
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SEPNORM: GENERALIZATION OF LION AND NOR-
MALISED GRADIENT METHODS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we investigate the novel optimizer Lion (Evolved Sign Momen-
tum), which demonstrates superior performance compared to the well-established
Adam in a wide range of tasks. Lion is a combination of Sign Gradient Descent
(SignGD) and momentum, utilizing a fixed step size and adjusting the gradient
direction via a sign operation. Despite its promising results, Lion currently lacks
comprehensive theoretical justification. We also discuss Normalized Gradient De-
scent methods, characterized by a fixed step size, which predate Lion. We show
that both Lion and NormGD have notable disadvantages, and to address these is-
sues, we propose a new method SepNorm, which normalizes gradients across dif-
ferent parameter groups. SepNorm generalizes both Lion and NormGD, offering
a more adaptable and stable optimization approach. Our theoretical analysis on
quadratic functions reveals mechanisms of convergence behind the methods and
allows us to formulate implicit bias criteria for them. Additionally, we introduce
OrtSepNorm, an extension of SepNorm that makes update direction orthogonal
to the weights, and we demonstrate that OrtSepNorm converges to a fixed weight
norm, thereby making the training process more stable. Empirical evaluations re-
veal that SepNorm and OrtSepNorm outperform both Lion and Adam in a range
of computer vision (CV) and natural language processing (NLP) tasks.

1 INTRODUCTION

The overparameterization property of modern neural networks is a key factor contributing to their
high performance across a wide range of tasks. Numerous studies have demonstrated the impact of
overparameterization property on the training process and loss landscape. However, it also signif-
icantly slows down training, making it computationally expensive. Therefore, the development of
new optimization schemes that leverage the advantages of overparameterization while speeding up
training is an important and actual problem.

Many optimization methods have been introduced specifically for neural network training. One such
class of methods involves fixed step size schemes. The first proposed method was Norm (S)GD
(Mandic, 2004), the key idea of which was the normalization of the gradient to the unit sphere.
Another fixed step size method was Sign (S)GD (Moulay et al., 2019), which applies an element-
wise sign operation to the gradient. Additionally, generalized approaches like the Block Normalized
Gradient method (Yu et al., 2017) have been proposed, although they have not been deeply studied.

The authors of the paper (Chen et al., 2024) proposed a novel optimizer, Lion (Evolved Sign Mo-
mentum), discovered through program search in the symbolic representation of optimizer space.
Lion combines various modifications of traditional methods with Sign (S)GD scheme: exponential
smoothing with momentum, decoupled weight decay, and sign operation. Similar to Sign (S)GD,
this method has a fixed step size since the norm of the output of the sign function equals the number
of nonzero elements. The authors demonstrate that Lion outperforms widely used method AdamW
across a various range of tasks, including language modeling and image generation with diffusion
models.

However, due to the novelty of Lion, there is a lack of theoretical justification for its performance.
In our paper, we investigate the mechanisms behind its effectiveness. We analyze the behavior of the
method on quadratic functions and demonstrate that the sign operation establishes the lower bound
on the possible loss that is dependent on the learning rate and the sharpness of the minima.
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Furthermore, we introduce a new method called SepNorm, which renormalizes each group of pa-
rameters separately, similar to Block Normalized GD. This is a more general approach because Lion
can be considered as SepNorm where each weight forms a separate group. For SepNorm, we also
demonstrate inductive bias properties for quadratic functions. Additionally, we show that SepNorm
overcomes a disadvantage of Lion, which we term ”Momentum Tracing”.

We also propose the OrtSepNorm method, a modification of SepNorm that projects the momentum
onto a direction orthogonal to weight decay. For scale-invariant networks, we show that OrtSepNorm
allows the model to first converge to a fixed weight norm, the value of which can be computed a
priori, and then find better global minimum of the training loss using its implicit bias as an external
criterion.

We conduct a range of experiments across different architectures and tasks, demonstrating better
or comparable performance of the proposed methods over Lion and AdamW (Loshchilov, 2017).
We also perform experiments in a Grokking setup (Liu et al., 2022b), confirming our theoretical
hypotheses about the positive impact of equalizing convergence speed across different groups of
parameters.

Thus, the main contributions of this paper are summarized as follows:

• We identify the existing drawbacks of Lion and Norm (S)GD methods and provide experi-
mental evidence of their negative effects on the training process.

• We introduce SepNorm, a new optimization method that normalizes each group of param-
eters separately, providing a more general approach than Lion.

• We investigate the behavior of Lion and SepNorm on quadratic functions, demonstrating
their inductive bias properties.

• We develop OrtSepNorm, a modification of SepNorm that projects momentum orthogo-
nally to weight decay, enhancing convergence stability for scale-invariant networks.

• We conduct extensive experiments across different architectures and tasks, showing that
SepNorm achieves better or comparable performance to state-of-the-art optimizers like
AdamW and Lion.

2 RELATED WORKS

Overparameterization is a property of modern neural networks where the number of parameters is
significantly greater than the number of training samples. Many studies explore the benefits of over-
parameterization (Belkin et al., 2019; Liu et al., 2022a; Schaeffer et al., 2023; Neyshabur et al.,
2018). Another property of modern models is scale-invariance. Scale-invariance means that all or
part of the parameters are invariant to multiplication by a positive constant. This property arises due
to the use of normalization layers in combination with ReLU activations and has been extensively
studied (Cho & Lee, 2017; Van Laarhoven, 2017; Zhang et al., 2018; Li & Arora, 2019; Li et al.,
2020). In (Kodryan et al., 2022), the authors investigate the behavior of the training process of scale-
invariant models with fixed weight norms and discover a strong connection between learning rate
and generalization. Enhancing generalization ability is one of the core problems in deep learning.
Many works try to use the sharpness of minima on the training loss as a measure of generalization
(Keskar et al., 2016; Andriushchenko et al., 2023). Methods based on implicit sharpness minimiza-
tion demonstrate notable improvements in performance on various tasks (Foret et al., 2020; Kwon
et al., 2021; Zhuang et al., 2022).

