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Abstract001

Large language models (LLMs) have shown to002
pose social and ethical risks such as generating003
toxic language or facilitating malicious use of004
hazardous knowledge. Machine unlearning is005
a promising approach to improve LLM safety006
by directly removing harmful behaviors and007
knowledge. In this paper, we propose “SPlit,008
UNlearn, MerGE” (SPUNGE), a framework009
that can be used with any unlearning method010
to amplify its effectiveness. SPUNGE leverages011
data attributes during unlearning by splitting012
unlearning data into subsets based on specific013
attribute values, unlearning each subset sepa-014
rately, and merging the unlearned models. We015
empirically demonstrate that SPUNGE signifi-016
cantly improves the performance of recent un-017
learning methods for reducing undesirable be-018
haviors and hazardous knowledge in two popu-019
lar LLMs.020

1 Introduction021

The rapid improvement and increasing adoption of022

large language models (LLMs) has been accom-023

panied by their downsides, notably their potential024

harmful behaviors (Weidinger et al., 2022). LLMs025

are known to generate harmful content such as026

toxic, hateful, or biased language (Sheng et al.,027

2019; Gehman et al., 2020; Gallegos et al., 2024).028

LLMs also contain hazardous knowledge of sen-029

sitive topics such as biosecurity, which can be030

(mis)used to empower malicious actors (Sandbrink,031

2023; Fang et al., 2024). A widely adopted way032

to safeguard against harmful or objectionable re-033

sponses is to align LLMs via safety tuning (Ouyang034

et al., 2022; Bai et al., 2022; Korbak et al., 2023;035

Glaese et al., 2022). However, safety tuning of036

LLMs has shown to be vulnerable to adversarial or037

jailbreak attacks where adversarial prompts break038

through alignment and re-invoke harmful responses039

(Wei et al., 2023; Zou et al., 2023; Carlini et al.,040

2023). Even subsequent benign fine-tuning can041

degrade alignment (Qi et al., 2024).042

Figure 1: An Overview of the SPlit, UNlearn, then
merGE (SPUNGE) Framework. SPUNGE splits the un-
learning dataset into subsets based on selected attribute
values, unlearns each subset separately, and then merges
the unlearned models.

In parallel, machine unlearning has emerged as a 043

promising paradigm for more targeted and efficient 044

sociotechnical harm reduction. It has been shown 045

that unlearning can reduce toxicity and other harm- 046

ful responses (Ilharco et al., 2023; Zhang et al., 047

2023; Yao et al., 2024) and erase hazardous sci- 048

entific knowledge (Li et al., 2024). Unlearning 049

can be considered a complementary safety tool to 050

alignment techniques and can be used before or 051

after alignment (Liu et al., 2024a). Prior work on 052

unlearning in LLMs has focused on developing 053

efficient unlearning methods, without taking into 054

account characteristics of unlearning data (Xu et al., 055

2023a; Liu et al., 2024a) (see Appendix A). 056

In this work, we demonstrate that leveraging 057

attributes in the unlearning data can significantly 058

improve the effectiveness of unlearning. We pro- 059

pose a simple yet effective framework, SPUNGE: 060

“SPlit, UNlearn, then merGE” which operates in 061

three steps (see Figure 1): (i) the unlearning data is 062

split into subsets based on the values of a selected 063

attribute; (ii) each subset is separately used to un- 064

learn a subtype of the undesired behavior, resulting 065

in multiple unlearned LLMs; (iii) the unlearned 066

LLMs are merged to obtain the final unlearned 067

LLM. 068
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Our Contributions:069

• We propose the SPUNGE framework that can im-070

prove the effectiveness of any unlearning method071

by leveraging attributes associated with the un-072

learning data. These metadata have been previ-073

ously ignored.074

• We evaluate SPUNGE for unlearning undesirable075

behaviors and knowledge in three scenarios: tox-076

icity and hate speech; social bias; and hazardous077

scientific knowledge. We empirically demon-078

strate that SPUNGE significantly improves the079

performance of two recent unlearning methods080

– Task Vector Negation (Ilharco et al., 2023)081

and Representation Misdirection Unlearning (Li082

et al., 2024) – on popular LLMs (LLAMA2-7B083

and ZEPHYR-7B-BETA), while maintaining gen-084

eral capabilities of the LLMs, measured on 10085

standard benchmarks.086

2 SPUNGE Framework087

The proposed SPUNGE framework is illustrated in088

Figure 1 and in Algorithm 1. We focus on unlearn-089

ing behaviors or bodies of knowledge (as opposed090

to smaller, discrete units of information) from a091

given LLM with parameters θinit; this is represented092

by a dataset D consisting of examples of the unde-093

sired behavior or knowledge. We consider scenar-094

ios in which the dataset can be partitioned into sub-095

sets corresponding to different values a1, . . . , an096

of an attribute a in the data which can often be097

identified. E.g., the attribute for the case of un-098

learning toxicity could be the demographic group099

(e.g., women, Muslims) targeted by the toxic text.100

Given a dataset and attribute as described above,101

the SPUNGE framework consists of the following102

steps: (1) Split the dataset into subsets Dt for103

t = 1, . . . , n based on the attribute. (2) Perform un-104

learning separately on each subset Dt, all starting105

from the given LLM, θinit, and yielding n differ-106

ent unlearned LLMs, θut . (3) Merge the unlearned107

LLMs into a single final unlearned LLM, θu.108

SPUNGE can be instantiated with any unlearn-109

ing method U(θinit, D
u
t ) and merging method110

M(θu1 , . . . , θ
u
n), where the unlearning method up-111

dates model parameters from θinit to θut using data112

subset Du
t , and the merging method combines these113

independent parameters θu1 , . . . , θ
u
n into one θu.114

It is frequently the case for unlearning samples115

to have associated attributes. SPUNGE can be ap-116

plied to a variety of attributes. For this reason, in117

Algorithm 1, we consider a function attr(·) that118

can output the value of a given attribute for a data119

Algorithm 1 SPUNGE Framework
Input: Initial model parameters θinit, Unlearn-
ing dataset D, Attribute with values a1, . . . , an,
Processing pipeline proc, Unlearning method
U , Merging methodM
Output: Unlearned model θu

