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Abstract

Large language models (LLMs) have shown to
pose social and ethical risks such as generating
toxic language or facilitating malicious use of
hazardous knowledge. Machine unlearning is
a promising approach to improve LLM safety
by directly removing harmful behaviors and
knowledge. In this paper, we propose “SPlit,
UNIlearn, MerGE” (SPUNGE), a framework
that can be used with any unlearning method
to amplify its effectiveness. SPUNGE leverages
data attributes during unlearning by splitting
unlearning data into subsets based on specific
attribute values, unlearning each subset sepa-
rately, and merging the unlearned models. We
empirically demonstrate that SPUNGE signifi-
cantly improves the performance of recent un-
learning methods for reducing undesirable be-
haviors and hazardous knowledge in two popu-
lar LLMs.

1 Introduction

The rapid improvement and increasing adoption of
large language models (LLMs) has been accom-
panied by their downsides, notably their potential
harmful behaviors (Weidinger et al., 2022). LLMs
are known to generate harmful content such as
toxic, hateful, or biased language (Sheng et al.,
2019; Gehman et al., 2020; Gallegos et al., 2024).
LLMs also contain hazardous knowledge of sen-
sitive topics such as biosecurity, which can be
(mis)used to empower malicious actors (Sandbrink,
2023; Fang et al., 2024). A widely adopted way
to safeguard against harmful or objectionable re-
sponses is to align LLMs via safety tuning (Ouyang
et al., 2022; Bai et al., 2022; Korbak et al., 2023;
Glaese et al., 2022). However, safety tuning of
LLMs has shown to be vulnerable to adversarial or
Jjailbreak attacks where adversarial prompts break
through alignment and re-invoke harmful responses
(Wei et al., 2023; Zou et al., 2023; Carlini et al.,
2023). Even subsequent benign fine-tuning can
degrade alignment (Qi et al., 2024).
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Figure 1: An Overview of the SPIlit, UNlearn, then
merGE (SPUNGE) Framework. SPUNGE splits the un-
learning dataset into subsets based on selected attribute
values, unlearns each subset separately, and then merges
the unlearned models.

In parallel, machine unlearning has emerged as a
promising paradigm for more targeted and efficient
sociotechnical harm reduction. It has been shown
that unlearning can reduce toxicity and other harm-
ful responses (Ilharco et al., 2023; Zhang et al.,
2023; Yao et al., 2024) and erase hazardous sci-
entific knowledge (Li et al., 2024). Unlearning
can be considered a complementary safety tool to
alignment techniques and can be used before or
after alignment (Liu et al., 2024a). Prior work on
unlearning in LLMs has focused on developing
efficient unlearning methods, without taking into
account characteristics of unlearning data (Xu et al.,
2023a; Liu et al., 2024a) (see Appendix A).

In this work, we demonstrate that leveraging
attributes in the unlearning data can significantly
improve the effectiveness of unlearning. We pro-
pose a simple yet effective framework, SPUNGE:
“SPlit, UNlearn, then merGE” which operates in
three steps (see Figure 1): (i) the unlearning data is
split into subsets based on the values of a selected
attribute; (ii) each subset is separately used to un-
learn a subtype of the undesired behavior, resulting
in multiple unlearned LLMs; (iii) the unlearned
LLMs are merged to obtain the final unlearned
LLM.



Our Contributions:

* We propose the SPUNGE framework that can im-
prove the effectiveness of any unlearning method
by leveraging attributes associated with the un-
learning data. These metadata have been previ-
ously ignored.

We evaluate SPUNGE for unlearning undesirable
behaviors and knowledge in three scenarios: tox-
icity and hate speech; social bias; and hazardous
scientific knowledge. We empirically demon-
strate that SPUNGE significantly improves the
performance of two recent unlearning methods
— Task Vector Negation (Ilharco et al., 2023)
and Representation Misdirection Unlearning (Li
et al., 2024) — on popular LLMs (LLAMA2-7B
and ZEPHYR-7B-BETA), while maintaining gen-
eral capabilities of the LLMs, measured on 10
standard benchmarks.