Various optimization methods have been proposed to improve the training of neural networks. The
most popular is the Adam method (Kingma, 2014), which adds to traditional SGD (Nesterov, 1983)
a momentum mechanism and element-wise gradient adjustment with running statistics of gradient
squares. This works as a preconditioning, allowing the model to adapt the step size independently
for each component and descend down the slopes of the loss function (Cohen et al., 2022). Its
modification, AdamW (Loshchilov, 2017), uses decoupled weight decay, which provides classic
theoretical regularization on the weight norm. Besides, element-wise adjustments, many methods
use other techniques. The Norm (S)GD method normalizes the gradient to the unit sphere, which
leads to a fixed step size. Many properties of this method have been studied in (Murray et al., 2019;
Mandic, 2004; Zhao et al., 2021). Another method with a fixed step size is Sign GD (Moulay et al.,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2019; Li et al., 2023; Safaryan & Richtárik, 2021). This method applies the sign operation to the
update vector, which can be considered as Adam with specific relationship between moving averages
between first and second order statistics. In paper (Balles et al., 2020), the authors provide deep
theoretical research of Sign GD methods in terms of separable smoothness. They demonstrate that
the method is sensitive to the diagonal concentration property of hessian and provide experimental
evidence on quadratic functions.

The more general method Block Normalized GD, which was introduced in (Yu et al., 2017), uses
block-wise gradient normalization, adding flexibility in choosing blocks for gradient adjustment.

The novel method Lion (Chen et al., 2024) was developed using program search in the symbolic
representation of the optimizer space. This method can be considered as Sign GD with momentum,
gradient enhancement (which can be seen as Nesterov Momentum), and decoupled weight decay.
The authors demonstrate its superiority in comparison to AdamW on a wide range of tasks.

In paper (Chen et al., 2023), the authors analyze the continuous variant of Lion and introduce the
family of Lion-K methods. Since the sign function is not differentiable, the authors use the con-
cept of a subgradient and prove that optimization by the Lion method corresponds to conditional
optimization under constraint on the weight norm:

min
w

L(w) s.t. ||w||∞ ≤ 1

λ
, (1)

where λ is the weight decay hyperparameter.

However, this often holds also for traditional optimization approaches, thus it does not provide
insights into the superior performance of Lion.

Many works try to provide theoretical justifications for the existing methods in application to neural
networks. In paper Barrett & Dherin (2020), it was demonstrated that gradient descent implements
an implicit regularization of gradient norm, which is a good sharpness measure. This also applies
to stochastic methods and even to methods with adaptive steps such as Adam Smith et al. (2021),
Cattaneo et al. (2023). Another interesting property strictly connected with implicit bias is the Edge
of Stability Cohen et al. (2021), Cohen et al. (2022). This phenomenon relates to the behavior of
the training process near the zero-loss manifold in which the model exhibits a drift according to
implicit regularization flow. Research of this phenomenon for Norm (S)GD on quadratic functions
demonstrates that the method has an implicit bias which regularizes the spectral norm of the Hessian
Murray et al. (2019), another widely used sharpness measure.

3 THEORY BEHIND LION

Lion (Chen et al., 2024) was developed via program search in symbolic representation of optimizers
and can be represented as following way:
Definition 3.1. The update rule of Lion:

{
mt+1 = β2mt + (1− β2)∇L(wt)

wt+1 = (1− ηλ)wt − η sign(β1mt + (1− β1)∇L(wt))
(2)

where η is learning rate, λ - weight decay coefficient.

Lion uses the sign operation applied to momentum adjusted gradient. Since the norm of the sign
operation equals the number of nonzero elements, this often results in a fixed step size equal to η

√
d,

where d is the dimension of the network. The sign operation affects the update direction. Therefore,
without weight decay and learning rate annealing, Lion can be considered to optimize the function
on a predefined rectangular grid, significantly differing from traditional approaches.

For fixed step size methods, a more natural approach is to normalize the gradient or momentum up-
date to its norm. This method, known as Norm (S)GD, was introduced in a paper prior to Lion and
Sign (S)GD. Without the limitation of optimization on rectangular grid, this method should be more
flexible in terms of update directions. However, Lion has an important advantage over Norm (S)GD.
Due to the vanishing gradient problem, some weights may receive small gradient components, es-
pecially those corresponding to first layers. After the sign operation, Lion equalizes updates based
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only on their sign. In Norm (S)GD, after update normalization, these small components remain
small, potentially undertraining first layers compared to deeper ones with larger gradient values.
Traditional methods like SGD or AdamW may also exhibit undertraining of certain layers. In the
paper (Liu et al., 2022b), the authors demonstrate that if the first layers are trained slower than the
latter ones, it is more likely to observe grokking phenomenon, i.e. the situation when the training
loss is almost at global minimum while the validation loss remains high due to memorization of
training data.
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Comparison of grokking phenomenon for different methods

Figure 1: Comparison of Adam, Lion, SepNorm and OrtSepNorm methods on grokking setup.
Grokking phenomenon is characterized by the width of the gap between points of 100% accuracy
on training and validation. SepNorm has the smallest gap in comparison to Adam and Lion, which
indicates that the method equalizes the training speed between different layers and prevents ap-
pearance of relatively undertrained parameter groups. OrtSepNorm makes the gap even smaller by
explicitly encouraging the convergence to the weights of fixed norm in addition to equalization of
the training speed for all layers.

