact solution to55

the stationary distribution of SGD without any approximation. We will see that in contrast to the56

approximate solutions in the previous results, the actual distribution of SGD has both a memory57

effect and features the loss of ergodicity.58

Symmetry and SGD dynamics. Also related to our work is the study of how symmetry affects the59

learning dynamics of SGD. A major prior work is [17], which studies the dynamics of SGD when60

there is scale invariance, conjecturing that SGD reaches a fast equilibrium state at the early stage of61

training. Our result is different as we study a different type of symmetry, the rescaling symmetry.62

3 Noise Balance63

We consider the continuous-time limit of SGD [15, 16, 18, 32, 8, 11]:64

dθ = −∇θLdt +
√
TC(θ)dWt, (1)

where C(θ) = E[∇ℓ(θ)∇T ℓ(θ)] is the gradient covariance, dWt is a stochastic process satisfying65

dWt ∼ N(0, Idt) and E[dWtdW
T
t′ ] = δ(t−t′)I , and T = η/S. Apparently, T gives the average noise66

level in the dynamics. Previous works have suggested that the ratio T is a main factor determining67

the behavior of SGD, and using different T often leads to different generalization performance68

[31, 19, 44].69

3.1 Rescaling Symmetry and Law of Balance70

Due to standard architecture designs, a type of invariance – the rescaling symmetry – often appears71

in the loss function and it is preserved for all sampling of minibatches. The per-sample loss ℓ is said72

to have the rescaling symmetry for all x if ℓ(u,w,x) = ℓ (λu,w/λ,x) for a scalar λ ∈ R+. This73

type of symmetry appears in many scenarios in deep learning. For example, it appears in any neural74

network with the ReLU activation. It also appears in the self-attention of transformers, often in the75

form of key and query matrices [37]. When this symmetry exists between u and w, one can prove76

the following result, which we refer to as the law of balance.77

Theorem 3.1. Let u, w, and v be parameters of arbitrary dimensions. Let ℓ(u,w, v, x) satisfy78

ℓ(u,w, v, x) = ℓ(λu,w/λ, v, x) for arbitrary x and any λ ∈ R+. Then,79

d

dt
(∣∣u∣∣2 − ∣∣w∣∣2) = −T (uTC1u −wTC2w), (2)

where C1 = E[ATA] − E[AT ]E[A], C2 = E[AAT ] − E[A]E[AT ] and Aki = ∂ℓ̃/∂(uiwk) with80

ℓ̃(uiwk, v, x) ≡ ℓ(ui,wk, v, x).181

1This result also holds using the modified loss (See Appendix A.3).
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Here, v stands for the parameters that are irrelevant to the symmetry, and C1 and C2 are positive82

semi-definite by definition. The theorem still applies if the model has parameters other than u and83

w. The theorem can be applied recursively when multiple rescaling symmetries exist. See Figure 184

for an illustration the the dynamics and how it differs from other types of GD.85

Figure 1: Dynamics of GD and SGD
and GD with injected Gaussian noise
for the simple problem ℓ(u,w) =
(uwx−y)2. Due to the rescaling sym-
metry between u and w, GD follows
a conservation law: u2

(t) − w2
(t) =

u2
(0) −w2

(0), SGD converges to the
balanced solution u2

= w2, while
GD with injected noise diverges due to
simple diffusion in the degenerate di-
rections.

While the matrices C1 and C2 may not always be full-rank, we86

emphasize that in common deep-learning settings with rescal-87

ing symmetry, the law of balance is almost always well-defined88

and applicable. In Appendix A.4, we prove that under very89

general settings, for all active hidden neurons of a two-layer90

ReLU net, C1 and C2 are always full-rank. Equation (2) is the91

law of balance, and it implies two different types of balance.92

The first type of balance is the balance of gradient noise. The93

proof of the theorem shows that the stationary point of the law94

in (2) is equivalent to95

Trw[C(w)] = Tru[C(u)], (3)
where C(w) and C(u) are the gradient covariance of w and96

u, respectively. Therefore, SGD prefers a solution where the97

gradient noise between the two layers is balanced. Also, this98

implies that the balance conditions of the law is only dependent99

on the diagonal terms of the Fisher information (if we regard100

the loss as a log probability), which is often well-behaved. As101

a last caveat, we emphasize that the fact that the noise will102

balance does not imply that either trace will converge or stay103

close to a fixed value – it is also possible for both terms to104

oscillate while their difference is close to zero.105

The second type is the norm ratio balance between layers,106

though the norm ratio may not necessarily be finite. Equation (2) implies that in the degenerate107

direction of the rescaling symmetry, a single and unique point is favored by SGD. Let u = λu∗108

and w = λ−1w∗ for arbitrary u∗ and w∗, then, the stationary point of the law is reached at109

λ4 = (w
∗)TC2w

∗

(u∗)TC1u∗
. The quantity λ can be called the “balancedness” of the norm, and the law states110

that when a rescaling symmetry exists, a special balancedness is preferred by the SGD algorithm.111

When C1 or C2 vanishes, λ or λ−1 diverges, and so does SGD. Therefore, having a nonvanishing112

noise actually implies that SGD training will be more stable. For common problems, C1 and C2113

are positive definite and, thus, if we know the spectrum of C1 and C2 at the end of training, we can114

estimate a rough norm ratio at convergence:115

−T (λ1M ∣∣u∣∣2 − λ2m∣∣w∣∣2) ≤
d

dt
(∣∣u∣∣2 − ∣∣w∣∣2) ≤ −T (λ1m∣∣u∣∣2 − λ2M ∣∣w∣∣2),

where λ1m(2m) and λ1M(2M) represent the minimal and maximal eigenvalue of the matrix C1(2),116

respectively. Thefore, the value of ∣∣u∣∣2/∣∣w∣∣2 is restricted by (See Section A.5)117

λ2m

λ1M
≤ ∣∣u∣∣

2

∣∣w∣∣2
≤ λ2M

λ1m
. (4)

Thus, a remaining question is whether the quantities uTC1u and wTC2w are generally well-defined118

and nonvanishing or not. The following proposition shows that for a generic two-layer ReLU net,119

uTC1u and wTC2w are almost everywhere strictly positive. We define a two-layer ReLU net as120

f(x) =
d

∑
i

uiReLU(wT
i x + bi), (5)

where ui ∈ Rdu ,wi ∈ Rdw and bi is a scalar with i being the index of the hidden neuron. For each121

i, the model has the rescaling symmetry: ui → λui, (wi, bi) → (λ−1wi, λ
−1bi). We thus apply the122

law of balance to each neuron separately. The per-sample loss function is123

ℓ(θ, x) = ∥f(x) − y(x, ϵ)∥2. (6)
Here, x has a full-rank covariance Σx, and y = g(x) + ϵ for some function g and ϵ is a zero-mean124

random vector independent of x and have the full-rank covariance Σϵ. The following theorem shows125

that for this network, C1 and C2 are full rank unless the neuron is “dead”.126
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Figure 2: A two-layer ReLU network trained on a full-rank dataset. Left: because of the rescaling symmetry,
the norms of the two layers are balanced approximately (but not exactly). Right: the first and second terms
in Eq. (2). We see that both terms evolve towards a point where they exactly balance. In agreement with our
theory, SGD training leads to an approximate norm balance and exact gradient noise balance.

Theorem 3.2. Let the loss function be given in Eq. (6). Let C(i)1 and C
(i)
2 denote the corresponding127

noise matrices of the i-th neuron, and pi ∶= P(wT
i x + bi > 0). Then, C(i)1 and C

(i)
2 are full-rank for128

all i such that pi > 0.129

See Figure 2. We train a two-layer ReLU network with the number of neurons: 20 → 200 → 20.130

The dataset is a synthetic data set, where x is drawn from a normal distribution, and the labels:131

y = x+ϵ, for an independent Gaussian noise ϵ with unit variance. While every neuron has a rescaling132

symmetry, we focus on the overall rescaling symmetry between the two weight matrices. The norm133

between the two layers reach a state of approximate balance – but not a precise balance. At the same134

time, the model evolves during training towards a state where uTC1u and wTC2w are balanced.135

Standard analysis shows that the difference between SGD and GD is of order T 2 per unit time step,136

and it is thus often believed that SGD can be understood perturbatively through GD [11]. However,137

the law of balance implies that the difference between GD and SGD is not perturbative. As long138

as there is any level of noise, the difference between GD and SGD at stationarity is O(1). This139

theorem also implies the loss of ergodicity, an important phenomenon in nonequilibrium physics140

[26, 34, 22, 35], because not all solutions with the same training loss will be accessed by SGD with141

equal probability.142

3.2 1d Rescaling Symmetry143

The theorem greatly simplifies when both u and w are one-dimensional.144

Corollary 3.3. If u,w ∈ R, then, d
dt
∣u2 −w2∣ = −TC0∣u2 −w2∣, where C0 = Var[ ∂ℓ