2 SPUNGE Framework

The proposed SPUNGE framework is illustrated in
Figure 1 and in Algorithm 1. We focus on unlearn-
ing behaviors or bodies of knowledge (as opposed
to smaller, discrete units of information) from a
given LLM with parameters 6;p;; this is represented
by a dataset D consisting of examples of the unde-
sired behavior or knowledge. We consider scenar-
ios in which the dataset can be partitioned into sub-
sets corresponding to different values aq,...,a,
of an attribute a in the data which can often be
identified. E.g., the attribute for the case of un-
learning toxicity could be the demographic group
(e.g., women, Muslims) targeted by the toxic text.

Given a dataset and attribute as described above,
the SPUNGE framework consists of the following
steps: (1) Split the dataset into subsets D; for
t =1,...,n based on the attribute. (2) Perform un-
learning separately on each subset Dy, all starting
from the given LLM, 6y, and yielding n differ-
ent unlearned LLMs, 6. (3) Merge the unlearned
LLMs into a single final unlearned LLM, 6%.

SPUNGE can be instantiated with any unlearn-
ing method U (Oinir, Dy*) and merging method
M0, ..., 6"), where the unlearning method up-
dates model parameters from 6;y;; to 0 using data
subset D}*, and the merging method combines these
independent parameters 67, ..., 0, into one 6".

It is frequently the case for unlearning samples
to have associated attributes. SPUNGE can be ap-
plied to a variety of attributes. For this reason, in
Algorithm 1, we consider a function attr(-) that
can output the value of a given attribute for a data

Algorithm 1 SPUNGE Framework

Input: Initial model parameters 6j,;, Unlearn-
ing dataset D, Attribute with values aq, ..
Processing pipeline proc, Unlearning method
U, Merging method M
Output: Unlearned model 6
fort =1ton do
Select subset associated with data attribute
value a; as
Dy ={x € D |attr(x) = a}
Process subset for unlearning
D} = {proc(x) | x € D}
Perform unlearning 60} < U (Oinit, D}")
end for
Perform merging 6% < M (6%, ...

‘7ana

)

sample. In practice, such a function can be imple-
mented by using data annotations or appropriate
classifiers (e.g., a domain classifier). Similarly, we
generalize any processing required by the unlearn-
ing method with function proc(-).

Note that unlearning for each component model
0 is performed on the subset D; of the original
data. When Dy, ..., D, are the partition of the
unlearning data D, the total number of gradient
steps in SPUNGE is the same as applying the un-
learning method U/ on the entire data D without
using SPUNGE. Additional computation for using
SPUNGE on top of an unlearning method &/ comes
from the merging step, and model merging methods
are computationally efficient (Matena and Raffel,
2022; Choshen et al., 2022; Yadav et al., 2023).

3 Evaluation of SPUNGE

In the following, we evaluate SPUNGE on three
unlearning scenarios. For each scenario, we take
an unlearning method that has been shown to be
effective in the literature, apply SPUNGE on top
of it, and evaluate how SPUNGE impacts the per-
formance of the baseline unlearning method. We
measure the effectiveness of unlearning by using
scenario-specific metrics. To measure the general
capability of the model, we consider 10 standard
academic benchmarks, including all 6 benchmarks
from the Open LLM Leaderboard vl (Beeching
et al., 2023) (see Appendix C for details).

3.1 Unlearning Toxicity and Hate Speech

We apply SPUNGE on top of Task Vector Negation
(TVN) (Ilharco et al., 2023), which has been shown
to reduce toxicity in LLMs (Zhang et al., 2023).



MODEL TOXIGEN AVERAGE
+ METHOD Toxicity () PPL(]) Acc. (1)
ZEPHYR-7B-BETA 20.48 7.62 65.72
+ TVN 5.65 8.36 65.67
+ SPUNGE-TVN 3.88 8.66 65.53
LLAMA2-7B 15.95 5.97 56.29
+ TVN 4.26 8.42 56.35
+ SPUNGE-TVN 2.96 7.88 55.72

Table 1: Evaluation of toxicity unlearning on ToxiGen.
SPUNGE boosts the reduction in toxicity, while maintain-
ing benchmark performance similar to the base model
(Appendices C and D).