Experiments on the grokking setup confirmed our hypothesis. Figure 1(a) shows a comparison
between Adam and Lion. The width of the gap between the points of 100% accuracy on training
and validation identifies undertraining of the first layers relative to the deeper ones. Equalization of
speed in Lion allows the first layers to train faster; therefore, we observe a decrease in the gap width.

However, using the sign operation in Lion also introduces a drawback. Most modern neural networks
incorporate normalization layers, such as Batch Normalization (Ioffe & Szegedy, 2015) and Layer
Normalization (Ba et al., 2016), followed by ReLU or similar activations. When the preactivation
feature map components are negative, ReLU outputs zero, resulting in no backpropagation signal
through those components. Consequently, the corresponding components of the bias term in the
normalization layer receive zero gradient.

After the gradient becomes zero, these components may continue updating in the direction of mo-
mentum for an extended period until the gradient becomes non-zero again or the momentum value
diminishes to numerical precision limits. If the momentum components associated with the bias
term of the normalization layers are negative, a positive feedback loop can occur. In this scenario,
the bias components shift further into negative values, reducing the preactivation values even more,
which in turn maintains zero gradients.

When the momentum values have already become very small and a gradient signal suddenly reap-
pears, the weight values might have moved into suboptimal regions, causing abrupt changes that
destabilize the training process. We term this effect ”momentum tracing”. With both convolutional
and linear layers multiple parameters lose the gradient signal when the corresponding BatchNorm
activation outputs zero. The experimental evidence of the effect is illustrated in 2.

In contrast to ReLU, LeakyReLU activation preserve backpropagation signal even for negative val-
ues of preactivation components, which eliminates the effect. Experiments with LeakyReLU acti-
vaions presented in Appendix C.
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Figure 2: A display of Lion divergence with ResNet18 on CIFAR-10 . (Center left:) A number
of BN biases with a near-zero momentum that receive a non-zero gradient on the current iteration.
(Center:) Blue — a 95 quantile of networks’ parameters values. Under Lion-weight decay dynamics
weights converge to ±5 = ±1/λ when their gradients are identical to zero. (Center right:) Cosine
similarity between 5% largest weights and their updates converges to 1 as the weights converge to
1/λ.

Moreover, using normalization layers with ReLU activation makes groups of weights before the
activation scale-invariant, meaning that multiplication by a positive constant doesn’t change the
output. From this, two properties can be inferred:

{
⟨∇L(w), w⟩ = 0,∀w
∇L(αw) = 1

α∇L(w)
(3)

The first property means that the gradient direction of the scale-invariant weights is orthogonal to
the weight decay direction. It also implies that the gradient step always increases the weight norm.
The second property defines the effective gradient as the gradient of the function with normalized
weights: ∇L( w

||w|| ) = ||w||∇L(w). As was shown in Kodryan et al. (2022) for scale-invariant
networks, the norm of the effective gradient can be treated as a good approximation to sharpness of
train loss on a unit sphere and is positively correlated with validation error.

Consider method Norm (S)GD. We can show interesting property:

Theorem 3.1. For scale-invariant networks method Norm (S)GD without momentum converges to
weight norm equal to: ||w|| = η√

2ηλ−η2λ2

The sign operation in Lion changes the update direction, therefore even without momentum, this
property will not hold. However, in practice, both methods Norm (S)GD and Lion, even with the
momentum mechanism, demonstrate convergence of the weight norm although at a much slower
rate.

This property is useful because theoretical guarantees for convergence to a fixed weight norm make
the training process more stable. In Lobacheva et al. (2021), the authors observe periodic fluctuations
in scale-invariant models with a fixed learning rate. They show that instabilities in the model can
arise due to periodic explosion of weight norms. Additionally, in Kodryan et al. (2022), the authors
analyze the behavior of scale-invariant models during training on a fixed sphere. In this setup, they
demonstrate that the correlation between generalization and sharpness is much stronger in a fixed
weight norm setup. Therefore, regularization of the sharpness after the convergence of the weight
norm allows achieving minima with better generalization. Hence, it is important to explore the
sharpness regularization properties of methods with fixed step sizes.

4 THEORY BEHIND SEPNORM

Both of the methods Lion and Norm (S)GD have different advantages and disadvantages: sign
operation in Lion allows model to perform equally large update steps, even for components with
small gradient norm, at the same time deflecting the update out of gradient direction, which adds
additional noise to training process. In this section, we propose SepNorm, a new approach based on
Block Normalized GD, which can be considered as a general version of both methods:

5
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Definition 4.1. Update of SepNorm optimization method:

wt = (1− ηλ)wt−1 − ηT−1
s ut, (4)

where

Ts = diag(
||ul1

t ||√
|l1|

,
||ul1

t ||√
|l1|

, ...,
||uln

t ||√
|ln|

)

where li — parameter group, |li| — size of the group, n - number of groups, ut — update vector,
after momentum mechanism applying.

In this method, the gradient is normalized separately among various groups of parameters li. Hence,
Lion can be considered as SepNorm where all groups consist of a single parameter, and Norm (S)GD
- as SepNorm with only one group consisting of all parameters. SepNorm uses the same weight
decay and momentum mechanisms as Lion. Also, for each group of parameters their gradients are
renormalized to the square root of the dimension of the corresponding group

√
|li|. This is used to

align the sizes of the steps within the groups relative to the entire space, which holds for Lion. Norm
of Lion’s step equals to square root of non-zero gradient components, therefore renormalization with
square root of group dimension equalizes Lion and SepNorm step sizes.