for t = 1 to n do
Select subset associated with data attribute
value at as

Dt = {x ∈ D | attr(x) = at}
Process subset for unlearning
Du

t = {proc(x) | x ∈ Dt}
Perform unlearning θut ← U(θinit, D

u
t )

end for
Perform merging θu ←M(θu1 , . . . , θ

u
n)

sample. In practice, such a function can be imple- 120

mented by using data annotations or appropriate 121

classifiers (e.g., a domain classifier). Similarly, we 122

generalize any processing required by the unlearn- 123

ing method with function proc(·). 124

Note that unlearning for each component model 125

θut is performed on the subset Dt of the original 126

data. When D1, . . . , Dn are the partition of the 127

unlearning data D, the total number of gradient 128

steps in SPUNGE is the same as applying the un- 129

learning method U on the entire data D without 130

using SPUNGE. Additional computation for using 131

SPUNGE on top of an unlearning method U comes 132

from the merging step, and model merging methods 133

are computationally efficient (Matena and Raffel, 134

2022; Choshen et al., 2022; Yadav et al., 2023). 135

3 Evaluation of SPUNGE 136

In the following, we evaluate SPUNGE on three 137

unlearning scenarios. For each scenario, we take 138

an unlearning method that has been shown to be 139

effective in the literature, apply SPUNGE on top 140

of it, and evaluate how SPUNGE impacts the per- 141

formance of the baseline unlearning method. We 142

measure the effectiveness of unlearning by using 143

scenario-specific metrics. To measure the general 144

capability of the model, we consider 10 standard 145

academic benchmarks, including all 6 benchmarks 146

from the Open LLM Leaderboard v1 (Beeching 147

et al., 2023) (see Appendix C for details). 148

3.1 Unlearning Toxicity and Hate Speech 149

We apply SPUNGE on top of Task Vector Negation 150

(TVN) (Ilharco et al., 2023), which has been shown 151

to reduce toxicity in LLMs (Zhang et al., 2023). 152
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MODEL TOXIGEN AVERAGE

+ METHOD TOXICITY (↓) PPL (↓) ACC. (↑)

ZEPHYR-7B-BETA 20.48 7.62 65.72
+ TVN 5.65 8.36 65.67
+ SPUNGE-TVN 3.88 8.66 65.53

LLAMA2-7B 15.95 5.97 56.29
+ TVN 4.26 8.42 56.35
+ SPUNGE-TVN 2.96 7.88 55.72

Table 1: Evaluation of toxicity unlearning on ToxiGen.
SPUNGE boosts the reduction in toxicity, while maintain-
ing benchmark performance similar to the base model
(Appendices C and D).