Unlearning via TVN: To unlearn toxicity via TVN,
we first fine-tune the model on a subset of toxic
sentences from ToxiGen (Hartvigsen et al., 2022).
Then, we compute tasks vectors by subtracting
the base model weights from the fine-tuned toxic
model. Finally, we negate the task vectors and add
them to the base model to detoxify the base model.
See Appendix B.1 for details.
SPUNGE + TVN: We instantiate SPUNGE by lever-
aging the demographic information in the ToxiGen
unlearning set as attributes. Specifically, we choose
the following 5 representative demographic groups
out of 13 demographic groups in ToxiGen: Nation-
ality (Mexican), Gender and Sex (Women), Reli-
gion (Muslim), Sexual Orientation (LGBTQ), and
Health Condition (Physical Disability). SPUNGE
first splits the ToxiGen train set into 5 subsets —
Dy, ..., Ds—based on the 5 demographic groups.
Next, from each set D;, SPUNGE selects a subset
of samples with high toxicity to get five unlearn-
ing subsets DY, ..., D¥. SPUNGE then performs
TVN on the base model 8;,;; with each D}* to obtain
t,...,0%. Finally, TIES-merging (Appendix B.3)
is used to merge the unlearned models.
Evaluation Set Up: For toxicity evaluation, we
consider a similar experimental setup to Touvron
et al. (2023); Mukherjee et al. (2023). We prompt
the model for completions, with toxic and benign
examples from the test subset of ToxiGen, and
measure the toxicity of the model completions
using a ROBERTA model fine-tuned on ToxiGen
(Hartvigsen et al., 2022). We use greedy decoding
and compute the percentage of completions that
are deemed toxic by the classifier as roxicity. We
also assess how unlearning impacts the fluency of
the model, similar to (Liu et al., 2021; Lu et al.,
2022), by computing the perplexity of the model
completions with an independent, larger model,
LLAMA2-13B.

Experimental Results: As shown in Table 1,
SPUNGE boosts the performance of TVN for
both ZEPHYR-7B-BETA and LLAMA2-7B. For
ZEPHYR-7B-BETA, SPUNGE reduces the toxicity
percentage of TVN by 31% (from 5.65 to 3.88),
while maintaining the fluency of generations as
measured by the perplexity computed with LLAMA-
13B. Notably, SPUNGE maintains general capabili-
ties of the model as measured by the average accu-
racy on the benchmarks. Similarly, for LLAMA2-
7B, SPUNGE reduces the toxicity percentage of TVN
by 30% (from 4.26 to 2.96) while maintaining the
average accuracy on benchmarks within 1% of the
base model. In Appendix D.2, we compare the tox-
icity percentage for each demographic and show
that SPUNGE strengthens TVN. In Appendix D.3,
we instantiate SPUNGE to leverage the attribute of
type of toxicity.

3.2 Unlearning Social Bias

Unlearning methods, especially Task Vector Nega-
tion (TVN), have been shown to effectively mitigate
social bias in LLMs that is characterized by deliber-
ate or unintentional discrimination towards individ-
uals, groups, or specific ideas and beliefs, resulting
in unfair treatment (Dige et al., 2024b,a).
Unlearning via TVN: Following Dige et al. (2024a),
we first fine-tune the model using biased sam-
ples from StereoSet (Nadeem et al., 2021). Then,
we compute tasks vectors by subtracting the base
model weights from the fine-tuned biased model.
Finally, we negate the task vectors and add them
to the base model to debias the base model. See
Appendix B.1 for details.

SPUNGE + TVN: We instantiate SPUNGE by us-
ing the bias domain information in the StereoSet
dataset. StereoSet samples measure stereotypical
biases in four target domains: gender, profession,
race, and religion. SPUNGE first splits the Stere-
oSet dataset into 4 subsets based on the bias do-
mains, then performs TVN with each subset to ob-
tain four unlearned models, and finally uses TIES-
merging (Section B.3) to merge unlearned models.
Evaluation Set Up: For evaluating bias, we use
the CrowS-Pairs benchmark (Nangia et al., 2020),
similar to (Dige et al., 2024b). Each sample in
CrowS-Pairs consists of two sentences: one that is
more stereotyping and another that is less stereo-
typing. CrowS-Pair bias score of a model is the
percentage of more-stereotypical sentences that are
rated as more likely by the model than the non-
stereotypical sentences. Ideally, for an unbiased



MODEL CROWS-PAIRS AVERAGE
+ METHOD Bias (— 0.5)  Acc. (1)
ZEPHYR-7B-BETA 0.649 65.72
+ TVN 0.556 65.76
+ SPUNGE-TVN 0.534 65.84
LLAMA2-7B 0.677 56.29
+ TVN 0.565 56.55
+ SPUNGE-TVN 0.540 56.67