∂(uw) ].145

Before we apply the theorem to study the stationary distributions, we stress the importance of this146

balance condition. This relation is closely related to Noether’s theorem [23, 1, 20]. If there is no147

weight decay or stochasticity in training, the quantity ∣∣u∣∣2− ∣∣w∣∣2 will be a conserved quantity under148

gradient flow [6, 14, 33], as is evident by taking the infinite S limit. The fact that it monotonically149

decays to zero at a finite T may be a manifestation of some underlying fundamental mechanism. A150

more recent result in Ref. [38] showed that for a two-layer linear network, the norms of two layers151

are within a distance of order O(η−1), suggesting that the norm of the two layers are balanced. Our152

result agrees with Ref. [38] in this case, but our result is stronger because our result is nonperturba-153

tive, only relies on the rescaling symmetry, and is independent of the loss function or architecture154

of the model. It is useful to note that when L2 regularization with strength γ is present, the rate155

of decay changes from TC0 to TC0 + γ. This points to a nice interpretation that when rescaling156

symmetry is present, the implicit bias of SGD is equivalent to weight decay. See Figure 1 for an157

illustration of this point.158

Example: two-layer linear network. It is instructive to illustrate the application of the law to159

a two-layer linear network, the simplest model that obeys the law. Let θ = (w,u) denote the set160

of trainable parameters; the per-sample loss is ℓ(θ, x) = (∑d
i uiwix − y)2 + γ∣∣θ∣∣2. Here, d is the161

width of the model, γ∣∣θ∣∣2 is the L2 regularization term with strength γ ≥ 0, and Ex denotes the162

averaging over the training set, which could be a continuous distribution or a discrete sum of delta163

distributions. It will be convenient for us also to define the shorthand: v ∶= ∑d
i uiwi. The distribution164

of v is said to be the distribution of the “model.” Applying the law of balance, we obtain that165

d

dt
(u2

i −w2
i ) = −4[T (α1v

2 − 2α2v + α3) + γ](u2
i −w2

i ), (7)
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where we have introduced the parameters166

α1 ∶= Var[x2], α2 ∶= E[x3y] −E[x2]E[xy], α3 ∶= Var[xy]. (8)

When α1α3−α2
2 or γ > 0, the time evolution of ∣u2−w2∣ can be upper-bounded by an exponentially167

decreasing function in time: ∣u2
i − w2

i ∣(t) < ∣u2
i − w2

i ∣(0) exp (−4T (α1α3 − α2
2)t/α1 − 4γt) → 0.168

Namely, the quantity (u2
i − w2

i ) decays to 0 with probability 1. We thus have u2
i = w2

i for all169

i ∈ {1,⋯, d} at stationarity, in agreement with the Corollary.170

4 Stationary Distribution of SGD171

As an important application of the law of balance, we solve the stationary distribution of SGD172

for a deep diagonal linear network. While linear networks are limited in expressivity, their loss173

landscape and dynamics are highly nonlinear and exhibits many shared phenomenon with nonlinear174

neural networks [13, 30]. Let θ follow the high-dimensional Wiener process given by Eq.(1). The175

probability density evolves according to its Kolmogorov forward (Fokker-Planck) equation:176

∂

∂t
p(θ, t) = −∑

i

∂

∂θi
(p(θ, t) ∂

∂θi
L(θ)) + 1

2
∑
i,j

∂2

∂θi∂θj
Cij(θ)p(θ, t). (9)

The solution of this partial differential equation is an open problem for almost all high-dimensional177

problems. This section solves it for a high-dimensional non-quadratic potential of a machine learn-178

ing relevance.179

4.1 Depth-0 Case180

Let us first derive the stationary distribution of a one-dimensional linear regressor, which will be a181

basis for comparison to help us understand what is unique about having a “depth” in deep learning.182

The per-sample loss is ℓ(x, v) = (vx − y)2 + γv2. Defining183

β1 ∶= E[x2], β2 ∶= E[xy], (10)

the global minimizer of the loss can be written as: v∗ = β2/β1. The gradient variance is also not184

trivial: C(v) ∶= Var[∇vℓ(v, x)] = 4(α1v
2 − 2α2v + α3). Note that the loss landscape L only185

depends on β1 and β2, and the gradient noise only depends on α1, α2 and, α3. It is thus reasonable186

to call β the landscape parameters and α the noise parameters. Both β and α appear in all stationary187

distributions, implying that the stationary distributions of SGD are strongly data-dependent. Another188

relevant quantity is ∆ ∶= minv C(v) ≥ 0, which is the minimal level of noise on the landscape. It189

turns out that the stationary distribution is qualitatively different for ∆ = 0 and for ∆ > 0. For all the190

examples in this work,191

∆ = Var[x2]Var[xy] − cov(x2, xy) = α1α3 − α2
2. (11)

When is ∆ zero? It happens when, for all samples of (x, y), xy + c = kx2 for some constant k and192

c. We focus on the case ∆ > 0 in the main text, which is most likely the case for practical situations.193

The other cases are dealt with in Section A.194

For ∆ > 0, the stationary distribution for linear regression is (Section A)195

p(v)∝ (α1v
2 − 2α2v + α3)−1−

β′1
2Tα1 exp [− 1

T

α2β
′
1 − α1β2

α1

√
∆

arctan(α1v − α2√
∆
)] , (12)

in agreement with the previous result [24]. Two notable features exist for this distribution: (1)196

the power exponent for the tail of the distribution depends on the learning rate and batch size, and197

(2) the integral of p(v) converges for an arbitrary learning rate. On the one hand, this implies that198

increasing the learning rate alone cannot introduce new phases of learning to a linear regression; on199

the other hand, it implies that the expected error is divergent as one increases the learning rate (or200

the feature variation), which happens at T = β′1/α1. We will see that deeper models differ from the201

single-layer model in these two crucial aspects.202

4.2 An Analytical Model203

Now, we consider the following model with a notion of depth and width; its loss function is204

ℓ = [
d0

∑
i

(
D

∏
k=0

u
(k)
i )x − y]

2

, (13)
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Figure 3: Stationary distributions of SGD for simple linear regression (D = 0), and a two-layer network
(D = 1) across different T = η/S: T = 0.05 (left) and T = 0.5 (Mid). We see that for D = 1, the stationary
distribution is strongly affected by the choice of the learning rate. In contrast, for D = 0, the stationary
distribution is also centered at the global minimizer of the loss function, and the choice of the learning rate only
affects the thickness of the tail. Right: the stationary distribution of a one-layer tanh-model, f(x) = tanh(vx)
(D = 0) and a two-layer tanh-model f(x) = w tanh(ux) (D = 1). For D = 1, we define v ∶= wu. The vertical
line shows the ground truth. The deeper model never learns the wrong sign of wu, whereas the shallow model
can learn the wrong one.

where D can be regarded as the depth and d0 the width. When the width d0 = 1, the law of balance is205

sufficient to solve the model. When d0 > 1, we need to eliminate additional degrees of freedom. We206

note that this model conceptually resembles (but not identical to) a diagonal linear network, which207

has been found to well approximate the dynamics of real networks [27, 25, 2, 7].208

We introduce vi ∶=∏D
k=0 u

(k)
i , and so v = ∑i vi, where we call vi a “subnetwork” and v the “model.”209

The following proposition shows that independent of d0 and D, the dynamics of this model can be210

reduced to a one-dimensional form by invoking the law of balance.211

Theorem 4.1. For all i ≠ j, one (or more) of the following conditions holds for all trajectories at212

stationarity: (1) vi = 0, or vj = 0, or L(θ) = 0; (2) sgn(vi) = sgn(vj). In addition, (2a) if D = 1,213

for a constant c0, log ∣vi∣ − log ∣vj ∣ = c0; (2b) if D > 1, ∣vi∣2 − ∣vj ∣2 = 0.214

This theorem contains many interesting aspects. First of all, the three situations in item 1 directly215

tell us the distribution of v if the initial state of of v is given by these conditions.2 This implies a216

memory effect, namely, that the stationary distribution of SGD can depend on its initial state. The217

second aspect is the case of item 2, which we will solve below. Item 2 of the theorem implies that all218

the vi of the model must be of the same sign for any network with D ≥ 1. Namely, no subnetwork219

of the original network can learn an incorrect sign. This is dramatically different from the case of220

D = 0. We will discuss this point in more detail below. The third interesting aspect of the theorem is221

that it implies that the dynamics of SGD is qualitatively different for different depths of the model.222

In particular, D = 1 and D > 1 have entirely different dynamics. For D = 1, the ratio between223

every pair of vi and vj is a conserved quantity. In sharp contrast, for D > 1, the distance between224

different vi is no longer conserved but decays to zero. Therefore, a new balancing condition emerges225

as we increase the depth. Conceptually, this qualitative distinction also corroborates the discovery226

in Ref. [43], where D = 1 models are found to be qualitatively different from models with D > 1.227

With this theorem, we are ready to solve the stationary distribution. It suffices to condition on the228

event that vi does not converge to zero. Let us suppose that there are d nonzero vi that obey item229

2 of Theorem 4.1 and d can be seen as an effective width of the model. We stress that the effective230

width d ≤ d0 depends on the initialization and can be arbitrary.3 Therefore, we condition on a fixed231

value of d to solve for the stationary distribution of v (Appendix A):232

Theorem 4.2. Let δ(x) denote the Dirac delta function. For an arbitrary factor z in[0,1], an233

invariant solution of the Fokker-Planck Equation is p∗(v) = (1 − z)δ(v) + zp±(v), where234

p±(∣v∣)∝
1

∣v∣3(1−1/(D+1))g∓(v)
exp(−

1

T ∫
∣v∣

0
d∣v∣

d1−2/(D+1)(β1∣v∣ ∓ β2)

(D + 1)∣v∣2D/(D+1)g∓(v)
) , (14)

where p− is the distribution on (−∞,0) and p+ is that on (0,∞), and g∓(v) = α1∣v∣2 ∓ 2α2∣v∣+α3.235