Unlearning via TVN: To unlearn toxicity via TVN,153

we first fine-tune the model on a subset of toxic154

sentences from ToxiGen (Hartvigsen et al., 2022).155

Then, we compute tasks vectors by subtracting156

the base model weights from the fine-tuned toxic157

model. Finally, we negate the task vectors and add158

them to the base model to detoxify the base model.159

See Appendix B.1 for details.160

SPUNGE + TVN: We instantiate SPUNGE by lever-161

aging the demographic information in the ToxiGen162

unlearning set as attributes. Specifically, we choose163

the following 5 representative demographic groups164

out of 13 demographic groups in ToxiGen: Nation-165

ality (Mexican), Gender and Sex (Women), Reli-166

gion (Muslim), Sexual Orientation (LGBTQ), and167

Health Condition (Physical Disability). SPUNGE168

first splits the ToxiGen train set into 5 subsets –169

D1, . . . , D5 – based on the 5 demographic groups.170

Next, from each set Dt, SPUNGE selects a subset171

of samples with high toxicity to get five unlearn-172

ing subsets Du
1 , . . . , D

u
5 . SPUNGE then performs173

TVN on the base model θinit with each Du
t to obtain174

θu1 , . . . , θ
u
5 . Finally, TIES-merging (Appendix B.3)175

is used to merge the unlearned models.176

Evaluation Set Up: For toxicity evaluation, we177

consider a similar experimental setup to Touvron178

et al. (2023); Mukherjee et al. (2023). We prompt179

the model for completions, with toxic and benign180

examples from the test subset of ToxiGen, and181

measure the toxicity of the model completions182

using a RoBERTA model fine-tuned on ToxiGen183

(Hartvigsen et al., 2022). We use greedy decoding184

and compute the percentage of completions that185

are deemed toxic by the classifier as toxicity. We186

also assess how unlearning impacts the fluency of187

the model, similar to (Liu et al., 2021; Lu et al.,188

2022), by computing the perplexity of the model189

completions with an independent, larger model,190

LLAMA2-13B.191

Experimental Results: As shown in Table 1, 192

SPUNGE boosts the performance of TVN for 193

both ZEPHYR-7B-BETA and LLAMA2-7B. For 194

ZEPHYR-7B-BETA, SPUNGE reduces the toxicity 195

percentage of TVN by 31% (from 5.65 to 3.88), 196

while maintaining the fluency of generations as 197

measured by the perplexity computed with LLAMA- 198

13B. Notably, SPUNGE maintains general capabili- 199

ties of the model as measured by the average accu- 200

racy on the benchmarks. Similarly, for LLAMA2- 201

7B, SPUNGE reduces the toxicity percentage of TVN 202

by 30% (from 4.26 to 2.96) while maintaining the 203

average accuracy on benchmarks within 1% of the 204

base model. In Appendix D.2, we compare the tox- 205

icity percentage for each demographic and show 206

that SPUNGE strengthens TVN. In Appendix D.3, 207

we instantiate SPUNGE to leverage the attribute of 208

type of toxicity. 209

3.2 Unlearning Social Bias 210

Unlearning methods, especially Task Vector Nega- 211

tion (TVN), have been shown to effectively mitigate 212

social bias in LLMs that is characterized by deliber- 213

ate or unintentional discrimination towards individ- 214

uals, groups, or specific ideas and beliefs, resulting 215

in unfair treatment (Dige et al., 2024b,a). 216

Unlearning via TVN: Following Dige et al. (2024a), 217

we first fine-tune the model using biased sam- 218

ples from StereoSet (Nadeem et al., 2021). Then, 219

we compute tasks vectors by subtracting the base 220

model weights from the fine-tuned biased model. 221

Finally, we negate the task vectors and add them 222

to the base model to debias the base model. See 223

Appendix B.1 for details. 224

SPUNGE + TVN: We instantiate SPUNGE by us- 225

ing the bias domain information in the StereoSet 226

dataset. StereoSet samples measure stereotypical 227

biases in four target domains: gender, profession, 228

race, and religion. SPUNGE first splits the Stere- 229

oSet dataset into 4 subsets based on the bias do- 230

mains, then performs TVN with each subset to ob- 231

tain four unlearned models, and finally uses TIES- 232

merging (Section B.3) to merge unlearned models. 233

Evaluation Set Up: For evaluating bias, we use 234

the CrowS-Pairs benchmark (Nangia et al., 2020), 235

similar to (Dige et al., 2024b). Each sample in 236

CrowS-Pairs consists of two sentences: one that is 237

more stereotyping and another that is less stereo- 238

typing. CrowS-Pair bias score of a model is the 239

percentage of more-stereotypical sentences that are 240

rated as more likely by the model than the non- 241

stereotypical sentences. Ideally, for an unbiased 242
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MODEL CROWS-PAIRS AVERAGE

+ METHOD BIAS (→ 0.5) ACC. (↑)

ZEPHYR-7B-BETA 0.649 65.72
+ TVN 0.556 65.76
+ SPUNGE-TVN 0.534 65.84

LLAMA2-7B 0.677 56.29
+ TVN 0.565 56.55
+ SPUNGE-TVN 0.540 56.67

Table 2: Evaluation of social bias unlearning on CrowS-
Pairs. SPUNGE mitigates the bias further without sacri-
ficing benchmark performance (Appendices C and D).

model, the bias score should be closer to 0.5.243

Experimental Results: SPUNGE strengthens the244

performance of TVN for both ZEPHYR-7B-BETA245

and LLAMA2-7B. In particular, SPUNGE reduces246

the bias of TVN by ∼4% (from 0.556 to 0.534 for247

ZEPHYR-7B-BETA, and from 0.565 to 0.540 for248

LLAMA2-7B). Notably, SPUNGE maintains gen-249

eral capabilities of the models as measured by the250

average accuracy on the benchmarks.251

3.3 Unlearning Hazardous Knowledge252

We focus on reducing the model’s ability to an-253

swer questions about hazardous knowledge (e.g.,254

cultivating virus) while maintaining the ability to255

answer questions about non-hazardous knowledge256

(e.g., properties of fungi). Li et al. (2024) designed257

Representation Misdirection Unlearning (RMU) for258

unlearning hazardous knowledge from LLMs, and259

showed its superiority to several unlearning meth-260

ods. We demonstrate that SPUNGE enhances the261

performance of RMU.262

Unlearning via RMU: Given an unlearning dataset263

and a retain dataset, RMU randomizes model activa-264

tions on unlearning data while preserving model265

activations on data to be kept (Appendix B.2). As266

unlearning datasets, we use the bio corpora and267

cyber corpora – training documents specially col-268

lected by Li et al. (2024) for performing hazardous269

knowledge unlearning. We use a subset of Wiki-270

Text (Merity et al., 2017) as the retain dataset.271

SPUNGE + RMU: We instantiate SPUNGE to lever-272

age the scientific domain attribute in the unlearning273

set. As mentioned in the previous section, the un-274

learning dataset is a combination of bio and cyber275

corpora. We split the data by domain to separate276

bio corpora (D1) and cyber corpora (D2). SPUNGE277

performs unlearning separately on each of them to278

obtain two unlearned LLMs: one with biosecurity279

hazardous knowledge removed θu1 and the other280

MODEL WMDP-BIO WMDP-CYBER MMLU
+ METHOD (↓) (↓) (↑)