If some group has smaller gradients than another, for example due to a vanishing gradient, after
the normalization, each group will have equal impact on the whole update of parameters. However
inside each group the update direction will match gradient direction for the group.

As a choice of parameter groups, the most natural approach is to use the weights of a single layer
as a separate group, which we will use in all experiments with a method. This choice allows us to
equalize convergence speed among layers, which prevents underfitting of some part of the network.
However, for some models it may be beneficial to join several layers into blocks and handle it as a
separate group.

For the proposed method, the overall direction will not differ as much as it does in Lion, which
means that SepNorm is a less noisy method than Lion. The noisiness of Lion is implicitly confirmed
by the fact that Lion prefers larger batch sizes. The value of the batch size controls the level of noise,
and the noise from small batches in addition to noise from the sign operation leads to suboptimal
behavior for Lion. SepNorm is devoid of such problems since the noise from block normalization is
significantly less than in Lion. Thus, SepNorm is a more flexible method in terms of hyperparameter
selection and can show better performance with small batch sizes.

For method SepNorm without momentum, holds the similar property as for Norm (S)GD. However,
the proof of this is based on the following lemma (proof in Appendix A.):
Lemma 4.1. For each scale-invariant group li holds scale-invariance property of orthogonality:

⟨∇liL(w), wli⟩ = 0

Then, the validity of the following theorem is obvious (proof in Appendix A.):
Theorem 4.2. Consider method SepNorm without momentum on scale-invariant networks with nor-
malization among scale-invariant groups. Then, weight norm of each group li converges to:

||wli || =
η
√

|li|√
2ηλ− η2λ2

In the majority of architectures, for weights in a single layer holds the scale-invariance property,
which in turn justifies our choice to use layers as separate groups for SepNorm.

We also introduce OrtSepNorm, which is a modification of SepNorm for explicitly controlling the
weight norm in scale-invariant networks
Definition 4.2. Update of OrtSepNorm optimization method:

g = β1mt + (1− β1)∇L(wt)

g = g − cos(wt, g)
||g||
||wt||wt

wt+1 = (1− ηλ)wt − ηT−1
s g

mt+1 = β2mt + (1− β2)∇L(wt)

(5)

6
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The modified method has the property that its updates for each group of parameters are always
orthogonal to the weight direction in scale-invariant networks. Therefore, the following theorem
holds (proof in Appendix A.):
Theorem 4.3. Method OrtSepNorm converges to weight norm equal to:

||w|| = η
√
d√

2ηλ− η2λ2

Thus, OrtSepNorm has explicit theoretical guarantees for convergence to a fixed weight norm. In
experiments with grokking, OrtSepNorm showed the smallest gap (Figure 1(b)) among other meth-
ods due to faster weight norm convergence. And after the weight norm has stabilised, the implicit
regularization of sharpness (see next section) of fixed step size methods encourages convergence to
a global minimum with better generalization.

5 GEOMETRICAL INTERPRETATION OF METHODS ON QUADRATIC
FUNCTIONS

In this section, we will analyze the behaviour of Sign GD and SepNorm methods without momentum
on quadratic functions. Let L(w) = 1

2w
TAw be a quadratic function with some positive definite

matrix A. Let λmax(A) = λ1 ≥ λ2 ≥ ...λd - eigenvalues of A, v1, ..., vd - corresponding eigenvec-
tors. After the convergence the method starts oscillating between two points that can be regarded
as an attractor for the given optimizer. Let Lmax = max(L(wt), L(wt+1)), t ≫ 1. Of course the
particular attractor will depend on the choice of initial point w0 as well as the stochasticity of the
trajectory τ caused by the use of stochastic gradients. Denote ELmax the expected value of Lmax

w.r.t. to all possible τ and w0.

The important results from Arora et al. (2022) is that Norm GD converges to an attractor and loss
starts oscillating between points 1

2C
2λ1η

2 and 1
2 (C − 1)2λ1η

2, where 0 < C < 1. This allows us
to write a lower bound for Lmax for Norm GD (proof in Appendix B.):
Lemma 5.1. For Norm GD without momentum following lower bound holds:

λmax(A) ≤ 8

η2
ELmax (6)

To sum up, Norm GD oscillates along the eigenvector that corresponds to the largest eigenvalue, i.e.
sharpest direction.

To derive a lower bound for Sign GD, first we have to prove the following lemma (proof in Appendix
B.):
Lemma 5.2. Consider the function L(w) = 1

2w
TAw, with a positive definite diagonal matrix A.

Then, for Sign GD for any choice of w0 and optimization trajectory τ it holds:

Tr(A) ≤ 8

η2
Lmax. (7)

The bound is tight and corresponds to wt = −wt+1 = η
2e, where e is a vector consisting of +1 and

−1.

This lemma allows us to formulate the main result for the behavior of Sign GD on quadratic functions
(proof in Appendix B.):
Theorem 5.3. Consider the function L(w) = 1

2w
TAw, with a positive definite matrix A. Then, for

Sign GD it holds:

Tr(A) ≤ 8

η2
ELmax (8)

This theorem sets a lower bound on the average loss value to which the method converges. This
bound depends on the trace of the Hessian (a spectral sharpness measure). In other words, in sharp
regions, the method cannot achieve low loss values. Therefore, the learning rate and local sharpness
control the loss value to which the method may converge.