2L→ 0 is only possible when ∆ = 0 and v = β2/β1.
3One can initialize the parameters such that d takes any value between 1 and d0. One way to achieve this

is to initialize on the stationary points specified by Theorem 4.1 at the desired d.
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The arbitrariness of the scalar z is due to the memory effect of SGD – if all parameters are initialized236

at zero, they will remain there with probability 1. This means that the stationary distribution is not237

unique. Since the result is symmetric in the sign of β2 = E[xy], we assume that E[xy] > 0 from238

now on.239

Also, we focus on the case γ = 0 in the main text.4 The distribution of v is240

p±(∣v∣)∝
∣v∣±β2/2α3T−3/2

(α1∣v∣2 ∓ 2α2∣v∣ + α3)1±β2/4Tα3
exp(− 1

2T

α3β1 − α2β2

α3

√
∆

arctan
α1∣v∣ ∓ α2√

∆
) . (15)

This measure is worth a close examination. First, the exponential term is upper and lower bounded241

and well-behaved in all situations. In contrast, the polynomial term becomes dominant both at242

infinity and close to zero. When v < 0, the distribution is a delta function at zero: p(v) = δ(v). To243

see this, note that the term v−β2/2α3T−3/2 integrates to give v−β2/2α3T−1/2 close to the origin, which244

is infinite. Away from the origin, the integral is finite. This signals that the only possible stationary245

distribution has a zero measure for v ≠ 0. The stationary distribution is thus a delta distribution,246

meaning that if x and y are positively correlated, the learned subnets vi can never be negative,247

independent of the initial configuration.248

For v > 0, the distribution is nontrivial. Close to v = 0, the distribution is dominated by vβ2/2α3T−3/2,249

which integrates to vβ2/2α3T−1/2. It is only finite below a critical Tc = β2/α3. This is a phase-250

transition-like behavior. As T → (β2/α3)−, the integral diverges and tends to a delta distribution.251

Namely, if T > Tc, we have ui = wi = 0 for all i with probability 1, and no learning can happen.252

If T < Tc, the stationary distribution has a finite variance, and learning may happen. In the more253

general setting, where weight decay is present, this critical T shifts to Tc = β2−γ
α3

. When T = 0,254

the phase transition occurs at β2 = γ, in agreement with the threshold weight decay identified in255

Ref. [45]. See Figure 3 for illustrations of the distribution across different values of T . We also256

compare with the stationary distribution of a depth-0 model. Two characteristics of the two-layer257

model appear rather striking: (1) the solution becomes a delta distribution at the sparse solution258

u = w = 0 at a large learning rate; (2) the two-layer model never learns the incorrect sign (v is always259

non-negative). Another exotic phenomenon implied by the result is what we call the “fluctuation260

inversion.” Naively, the variance of model parameters should increase as we increase T , which is the261

noise level in SGD. However, for the distribution we derived, the variance of v and u both decrease262

to zero as we increase T : injecting noise makes the model fluctuation vanish. We discuss more about263

this “fluctuation inversion” in the next section.264

Also, while there is no other phase-transition behavior below Tc, there is still an interesting and265

practically relevant crossover behavior in the distribution of the parameters as we change the learn-266

ing rate. When training a model, The most likely parameter we obtain is given by the maximum267

likelihood estimator of the distribution, v̂ ∶= argmaxp(v). Understanding how v̂(T ) changes as a268

function of T is crucial. This quantity also exhibits nontrivial crossover behaviors at critical values269

of T .270

When T < Tc, a nonzero maximizer for p(v) must satisfy271

v∗ = −
β1 − 10α2T −

√
(β1 − 10α2T )2 + 28α1T (β2 − 3α3T )

14α1T
. (16)

The existence of this solution is nontrivial, which we analyze in Appendix A.8. When T → 0, a272

solution always exists and is given by v = β2/β1, which does not depend on the learning rate or273

noise C. Note that β2/β1 is also the minimum point of L(ui,wi). This means that SGD is only a274

consistent estimator of the local minima in deep learning in the vanishing learning rate limit. How275

biased is SGD at a finite learning rate? Two limits can be computed. For a small learning rate, the276

leading order correction to the solution is v = β2

β1
+ ( 10α2β2

β2
1
− 7α1β

2
2

β3
1
− 3α3

β1
)T . This implies that the277

common Bayesian analysis that relies on a Laplace expansion of the loss fluctuation around a local278

minimum is improper. The fact that the stationary distribution of SGD is very far away from the279

Bayesian posterior also implies that SGD is only a good Bayesian sampler at a small learning rate.280

Example. It is instructive to consider an example of a structured dataset: y = kx + ϵ, where x ∼281

N (0,1) and the noise ϵ obeys ϵ ∼ N (0, σ2). We let γ = 0 for simplicity. If σ2 > 8
21
k2, there always282

4When weight decay is present, the stationary distribution is the same, except that one needs to replace β2

with β2 − γ. Other cases are also studied in detail in Appendix A and listed in Table. 1.
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exists a transitional learning rate: T ∗ = 4k+√42σ
4(21σ2−8k2) . Obviously, Tc/3 < T ∗. One can characterize the283

learning of SGD by comparing T with Tc and T ∗. For this simple example, SGD can be classified284

into roughly 5 different regimes. See Figure 4.285

4.3 Power-Law Tail of Deeper Models286

Figure 4: Regimes of learning for SGD
as a function of T and the noise in the
dataset σ. According to (1) whether
the sparse transition has happened, (2)
whether a nontrivial maximum probabil-
ity estimator exists, and (3) whether the
sparse solution is a maximum probabil-
ity estimator, the learning of SGD can be
characterized into 5 regimes. Regime I is
where SGD converges to a sparse solution
with zero variance. In regime II, the sta-
tionary distribution has a finite spread, but
the probability of being close to the sparse
solution is very high. In regime III, the
probability density of the sparse solution
is zero, and therefore the model will learn
without much problem. In regime b, a lo-
cal nontrivial probability maximum exists.
The only maximum probability estimator
in regime a is the sparse solution.

An interesting aspect of the depth-1 model is that its distri-287

bution is independent of the width d of the model. This is288

not true for a deep model, as seen from Eq. (14). The d-289

dependent term vanishes only if D = 1. Another intriguing290

aspect of the depth-1 distribution is that its tail is indepen-291

dent of any hyperparameter of the problem, dramatically292

different from the linear regression case. This is true for293

deeper models as well.294

Since d only affects the non-polynomial part of the dis-295

tribution, the stationary distribution scales as p(v) ∝296
1

v3(1−1/(D+1))(α1v2−2α2v+α3) . Hence, when v →∞, the scal-297

ing behaviour is v−5+3/(D+1). The tail gets monotonically298

thinner as one increases the depth. For D = 1, the expo-299

nent is 7/2; an infinite-depth network has an exponent of 5.300

Therefore, the tail of the model distribution only depends301

on the depth and is independent of the data or details of302

training, unlike the depth-0 model. In addition, due to the303

scaling v5−3/(D+1) for v → ∞, we can see that E[v2] will304

never diverge no matter how large the T is.305

An intriguing feature of this model is that the model with at306

least one hidden layer will never have a divergent training307

loss. This directly explains the puzzling observation of the308

edge-of-stability phenomenon in deep learning: SGD train-309

ing often gives a neural network a solution where a slight310

increment of the learning rate will cause discrete-time in-311

stability and divergence [40, 4]. These solutions, quite sur-312

prisingly, exhibit low training and testing loss values even313

when the learning rate is right at the critical learning rate of314

instability. This observation contradicts naive theoretical expectations. Let ηsta denote the largest315

stable learning rate. Close to a local minimum, one can expand the loss function up to the second or-316

der to show that the value of the loss function L is proportional to Tr[Σ]. However, Σ∝ 1/(ηsta−η)317

should be a very large value [42, 19], and therefore L should diverge. Thus, the edge of stability318

phenomenon is incompatible with the naive expectation up to the second order, as pointed out by319

Ref. [5]. Our theory offers a direct explanation of why the divergence of loss does not happen: for320

deeper models, the fluctuation of model parameters decreases as the gradient noise level increases,321

reaching a minimal value before losing stability. Thus, SGD always has a finite loss because of the322

power-law tail and fluctuation inversion. See Figure 5–mid.323

Infinite-D limit. As D tends to infinity, the distribution becomes324

p(v)∝
1

v3+k1(α1v2 − 2α2v + α3)1−k1/2 exp( −
d

DT
(

β2

α3v
+
α2α3β1 − 2α

2
2β2 + α1α3β2

α2
3

√
∆

arctan(
α1v − α2
√
∆

))),

where k1 = d(α3β1 − 2α2β2)/(TDα2
3). An interesting feature is that the architecture ratio d/D325

always appears simultaneously with 1/T . This implies that for a sufficiently deep neural network,326

the ratio D/d also becomes proportional to the strength of the noise. Since we know that T = η/S327

determines the performance of SGD, our result thus shows an extended scaling law of training:328
d
D

S
η
= const. The architecture aspect of the scaling law also agrees with an alternative analysis329

[9, 10], where the optimal architecture is found to have a constant ratio of d/D. See Figure 5.330

Now, if we T , there are three situations: (1) d = o(D), (2) d = c0D for a constant c0, (3) d = Ω(D).331

