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ABSTRACT

Understanding how proteins structurally interact is crucial to modern biology, with
applications in drug discovery and protein design. Recent machine learning meth-
ods have formulated protein-small molecule docking as a generative problem with
significant performance boosts over both traditional and deep learning baselines.
In this work, we propose a similar approach for rigid protein-protein docking:
DIFFDOCK-PP is a diffusion generative model that learns to translate and rotate
unbound protein structures into their bound conformations. We achieve state-of-
the-art performance on DIPS with a median C-RMSD of 4.85, outperforming all
considered baselines. Additionally, DIFFDOCK-PP is faster than all search-based
methods and generates reliable confidence estimates for its predictions.1

1 INTRODUCTION

Proteins realize their myriad biological functions through interactions with biomolecules, such as
other proteins, nucleic acids, or small molecules. The presence or absence of such interactions
is dictated in part by the geometric and chemical complementarity of participating bodies. Thus,
learning how individual proteins form complexes is crucial to understanding protein activity. In this
work, we focus on rigid protein-protein docking: given two protein structures, the goal is to predict
their resultant complex while maintaining internal bonds, angles, and torsion angles fixed.

Traditional approaches for rigid protein-protein docking consist of a search algorithm followed by
a scoring function (Chen et al., 2003; De Vries et al., 2010; Yan et al., 2020). After enumerating a
vast search space of potential poses, these methods rely on heuristics or empirical methods to select
the most plausible poses. Due to the exhaustive search required, these methods are often slow and
computationally expensive. More recently, deep learning approaches have tackled protein-protein
docking as a regression problem: given two structures, directly predict the final pose (Ganea et al.,
2021; Jamasb et al., 2021). While fast, these models have yet to outperform search-based algorithms.

Inspired by recent breakthroughs in protein-small molecule docking (Corso et al., 2022), we instead
propose that protein-protein docking be formulated as a generative problem: given two proteins, the
goal is to estimate the distribution over all potential poses using a diffusion generative model. To
obtain the final docked pose, we sample from this distribution multiple times and select the best one
via a learned confidence model, as shown in Figure 1. We call our method DIFFDOCK-PP.

Empirically, DIFFDOCK-PP achieves a top-1 median complex root mean square deviation (C-
RMSD) of 4.85 on the Database of Interacting Protein Structures (DIPS), outperforming all con-
sidered baselines. Compared to popular search-based docking software, DIFFDOCK-PP is 5 to 60
times faster on GPU.

*Equal contribution
1Our code is publicly available at https://github.com/ketatam/DiffDock-PP
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Figure 1: Overview of DIFFDOCK-PP. The model takes two proteins as input, where the ligand has
been randomly rotated and translated in 3D space. Then it runs a reverse diffusion process to sample
multiple poses. The confidence model ranks these poses, and we output the pose with the highest
confidence score. The ground truth pose is shown in light grey and is added to all diffusion steps.
Depicted structure is PDB 1KEE over 40 steps of reverse diffusion.

2 BACKGROUND AND RELATED WORK

Protein-Protein Docking. The goal of protein-protein docking is to predict the (bound) structure
of a protein-protein complex based on the individual proteins’ (unbound) structures. Specifically,
we focus on the task of rigid body protein-protein docking, which assumes that the proteins do not
undergo any deformations during binding, restricting their relative degrees of freedom to a rotation
and translation in 3D space. This assumption is often realistic (Vakser, 2014) and even leads to
improved results for most interacting proteins (Desta et al., 2020).

To evaluate the quality of the predicted structures, a common approach is to compute the fraction
of those lying within some threshold distance to the true bound structure (Vakser, 2014; Basu &
Wallner, 2016; Lensink et al., 2007).