7
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SepNorm combines the properties of both Norm GD and Sign GD. The update rule can be considered
independently for each block, which means that weights inside blocks will be optimized as Norm
GD. Therefore, inside each block, the method will converge to the eigenvector corresponding to the
largest eigenvalue of the block. Then we may apply result from Sign GD treating sharpest direction
within each block as new variable in Sign GD (proof in Appendix B.):

Theorem 5.4. Consider the function L(w) = 1
2w

TAw, with a positive definite matrix A. Let
li, i = {1, ..., n} be a set of blocks of normalization in SepNorm. Let Ai be the block of the matrix
A corresponding to li. Then, for SepNorm it holds:

n∑
i=1

λmax(Ai)|li| ≤
8

η2
ELmax (9)

Thus, we can conclude that all considered methods possess the following feature: they can converge
to low loss values only in the regions with low sharpness, thus establishing the inductive bias towards
wide minima.

6 EXPERIMENTS

In this section, we compare Lion, AdamW, SepNorm, and OrtSepNorm on CV and NLP tasks. The
selection of these optimizers is based on AdamW’s status as the most popular method for training
large neural networks, and Lion’s superior performance on a wide range of tasks.

All the experiments described below were done in mixed precision. Results are averaged over three
runs for NLP and CV fine-tuning tasks, and over five runs for Imagenet full training. All the hyper-
parameters are specified in the Appendix D.

6.1 IMAGE CLASSIFICATION

The authors of the paper on Lion evaluated the performance of Lion and AdamW optimizers on
transformer architectures, varying the batch size. They concluded that the optimal batch size for
AdamW is 256, whereas for Lion, it is 4096. Given that our method offers less noisy updates
compared to Lion, we conducted our comparison using a batch size of 256. For training on computer
vision tasks, we used Vision Transformers (ViT) pre-trained on ImageNet-21k to save time. The
neural network training spanned 100,000 steps, incorporating a 4,000-step warmup phase, with the
learning rate following a cosine annealing schedule. More details about the hyperparameters used
for training can be found in Appendix D. As shown in Table 1, training with SepNorm achieved
better accuracy than other tested methods and, as expected, the Lion optimizer performed slightly
better than AdamW.

Furthermore, we trained transformers on Imagenet and V2 tasks using the augmentation procedure
presented by Touvron et al. (2022). Training was conducted with a batch size of 64, and the results
are presented in Table 1 with the prefix ”DeiT”.

We also trained ResNet-50 from scratch. As discussed earlier in the theoretical section, ResNet
architectures are poorly compatible with the Lion optimizer when training with a small batch size
due to the ”Momentum Tracing” effect. Consequently, in this experiment, we provide a comparison
only with AdamW. As shown in Table 2, SepNorm achieves superior accuracy on the test set.

To explore how the batch size affects the performance of the methods, we conducted ResNet-50
experiments with varying batch sizes. We employed linear scaling for the learning rate and kept
the weight decay constant. As shown in Table 2, AdamW peaks at a batch size of 256, while
SepNorm achieves its strongest performance at a larger batch size of 512. Regrettably, we did not
have sufficient resources to test larger batch sizes.

6.2 LANGUAGE MODELING AND FINE-TUNING

We fine-tuned 11B T5 models on the GLUE benchmark. Each model underwent fine-tuning for
50,000 steps, using a batch size of 128 and a constant learning rate. Due to limited computing
resources, we used 10 times fewer steps than the authors of Lion, which far exceeded the validation

8
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Table 1: Pre-train on ImageNet-21K then fine-tune on ImageNet
Optimizer Imagenet ReaL V2

AdamW 83.75 88.01 73.33
ViT-B/16384 Lion 83.90 88.27 73.41

Sepnorm 84.18 88.56 73.66
AdamW 78.01 83.89 66.24

ViT-S/16384 Lion 78.13 83.00 66.39
Sepnorm 78.35 84.31 66.72
AdamW 73.98 80.11 59.87

Mixer-B/16384 Lion 74.04 80.15 59.98
Sepnorm 74.19 80.46 60.21
AdamW 83.56 − 73.21

Deit ViT-S/16384 Lion 83.44 − 73.19
Sepnorm 83.67 − 73.35
AdamW 83.80 − 73.62

Deit ViT-B/16224 Lion 83.72 − 73.55
Sepnorm 83.93 − 73.76

Table 2: Validation accuracy for full training of ResNet50 on Imagenet with varying batch sizes.
batch size AdamW SepNorm

64 75.894 76.429
256 76.137±0.072 76.460±0.107

512 75.382 76.626

peak step for almost all tasks. As shown in Table 3, SepNorm outperforms all other optimizers on the
tasks CoLA, MRPC, STS-B, QQP, MNLI-m, and RTE. For other tasks (SST-2, MNLI-mm, QNLI),
both Lion and SepNorm show similar performance. We report the default metrics for CoLA, SST-2,
MNLI-m, MNLI-mm, QNLI, and RTE. For MRPC and QQP, we provide both F1 and Accuracy
scores. For STS-B, we report the Pearson and Spearman correlations.