If d = o(D), k1 → 0 and the distribution converges to p(v)∝ v−3(α1v
2 − 2α2v + α3)−1, which is a332

delta distribution at 0. Namely, if the width is far smaller than the depth, the model will collapse to333
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Figure 5: SGD on deep networks leads to a well-controlled distribution and training loss. Left: Power law
of the tail of the parameter distribution of deep linear nets. The dashed lines show the upper (−7/2) and lower
(−5) bound of the exponent of the tail. The predicted power-law scaling agrees with the experiment, and the
exponent decreases as the theory predicts. Mid: training loss of a tanh network. D = 0 is the case where only
the input weight is trained, and D = 1 is the case where both input and output layers are trained. For D = 0,
the model norm increases as the model loses stability. For D = 1, a “fluctuation inversion” effect appears. The
fluctuation of the model vanishes before it loses stability. Right: performance of fully connected tanh nets on
MNIST. Scaling the learning rate as 1/D keeps the model performance relatively unchanged.

zero. Therefore, we should increase the model width as we increase the depth. In the second case,334

d/D is a constant and can thus be absorbed into the definition of T and is the only limit where we335

obtain a nontrivial distribution with a finite spread. If d = Ω(D), the distribution becomes a delta336

distribution at the global minimum of the loss landscape, p(v) = δ(v − β2/β1) and achieves the337

global minimum.338

4.4 Implication for Variational Bayesian Learning339

One of the major implications of the analytical solution we found for machine learning practice340

is the inappropriateness of using SGD to approximate a Bayesian posterior. Because every SGD341

iteration can be regarded as a sampling of the model parameters. A series of recent works have342

argued that the stationary distribution can be used as an approximation of the Bayesian posterior343

for fast variational inference [21, 3], pBayes(θ) ≈ pSGD(θ), a method that has been used for a wide344

variety of applications [12]. However, our result implies that such an approximation is likely to345

fail. Common in Bayesian deep learning, we interpret the per-sample loss as the log probability346

and the weight decay as a Gaussian prior over the parameters, the true model parameters have a log347

probability of348

log pBayes(θ∣x)∝ ℓ(θ, x) + γ∥θ∥2. (17)

This distribution has a nonzero measure everywhere for any differentiable loss. However, the distri-349

bution for SGD in Eq.(14) has a zero probability density almost everywhere because a 1d subspace350

has a zero Lebesgue measure in a high-dimensional space. This implies that the KL divergence be-351

tween the two distributions (either KL(pBayes∣∣pSGD) or KL(pSGD∣∣pBayes)) is infinite. Therefore,352

we can infer that in the information-theoretic sense, pSGD cannot be used to approximate pBayes.353

5 Discussion354

In this work, we first showed that SGD systematically moves towards a balanced solution when355

rescaling symmetry exists, a result we termed the law of balance. Applying the law of balance, we356

have characterized the stationary distribution of SGD analytically, which is an unanswered funda-357

mental problem in the study of SGD. This is the first analytical expression for a globally nonconvex358

and beyond quadratic loss without the need for any approximation. With this solution, we have359

discovered many phenomena that could be relevant to deep learning that were previously unknown.360

We found that SGD only has probability of exploring a one-dimensional submanifold even for a361

very-dimensional problem, ignoring all irrelevant directions. We applied our theory to the important362

problem of variational inference and showed that it is, in general, not appropriate to approximate363

the posterior with SGD, at least when any symmetry is present in the model. If one really wants364

to use SGD for variational inference, special care is required to at least remove symmetries from365

the loss function, which could be an interesting future problem. Our theory is limited, as the model366

we solved is only a minimal model of reality, and it would be interesting to consider more realistic367

models in the future. Also, it would be interesting to extend the law of balance to a broader class of368

symmetries.369
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A Theoretical Considerations476

A.1 Background477

A.1.1 Ito’s Lemma478

Let us consider the following stochastic differential equation (SDE) for a Wiener process W (t):479

dXt = µtdt + σtdW (t). (18)

We are interested in the dynamics of a generic function of Xt. Let Yt = f(t,Xt); Ito’s lemma states480

that the SDE for the new variable is481

df(t,Xt) = (
∂f

∂t
+ µt

∂f

∂Xt
+ σ2

t

2

∂2f

∂X2
t

)dt + σt
∂f

∂x
dW (t). (19)

Let us take the variable Yt =X2
t as an example. Then the SDE is482

dYt = (2µtXt + σ2
t )dt + 2σtXtdW (t). (20)

Let us consider another example. Let two variables Xt and Yt follow483

dXt = µtdt + σtdW (t),
dYt = λtdt + ϕtdW (t). (21)

The SDE of XtYt is given by484

d(XtYt) = (µtYt + λtXt + σtϕt)dt + (σtYt + ϕtXt)dW (t). (22)

A.1.2 Fokker Planck Equation485

The general SDE of a 1d variable X is given by:486

dX = −µ(X)dt +B(X)dW (t). (23)

The time evolution of the probability density P (x, t) is given by the Fokker-Planck equation:487

∂P (X, t)
∂t

= − ∂

∂X
J(X, t), (24)

where J(X, t) = µ(X)P (X, t) + 1
2

∂
∂X
[B2(X)P (X, t)]. The stationary distribution satisfying488

∂P (X, t)/∂t = 0 is489

P (X)∝ 1

B2(X)
exp [−∫ dX

2µ(X)
B2(X)

] ∶= P̃ (X), (25)

which gives a solution as a Boltzmann-type distribution if B is a constant. We will apply Eq. (25)490

to determine the stationary distributions in the following sections.491

A.2 Proof of Theorem 3.1492

Proof. We omit writing v in the argument unless necessary. By definition of the symmetry493

ℓ(u,w, x) = ℓ(λu,w/λ,x), we obtain its infinitesimal transformation ℓ(u,w, x) = ℓ((1+ ϵ)u, (1−494

ϵ)w/λ,x). Expanding this to first order in ϵ, we obtain495

∑
i

ui
∂ℓ

∂ui
=∑

j

wj
∂ℓ

∂wj
. (26)

The equations of motion are496

dui

dt
= − ∂ℓ

∂ui
, (27)

dwj

dt
= − ∂ℓ

∂wj
. (28)
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Using Ito’s lemma, we can find the equations governing the evolutions of u2
i and w2

j :497

du2
i

dt
= 2ui

dui

dt
+ (dui)2

dt
= −2ui

∂ℓ

∂ui
+ TCu

i ,

dw2
j

dt
= 2wj

dwj

dt
+
(dwj)2

dt
= −2wj

∂ℓ

∂wj
+ TCw

j , (29)

where Cu
i = Var[ ∂ℓ

∂ui
] and Cw

j = Var[ ∂ℓ
∂wj
]. With Eq. (26), we obtain498

d

dt
(∣∣u∣∣2 − ∣∣w∣∣2) = −T (∑

j

Cw
j −∑

i

Cu
i ) = −T

⎛
⎝∑j

Var [ ∂ℓ

∂wj
] −∑

i

Var [ ∂ℓ
∂ui
]
⎞
⎠
. (30)

Due to the rescaling symmetry, the loss function can be considered as a function of the matrix uwT .499

Here we define a new loss function as ℓ̃(uiwj) = ℓ(ui,wj). Hence, we have500

∂ℓ

∂wj
=∑

i

ui
∂ℓ̃

∂(uiwj)
,
∂ℓ

∂ui
=∑

j

wj
∂ℓ̃

∂(uiwj)
. (31)

We can rewrite Eq. (30) into501

d

dt
(∣∣u∣∣2 − ∣∣w∣∣2) = −T (uTC1u −wTC2w), , (32)

where502

(C1)ij = E [∑
k

∂ℓ̃

∂(uiwk)
∂ℓ̃

∂(ujwk)
] −∑

k

E [ ∂ℓ̃

∂(uiwk)
]E [ ∂ℓ̃

∂(ujwk)
] ,

≡ E[ATA] −E[AT ]E[A] (33)

(C2)kl = E [∑
i

∂ℓ̃

∂(uiwk)
∂ℓ̃

∂(uiwl)
] −∑

i

E [ ∂ℓ̃

∂(uiwk)
]E [ ∂ℓ̃

∂(uiwl)
]

≡ E[AAT ] −E[A]E[AT ], (34)

where503

(A)ik ≡
∂ℓ̃

∂(uiwk)
. (35)

The proof is thus complete.504

A.3 Second-order Law of Balance505

Considering the modified loss function:506

ℓtot = ℓ +
1

4
T ∣∣∇L∣∣2. (36)

In this case, the Langevin equations become507

dwj = −
∂ℓ

∂wj
dt − 1

4
T
∂∣∣∇L∣∣2

∂wj
, (37)

dui = − −
∂ℓ

∂ui
dt − 1

4
T
∂∣∣∇L∣∣2

∂ui
. (38)

Hence, the modified SDEs of u2
i and w2

j can be rewritten as508

du2
i

dt
= 2ui

dui

dt
+ (dui)2

dt
= −2ui

∂ℓ

∂ui
+ +TCu

i −
1

2
Tui∇ui ∣∇L∣2, (39)

dw2
j

dt
= 2wj

dwj

dt
+
(dwj)2

dt
= −2wj

∂ℓ

∂wj
+ TCw

j −
1

2
Twj∇wj ∣∇L∣2. (40)
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In this section, we consider the effects brought by the last term in Eqs. (39) and (40). From the509

infinitesimal transformation of the rescaling symmetry:510

∑
j

wj
∂ℓ

∂wj
=∑

i

ui
∂ℓ

∂ui
, (41)

we take the derivative of both sides of the equation and obtain511

∂L

∂ui
+∑

j

uj
∂2L

∂ui∂uj
=∑

j

wj
∂2L

∂ui∂wj
, (42)