Table 2: Evaluation of social bias unlearning on CrowS-
Pairs. SPUNGE mitigates the bias further without sacri-
ficing benchmark performance (Appendices C and D).

model, the bias score should be closer to 0.5.
Experimental Results: SPUNGE strengthens the
performance of TVN for both ZEPHYR-7B-BETA
and LLAMA2-7B. In particular, SPUNGE reduces
the bias of TVN by ~4% (from 0.556 to 0.534 for
ZEPHYR-7B-BETA, and from 0.565 to 0.540 for
LLAMA2-7B). Notably, SPUNGE maintains gen-
eral capabilities of the models as measured by the
average accuracy on the benchmarks.

3.3 Unlearning Hazardous Knowledge

We focus on reducing the model’s ability to an-
swer questions about hazardous knowledge (e.g.,
cultivating virus) while maintaining the ability to
answer questions about non-hazardous knowledge
(e.g., properties of fungi). Li et al. (2024) designed
Representation Misdirection Unlearning (RMU) for
unlearning hazardous knowledge from LLMs, and
showed its superiority to several unlearning meth-
ods. We demonstrate that SPUNGE enhances the
performance of RMU.

Unlearning via RMU: Given an unlearning dataset
and a retain dataset, RMU randomizes model activa-
tions on unlearning data while preserving model
activations on data to be kept (Appendix B.2). As
unlearning datasets, we use the bio corpora and
cyber corpora — training documents specially col-
lected by Li et al. (2024) for performing hazardous
knowledge unlearning. We use a subset of Wiki-
Text (Merity et al., 2017) as the retain dataset.
SPUNGE + RMU: We instantiate SPUNGE to lever-
age the scientific domain attribute in the unlearning
set. As mentioned in the previous section, the un-
learning dataset is a combination of bio and cyber
corpora. We split the data by domain to separate
bio corpora (D) and cyber corpora (D3). SPUNGE
performs unlearning separately on each of them to
obtain two unlearned LLMs: one with biosecurity
hazardous knowledge removed 0} and the other

MODEL WMDP-Bio WMDP-CYBER MMLU
+ METHOD ) ) ()
ZEPHYR-7B-BETA 63.55 43.63 58.15
+ RMU 31.26 27.62 56.48
+ SPUNGE-RMU 27.57 26.47 55.83

Table 3: Evaluation of hazardous knowledge unlearning
on WMDP. SPUNGE strengthens the performance of
RMU, while preserving general knowledge on MMLU.

with cybersecurity hazardous knowledge removed
0%. SPUNGE then merges 6} and 64 using TIES-
merging (Appendix B). Note that, in contrast to
SPUNGE + RMU, the vanilla RMU (and other base-
lines) in Li et al. (2024) use the bio and cyber cor-
pora together during unlearning — in particular, RMU
alternates between one batch from the bio corpora
and one from the cyber corpora during unlearning.
Evaluation Set Up: To evaluate hazardous knowl-
edge removal, we use the Weapons of Mass De-
struction Proxy (WMDP) benchmark (Li et al.,
2024) which consists of 3.6k multiple-choice ques-
tions on biosecurity (WMDP-Bio), cybersecurity
(WMDP-Cyber), and chemistry (WMDP-Chem).
To evaluate general-knowledge question answering,
we use the MMLU benchmark (Hendrycks et al.,
2021). Similar to Li et al. (2024), we conduct un-
learning evaluation only on the challenging subsets
WMDP-Bio and WMDP-Cyber.

Experimental Results: Table 3! shows that
SPUNGE fortifies the performance of RMU in re-
moving hazardous knowledge while maintain-
ing general-knowledge capabilities. In particular,
SPUNGE reduces WMDP-Bio accuracy by 11.8%
(from 31.26 to 27.57) and WMDP-Cyber accuracy
by 4% (from 27.62 to 26.47), while maintaining
MMLU accuracy within 1% of RMU.

4 Conclusion

We presented SPUNGE, a novel unlearning frame-
work that takes advantage of attributes associated
with the data to be unlearned. SPUNGE leverages at-
tributes using a split-unlearn-then-merge approach,
and can be applied on top of any unlearning method.
We empirically demonstrated that SPUNGE signif-
icantly improves the effectiveness of unlearning
methods for reducing undesirable behaviors and
hazardous knowledge. An interesting future work
is to explore using SPUNGE for data unlearning
(e.g., copyrighted or licensed data).