ZEPHYR-7B-BETA 63.55 43.63 58.15
+ RMU 31.26 27.62 56.48
+ SPUNGE-RMU 27.57 26.47 55.83

Table 3: Evaluation of hazardous knowledge unlearning
on WMDP. SPUNGE strengthens the performance of
RMU, while preserving general knowledge on MMLU.

with cybersecurity hazardous knowledge removed 281

θu2 . SPUNGE then merges θu1 and θu2 using TIES- 282

merging (Appendix B). Note that, in contrast to 283

SPUNGE + RMU, the vanilla RMU (and other base- 284

lines) in Li et al. (2024) use the bio and cyber cor- 285

pora together during unlearning – in particular, RMU 286

alternates between one batch from the bio corpora 287

and one from the cyber corpora during unlearning. 288

Evaluation Set Up: To evaluate hazardous knowl- 289

edge removal, we use the Weapons of Mass De- 290

struction Proxy (WMDP) benchmark (Li et al., 291

2024) which consists of 3.6k multiple-choice ques- 292

tions on biosecurity (WMDP-Bio), cybersecurity 293

(WMDP-Cyber), and chemistry (WMDP-Chem). 294

To evaluate general-knowledge question answering, 295

we use the MMLU benchmark (Hendrycks et al., 296

2021). Similar to Li et al. (2024), we conduct un- 297

learning evaluation only on the challenging subsets 298

WMDP-Bio and WMDP-Cyber. 299

Experimental Results: Table 31 shows that 300

SPUNGE fortifies the performance of RMU in re- 301

moving hazardous knowledge while maintain- 302

ing general-knowledge capabilities. In particular, 303

SPUNGE reduces WMDP-Bio accuracy by 11.8% 304

(from 31.26 to 27.57) and WMDP-Cyber accuracy 305

by 4% (from 27.62 to 26.47), while maintaining 306

MMLU accuracy within 1% of RMU. 307

4 Conclusion 308

We presented SPUNGE, a novel unlearning frame- 309

work that takes advantage of attributes associated 310

with the data to be unlearned. SPUNGE leverages at- 311

tributes using a split-unlearn-then-merge approach, 312

and can be applied on top of any unlearning method. 313

We empirically demonstrated that SPUNGE signif- 314

icantly improves the effectiveness of unlearning 315

methods for reducing undesirable behaviors and 316

hazardous knowledge. An interesting future work 317

is to explore using SPUNGE for data unlearning 318

(e.g., copyrighted or licensed data). 319

1We were unable to obtain satisfactory results with RMU
for LLAMA2-7B, since we found it tricky to tune RMU’s
hyperparameters for LLAMA2-7B and Li et al. (2024) did not
provide guidance on this. For RMU with ZEPHYR-7B-BETA, we
use the hyperparameters from Li et al. (2024) (Appendix B.2).
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Limitations320

We demonstrated the performance gains of321

SPUNGE for scenarios wherein unlearning samples322

had associated attributes. For nuanced datasets323

with less clearly defined attributes, it is possible324

to apply SPUNGE by splitting the data based on325

clustering with LLM embeddings. Evaluating the326

performance of SPUNGE in unlearning scenarios327

when data attributes are less clearly defined is an328

exciting future direction.329

If attribute selection is incorrect or noisy, then it330

may potentially lead to ineffective unlearning. An331

important future work is to investigate the impact332

of the accuracy or noise in attribute selection on333

the performance of SPUNGE.334

Our evaluation of SPUNGE is limited to unlearn-335

ing undesirable behaviors (toxicity and social bias)336

and hazardous knowledge. Unlearning is often ap-337

plied in other scenarios such as data unlearning338

(e.g., copyrighted or licensed data) and reducing339

harmfulness (e.g., harmful responses to provocative340

prompts). It will be interesting to investigate how341

much benefits SPUNGE provides for such diverse342

scenarios.343

Due to compute limitations, we restricted our ex-344

periments to two unlearning methods on models of345

size 7B. Exploring SPUNGE with larger and newer346

models and different unlearning is potential future347

direction.348

Ethical Considerations349

Unlearning undesirable behaviors and hazardous350

knowledge from LLMs often involves the use of351

offensive, toxic, biased, or malicious data samples.352

As in the case of training datasets of LLMs, data353

used for unlearning may also include personally354

identifiable information. There might be ethical355

implications related to how data used for unlearn-356

ing are obtained and used. It is crucial to carefully357

consider such ethical implications when unlearning358

is employed to mitigate undesirable behaviors and359

reduce hazardous knowledge from LLMs, irrespec-360

tive of whether our framework SPUNGE is used to361

enhance the performance of unlearning methods.362
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A Related Work773