Search-based Docking Methods. Traditional methods for protein-protein docking usually rely on
the physical properties of the complexes (Chen et al., 2003; De Vries et al., 2010; Yan et al., 2020).
These methods typically 1) generate an initial population of plausible complex structures, 2) further
pose proposals using optimization algorithms, and 3) refine the complexes with the highest score
according to some scoring function. Template-based modeling (TBM), which predicts the structure
of a target protein by aligning it to one or multiple template proteins with known structures, is also
used as a subroutine by some search-based methods (Vakser, 2014). While some of these methods
offer decent predictive performance, they are usually computationally expensive and impractical for
large-scale molecular screening campaigns.

Deep Learning-based Docking Methods. Deep learning approaches to protein-protein docking
can be broadly partitioned into two categories: single-step and multi-step methods. Single-step
methods directly predict the complex structure in a one-shot fashion. Notably, Ganea et al. (2021)
proposed EQUIDOCK, a pairwise-independent SE(3)-equivariant graph matching network that di-
rectly predicts the relative rigid-body transformation of one of the interacting proteins. Furthermore,
Sverrisson et al. (2022) incorporated different physical priors into an energy-based model for pre-
dicting protein complex 3D structure. In contrast, multi-step methods produce their final predictions
by iteratively refining a set of proposed structures. For instance, ALPHAFOLD-MULTIMER (Evans
et al., 2021) was designed to co-fold multiple protein structures, given their primary sequences and
multiple sequence alignments (MSAs) to evolutionary-related proteins. In parallel with this work,
McPartlon & Xu (2023) proposed DOCKGPT, a generative protein transformer for flexible and
site-specific protein docking.
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Our method, DIFFDOCK-PP, naturally falls into the category of multi-step methods due to the mul-
tiple steps required to sample from the distribution induced by diffusion generative models. Com-
pared to search-based methods, however, we sample orders of magnitude fewer poses during our
refinement process.

Diffusion Generative Models (DGMs). DGMs offer a powerful way to represent probability dis-
tributions beyond likelihood-based and implicit generative models, circumventing many of their
issues. The main idea is to define a diffusion process transforming the data distribution in a tractable
prior and learn the score function, which is the gradient of the log probability density function
∇x log pt(x)

2, of this evolving distribution. We can then use the learned score function to sample
from the underlying probability distribution using well-established algorithms (Song et al., 2020).
A plethora of DGMs have been developed for tasks in computational biology, including conformer
generation (Jing et al., 2022), molecule generation (Hoogeboom et al., 2022), and protein design
(Trippe et al., 2022). The foundation of our method is DIFFDOCK (Corso et al., 2022), a diffusion
generative model over the product space of the ligand’s degrees of freedom (translational, rotational,
and torsional). We extend this approach to the protein docking task.

3 METHOD

3.1 BENEFITS OF GENERATIVE MODELING FOR RIGID PROTEIN DOCKING

Protein-protein docking is often evaluated on the basis of thresholding (Basu & Wallner, 2016;
Lensink et al., 2007), e.g., a Ligand-RMSD < 5 Å and an Interface-RMSD < 2 Å are among
several conditions to consider a given prediction to be of medium quality in Lensink et al. (2007).

Following the arguments of Corso et al. (2022) and noting that directly optimizing such thresholding-
based objectives is not feasible because they are not differentiable, we argue that these objectives are
better aligned with training a generative model to maximize the likelihood of the observed structures
than with fitting a regression model as done in previous work. Concretely, since real-world data, as
well as complex deep learning models, suffer from inherent multi-modal uncertainty, regression-
based methods trained to predict a single pose that, in expectation, minimizes some MSE-type loss
(Ganea et al., 2021) would learn to predict a structure as the weighted mean among many viable
alternatives, often not a plausible structure itself. In contrast, a generative model would aim to
capture the distribution over these alternatives resulting in more plausible, accurate, and diverse
structures.

To illustrate this phenomenon, we visualize some of the structures predicted by our model and
compare them to those generated by the baselines, especially EQUIDOCK, which was trained using
an MSE-type loss and whose one of the main limitations is the existence of steric clashes in its
predicted structures (Ganea et al., 2021). Figure 2 illustrates such predictions. We observe that our
model predicts structures with no steric clashes, which we hypothesize is in part due to the adopted
generative approach to protein-protein docking.