'We were unable to obtain satisfactory results with RMU
for LLAMA2-7B, since we found it tricky to tune RMU’s
hyperparameters for LLAMA2-7B and Li et al. (2024) did not
provide guidance on this. For RMU with ZEPHYR-7B-BETA, we
use the hyperparameters from Li et al. (2024) (Appendix B.2).



Limitations

We demonstrated the performance gains of
SPUNGE for scenarios wherein unlearning samples
had associated attributes. For nuanced datasets
with less clearly defined attributes, it is possible
to apply SPUNGE by splitting the data based on
clustering with LLM embeddings. Evaluating the
performance of SPUNGE in unlearning scenarios
when data attributes are less clearly defined is an
exciting future direction.

If attribute selection is incorrect or noisy, then it
may potentially lead to ineffective unlearning. An
important future work is to investigate the impact
of the accuracy or noise in attribute selection on
the performance of SPUNGE.

Our evaluation of SPUNGE is limited to unlearn-
ing undesirable behaviors (toxicity and social bias)
and hazardous knowledge. Unlearning is often ap-
plied in other scenarios such as data unlearning
(e.g., copyrighted or licensed data) and reducing
harmfulness (e.g., harmful responses to provocative
prompts). It will be interesting to investigate how
much benefits SPUNGE provides for such diverse
scenarios.

Due to compute limitations, we restricted our ex-
periments to two unlearning methods on models of
size 7B. Exploring SPUNGE with larger and newer
models and different unlearning is potential future
direction.

Ethical Considerations

Unlearning undesirable behaviors and hazardous
knowledge from LLMs often involves the use of
offensive, toxic, biased, or malicious data samples.
As in the case of training datasets of LL.Ms, data
used for unlearning may also include personally
identifiable information. There might be ethical
implications related to how data used for unlearn-
ing are obtained and used. It is crucial to carefully
consider such ethical implications when unlearning
is employed to mitigate undesirable behaviors and
reduce hazardous knowledge from LLMs, irrespec-
tive of whether our framework SPUNGE is used to
enhance the performance of unlearning methods.
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A Related Work

Machine Unlearning: The notion of machine un-
learning was first introduced by Cao and Yang
(2015) motivated by the right-to-be-forgotten and
focused on removing specific training samples.
Since then, there have been a number of works
that have focused on removing specific training
data samples via unlearning (Bourtoule et al., 2021;
Graves et al., 2020; Izzo et al., 2021; Ginart et al.,
2019; Golatkar et al., 2020a,b; Thudi et al., 2021).
and surveys (Nguyen et al., 2022; Xu et al., 2023b).
Unlearning for LLMs has started to gain recent at-
tention resulting in works in data unlearning (Jang
etal., 2023; Wang et al., 2023; Kassem et al., 2023;
Maini et al., 2024; Zhang et al., 2024), concept
unlearning (Eldan and Russinovich, 2023), toxicity
unlearning (Ilharco et al., 2023; Zhang et al., 2023;
Lu et al., 2022), harmfulness unlearning (Lu et al.,
2022; Yao et al., 2024; Liu et al., 2024b), knowl-
edge unlearning (Li et al., 2024). Recent surveys
have shown additional scenarios where unlearning
has been applied (Nguyen et al., 2022; Xu et al.,
2023b; Liu et al., 2024a). Prior works have mainly
focused on designing unlearning methods, evalua-
tion metrics, and benchmarks. However, they do
not take into account attributes of data used for
unlearning. Our proposed SPUNGE leverages data
attributes to fortify the performance of any unlearn-
ing method.

B Details on Unlearning and Merging
Methods and Experiment Details

We describe the specific unlearning and merging
methods used in this work in the following.

B.1 Unlearning via Task Vector Negation
(TVN)

TVN uses the notion of task vector arithmetic for
unlearning (Ilharco et al., 2023). Let 0, € R?
denote the initial model weights and 0y € R? the
corresponding weights after fine-tuning the model
on unlearning dataset D. The task vector used for
unlearning is computed as 7 = g — Oipie. TVN

obtains the unlearned model as 0% = O, — AT
where A > 0 is a scaling parameter. Following
Zhang et al. (2023), we employ Parameter-Efficient
Fine-Tuning (PEFT) instead of full fine-tuning and
compute the task vector using Parameter Efficient
Modules (PEMs). In our experiments, we use a
state-of-the-art PEFT method, LoRA (Hu et al.,
2022), and perform negation using LoRA modules
with A = 1.