Machine Unlearning: The notion of machine un-774

learning was first introduced by Cao and Yang775

(2015) motivated by the right-to-be-forgotten and776

focused on removing specific training samples.777

Since then, there have been a number of works778

that have focused on removing specific training779

data samples via unlearning (Bourtoule et al., 2021;780

Graves et al., 2020; Izzo et al., 2021; Ginart et al.,781

2019; Golatkar et al., 2020a,b; Thudi et al., 2021).782

and surveys (Nguyen et al., 2022; Xu et al., 2023b).783

Unlearning for LLMs has started to gain recent at-784

tention resulting in works in data unlearning (Jang785

et al., 2023; Wang et al., 2023; Kassem et al., 2023;786

Maini et al., 2024; Zhang et al., 2024), concept787

unlearning (Eldan and Russinovich, 2023), toxicity788

unlearning (Ilharco et al., 2023; Zhang et al., 2023;789

Lu et al., 2022), harmfulness unlearning (Lu et al.,790

2022; Yao et al., 2024; Liu et al., 2024b), knowl-791

edge unlearning (Li et al., 2024). Recent surveys792

have shown additional scenarios where unlearning793

has been applied (Nguyen et al., 2022; Xu et al.,794

2023b; Liu et al., 2024a). Prior works have mainly795

focused on designing unlearning methods, evalua-796

tion metrics, and benchmarks. However, they do797

not take into account attributes of data used for798

unlearning. Our proposed SPUNGE leverages data799

attributes to fortify the performance of any unlearn-800

ing method.801

B Details on Unlearning and Merging802

Methods and Experiment Details803

We describe the specific unlearning and merging804

methods used in this work in the following.805

B.1 Unlearning via Task Vector Negation806

(TVN)807

TVN uses the notion of task vector arithmetic for808

unlearning (Ilharco et al., 2023). Let θinit ∈ Rd809

denote the initial model weights and θft ∈ Rd the810

corresponding weights after fine-tuning the model811

on unlearning dataset D. The task vector used for812

unlearning is computed as τ = θft − θinit. TVN813

obtains the unlearned model as θu = θinit − λτ 814

where λ ≥ 0 is a scaling parameter. Following 815

Zhang et al. (2023), we employ Parameter-Efficient 816

Fine-Tuning (PEFT) instead of full fine-tuning and 817

compute the task vector using Parameter Efficient 818

Modules (PEMs). In our experiments, we use a 819

state-of-the-art PEFT method, LoRA (Hu et al., 820

2022), and perform negation using LoRA modules 821

with λ = 1. 822

Unlearning Toxicity via TVN: We select toxic sen- 823

tences from ToxiGen (Hartvigsen et al., 2022), 824

which contains 8.96k samples designed to measure 825

implicit toxicity and hate speech across 13 demo- 826

graphic groups (e.g., African Americans, women, 827

Mexicans, etc.). ToxiGen benchmark contains, 828

for each prompt, the target demographic group 829

and the toxicity level evaluated by human anno- 830

tators. While ToxiGen encompasses 13 demo- 831

graphic groups, for our experiments, we choose 832

the following 5 representative demographic groups: 833

Nationality (Mexican), Gender and Sex (Women), 834

Religion (Muslim), Sexual Orientation (LGBTQ), 835

and Health Condition (Physical Disability). We 836

perform TVN using the ToxiGen training samples 837

with toxicity scores ≥ 3, restricted to the five de- 838

mographic groups. 839

Unlearning Toxicity via SPUNGE + TVN: SPUNGE 840

first splits the unlearning set ToxiGen into 5 sub- 841

sets – D1, . . . , D5 – based on the 5 demographic 842

groups. Next, from each set Dt, we select a sub- 843

set of samples with toxicity score ≥ 3 to get five 844

unlearning subsets Du
1 , . . . , D

u
5 . SPUNGE then per- 845

forms TVN on the base model θinit with each Du
t to 846

obtain θu1 , . . . , θ
u
5 . Finally, we use TIES-merging 847

(Section B.3) to merge the five unlearned models. 848

Unlearning Social Bias via TVN: We select biased 849

samples from the StereoSet (Nadeem et al., 2021), 850

which consists of sentences that measures model 851

preferences across gender, race, religion, and pro- 852

fession. intersentence subset of StereoSet. Each 853

row consists of the context and 3 sentences, which 854

are stereotypical, anti-stereotypical, and unrelated 855

with regards to the context. For each row in the 856

subset, we concatenate the context and the stereo- 857

typed sequence from the sentences to generate a 858

biased sentence, which is used for fine tuning. 859

Unlearning Toxicity via SPUNGE + TVN: SPUNGE 860

first splits the unlearning set StereoSet into 4 sub- 861

sets – D1, . . . , D4 – based on the 4 bias domains: 862

gender, profession, race, and religion. Next, from 863

each set Dt, we concatenate the context andthe 864

stereotyped sequence from the sentences to gen- 865
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erate 4 unlearning subsets Du
1 , . . . , D