3.2 METHOD OVERVIEW

As defined in Section 2, in rigid protein-protein docking, we aim to predict the complex structure of
an interacting protein pair based on the individual structure of each protein.

In this work, we model the proteins on the residue level, representing each protein as a set of amino
acid nodes. Each residue is, in turn, represented by its type and the position of its α-carbon atom.
We denote X1 ∈ R3n as the ligand consisting of n residues and X2 ∈ R3m as the receptor with
m residues. The ligand/receptor assignment can, in principle, be arbitrary; however, we define the
ligand X1 as the protein with fewer residues. This means that with X∗

1 ∈ R3n and X∗
2 ∈ R3m

denoting the ground truth complex, the receptor is kept fixed X2 = X∗
2 and the task is to predict the

structure of the ligand with respect to the receptor.

It is important to note that - since we are considering rigid-body protein docking - we only need to
consider poses that can be obtained by a rigid-body transformation (i.e., a rotation and a translation)
of the initial pose X1. These poses lie on a 6-dimensional submanifold M ⊂ R3n corresponding

2Note that this is a very different concept from the scoring function of search-based docking methods.
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Figure 2: Visualization of the different methods’ predictions for PDB 1KQ1 from our test set. The
ground truth pose is depicted in light grey.

to the 6 degrees of freedom introduced by the rotation and translation in 3D space. We consider
rigid-body protein-protein docking as the task of learning a probability distribution p(X1|X2) of
ligand poses in M, conditioned on the receptor structure X2.

Now we discuss how we can effectively deploy DGMs to learn this probability distribution. In
order to avoid the inefficiencies arising from learning DGMs on arbitrary submanifolds (De Bortoli
et al., 2022), we use the framework of intrinsic diffusion models Corso (2023): map the extrinsic
submanifold M to the intrinsic manifold defined by the product space of the rotation and translation
group and define our DGM over this manifold.

3.3 DIFFUSION PROCESS

To formalize the discussion in the previous section, let us introduce the 3D translation group T(3)
and the 3D rotation group SO(3) as well as their product space P = T(3) × SO(3). With this, we
can define a rigid-body transformation as the mapping A : P× R3n → R3n with

A((r, R),x)i = R (xi − x) + x+ r, (1)

where xi ∈ R3 corresponds to the position of the i-th residue and x represents the center of mass of
the ligand protein. This equation simply describes a rotation around the center of mass followed by
a translation.

The submanifold of ligand poses introduced informally in the previous section can now be described
using this transformation as M = {A ((r, R) ,X1) | (r, R) ∈ P}. For similar arguments to Corso
et al. (2022), the map A (·,X1) : P → M is a bijection, which guarantees the existence of the
inverse map. We can therefore develop a diffusion process over the product space P to generate a
distribution on the manifold.

Given that P is a product manifold, we can define a forward diffusion process independently on
each manifold (Rodolà et al., 2019) with the score as an element of the corresponding tangent space
(De Bortoli et al., 2022). A score model can then be trained with denoising score matching (Song &
Ermon, 2019). In both groups, we define the forward SDE as dx =

√
dσ2 (t) /dt dw, where σ2 is

σ2
tr for T(3) and σ2

rot for SO(3) and dw denotes the corresponding Brownian motion. The reader is
referred to Corso et al. (2022) for a description of how we can sample from and compute the score
of the diffusion kernel on each of these groups.
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3.4 MODEL ARCHITECTURE

Both the score and confidence models are based on SE(3)-equivariant convolutional networks
(Thomas et al., 2018; Geiger et al., 2020) adapted from DIFFDOCK’s architecture (Corso et al.,
2022) to mainly account for: i.) the symmetry of protein-protein pairs, and ii.) the rigidity assump-
tion of the proteins. Below we summarise the main components of the architecture.