Table 3: Fine-tuning performance of the T5 Base on the GLUE dev set. Results reported are the
peak validation scores per task.
Task AdamW Lion SepNorm OrtSepNorm

CoLA 61.5±1.6 60.7±0.7 61.8±1.1 61.3±1.4

SST-2 94.6±0.3 94.8±0.4 94.6±0.3 94.9±0.1

MRPC 93.9±0.3 / 91.3±0.5 93.8±0.2 / 91.2±0.3 94.2±0.4/92.0±0.7 94.2±0.4/91.9±0.6

STS-B 90.4±0.1 / 90.3±0.0 90.7±0.1 / 90.5±0.0 90.9±0.4/90.7±0.3 91.2±0.1/90.9±0.1

QQP 88.4±0.1 / 91.2±0.1 88.2±0.2/91.1±0.1 88.4±0.2/91.2±0.1 88.3±0.2/91.1±0.1

MNLI
-m 87.0±0.4 86.9±0.3 87.0±0.1 87.1±0.1

MNLI
-mm 87.1±0.1 87.1±0.1 87.2±0.1 87.2±0.1

QNLI 92.9±0.0 93.0±0.2 93.0±0.1 92.9±0.1

RTE 79.9±1.0 79.5±0.3 80.4±0.6 80.4±0.7
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7 CONCLUSION

In this paper, we introduce and analyze SepNorm and OrtSepNorm, new optimization methods de-
signed to address the shortcomings of Lion and Norm GD. Our theoretical and empirical evaluations
have revealed certain drawbacks of Lion. By examining the Lion alongside another fixed step size
method, Norm GD, we outline the major properties of both methods, which led us to develop the
SepNorm scheme. Specifically, the combination of a sign operation with momentum in Lion led to
instabilities due to a phenomenon we termed ”Momentum Tracing.” Furthermore, we analyze the
application of our methods to scale-invariant networks and demonstrate that they can converge to
a fixed weight norm, thereby stabilizing the training process. Additionally, we provide a theoreti-
cal investigation into the behavior of these methods on quadratic functions, which helps us define
their implicit bias properties. Empirical evaluations across various practical setups show that the
proposed SepNorm methods outperform both Adam and Lion.

Limitations. OrtSepNorm showed superior performance only in NLP tasks. Experiments on CV
tasks with ResNet architectures demonstrate suboptimal performance for the method due to the use
of a scheduler that causes the weight norm to become too low values, which in turn introduces
instabilities to the training process. to the training process. Also, we provide theoretical results only
for quadratic functions, which may be insufficient to generalize our theoretical findings to neural
networks.
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A PROOFS OF CONVERGENCE TO SPHERE

In this section, we provide proofs for the theorems about weight norm convergence on scale-invariant
networks. We will use the following notation: η is the learning rate, λ is the weight decay coefficient.

Let’s formally recall all methods.

Definition A.1. The update rule of Lion:

{
mt+1 = β2mt + (1− β2)∇L(wt)

wt+1 = (1− ηλ)wt − η sign(β1mt + (1− β1)∇L(wt))
(10)

where η is learning rate, λ - weight decay coefficient, β1 and β2 are hyperparameters for momen-
tum..

Definition A.2. The update rule of Norm (S)GD with decoupled weight decay and momentum:

{
wt+1 = (1− ηλ)wt + η β1mt−(1−β1)∇L(wt)

||β1mt−(1−β1)∇L(wt)||
mt+1 = β2mt + (1− β2)∇L(wt).

(11)

Definition A.3. Update of SepNorm optimization method:

wt = (1− ηλ)wt−1 − ηT−1
s ut, (12)

where

Ts = diag(
||ul1

t ||√
|l1|

,
||ul1

t ||√
|l1|

, ...,
||uln

t ||√
|ln|

)

where li is a parameter group, |li| is the size of the group, n is the number of groups, and ut is the
update vector after applying the momentum mechanism.
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Definition A.4. Update of OrtSepNorm optimization method:


g = β1mt + (1− β1)∇L(wt)

g = g − cos(wt, g)
||g||
||wt||wt

wt+1 = (1− ηλ)wt − ηT−1
s g

mt+1 = β2mt + (1− β2)∇L(wt)

(13)

The scale-invariance property imposes the following important properties on the gradient:{
⟨∇L(w), w⟩ = 0,∀w
∇L(αw) = 1

α∇L(w)
(14)

The first property, that gradient is orthogonal to weight decay direction, is crucial for following
proofs.

Firstly, let’s prove the theorem of convergence for Norm GD as the simplest method:

Theorem 4.1. For scale-invariant networks, the method Norm GD without momentum converges to
a weight norm equal to: ||w|| = η√

2ηλ−η2λ2

Proof. Let’s write the gradient update of Norm GD without momentum:

wt+1 = (1− ηλ)wt − η
∇L(w)

||∇L(w)||

Then, due to the scale-invariance property

||wt+1||2 = (1− ηλ)2||wt||2 + η2

After the stabilization of the weight norm, we can write it as:

||w||2 = (1− ηλ)2||w||2 + η2

Therefore, after simplification:

||w||2 =
η2

2ηλ− η2λ2

The proof of the same theorem for SepNorm requires the following lemma:

Lemma 4.2. For each scale-invariant group li, the scale-invariance property holds:

⟨∇liL(w), wli⟩ = 0

Proof. If li is a scale-invariant group of parameters, we can freeze the other weights in the neural
network and consider only the dependence on these parameters. Since multiplying li by a positive
constant will not change the result, the overall function is scale-invariant, and the orthogonality
property will hold for the group.