u
4 . SPUNGE866

then performs TVN on the base model θinit with867

each Du
t to obtain θu1 , . . . , θ

u
4 . Finally, we use868

TIES-merging (Section B.3) to merge the five un-869

learned models.870

Training Parameters871

TVN with ZEPHYR-7B-BETA: For TVN with872

ZEPHYR-7B-BETA (Tunstall et al., 2023), we set873

the LoRA rank to 16, α associated with LoRA to874

16, LoRA dropout to 0.01, and the target modules875

as the default modules in the HuggingFace PEFT876

library. We use the Adam optimizer with a learning877

rate of 2×10−5 and a cosine learning rate schedule878

to train for 1 epoch. For social bias unlearning with879

SPUNGE, we use the same learning rate. For toxic-880

ity unlearning with SPUNGE, since the unlearning881

subsets are substantially smaller, we perform train-882

ing with a learning rate of 1×10−4 for 1 epoch. All883

experiments are performed on one NVIDA V100884

GPU with 32GB memory.885

TVN with LLAMA2-7B: For TVN with LLAMA2-886

7B (Touvron et al., 2023), we set the LoRA rank to887

64, α associated with LoRA to 64, LoRA dropout888

to 0.01, and the target modules as key, value,889

query, up, down, and gate projections. We use the890

Adam optimizer with a learning rate of 1 × 10−4891

and a cosine learning rate scheduling. All experi-892

ments are performed on one NVIDA V100 GPU893

with 32GB memory.894

B.2 Representation Misdirection Unlearning895

(RMU)896

This method from (Li et al., 2024) randomizes897

model activations on unlearning data while898

preserving model activations on data to be kept.899

Specifically, RMU uses a two-part loss function:900

(1) a forget loss to bring the model activations901

on unlearning data close to a scaled uniform902

random vector, and (2) a retain loss to preserve903

model activations on data to be retained. Here,904

let D denote the unlearning dataset and D′905

denote the retain set (containing samples with906

desirable behavior or knowledge). Let fθ(·) and907

fθinit(·) denote the hidden states of the model908

being unlearned and the initial model, respec-909

tively, at some layer ℓ. Then, the forget loss is910

Lu = Exu∼D

[
1

|xu|
∑

token t∈xu
∥fθ(t)− c · u∥22

]
,911

where u is a random unit vector with912

entries sampled independently, and uni-913

formly at random from [0, 1), and c is a914

hyperparameter. The retain loss is Lr =915

Exr∼D′

[
1

|xr|
∑

token t∈xr
∥fθ(t)− fθinit(t)∥

2
2

]
. 916

The model parameters are updated to minimize the 917

combined loss L = Lu + αLr, where α > 0 is a 918

hyperparameter. The loss is typically computed 919

only on layer ℓ and gradients are updated only on 920

layers ℓ− 2, ℓ− 1, and ℓ. 921

Unlearning Hazardous Knowledge with RMU: For 922

unlearning, we use the bio corpora and cyber cor- 923

pora collected by Li et al. (2024) and released 924

publicly 2. The bio corpora consist of a selected 925

subset of PubMed papers that are related to the 926

topics appearing in WMDP-Bio questions. The 927

cyber corpora consist of passages scraped from 928

GitHub via keyword search on topics related to 929

WMDP-Cyber questions. These corpora are spe- 930

cially collected training sets for performing haz- 931

ardous knowledge unlearning, and are separate 932

from the WMDP benchmark, which is designed 933

for evaluation (Li et al., 2024). We use a subset of 934

WikiText (Merity et al., 2017) as the retain dataset. 935

Unlearning Hazardous Knowledge with 936

SPUNGE + RMU: Algorithm 2 presents SPUNGE 937

instantiated with RMU and TIES-merging. We lever- 938

age scientific domain as the attribute for unlearning 939

hazardous knowledge. In other words, n = 2, 940

a1 = bio, and a2 = cyber. Given a document x 941

from the corpora, the function attr(x) outputs 942

the scientific domain of x, whether it is cyber or 943

bio. Thus, SPUNGE splits the unlearning corpora 944

by domain to separate bio corpora (D1) and cyber 945

corpora (D2). SPUNGE performs unlearning 946

separately on each of them to obtain two unlearned 947

LLMs: one with biosecurity hazardous knowledge 948

removed θu1 and the other with cybersecurity 949

hazardous knowledge removed θu2 . SPUNGE then 950

merges θu1 and θu2 using TIES-merging. 951

Training Parameters 952

RMU with ZEPHYR-7B-BETA: For RMU with 953

ZEPHYR-7B-BETA (Tunstall et al., 2023), we use 954

the hyperparameters from Li et al. (2024). In par- 955

ticular, we use c = 6.5 and α = 1200. We use the 956

Adam optimizer with a learning rate of 5 × 10−5 957

and a batch size of 150. We select layer 7 to per- 958

form the unlearning loss and layers 5, 6, and 7 959

to update gradients. When performing separate 960

unlearning with SPUNGE, the unlearning subsets 961

are substantially smaller. Thus, we perform train- 962

ing for 2 epochs with early stopping if the cosine 963

similarity between the activations of the unlearned 964

2https://github.com/centerforaisafety/wmdp
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model and the initial model drops below 0.5. All965