Input representation. Protein structures are represented as heterogeneous geometric graphs with
the amino acid residues as nodes. Node features comprise the residue’s type, the positions of its
α-carbon atoms, as well as language model embeddings trained on protein sequences from ESM2
(Lin et al., 2022). In order to construct the edges, we connect each node to its 20 nearest neighbors
from the same protein (intra-edges), and we use a dynamic cutoff distance of (40 + 3 * σtr)Å, where
σtr is the current standard deviation of the diffusion translational noise to connect the nodes from
different proteins (cross-edges). The intuition behind using a dynamic cutoff distance is to increase
the chances that each node interacts with potentially relevant nodes from the other protein even when
the proteins are still far apart (at early diffusion steps) while having a lower computational cost than
using a fixed higher cutoff distance (especially at later diffusion steps).

Intermediate layers. After an initial set of embedding layers to process the initial features, the
diffusion time, and the edge lengths, we define a different set of convolutional layers for each edge
type (intra-edges and cross-edges). However, in contrast to Corso et al. (2022), we use the same
intra-edge layers for both proteins to account for symmetry.

Output layers. This is where the main difference between the score and confidence model lies.
On the one hand, the score model applies a tensor-product convolution placed at the center of mass
of the ligand to produce two SE(3)-equivariant 3-dimensional vectors as the translational and ro-
tational scores (lying in the tangent space of the respective manifolds). On the other hand, the
confidence model applies a fully connected layer on the mean-pooled scalar representations from
the last convolution layer to produce the SE(3)-invariant confidence value.

3.5 TRAINING AND INFERENCE

The training and inference regimes follow very closely Corso et al. (2022). We reiterate the most
important points here.

Diffusion model. Even though the diffusion kernel and score matching objectives were defined on
the product space P, we follow the extrinsic-to-intrinsic framework (Jing et al., 2022) and develop
the training and inference procedures directly on ligand-receptor poses in 3D space. This allows
the model to reason about physical interactions more easily and should lead to better generalization.
Another interesting point to note is that each training example (X1,X2) is the only available sample
from the conditional distribution p(·|X2). This is unlike the standard generative modeling setting,
where many samples are drawn from the same data distribution. Therefore, during training, we
iterate over distinct conditional distributions with only one sample. During inference, in order to
avoid the problem of overdispersed distributions typically observed with generative models, we use
low-temperature sampling (Ingraham et al., 2022), which allows the model to concentrate on modes
with high likelihood.

Confidence model. The confidence model is a simple classification network trained to predict
whether the structures sampled from the score model are of ”good” quality, which we define as
the structure having an L-RMSD below a certain threshold. To this end, we collect the training
data for the confidence model by sampling from the (trained) diffusion model multiple times for
each training complex and computing the L-RMSD for the sampled complexes. The labels are then
generated by simply comparing the L-RMSD values to the threshold. In our experiments, we set the
threshold to be 5Å. The confidence model is then trained with cross-entropy loss.

Combined Inference. During inference, we sample a set of candidate poses from the diffusion
model. These samples are then ranked by the confidence model according to the predicted confi-
dence value of whether each pose has an L-RSMD below 5Å. The final prediction is the pose with
the highest confidence score.
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4 EXPERIMENTAL SETUP

We evaluate our model on the Database of Interacting Protein Structures (DIPS) (Townshend et al.,
2019). DIPS consists of 42,826 binary protein complexes. We use the same protein-family-based
dataset split proposed by Ganea et al. (2021).

DIFFDOCK-PP has 1.62M parameters and was trained on the DIPS training set for 170 epochs.
Every 10 epochs, we run reverse diffusion on the DIPS validation set to compute L-RMSD values.
The best model obtained with this procedure is finally tested on the DIPS test set. During training
and inference, the smaller protein is selected as a ligand, and we randomly rotate and translate the
ligand in space before running our model.