Then, the following theorem for SepNorm is valid:

Theorem 4.3. Consider the method SepNorm without momentum on scale-invariant networks with
normalization among scale-invariant groups. Then, the weight norm of each group li converges to:

||wli || =
η
√

|li|√
2ηλ− η2λ2

13
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Proof. Consider the gradient update of the SepNorm method:

wt+1 = (1− ηλ)wt − ηT−1
s ut

Let’s split the update rule into blocks and consider the update rule for them separately:

wli
t+1 = (1− ηλ)wli

t − η
uli
t

||uli
t ||

√
|li|

Taking the norm from both sides and using the previous lemma gives:

||wli
t+1||2 = (1− ηλ)2||wli

t ||2 + η2|li|

Therefore, by analogy with the theorem for Norm GD:

||wli || =
η
√

|li|√
2ηλ− η2λ2

Explicit orthogonalization in OrtSepNorm allows us to formulate a similar theorem without the
scale-invariance property of models:
Theorem 4.4. The method OrtSepNorm converges to a weight norm equal to:

||w|| = η
√
d√

2ηλ− η2λ2

Proof. The proof for the theorem is similar to SepNorm. Here, the additional term with the dot prod-
uct between the update and weight vector is eliminated due to explicit projection to the orthogonal
direction.

B PROOFS FOR GEOMETRICAL INTERPRETATION OF METHODS ON
QUADRATIC FUNCTIONS

In this section, we provide theoretical proofs for the proposed theorems.

The paper Arora et al. (2022) shows that for a quadratic function, the Norm GD method converges
and oscillates between points with loss values 1

2C
2λ1η

2 and 1
2 (1− C)2λ1η

2, for some 0 < C < 1.
Based on this results, we can get a lower bound for Lmax:
Lemma 5.1. For Norm GD without momentum, the following lower bound holds:

λmax(A) ≤ 8

η2
ELmax (15)

Proof. If the loss oscillates between 1
2C

2λ1η
2 and 1

2 (1− C)2λ1η
2, then it is evident that:

Lmax = max(
1

2
(C − 1)2λ1η

2,
1

2
C2λ1η

2) ≥ 1

8
λ1η

2

Now, consider the lemma that helps us to prove the main result for Sign GD.
Lemma 5.2. Consider the function L(w) = 1

2w
TAw, with a positive definite diagonal matrix A.

Then, for Sign GD, for any choice of w0 and optimization trajectory τ , the following holds:

Tr(A) ≤ 8

η2
Lmax. (16)

The bound is tight and corresponds to wt = −wt+1 = η
2e, where e is a vector consisting of +1 and

−1.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Proof. We aim to find the minimal value for Lmax. For a quadratic function with diagonal matrix
A, it is evident that the optimal points w and w′, between which the function oscillates, lie in region
wi ∈ (−η, η), where η is a learning rate. Moreover, if function oscillates between two points on a
line, then the minimum of Lmax is achieved if and only if w = −w′. This is because, in Sign GD,
we can only move along the diagonals, and quadratic functions have symmetric properties along
y = x and y = −x.

Using this property allows us to find the optimal points:

1

2
wTAw =

1

2
(w − η sign(Aw))TA(w − η sign(w))

Then:
η sign(Aw)TA(w − 1

2
η sign(Aw)) = 0

This equation can be holds either if η sign(Aw)TA is orthogonal to (w − 1
2η sign(Aw)), or if w =

1
2η sign(Aw). However, the first case may occur only if, after the optimization step, we shift from
one quadrant to another non-symmetric quadrant. If w′ = w − 1

2η sign(Aw) and sign(Aw)i =
sign(Aw′)i, then sign(Aw)i ∗ (Aw′)i ≥ 0 and dot product is not 0. Thus, sign(Aw)i ̸= sign(Aw′)i
and the next step will not return us to the previous point; therefore, the method has not converged
yet. Consider the second case, and denote e = sign(Aw):

w =
1

2
ηe

Now, compute the value of the function:

L =
1

8
η2eTAe

But the quadratic form of a diagonal matrix A evaluated at vectors of {+1,−1} is equal to Tr(A).
Taking into account that we considered the minimal possible value of Lmax, we can obtain the
desired bound:

Lmax ≥ 1

8
η2 Tr(A)

Therefore, we state the main theorem:
Theorem 5.3. Consider the function L(w) = 1

2w
TAw, with a positive definite matrix A. Then, for

Sign GD, the following holds:

Tr(A) ≤ 8

η2
ELmax (17)

Proof. Without a loss of generality let η = 1. The previous lemma allows us to get this lower
bound for any positive definite diagonal matrix A. Now consider an arbitrary positive matrix A with
the same eigenvalues. This matrix can be seen as an image of the diagonal matrix under rotation.
Sign operation divides Rd onto 2d sectors {Se} with e = (±1, . . . ,±1), where Se contains points
w whose update vector is sign(Aw) = e. Analogically to previous proof, suppose a trajectory τ
stabilized on two points a and b, that correspond to update vectors ±e and sector Se correspondigly.
Following the previous lemma we have

Lmax ≥ 1

8
eTAe.

Observe that
1

2d

∑
e=(±1,...,±1)

eTAe = Tr(A)

for any matrix A. The above expression gives us a prove in a case when events {a ∈ Se} are
equiprobable for every e.
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For a diagonal matrix they are indeed equiprobable. After the rotation, a solid angle of sectors
corresponding to update vectors e with smaller values eTAe will decrease. Indeed, let’s consider a
sector Se corresponding to an update vector e = (±1, . . . ,±1) under quadratic form A:

Se = {w ∈ Rd | sign(Aw) = e} = A−1({x | sign(w) = e}).

A sector Se is therefore described by n vectors of a form A−1((0, . . . , 1, . . . , 0)) = vi. Denote
me = A−1(e)/d the center of mass of {vi}. It is straightforward to show that for a vector e having
a smaller eTAe value the corresponding me has a larger norm. Observe that me

√
d belongs to the

image of the standard sphere Sd−1 under A−1. Since a volume of Se ∩ A−1(Dd) does not depend
on e, a solid angle of Se is inclined to be smaller for me with a larger norm.