experiments are performed on one NVIDA A100966

GPU with 80GB memory.967

B.3 TIES-Merging968

This method from (Yadav et al., 2023) allows one969

to merge multiple model parameters using task970

vector arithmetic. Given a set of model weights971

θu1 , . . . , θ
u
n along with the initial weights θinit, TIES-972

Merging computes a task vector for each model as973

τt = θut − θinit. Then, it operates in three steps: (i)974

trim each task vector by selecting the parameters975

with largest magnitudes, (ii) resolve sign conflicts976

by creating an aggregate elected sign vector, and977

(iii) average only the parameters whose signs are978

the same as the aggregated elected sign. Algo-979

rithm 2 presents the instantiation of SPUNGE with980

RMU and TIES.981

C Benchmarks Used for Evaluation982

We use the following 10 benchmarks for evalu-983

ating the general capability of models. We use984

all six benchmarks from the Open LLM Leader-985

board v1 (Beeching et al., 2023). We use the same986

few-shot prompting evaluation method used by the987

Open LLM Leaderboard and select the same num-988

ber of shots as prescribed for each benchmark. For989

the remaining four benchmarks, we choose those990

commonly in literature and perform 5-shot prompt-991

ing for each. We perform benchmark evaluations992

the Language Model Evaluation Harness frame-993

work (Gao et al., 2023).994

1. AI2 Reasoning Challenge (ARC-Challenge995

and ARC-Easy) (Clark et al., 2018) (25-shot)996

2. HellaSwag (Zellers et al., 2019) (10-shot)997

3. MMLU (Hendrycks et al., 2021) (5-shot)998

4. TruthfulQA (Lin et al., 2022) (0-shot)999

5. Winogrande (Sakaguchi et al., 2021) (5-shot)1000

6. GSM8K (Cobbe et al., 2021) (5-shot)1001

7. MathQA (Amini et al., 2019) (5-shot)1002

8. PIQA (Bisk et al., 2019) (5-shot)1003

9. PubMedQA (Jin et al., 2019) (5-shot)1004

BENCHMARK ZEPHYR-7B-BETA TVN SPUNGE

ARC-C (↑) 63.90 64.50 63.73
ARC-E (↑) 84.89 83.96 83.37
HELLASWAG (↑) 84.21 84.41 84.28
MMLU (↑) 59.75 58.14 58.52
WINOGRANDE (↑) 77.42 78.05 77.82
GSM8K (↑) 34.42 34.79 33.43
MATHQA (↑) 38.05 36.88 36.71
PIQA (↑) 82.69 82.26 82.42
PUBMEDQA (↑) 76.80 76.60 77.00
TRUTHFULQA (↑) 55.12 57.20 58.01

AVERAGE (↑) 65.72 65.67 65.52

Table 4: Accuracy on the benchmarks for the ZEPHYR-
7B-BETA model and the models after performing un-
learning on ToxiGen.

D Additional Experimental Results 1005

D.1 Performance on Academic Benchmarks 1006

We present the performance on 10 academic bench- 1007

marks (Appendix C) in Tables 4, 5, 6, and 7. 1008

D.2 Toxicity per Demographic Group 1009

We analyze the percentage of toxic generations for 1010

each demographic group. We focus on the same 5 1011

demographic groups used during unlearning: Na- 1012

tionality (Mexican), Gender and Sex (Women), 1013

Religion (Muslim), Sexual Orientation (LGBTQ), 1014

and Health Condition (Physical Disability). In 1015

Figures 3 and 2, we present radar plots for toxi- 1016

city percentage per demographic group. The plots 1017

show results for the base model, TVN, and SPUNGE 1018

used with TVN. SPUNGE reduces the toxicity for 1019

every demographic group for LLAMA2-7B (Fig- 1020

ure 3) whereas for ZEPHYR-7B-BETA, SPUNGE 1021

cuts down toxicity percentage for most demo- 1022

graphic groups (Figure 2). 1023

BENCHMARK LLAMA2-7B TVN SPUNGE

ARC-C (↑) 53.32 53.32 52.04
ARC-E (↑) 81.48 81. 64 81.69
HELLASWAG (↑) 78.57 77.44 74.39
MMLU (↑) 45.99 44.74 44.22
WINOGRANDE (↑) 72.45 73.71 74.11
GSM8K (↑) 15.01 8.11 9.47
MATHQA (↑) 29.41 29.31 29.14
PIQA (↑) 79.37 79.97 79.65
PUBMEDQA (↑) 68.40 71.00 69.80
TRUTHFULQA (↑) 38.97 44.34 42.72

AVERAGE (↑) 56.29 56.35 55.72

Table 5: Accuracy on the benchmarks for the LLAMA2-
7B model and the models after performing unlearning
on ToxiGen.
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Algorithm 2 SPUNGE Framework Instantiated with RMU (Li et al., 2024) and TIES-Merging (Yadav et al.,
2023)

Input: Initial model parameters θinit, Dataset D for unlearning, Retain dataset Dr (as needed by RMU),
Data attributes a1, . . . , an, Parameters for RMU c, α, Parameters for TIES-merging λ, k
Output: Unlearned model θu
for t = 1 to n do

Select subset associated with data attribute at as Dt = {x ∈ D | attr(x) = at}
Process subset for unlearning Du

t = {proc(x) | x ∈ Dt}
Perform unlearning θui ← RMU(θinit, D

u
t , D

r, c, α)
end for
Perform merging θu ← TIES(θu1 , . . . , θ

u
n, θinit, λ)

Function RMU(θ,Du, Dr, c, α)
Sample unit vector u with entries drawn independently, and uniformly at random from [0, 1)
for data points xu ∼ Du, xr ∼ Dr do

Set Lu = 1
L

∑
t∈xu
∥fθ(t)− c · u∥22, where xu contains L tokens

Set Lr = 1
L

∑
t∈xr
∥fθ(t)− fθinit(t)∥

2
2, where xr contains L tokens

Update parameters θ using L = Lu + α · Lr
end for
return θ

Function TIES(θ1, . . . , θn, θinit, λ, k)
for t = 1 to n do

Create task vector τt = θut − θinit
Sparsify the task vector to keep only largest k elements to obtain τ̂t
Collect signs for components γ̂t ← sign(τ̂t)
Collect magnitudes for components µ̂← |τ̂t|

end for
Elect final signs as γu ← sign (

∑n
t=1 τ̂t)

for p = 1 to d do
Ap = {t ∈ [n] | γ̂pt = γp}
τpu = 1

|Ap|
∑

t∈Ap τ̂
p
t

end for
θu ← θinit + λτu
return θu

BENCHMARK ZEPHYR-7B-BETA TVN SPUNGE

ARC-C (↑) 63.90 63.13 63.23
ARC-E (↑) 84.89 84.34 83.71
HELLASWAG (↑) 84.12 85.05 85.13
MMLU (↑) 59.75 59.65 59.66
WINOGRANDE (↑) 77.42 76.16 76.48
GSM8K (↑) 34.42 34.04 34.42
MATHQA (↑) 38.05 36.95 36.78
PIQA (↑) 82.69 82.26 81.66
PUBMEDQA (↑) 76.80 77.0 77.2
TRUTHFULQA (↑) 55.12 59.01 60.14

AVERAGE (↑) 65.72 65.76 65.84

Table 6: Accuracy on the benchmarks for the ZEPHYR-
7B-BETA model and the models after performing un-
learning on StereoSet.