Unlearning Toxicity via TVN: We select toxic sen-
tences from ToxiGen (Hartvigsen et al., 2022),
which contains 8.96k samples designed to measure
implicit toxicity and hate speech across 13 demo-
graphic groups (e.g., African Americans, women,
Mexicans, etc.). ToxiGen benchmark contains,
for each prompt, the target demographic group
and the toxicity level evaluated by human anno-
tators. While ToxiGen encompasses 13 demo-
graphic groups, for our experiments, we choose
the following 5 representative demographic groups:
Nationality (Mexican), Gender and Sex (Women),
Religion (Muslim), Sexual Orientation (LGBTQ),
and Health Condition (Physical Disability). We
perform TVN using the ToxiGen training samples
with toxicity scores > 3, restricted to the five de-
mographic groups.

Unlearning Toxicity via SPUNGE + TVN: SPUNGE
first splits the unlearning set ToxiGen into 5 sub-
sets — D1, ..., D5 —based on the 5 demographic
groups. Next, from each set D;, we select a sub-
set of samples with toxicity score > 3 to get five
unlearning subsets DY, ..., Df. SPUNGE then per-
forms TVN on the base model 6;,; with each D}* to
obtain 0}, ..., 0¢. Finally, we use TIES-merging
(Section B.3) to merge the five unlearned models.
Unlearning Social Bias via TVN: We select biased
samples from the StereoSet (Nadeem et al., 2021),
which consists of sentences that measures model
preferences across gender, race, religion, and pro-
fession. intersentence subset of StereoSet. Each
row consists of the context and 3 sentences, which
are stereotypical, anti-stereotypical, and unrelated
with regards to the context. For each row in the
subset, we concatenate the context and the stereo-
typed sequence from the sentences to generate a
biased sentence, which is used for fine tuning.
Unlearning Toxicity via SPUNGE + TVN: SPUNGE
first splits the unlearning set StereoSet into 4 sub-
sets — D1, ..., D4 —based on the 4 bias domains:
gender, profession, race, and religion. Next, from
each set D;, we concatenate the context andthe
stereotyped sequence from the sentences to gen-
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erate 4 unlearning subsets DY, ..., D}. SPUNGE
then performs TVN on the base model 6;,;; with
each D} to obtain 6},...,0}. Finally, we use
TIES-merging (Section B.3) to merge the five un-
learned models.

Training Parameters

TVN with ZEPHYR-7B-BETA: For TVN with
ZEPHYR-7B-BETA (Tunstall et al., 2023), we set
the LoRA rank to 16, « associated with LoRA to
16, LoRA dropout to 0.01, and the target modules
as the default modules in the HuggingFace PEFT
library. We use the Adam optimizer with a learning
rate of 2 X 10> and a cosine learning rate schedule
to train for 1 epoch. For social bias unlearning with
SPUNGE, we use the same learning rate. For toxic-
ity unlearning with SPUNGE, since the unlearning
subsets are substantially smaller, we perform train-
ing with a learning rate of 1 x 10~ for 1 epoch. All
experiments are performed on one NVIDA V100
GPU with 32GB memory.

TVN with LLAMA2-7B: For TVN with LLAMA2-
7B (Touvron et al., 2023), we set the LoRA rank to
64, o associated with LoRA to 64, LoRA dropout
to 0.01, and the target modules as key, value,
query, up, down, and gate projections. We use the
Adam optimizer with a learning rate of 1 x 1074
and a cosine learning rate scheduling. All experi-
ments are performed on one NVIDA V100 GPU
with 32GB memory.

B.2 Representation Misdirection Unlearning
(RMU)

This method from (Li et al., 2024) randomizes
model activations on unlearning data while
preserving model activations on data to be kept.
Specifically, RMU uses a two-part loss function:
(1) a forget loss to bring the model activations
on unlearning data close to a scaled uniform
random vector, and (2) a retain loss to preserve
model activations on data to be retained. Here,
let D denote the unlearning dataset and D’
denote the retain set (containing samples with
desirable behavior or knowledge). Let fy(-) and
fo,,,() denote the hidden states of the model
being unlearned and the initial model, respec-
tively, at some layer ¢. Then, the forget loss is

Lu = Exumb |51 Coken v, 1fo®) = - ull3]
where u is a random unit vector with
entries sampled independently, and uni-
formly at random from [0,1), and ¢ is a
hyperparameter.  The retain loss is L,
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Exor | i) Liokenten, I1o(8) = fo (13
The model parameters are updated to minimize the
combined loss £ = L, + aL,, where a > O is a
hyperparameter. The loss is typically computed
only on layer ¢ and gradients are updated only on
layers £ — 2, ¢ — 1, and /.