The expectation ELmax is computed by averaging over all possible trajectories. Sectors Se with
larger norms are not stable attractors; small perturbations can shift the point to flatter ones where it
may begin to oscillate symmetrically. Considering that the probability distribution is characterized
by the norm of me, it follows that among all trajectories, the probability of convergence to attractors
corresponding to steeper update directions will be larger than for attractors corresponding to flatter
ones. Therefore, we have that 8

η2ELmax is larger for the rotated matrix A than it is for the diagonal
matrix.

Considering the previous results, we can also prove the validity of the following lower bound for
SepNorm:
Theorem 5.4. Consider the function L(w) = 1

2w
TAw, with a positive definite matrix A. Let

li, i = {1, ..., n} be a set of normalization blocks in SepNorm. Let Ai be the block of the matrix A
corresponding to li. Then, for SepNorm, the following holds:

n∑
i=1

λmax(Ai)|li| ≤
8

η2
ELmax (18)

Proof. Firstly, let A be a blockwise diagonal matrix. This property allows us to rewrite our function
in the following form:

L(w) =
1

2
wTAw =

n∑
i=0

1

2
wT

i Aiwi =

n∑
i=0

Li(wi)

At each step, the gradients for all wi are independent. Therefore, if we consider the optimization of
the function Li(wi), we get the Norm GD method with a step size equal to η′ = η

√
|li|. Due to the

previous results, Norm GD will converge to the eigenvector corresponding to the largest eigenvalue
of Ai, and the loss will oscillate between 1

2C
2λmax(Ai)η

′2 and 1
2 (1 − C)2λmax(Ai)η

′2. Then, we
get the following lower bound:

λmax(Ai) ≤
8

η′2
ELmax

i =
8

η2|li|
ELmax

i

Then, the lower bound for the initial function L(w):

8

η2
ELmax =

8

η2

n∑
i=0

Lmax
i ≥

n∑
i=0

|li|λmax(Ai)

After convergence in each block, the function will oscillate along the largest eigenvector, i.e., the
sharpest direction. This corresponds to convergence in the whole space along some of the sharpest
directions. Now, if we consider an arbitrary matrix A that can be obtained by some rotation of diag-
onal ones with same eigenvalues, similar to the proof for Sign GD, the probability of convergence to
sharp attractors will decrease. This means that the method will more likely converge to the flattest
sectors, in which the minimal Lmax function will be significantly higher than Lmax corresponding to
the blockwise diagonal matrix. Therefore, the blockwise diagonal case will have a smaller ELmax

as in Sign GD. In turn, this means that the proven lower bound will hold for an arbitrary matrix
A.
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C MOMENTUM TRACING

To get additional experimental evidence of ”Momentum Tracing”, we have conducted an experi-
ment on ResNet56, where we replace ReLU with LeakyReLU. LeakyReLU almost never has a zero
derivative, and in this setup Lion does not destabilise, but is still less performant than SepNorm
(please see the attached graph).
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Figure 3: Implementation of LeakyReLU activation allows to significantly reduces destabilization
for Lion

D HYPERPARAMETERS

Table 4: Hyperparameters for Grokking task.
Model Optimizer β1 β2 lr λ steps

AdamW 0.9 0.98 1e− 3 1 15000
Grokking Lion 0.9 0.99 1e− 3 5 15000

Sepnorm 0.9 0.99 1e− 3 5 15000
OrtSepnorm 0.9 0.99 1e− 3 0.1 15000

Table 5: Hyperparameters for Resnet50 with batch size 256.
Model Optimizer β1 β2 lr λ epoch scheduler warmup (epoch)

AdamW 0.9 0.999 7.5e− 4 0.1 100 cosine 5
Resnet50 Lion 0.9 0.99 7.5e− 5 1 100 cosine 5

Sepnorm 0.9 0.99 7.5e− 5 1 100 cosine 5
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Table 6: Hyperparameters for Vit models.
Model Optimizer β1 β2 lr λ steps scheduler warmup (step) batch size

AdamW 0.9 0.999 6.25e− 5 0.1 100000 cosine 4000 256
ViT-S/16384 Lion 0.9 0.99 6.25e− 6 0.3 100000 cosine 4000 256

Sepnorm 0.9 0.99 6.25e− 6 0.3 100000 cosine 4000 256

AdamW 0.9 0.999 6.25e− 5 0.1 100000 cosine 4000 256
ViT-B/16384 Lion 0.9 0.99 6.25e− 6 0.3 100000 cosine 4000 256

Sepnorm 0.9 0.99 6.25e− 6 0.3 100000 cosine 4000 256

AdamW 0.9 0.999 1e− 3 0.3 100000 cosine 4000 256
Mixer-B/16384 Lion 0.9 0.99 3e− 4 3 100000 cosine 4000 256

Sepnorm 0.9 0.99 3e− 4 3 100000 cosine 4000 256

Table 7: Hyperparameters for Deit Vit models.
Model Optimizer β1 β2 lr λ epoch scheduler warmup (epoch) batch size

AdamW 0.9 0.999 1e− 5 0.1 20 cosine 5 64
Deit ViT-S/16384 Lion 0.9 0.99 1e− 6 0.3 20 cosine 5 64

Sepnorm 0.9 0.99 1e− 6 0.3 20 cosine 5 64

AdamW 0.9 0.999 1e− 5 0.1 20 cosine 5 64
Deit ViT-B/16384 Lion 0.9 0.99 1e− 6 0.3 20 cosine 5 64

Sepnorm 0.9 0.99 1e− 6 0.3 20 cosine 5 64
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