∑
j

uj
∂2L

∂wi∂uj
= ∂L

∂wi
+∑

j

wj
∂2L

∂wi∂wj
, (43)

where we take the expectation to ℓ at the same time. By substituting these equations into Eqs. (39)512

and (40), we obtain513

d∣∣u∣∣2

dt
− d∣∣w∣∣∣2

dt
= T∑

i

(Cu
i + (∇uiL)2) − T∑

j

(Cw
j + (∇wjL)2). (44)

Then following the procedure in Appendix. A.2, we can rewrite Eq. (44) as514

d∣∣u∣∣2

dt
− d∣∣w∣∣2

dt
= −T (uTC1u + uTD1u −wTC2w −wTD2w)

= −T (uTE1u −wTE2w), (45)

where515

(D1)ij =∑
k

E [ ∂ℓ

∂(uiwk)
]E [ ∂ℓ

∂(ujwk)
] , (46)

(D2)kl =∑
i

E [ ∂ℓ

∂(uiwk)
]E [ ∂ℓ

∂(uiwl)
] , (47)

(E1)ij = E [∑
k

∂ℓ

∂(uiwk)
∂ℓ

∂(ujwk)
] , (48)

(E2)kl = E [∑
i

∂ℓ

∂(uiwk)
∂ℓ

∂(uiwl)
] . (49)

For one-dimensional parameters u,w, Eq. (45) is reduced to516

d

dt
(u2 −w2) = −E

⎡⎢⎢⎢⎢⎣
( ∂ℓ

∂(uw)
)
2⎤⎥⎥⎥⎥⎦
(u2 −w2). (50)

Therefore, we can see this loss modification increases the speed of convergence. Now, we move517

to the stationary distribution of the parameter v. At the stationarity, if ui = −wi, we also have the518

distribution P (v) = δ(v) like before. However, when ui = wi, we have519

dv

dt
= −4v(β1v−β2)+4Tv(α1v

2−2α2v+α3)−4β2
1Tv(β1v−β2)(3β1v−β2)+4v

√
T (α1v2 − 2α2v + α3)

dW

dt
.

(51)
Hence, the stationary distribution becomes520

P (v)∝ vβ2/2α3T−3/2−β2
2/2α3

(α1v2 − 2α2v + α3)1+β2/4Tα3+K1
exp(−( 1

2T

α3β1 − α2β2

α3

√
∆

+K2)arctan
α1v − α2√

∆
) ,

(52)
where521

K1 =
3α3β

2
1 − α1β

2
2

4α1α3
,

K2 =
3α2α3β

2
1 − 4α1α3β1β2 + α1α2β

2
2

2α1α3

√
∆

. (53)
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From the expression above we can see K1 ≪ 1 + β2/4Tα3 and K2 ≪ (α3β1 − α2β2)/2Tα3

√
∆.522

Hence, the effect of modification can only be seen in the term proportional to v. The phase transition523

point is modified as524

Tc =
β2

α3 + β2
2

. (54)

Compared with the previous result Tc = β2

α3
, we can see the effect of the loss modification is α3 →525

α3 + β2
2 , or equivalently, Var[xy]→ E[x2y2]. This effect can be seen from E1 and E2.526

A.4 Proof of Theorem 3.2527

Proof. For any i, one can obtain the expressions of C(i)1 and C
(i)
2 from Theorem 3.1 as528

(C(i)1 )α1,α2 = 4piEi

⎡⎢⎢⎢⎣
∣∣x̃∣∣2(

d

∑
j=1

uα1

j vTj x̃ − yα1)(
d

∑
j=1

uα2

j vTj x̃ − yα2)
⎤⎥⎥⎥⎦
− 4p2i∑

β

Ei

⎡⎢⎢⎢⎣
x̃β(

d

∑
j=1

uα1

j vTj x̃ − yα1)
⎤⎥⎥⎥⎦
Ei

⎡⎢⎢⎢⎣
x̃β(

d

∑
j=1

uα2

j vTj x̃ − yα2)
⎤⎥⎥⎥⎦

= 4piEi [∣∣x̃∣∣2rα1rα2] − 4p2i∑
β

Ei [x̃βrα1]Ei [x̃βrα2] , (55)

(C(i)2 )β1,β2 = 4Ei

⎡⎢⎢⎢⎣
x̃β1 x̃β2 ∣∣

d

∑
j=1

ujv
T
j x̃ − y∣∣2

⎤⎥⎥⎥⎦
− 4∑

α

Ei

⎡⎢⎢⎢⎣
x̃β1(

d

∑
j=1

uα
j v

T
j x̃ − yα)

⎤⎥⎥⎥⎦
Ei

⎡⎢⎢⎢⎣
x̃β2(

d

∑
j=1

uα
j v

T
j x̃ − yα)

⎤⎥⎥⎥⎦
= 4piEi [∣∣r∣∣2x̃β1 x̃β2] − 4p2i∑

α

Ei [x̃β1rα]Ei [x̃β2rα] , (56)

where we use the notation rα ∶= ∑d
j=1 u

α
j v

T
j x̃ − yα, x̃ ∶= (xT ,1)T , vi = (wT

i , bi)T and Ei[O] ∶=529

E[O∣wT
i x + bi > 0].530

We start with showing that C(1)1 is full-rank. Let m be an arbitrary unit vector in Rdu . We have that531

mTC
(i)
1 m = 4piEi [∣∣x̃∣∣2(mT r)2] − 4p2i∑

β

Ei [x̃β(mT r)]Ei [x̃β(mT r)]

≥ 4p2iEi [∣∣x̃∣∣2(mT r)2] − 4p2i∑
β

Ei [x̃β(mT r)]Ei [x̃β(mT r)]

= 4p2i∑
β

Vari[x̃βmT r]

= 4p2i∑
β

[Vari[x̃βmT (g(x) −
d

∑
j=1

ujv
T
j x̃)] +Vari[x̃βmT ϵ] − 2Covi[x̃βmT (g(x) −

d

∑
j=1

ujv
T
j x̃), x̃βmT ϵ]]

≥ 4p2i∑
β

Vari[x̃βmT ϵ] > 0, (57)

where the last inequality follows from532

Cov[x̃βmT (g(x) −
d

∑
j=1

ujv
T
j x̃), x̃βmT ϵ]

=Ei[(x̃β)2mT (g(x) −
d

∑
j=1

ujv
T
j x̃)mT ϵ] −Ei[x̃βmT (g(x) −

d

∑
j=1

ujv
T
j x̃)]Ei[x̃βmT ϵ]

=0. (58)

Here we denote that Vari[O] ∶= Ei[O2]−Ei[O]2 and Covi[O1,O2] ∶= Ei[O1O2]−Ei[O1]Ei[O2].533

For C(i)2 , we let the vector ñ ∶= (nT , nf)T be a unit vector in Rdw+1, yielding534

ñTC
(i)
2 ñ = 4piEi [∣∣r∣∣2(ñT x̃)2] − 4p2i∑

α

Ei [rα(ñT x̃)]Ei [rα(ñT x̃)]

≥ 4p2iEi [∣∣r∣∣2(ñT x̃)2] − 4p2i∑
α

Ei [rα(ñT x̃)]Ei [rα(ñT x̃)]

= 4p2i∑
α

Vari[rαñT x̃]. (59)
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Note that this quantity can be decomposed as535

∑
α

Vari[rαñT x̃] =∑
α

Vari[(gα(x) −
d

∑
j=1

uα
j v

T
j x̃ + ϵα)(ñT x̃)]

=∑
α

Vari[(gα(x) −
d

∑
j=1

uα
j v

T
j x̃)(nTx + nf)] +∑

α

Vari[ϵα(nTx + nf)]

− 2∑
α

Covi[(gα(x) −
d

∑
j=1

uα
j v

T
j x̃)(nTx + nf), ϵα(nTx + nf)]. (60)

The covariance term vanishes because536

Cov[(gα(x) −
d

∑
j=1

uα
j v

T
j x̃)(nTx + nf), ϵα(nTx + nf)]

=Ei[(gα(x) −
d

∑
j=1

uα
j v

T
j x̃)ϵα(nTx + nf)2] −Ei[(gα(x) −

d

∑
j=1

uα
j v

T
j x̃)(nTx + nf)]Ei[ϵα(nTx + nf)]

=0. (61)

Therefore,537

ñTC
(i)
2 ñ ≥∑

α

Vari[(gα(x) −
d

∑
j=1

uα
j v

T
j x̃)(nTx + nf)] +∑

α

Vari[ϵα(nTx + nf)]

≥∑
α

Vari[ϵα(nTx + nf)]

=∑
α

Vari[ϵα]Vari[(nTx + nf)] +∑
α

(Vari[ϵα]Ei[(nTx + nf)2] +Vari[nTx + nf ]Ei[(ϵα)2])

≥∑
α

Vari[ϵα]Ei[(nTx + nf)2] > 0, (62)

where the penultimate inequality follows from the fact that ϵ is independent of x. Hence, both the538

matrices C(i)1 and C
(i)
2 are full-rank. The proof is completed.539

A.5 Derivation of Eq. (4)540

We here prove inequality (4). At stationarity, d(∥u∥2 − ∥w∥2)/dt = 0, indicating541

λ1M∥u∥2 − λ2m∥w∥2 ≥ 0, λ1m∥u∥2 − λ2M∥w∥2 ≤ 0. (63)

The first inequality in Eq. (63) gives the solution542

∥u∥2

∥w∥2
≥ λ2m

λ1M
. (64)

The second inequality in Eq. (63) gives the solution543

∥u∥2

∥w∥2
≤ λ2M

λ1m
. (65)