We compare our method to search-based docking algorithms CLUSPRO (PIPER) (FFT-based) (Desta
et al., 2020; Kozakov et al., 2017), ATTRACT (based on a coarse-grained force field) (Schindler et al.,
2017; de Vries et al., 2015), PATCHDOCK (based on shape complementarity principles) (Mashiach
et al., 2010; Schneidman-Duhovny et al., 2005), and HDOCK (makes use of template-based mod-
eling and ab initio free docking) (Yan et al., 2020; 2017; Huang & Zou, 2014; 2008). For these
baselines, we cannot control their training and testing data. This implies that some of them might
have used a part of our test set to train or validate their models. Thus, the reported performance of
these methods might be overestimating the true performance.

Furthermore, we compare our method to deep learning baselines ALPHAFOLD-MULTIMER (Evans
et al., 2021) and EQUIDOCK (Ganea et al., 2021). Details on how we evaluated these baselines can
be found in Appendix A.

To ensure a fair comparison, we follow the evaluation scheme proposed by Ganea et al. (2021).
All models were evaluated using complex root mean square deviation (C-RMSD) and interface root
mean square deviation (I-RMSD). C-RMSD is determined by superimposing the ground truth and
predicted complex structures via the Kabsch algorithm (Kabsch, 1976) and computing the RMSD
between all C-α coordinates. I-RMSD is determined by similarly aligning the interface residues of
both complexes and computing the RMSD over interface C-α coordinates (within 8Å of the binding
partner).

5 RESULTS

Table 1 reports the performances of the different methods on the DIPS test set. DIFFDOCK-PP
achieves a C-RMSD median of 4.85, in line with HDOCK and significantly outperforming all other
baselines. This performance is further confirmed when looking at the percentage of predictions
below a specific threshold with DIFFDOCK-PP achieving respectively 42% and 45% of C-RMSD
and I-RMSD below 2 Å.

When limited to generating one sample for each complex, DIFFDOCK-PP still outperforms the ma-
jority of the baselines while having a significantly lower runtime than the search-based methods.
Ensuring computational efficiency without a significant drop in performance is critical for computa-
tional screening applications like drug discovery and antibody design, where one needs to analyze a
very large number of complexes.

We note that when we evaluate the model in such a way that we choose the complex with the
smallest RMSD from the ones generated by the model, the performance exceeds that of all baselines
by a large margin. As such, the performance of DIFFDOCK-PP can be significantly boosted by
improving the used confidence model or designing more effective ranking methods. Additionally,
this regime can be particularly beneficial for applications where it is desirable to have at least one
high-quality recommendation among the predicted suggestions, e.g., if a practitioner is interested
in discovering a single good structure based on prior knowledge from a set of proposals where the
diversity of the proposals is important.

Figure 3 shows, for all the considered methods, the fraction of predictions having a C-RMSD value
below different thresholds ranging from 0 to 10. DIFFDOCK-PP outperforms most baselines for all
threshold values, and outperforms HDOCK for thresholds higher than 5.

To evaluate how good our confidence model is, we plot in Figure 4-left the top-1 performance for
different numbers of generated samples (this is done by picking the sample with the highest confi-
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Table 1: Results on 100 samples from the DIPS test set. The last three rows show our method’s
performance. The number of poses sampled from the diffusion model is in parentheses, and oracle
refers to the setting where we can perfectly select the best pose out of the sampled ones. The methods
highlighted with * do not use the same training data as our models and might be using parts of our
test sets (e.g., to extract templates or as training examples) or have seen proteins more similar to our
test set than the training set. Runtimes with † denote that the method can only run on CPU.

DIPS Test Set
Complex RMSD (Å) Interface RMSD (Å) Runtime (s)

Methods %<2 %<5 %<10 Median %<2 %<5 %<10 Median Mean

ATTRACT* 20 23 33 17.17 20 22 38 12.41 1285†

HDOCK* 50 50 50 6.23 50 50 58 3.90 778†

CLUSPRO* 12 27 35 15.77 21 27 42 12.54 10475†

PATCHDOCK* 31 32 36 15.25 32 32 42 11.45 7378†
ALPHAFOLD-MULTIMER* 39 45 52 8.61 45 47 58 6.67 1560
EQUIDOCK 0 8 29 13.30 0 12 47 10.19 3.88
DIFFDOCK-PP(1) 34 41 46 11.95 36 42 53 8.60 4.2
DIFFDOCK-PP(40) 42 50 55 4.85 45 52 63 4.23 153