D.3 SPUNGE Leveraging Type of Toxicity 1024

We consider the goal of unlearning implicit as well 1025

as explicit toxicity from LLMs. Explicit toxicity 1026

is a conventional form of toxicity containing pro- 1027

fanity, slurs, swearwords, and offensive language. 1028

On the other hand, implicit toxicity does not in- 1029

clude such terms in contrast to explicit toxicity and 1030

can even be positive in sentiment (Hartvigsen et al., 1031

2022). Examples of implicit toxicity include stereo- 1032

typing and microaggressions. The ToxiGen dataset 1033

(Hartvigsen et al., 2022) is focused on implicit and 1034

subtly toxic samples. There are datasets that con- 1035

tains samples with explicit toxicity such as Civil 1036

Comments (Borkan et al., 2019). 1037
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BENCHMARK LLAMA2-7B TVN SPUNGE

ARC-C (↑) 53.32 53.49 52.81
ARC-E (↑) 81.48 82.28 81.90
HELLASWAG (↑) 78.57 78.24 78.54
MMLU (↑) 45.99 44.74 45.49
WINOGRANDE (↑) 72.45 72.13 71.51
GSM8K (↑) 15.01 12.43 13.04
MATHQA (↑) 29.41 29.21 29.31
PIQA (↑) 79.37 80.08 79.97
PUBMEDQA (↑) 68.40 72.8 72.0
TRUTHFULQA (↑) 38.97 40.08 42.16

AVERAGE (↑) 56.29 56.55 56.67

Table 7: Accuracy on the benchmarks for the LLAMA2-
7B model and the models after performing unlearning
on StereoSet.

Figure 2: Toxicity scores per demographic group on
ToxiGen test set for the ZEPHYR-7B-BETA base model,
after unlearning with TVN, and after unlearning with
SPUNGE used with TVN.

Figure 3: Toxicity scores per demographic group on
ToxiGen test set for the LLAMA2-7B base model, after
unlearning with TVN, and after unlearning with SPUNGE
used with TVN.

MODEL TOXICITY AVERAGE

+ METHOD TOXIGEN (↓) RTP (↓) ACC. (↑)

LLAMA2-7B 15.95 6.40 56.29
+ TVN 8.42 3.17 56.14
+ SPUNGE-TVN 4.81 1.97 55.23

Table 8: Evaluation of toxicity unlearning on ToxiGen
and RealToxicityPrompts (RTP). We consider LLAMA2-
7B with TVN. Toxicity is the percentage of toxic genera-
tions and Average Acc. is the average performance on
the 10 benchmarks (Appendices C and D). SPUNGE is
configured to leverage type of toxicity: implicit versus
explicit toxicity.

As a baseline, we perform unlearning on 1038

LLAMA2-7B with TVN using a dataset consisting 1039

of samples with implicit as well as explicit toxic- 1040

ity. To represent implicit toxicity, we take samples 1041

from the (annotated) train set of ToxiGen with hu- 1042

man toxicity level of 5 (highest level). To represent 1043

explicit toxicity, we take samples from Civil Com- 1044

ments with severe toxicity score greater than 0.35. 1045

For comparison, we instantiate SPUNGE to lever- 1046

age type of toxicity. Specifically, we separate the 1047

unlearning set into two subsets: examples with 1048

implicit toxicity (D1) and examples with explicit 1049

toxicity (D2). We separately unlearn the two sub- 1050

sets, and then merge the unlearning models with 1051

TIES-merging. 1052

Experimental Results: Table 8 compares TVN 1053

and its SPUNGE-enhanced version. In addition to 1054

computing toxicity on the ToxiGen test set (which 1055

contains implicitly toxic and benign samples), we 1056

also compute toxicity on Real Toxicity Prompts 1057

(RTP) (Gehman et al., 2020) (which contains ex- 1058

plicitly toxic and benign samples). We see that 1059

SPUNGE amplifies the performance of TVN on both 1060

ToxiGen and RTP, while maintaining the perfor- 1061

mance on benchmark tasks. We present the accu- 1062

racy results on benchmark tasks in Table 9. 1063
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BENCHMARK LLAMA2-7B RMU SPUNGE

ARC-C (↑) 53.32 53.75 53.24
ARC-E (↑) 81.48 81.35 79.33
HELLASWAG (↑) 78.57 78.41 77.82
MMLU (↑) 45.99 44.32 44.16
WINOGRANDE (↑) 72.45 73.16 73.16
GSM8K (↑) 15.01 11.44 4.16
MATHQA (↑) 29.41 29.34 29.41
PIQA (↑) 79.37 79.05 79.65
PUBMEDQA (↑) 68.40 70.20 70.20
TRUTHFULQA (↑) 38.97 40.40 41.23

AVERAGE (↑) 56.29 56.14 55.23

Table 9: Accuracy on the benchmarks for the LLAMA2-
7B model and the models after performing unlearning
on Civil Comments and ToxiGen.
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