Combining these two results, we obtain544

λ2m

λ1M
≤ ∥u∥

2

∥w∥2
≤ λ2M

λ1m
, (66)

which is Eq. (4).545

A.6 Proof of Theorem 4.1546

Proof. This proof is based on the fact that if a certain condition is satisfied for all trajectories with547

probability 1, this condition is satisfied by the stationary distribution of the dynamics with probabil-548

ity 1.549
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Let us first consider the case of D > 1. We first show that any trajectory satisfies at least one of550

the following five conditions: for any i, (i) vi → 0, (ii) L(θ) → 0, or (iii) for any k ≠ l, (u(k)i )
2 −551

(u(l)i )
2 → 0.552

The SDE for u(k)i is553

du
(k)
i

dt
= −2 vi

u
(k)
i

(β1v − β2) + 2
vi

u
(k)
i

√
η(α1v2 − 2α2v + α3)

dW

dt
, (67)

where vi ∶=∏D
k=1 u

(k)
i , and so v = ∑i vi. There exists rescaling symmetry between u

(k)
i and u

(l)
i for554

k ≠ l. By the law of balance, we have555

d

dt
[(u(k)i )

2 − (u(l)i )
2] = −T [(u(k)i )

2 − (u(l)i )
2]Var

⎡⎢⎢⎢⎢⎣

∂ℓ

∂(u(k)i u
(l)
i )

⎤⎥⎥⎥⎥⎦
, (68)

where556

Var

⎡⎢⎢⎢⎢⎣

∂ℓ

∂(u(k)i u
(l)
i )

⎤⎥⎥⎥⎥⎦
= ( vi

u
(k)
i u

(l)
i

)2(α1v
2 − 2α2v + α3) (69)

with vi/(u(k)i u
(l)
i ) = ∏s≠k,l u

(s)
i . In the long-time limit, (u(k)i )

2 converges to (u(l)i )
2 unless557

Var [ ∂ℓ

∂(u(k)i u
(l)
i )
] = 0, which is equivalent to vi/(u(k)i u

(l)
i ) = 0 or α1v

2 − 2α2v + α3 = 0. These558

two conditions correspond to conditions (i) and (ii). The latter is because α1v
2−2α2v+α3 = 0 takes559

place if and only if v = α2/α1 and α2
2 − α1α3 = 0 together with L(θ) = 0. Therefore, at stationarity,560

we must have conditions (i), (ii), or (iii).561

Now, we prove that when (iii) holds, the condition 2-(b) in the theorem statement must hold: for562

D = 1, (log ∣vi∣ − log ∣vj ∣) = c0 with sgn(vi) = sgn(vj). When (iii) holds, there are two situations.563

First, if vi = 0, we have u
(
ik) = 0 for all k, and vi will stay 0 for the rest of the trajectory, which564

corresponds to condition (i).565

If vi ≠ 0, we have u
(k)
i ≠ 0 for all k. Therefore, the dynamics of vi is566

dvi
dt
= −2∑

k

⎛
⎝

vi

u
(k)
i

⎞
⎠

2

(β1v−β2)+2∑
k

⎛
⎝

vi

u
(k)
i

⎞
⎠

2√
η(α1v2 − 2α2v + α3)

dW

dt
+4∑

k,l

⎛
⎝

v3i

(u(k)i u
(l)
i )2

⎞
⎠
η(α1v

2−2α2v+α3).

(70)
Comparing the dynamics of vi and vj for i ≠ j, we obtain567

dvi/dt
∑k(vi/u

(k)
i )2

−
dvj/dt

∑k(vj/u
(k)
j )2

= 4
⎛
⎝
∑m,l v

3
i /(u

(m)
i u

(l)
i )

2

∑k(vi/u
(k)
i )2

−
∑m,l v

3
j /(u

(m)
j u

(l)
j )

2

∑k(vj/u
(k)
j )2

⎞
⎠
η(α1v

2 − 2α2v + α3)

= 4
⎛
⎝
vi
∑m,l v

2
i /(u

(m)
i u

(l)
i )

2

∑k(vi/u
(k)
i )2

− vj
∑m,l v

2
j /(u

(m)
j u

(l)
j )

2

∑k(vj/u
(k)
j )2

⎞
⎠
η(α1v

2 − 2α2v + α3).

(71)

By condition (iii), we have ∣u(0)i ∣ = ⋯ = ∣u
(D)
i ∣, i.e., (vi/u(k)i )

2 = (v2i )D/(D+1) and (vi/u(m)i u
(l)
i )

2 =568

(v2i )(D−1)/(D+1).5 Therefore, we obtain569

dvi/dt
(D + 1)(v2i )D/(D+1)

−
dvj/dt

(D + 1)(v2j )D/(D+1)
=
⎛
⎝
vi
D(v2i )(D−1)/(D+1)

2(v2i )D/(D+1)
− vj

D(v2j )(D−1)/(D+1)

2(v2j )D/(D+1)
⎞
⎠
η(α1v

2−2α2v+α3).

(72)
We first consider the case where vi and vj initially share the same sign (both positive or both nega-570

tive). When D > 1, the left-hand side of Eq. (72) can be written as571

1

1 −D
dv

2/(D+1)−1
i

dt
+4Dv

1−2/(D+1)
i η(α1v

2−2α2v+α3)−
1

1 −D
dv

2/(D+1)−1
j

dt
−4Dv

1−2/(D+1)
j η(α1v

2−2α2v+α3),
(73)

5Here, we only consider the root on the positive real axis.
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which follows from Ito’s lemma:572

dv
2/(D+1)−1
i

dt
= ( 2

D + 1
− 1) v2/(D+1)−2i

dvi
dt
+ 2( 2

D + 1
− 1)( 2

D + 1
− 2)v2/(D+1)−3i

⎛
⎝∑k
( vi

u
(k)
i

)2
√
η(α1v2 − 2α2v + α3)

⎞
⎠

2

= ( 2

D + 1
− 1)v2/(D+1)−2i

dvi
dt
+ 4D(D − 1)v1−2/(D+1)i η(α1v

2 − 2α2v + α3). (74)

Substitute in Eq. (72), we obtain Eq. (73).573

Now, we consider the right-hand side of Eq. (72), which is given by574

2Dv
1−2/(D+1)
i η(α1v

2 − 2α2v + α3) − 2Dv
1−2/(D+1)
j η(α1v

2 − 2α2v + α3). (75)

Combining Eq. (73) and Eq. (75), we obtain575

1

1 −D
dv

2/(D+1)−1
i

dt
− 1

1 −D
dv

2/(D+1)−1
j

dt
= −2D(v1−2/(D+1)i − v1−2/(D+1)j )η(α1v

2 − 2α2v + α3).
(76)

By defining zi = v2/(D+1)−1i , we can further simplify the dynamics:576

d(zi − zj)
dt

= 2D(D − 1)( 1
zi
− 1

zj
)η(α1v

2 − 2α2v + α3)

= −2D(D − 1)
zi − zj
zizj

η(α1v
2 − 2α2v + α3). (77)

Hence,577

zi(t) − zj(t) = exp [−∫ dt
2D(D − 1)

zizj
η(α1v

2 − 2α2v + α3)] . (78)

Therefore, if vi and vj initially have the same sign, they will decay to the same value in the long-578

time limit t→∞, which gives condition 2-(b). When vi and vj initially have different signs, we can579

write Eq. (72) as580

d∣vi∣/dt
(D + 1)(∣vi∣2)D/(D+1)

+
d∣vj ∣/dt

(D + 1)(∣vj ∣2)D/(D+1)
=(∣vi∣

D(∣vi∣2)(D−1)/(D+1)

2(∣vi∣2)D/(D+1)
+ ∣vj ∣

D(∣vj ∣2)(D−1)/(D+1)

2(∣vj ∣2)D/(D+1)
)

× η(α1v
2 − 2α2v + α3). (79)

Hence, when D > 1, we simplify the equation with a similar procedure as581

1

1 −D
d∣vi∣2/(D+1)−1

dt
+ 1

1 −D
d∣vj ∣2/(D+1)−1

dt
= −2D(∣vi∣1−2/(D+1)+∣vj ∣1−2/(D+1))η(α1v

2−2α2v+α3).
(80)

Defining zi = ∣vi∣2/(D+1)−1, we obtain582

d(zi + zj)
dt

= 2D(D − 1)( 1
zi
+ 1

zj
)η(α1v

2 − 2α2v + α3)

= 2D(D − 1)
zi + zj
zizj

η(α1v
2 − 2α2v + α3), (81)

which implies583

zi(t) + zj(t) = exp [∫ dt
2D(D − 1)

zizj
η(α1v

2 − 2α2v + α3)] . (82)

From this equation, we reach the conclusion that if vi and vj have different signs initially, one of584

them converges to 0 in the long-time limit t → ∞, corresponding to condition 1 in the theorem585

statement. Hence, for D > 1, at least one of the conditions is always satisfied at t→∞.586

Now, we prove the theorem for D = 1, which is similar to the proof above. The law of balance gives587

d

dt
[(u(1)i )

2 − (u(2)i )
2] = −T [(u(1)i )

2 − (u(2)i )
2]Var

⎡⎢⎢⎢⎢⎣

∂ℓ

∂(u(1)i u
(2)
i )

⎤⎥⎥⎥⎥⎦
. (83)
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We can see that ∣u(1)i ∣ → ∣u
(2)
i ∣ takes place unless Var [ ∂ℓ