DIFFDOCK-PP(40) - oracle 71 79 86 0.67 72 82 91 0.54 153
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Figure 3: Fraction of complexes with a C-RMSD < ϵ for different values of ϵ on 100 samples from
the DIPS test set.
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Figure 4: Left: Performance of DIFFDOCK-PP for increasing number of generative samples. “Per-
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predictions for the part of the dataset where DIFFDOCK-PP(40) is most confident.

dence score according to the confidence model) and compare it to the performance when we ignore
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the confidence score and instead pick the sample than minimizes the C-RMSD out of the gener-
ated samples. Performance here is defined as the fraction of samples having a C-RMSD below 5Å.
While the top-1 performance consistently increases with increasing number of generated samples,
there still is a significant gap behind the performance in the perfect selection regime. This points
out that DIFFDOCK-PP can achieve significantly better performance by improving the current con-
fidence model or by developing a more involved selection algorithm.

The right plot of Figure 4 illustrates the selective accuracy of our model if we consider only com-
plexes with confidence predictions above a certain threshold. We do this by ordering the final pre-
dicted complex structures by their assigned confidence prediction for all 100 complexes and remov-
ing the complexes with the lowest confidence score one by one. By removing predictions with lower
confidence, we see an increase in the success rate of our prediction model.

We note that due to time constraints, it was not possible to properly evaluate our method on the
Docking Becnhmark 5.5 (DB5.5) dataset Vreven et al. (2015) and leave it as an interesting future
extension to this work.

6 CONCLUSION

We present DIFFDOCK-PP, a diffusion generative model for rigid protein-protein docking. Our ap-
proach is inspired by recent advancements in molecular docking (Corso et al., 2022), which tackles
docking via a generative model over ligand poses. DIFFDOCK-PP outperforms existing deep learn-
ing models and performs competitively against search-based methods at a fraction of their compu-
tational cost. The effectiveness of our simple approach paves the way for further investigation into
deep learning for modeling biomolecular interactions.
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protein–protein interaction site prediction. Proteomics Data Analysis, pp. 263–288, 2021.

Bowen Jing, Gabriele Corso, Jeffrey Chang, Regina Barzilay, and Tommi Jaakkola. Torsional diffu-
sion for molecular conformer generation. arXiv preprint arXiv:2206.01729, 2022.

Wolfgang Kabsch. A solution for the best rotation to relate two sets of vectors. Acta Crystallo-
graphica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 32
(5):922–923, 1976.

Dima Kozakov, David R Hall, Bing Xia, Kathryn A Porter, Dzmitry Padhorny, Christine Yueh,
Dmitri Beglov, and Sandor Vajda. The cluspro web server for protein–protein docking. Nature
protocols, 12(2):255–278, 2017.
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A BASELINES: EXPERIMENTAL DETAILS

In this section we give some details on how we evaluated the baselines to which we compared our
method.

For HDOCK, we used the HDOCKlite package that can be downloaded from
http://huanglab.phys.hust.edu.cn/software/hdocklite/.

For EQUIDOCK, we used the official implementation found in
https://github.com/octavian-ganea/equidock public.

For ALPHAFOLD-MULTIMER, we first extracted FASTA sequences from the complexes using the
residue names given in their respective PDB files. Each complex yielded one FASTA file with two
chains. Then, we ran AlphaFold-Multimer v2.3.0 using the official implementation of the inference
pipeline provided in https://github.com/deepmind/alphafold. This implementation
utilizes the following datasets: BFD, MGnify, PDB70, PDB (structures in the mmCIF format), PDB
seqres, UniRef30 (formerly UniClust30), UniProt, and UniRef90.

For ATTRACT, CLUSPRO and PATHDOCK, we used the results reported by Ganea et al. (2021).
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