∂(u(1)i u
(2)
i )] = 0, which is equivalent to588

L(θ) = 0. This corresponds to condition (ii). Hence, if condition (ii) is violated, we need to prove589

condition (iii). In this sense, ∣u(1)i ∣→ ∣u
(2)
i ∣ occurs and Eq. (72) can be rewritten as590

dvi/dt
∣vi∣

−
dvj/dt
∣vj ∣

= (sign(vi) − sign(vj))η(α1v
2 − 2α2v + α3). (84)

When vi and vj are both positive, we have591

dvi/dt
vi

−
dvj/dt
vj

= 0. (85)

With Ito’s lemma, we have592

d log(vi)
dt

= dvi
vidt

− 2η(α1v
2 − 2α2v + α3). (86)

Therefore, Eq. (85) can be simplified to593

d(log(vi) − log(vj))
dt

= 0, (87)

which indicates that all vi with the same sign will decay at the same rate. This differs from the case594

of D > 2 where all vi decay to the same value. Similarly, we can prove the case where vi and vj are595

both negative.596

Now, we consider the case where vi is positive while vj is negative and rewrite Eq. (84) as597

dvi/dt
vi

+
d(∣vj ∣)/dt
∣vj ∣

= 2η(α1v
2 − 2α2v + α3). (88)

Furthermore, we can derive the dynamics of vj with Ito’s lemma:598

d log(∣vj ∣)
dt

= dvi
vidt

− 2η(α1v
2 − 2α2v + α3). (89)

Therefore, Eq. (88) takes the form of599

d(log(vi) + log(∣vj ∣))
dt

= −2η(α1v
2 − 2α2v + α3). (90)

In the long-time limit, we can see log(vi∣vj ∣) decays to −∞, indicating that either vi or vj will decay600

to 0. This corresponds to condition 1 in the theorem statement. Combining Eq. (87) and Eq. (90),601

we conclude that all vi have the same sign as t → ∞, which indicates condition 2-(a) if conditions602

in item 1 are all violated. The proof is thus complete.603

A.7 Proof of Theorem 4.2604

Proof. Following Eq. (70), we substitute u
(k)
i with v

1/D
i for arbitrary k and obtain605

dvi
dt
= − 2(D + 1)∣vi∣2D/(D+1)(β1v − β2) + 2(D + 1)∣vi∣2D/(D+1)

√
η(α1v2 − 2α2v + α3)

dW

dt

+ 2(D + 1)Dv3i ∣vi∣−4/(D+1)η(α1v
2 − 2α2v + α3). (91)

With Eq. (78), we can see that for arbitrary i and j, vi will converge to vj in the long-time limit. In606

this case, we have v = dvi for each i. Then, the SDE for v can be written as607

dv

dt
= − 2(D + 1)d2/(D+1)−1∣v∣2D/(D+1)(β1v − β2) + 2(D + 1)d2/(D+1)−1∣v∣2D/(D+1)

√
η(α1v2 − 2α2v + α3)

dW

dt

+ 2(D + 1)Dd4/(D+1)−2v3∣v∣−4/(D+1)η(α1v
2 − 2α2v + α3). (92)

If v > 0, Eq. (92) becomes608

dv

dt
= − 2(D + 1)d2/(D+1)−1v2D/(D+1)(β1v − β2) + 2(D + 1)d2/(D+1)−1v2D/(D+1)

√
η(α1v2 − 2α2v + α3)

dW

dt

+ 2(D + 1)Dd4/(D+1)−2v3−4/(D+1)η(α1v
2 − 2α2v + α3). (93)
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Therefore, the stationary distribution of a general deep diagonal network is given by609

p(v)∝ 1

v3(1−1/(D+1))(α1v2 − 2α2v + α3)
exp(− 1

T
∫ dv

d1−2/(D+1)(β1v − β2)
(D + 1)v2D/(D+1)(α1v2 − 2α2v + α3)

) .

(94)

If v < 0, Eq. (92) becomes610

d∣v∣
dt
= − 2(D + 1)d2/(D+1)−1∣v∣2D/(D+1)(β1∣v∣ + β2) − 2(D + 1)d2/(D+1)−1∣v∣2D/(D+1)

√
η(α1∣v∣2 + 2α2∣v∣ + α3)

dW

dt

+ 2(D + 1)Dd4/(D+1)−2∣v∣3−4/(D+1)η(α1∣v∣2 + 2α2∣v∣ + α3). (95)

The stationary distribution of ∣v∣ is given by611

p(∣v∣)∝ 1

∣v∣3(1−1/(D+1))(α1∣v∣2 + 2α2∣v∣ + α3)
exp(− 1

T
∫ d∣v∣ d1−2/(D+1)(β1∣v∣ + β2)

(D + 1)∣v∣2D/(D+1)(α1∣v∣2 + 2α2∣v∣ + α3)
) .

(96)
Thus, we have obtained612

p±(∣v∣)∝
1

∣v∣3(1−1/(D+1))(α1∣v∣2 ∓ 2α2∣v∣ + α3)
exp(− 1

T
∫ d∣v∣ d1−2/(D+1)(β1∣v∣ ∓ β2)

(D + 1)∣v∣2D/(D+1)(α1∣v∣2 ∓ 2α2∣v∣ + α3)
) .

(97)
Especially when D = 1, the distribution function can be simplified as613

p±(∣v∣)∝
∣v∣±β2/2α3T−3/2

(α1∣v∣2 ∓ 2α2∣v∣ + α3)1±β2/4Tα3
exp(− 1

2T

α3β1 − α2β2

α3

√
∆

arctan
α1∣v∣ ∓ α2√

∆
) , (98)

where we have used the integral614

∫ dv
β1v ∓ β2

α1v2 − 2α2v + α3
= α3β1 − α2β2

α3

√
∆

arctan
α1∣v∣ ∓ α2√

∆
±β2

α3
log(v)± β2

2α3
log(α1v

2−2α2v+α3).

(99)
Furthermore, we can also see that p(v) = δ(v) is also the stationary distribution of the Fokker-Planck615

equation of Eq. (93). Hence, the general stationary distribution of v can be expressed as616

p∗(v) = (1 − z)δ(v) + zp±(v). (100)

The proof is complete.617

A.8 Analysis of the maximum probability point618

To investigate the existence of the maximum point given in Eq. (16), we treat T as a variable and619

study whether (β1−10α2T )2+28α1T (β2−3α3T ) ∶= A in the square root is always positive or not.620

When T < β2

3α3
= Tc/3, A is positive for arbitrary data. When T > β2

3α3
, we divide the discussion into621

several cases. First, when α1α3 > 25
21
α2
2, there always exists a root for the expression A. Hence, we622

find that623

T =
−5α2β1 + 7α1β2 +

√
7
√
3α1α3β2

1 − 10α1α2β1β2 + 7α2
1β

2
2

2(21α1α3 − 25α2
2)

∶= T ∗ (101)

is a critical point. When Tc/3 < T < T ∗, there exists a solution to the maximum condition. When624

T > T ∗, there is no solution to the maximum condition.625

The second case is α2
2 < α1α3 < 25

21
α2
2. In this case, we need to further compare the value between626

5α2β1 and 7α1β2. If 5α2β1 < 7α1β2, we have A > 0, which indicates that the maximum point627

exists. If 5α2β1 > 7α1β2, we need to further check the value of minimum of A, which takes the628

form of629

minTA(T ) =
(25α2

2 − 21α1α3)β2
1 − (7α1β2 − 5α2β1)2

25α2
2 − 21α1α3

. (102)

If 7α1

5α2
< β1

β2
<

5α2+
√

25α2
2−21α1α3

3α3
, the minimum of A is always positive and the maximum630

exists. However, if β1

β2
≥

5α2+
√

25α2
2−21α1α3

3α3
, there is always a critical learning rate T ∗. If631
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without weight decay with weight decay

single layer (α1v
2 − 2α2v + α3)−1−

β1
2Tα1 α1(v − k)−2−

(β1+γ)
Tα1

non-interpolation vβ2/2α3T−3/2

(α1v2−2α2v+α3)1+β2/4Tα3

vS(β2−γ)/2α3λ−3/2

(α1v2−2α2v+α3)1+(β2−γ)/4Tα3

interpolation y = kx v−3/2+β1/2Tα1k

(v−k)2+β1/2Tα1k
v
−3/2+ 1

2Tα1k
(β1− γ

k
)

(v−k)2+
1

2Tα1k
(β1− γ

k
) exp(−

βγ
2Tα1

1
k(k−v))

Table 1: Summary of distributions p(v) in a depth-1 neural network. Here, we show the distribution
in the nontrivial subspace when the data x and y are positively correlated. The Θ(1) factors are
neglected for concision.

β1

β2
=

5α2+
√

25α2
2−21α1α3

3α3
, there is only one critical learning rate as Tc = 5α2β1−7α1β2

2(25α2
2−21α1α3) . When632

Tc/3 < T < T ∗, there is a solution to the maximum condition, while there is no solution when633

T > T ∗. If β1

β2
>

5α2+
√

25α2
2−21α1α3

3α3
, there are two critical points:634

T1,2 =
−5α2β1 + 7α1β2 ∓

√
7
√
3α1α3β2

1 − 10α1α2β1β2 + 7α2
1β

2
2

2(21α1α3 − 25α2
2)

. (103)

For T < T1 and T > T2, there exists a solution to the maximum condition. For T1 < T < T2, there635

is no solution to the maximum condition. The last case is α2
2 = α1α3 < 25

21
α2
2. In this sense, the636

expression of A is simplified as β2
1 + 28α1β2T − 20α2β1T . Hence, when β1

β2
< 7α1

5α2
, there is no637

critical learning rate and the maximum always exists. Nevertheless, when β1

β2
> 7α1

5α2
, there is always638

a critical learning rate as T ∗ = β2
1

20α2β1−28α1β2
. When T < T ∗, there is a solution to the maximum639

condition, while there is no solution when T > T ∗.640

A.9 Other Cases for D = 1641

The other cases are worth studying. For the interpolation case where the data is linear (y = kx for642

some k), the stationary distribution is different and simpler. There exists a nontrivial fixed point for643

∑i(u2
i −w2

i ): ∑j ujwj = α2

α1
, which is the global minimizer of L and also has a vanishing noise. It644

is helpful to note the following relationships for the data distribution when it is linear:645

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 = Var[x2],
α2 = kVar[x2] = kα1,

α3 = k2α1,

β1 = E[x2],
β2 = kE[x2] = kβ1.

(104)

Since the analysis of the Fokker-Planck equation is the same, we directly begin with the distribution646

function in Eq. (15) for ui = −wi which is given by P (∣v∣) ∝ δ(∣v∣). Namely, the only possible647

weights are ui = wi = 0, the same as the non-interpolation case. This is because the corresponding648

stationary distribution is649

P (∣v∣)∝ 1

∣v∣2(∣v∣ + k)2
exp(− 1

2T
∫ d∣v∣

β1(∣v∣ + k) + α1
1
T
(∣v∣ + k)2

α1∣v∣(∣v∣ + k)2
)

∝ ∣v∣−
3
2−

β1
2Tα1k (∣v∣ + k)−2+

β1
2Tα1k . (105)

The integral of Eq. (105) with respect to ∣v∣ diverges at the origin due to the factor ∣v∣
3
2+

β1
2Tα1k .650

For the case ui = wi, the stationary distribution is given from Eq. (15) as651

P (v)∝ 1

v2(v − k)2
exp(− 1

2T
∫ dv

β1(v − k) + α1T (v − k)2

α1v(v − k)2
)

∝ v
− 3

2+
β1

2Tα1k (v − k)−2−
β1

2Tα1k . (106)
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Now, we consider the case of γ ≠ 0. In the non-interpolation regime, when ui = −wi, the stationary652

distribution is still p(v) = δ(v). For the case of ui = wi, the stationary distribution is the same as653

in Eq. (15) after replacing β with β′2 = β2 − γ. It still has a phase transition. The weight decay654

has the effect of shifting β2 by −γ. In the interpolation regime, the stationary distribution is still655

p(v) = δ(v) when ui = −wi. However, when ui = wi, the phase transition still exists since the656

stationary distribution is657

p(v)∝ v−
3
2+θ2

(v − k)2+θ2
exp(− β1γ

2Tα1

1

k(k − v)
) , (107)

where θ2 = 1
2Tα1k

(β1 − γ
k
). The phase transition point is θ2 = 1/2, which is the same as the non-658

interpolation one.659

The last situation is rather special, which happens when ∆ = 0 but y ≠ kx: y = kx − c/x for some660

c ≠ 0. In this case, the parameters α and β are the same as those given in Eq. (104) except for β2:661

β2 = kE[x2] − kc = kβ1 − kc. (108)

The corresponding stationary distribution is662

P (∣v∣)∝ ∣v∣− 3
2−ϕ2

(∣v∣ + k)2−ϕ2
exp( c

2Tα1

1

k(k + ∣v∣)
) , (109)

where ϕ2 = 1
2Tα1k

(β1 − c). Here, we see that the behavior of stationary distribution P (∣v∣) is663

influenced by the sign of c. When c < 0, the integral of P (∣v∣) diverges due to the factor ∣v∣− 3
2−ϕ2 <664

∣v∣−3/2 and Eq. (109) becomes δ(∣v∣) again. However, when c > 0, the integral of ∣v∣may not diverge.665

The critical point is 3
2
+ ϕ2 = 1 or equivalently: c = β1 + Tα1k. This is because when c < 0, the data666

points are all distributed above the line y = kx. Hence, ui = −wi can only give a trivial solution.667

However, if c > 0, there is the possibility to learn the negative slope k. When 0 < c < β1 + Tα1k,668

the integral of P (∣v∣) still diverges and the distribution is equivalent to δ(∣v∣). Now, we consider the669

case of ui = wi. The stationary distribution is670

P (∣v∣)∝ ∣v∣− 3
2+ϕ2

(∣v∣ − k)2+ϕ2
exp(− c

2Tα1

1

k − ∣v∣
) . (110)

It also contains a critical point: − 3
2
+ ϕ2 = −1, or equivalently, c = β1 − α1kT . There are two cases.671

When c < 0, the probability density only has support for ∣v∣ > k since the gradient always pulls the672

parameter ∣v∣ to the region ∣v∣ > k. Hence, the divergence at ∣v∣ = 0 is of no effect. When c > 0,673

the probability density has support on 0 < ∣v∣ < k for the same reason. Therefore, if β1 > α1kT ,674

there exists a critical point c = β1 − α1kT . When c > β1 − α1kT , the distribution function P (∣v∣)675

becomes δ(∣v∣). When c < β1−α1kT , the integral of the distribution function is finite for 0 < ∣v∣ < k,676

indicating the learning of the neural network. If β1 ≤ α1kT , there will be no criticality and P (∣v∣)677

is always equivalent to δ(∣v∣). The effect of having weight decay can be similarly analyzed, and678

the result can be systematically obtained if we replace β1 with β1 + γ/k for the case ui = −wi or679

replacing β1 with β1 − γ/k for the case ui = wi.680
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Question: Does the paper describe safeguards that have been put in place for responsible910

release of data or models that have a high risk for misuse (e.g., pretrained language models,911

image generators, or scraped datasets)?912

Answer: [No]913

Justification: We believe there is no risks for misuse for the data and models.914

Guidelines:915

• The answer NA means that the paper poses no such risks.916

• Released models that have a high risk for misuse or dual-use should be released with917

necessary safeguards to allow for controlled use of the model, for example by re-918

quiring that users adhere to usage guidelines or restrictions to access the model or919

implementing safety filters.920

• Datasets that have been scraped from the Internet could pose safety risks. The authors921

should describe how they avoided releasing unsafe images.922

• We recognize that providing effective safeguards is challenging, and many papers do923

not require this, but we encourage authors to take this into account and make a best924

faith effort.925

12. Licenses for existing assets926

Question: Are the creators or original owners of assets (e.g., code, data, models), used in927

the paper, properly credited and are the license and terms of use explicitly mentioned and928

properly respected?929

Answer:[NA]930

Justification: [NA]931

Guidelines:932

• The answer NA means that the paper does not use existing assets.933

• The authors should cite the original paper that produced the code package or dataset.934

• The authors should state which version of the asset is used and, if possible, include a935

URL.936

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.937

• For scraped data from a particular source (e.g., website), the copyright and terms of938

service of that source should be provided.939
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• If assets are released, the license, copyright information, and terms of use in the940

package should be provided. For popular datasets, paperswithcode.com/941

datasets has curated licenses for some datasets. Their licensing guide can help942

determine the license of a dataset.943

• For existing datasets that are re-packaged, both the original license and the license of944

the derived asset (if it has changed) should be provided.945

• If this information is not available online, the authors are encouraged to reach out to946

the asset’s creators.947

13. New Assets948

Question: Are new assets introduced in the paper well documented and is the documenta-949

tion provided alongside the assets?950

Answer: [No]951

Justification: Nothing introduced.952

Guidelines:953

• The answer NA means that the paper does not release new assets.954

• Researchers should communicate the details of the dataset/code/model as part of their955

submissions via structured templates. This includes details about training, license,956

limitations, etc.957

• The paper should discuss whether and how consent was obtained from people whose958

asset is used.959

• At submission time, remember to anonymize your assets (if applicable). You can960

either create an anonymized URL or include an anonymized zip file.961

14. Crowdsourcing and Research with Human Subjects962

Question: For crowdsourcing experiments and research with human subjects, does the pa-963

per include the full text of instructions given to participants and screenshots, if applicable,964

as well as details about compensation (if any)?965

Answer: [NA]966

Justification: We believe that neither the crowdsourcing nor the research with human sub-967

jects is included in our work.968

Guidelines:969

• The answer NA means that the paper does not involve crowdsourcing nor research970

with human subjects.971

• Including this information in the supplemental material is fine, but if the main contri-972

bution of the paper involves human subjects, then as much detail as possible should973

be included in the main paper.974

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-975

tion, or other labor should be paid at least the minimum wage in the country of the976

data collector.977

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human978

Subjects979

Question: Does the paper describe potential risks incurred by study participants, whether980

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)981

approvals (or an equivalent approval/review based on the requirements of your country or982

institution) were obtained?983

Answer: [NA]984

Justification: Our work does not contain crowdsourcing or research with human subjects.985

Guidelines:986

• The answer NA means that the paper does not involve crowdsourcing nor research987

with human subjects.988

• Depending on the country in which research is conducted, IRB approval (or equiva-989

lent) may be required for any human subjects research. If you obtained IRB approval,990

you should clearly state this in the paper.991

29

paperswithcode.com/datasets
paperswithcode.com/datasets
paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions992

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the993

guidelines for their institution.994

• For initial submissions, do not include any information that would break anonymity995

(if applicable), such as the institution conducting the review.996
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