Unlearning Hazardous Knowledge with RMU: For
unlearning, we use the bio corpora and cyber cor-
pora collected by Li et al. (2024) and released
publicly 2. The bio corpora consist of a selected
subset of PubMed papers that are related to the
topics appearing in WMDP-Bio questions. The
cyber corpora consist of passages scraped from
GitHub via keyword search on topics related to
WMDP-Cyber questions. These corpora are spe-
cially collected training sets for performing haz-
ardous knowledge unlearning, and are separate
from the WMDP benchmark, which is designed
for evaluation (Li et al., 2024). We use a subset of
WikiText (Merity et al., 2017) as the retain dataset.
Unlearning Hazardous Knowledge with
SPUNGE + RMU: Algorithm 2 presents SPUNGE
instantiated with RMU and TIES-merging. We lever-
age scientific domain as the attribute for unlearning
hazardous knowledge. In other words, n = 2,
a1 = bio, and az = cyber. Given a document x
from the corpora, the function attr(x) outputs
the scientific domain of x, whether it is cyber or
bio. Thus, SPUNGE splits the unlearning corpora
by domain to separate bio corpora (D7) and cyber
corpora (D3). SPUNGE performs unlearning
separately on each of them to obtain two unlearned
LLMs: one with biosecurity hazardous knowledge
removed 0} and the other with cybersecurity
hazardous knowledge removed ¢5. SPUNGE then
merges 6} and 04 using TIES-merging.

Training Parameters

RMU with ZEPHYR-7B-BETA: For RMU with
ZEPHYR-7B-BETA (Tunstall et al., 2023), we use
the hyperparameters from Li et al. (2024). In par-
ticular, we use ¢ = 6.5 and o« = 1200. We use the
Adam optimizer with a learning rate of 5 x 107
and a batch size of 150. We select layer 7 to per-
form the unlearning loss and layers 5, 6, and 7
to update gradients. When performing separate
unlearning with SPUNGE, the unlearning subsets
are substantially smaller. Thus, we perform train-
ing for 2 epochs with early stopping if the cosine
similarity between the activations of the unlearned

*https://github.com/centerforaisafety/wmdp



model and the initial model drops below 0.5. All
experiments are performed on one NVIDA A100
GPU with 80GB memory.

B.3 TIES-Merging

This method from (Yadav et al., 2023) allows one
to merge multiple model parameters using task
vector arithmetic. Given a set of model weights
0%, ..., 0} along with the initial weights 8;p;;, TIES-
Merging computes a task vector for each model as
Tt = 0} — Oinir- Then, it operates in three steps: (i)
trim each task vector by selecting the parameters
with largest magnitudes, (ii) resolve sign conflicts
by creating an aggregate elected sign vector, and
(iii) average only the parameters whose signs are
the same as the aggregated elected sign. Algo-
rithm 2 presents the instantiation of SPUNGE with
RMU and TIES.

C Benchmarks Used for Evaluation

We use the following 10 benchmarks for evalu-
ating the general capability of models. We use
all six benchmarks from the Open LLM Leader-
board v1 (Beeching et al., 2023). We use the same
few-shot prompting evaluation method used by the
Open LLM Leaderboard and select the same num-
ber of shots as prescribed for each benchmark. For
the remaining four benchmarks, we choose those
commonly in literature and perform 5-shot prompt-
ing for each. We perform benchmark evaluations
the Language Model Evaluation Harness frame-
work (Gao et al., 2023).

1. AI2 Reasoning Challenge (ARC-Challenge
and ARC-Easy) (Clark et al., 2018) (25-shot)

HellaSwag (Zellers et al., 2019) (10-shot)

. MMLU (Hendrycks et al., 2021) (5-shot)
Truthful QA (Lin et al., 2022) (0-shot)
Winogrande (Sakaguchi et al., 2021) (5-shot)
GSMB8K (Cobbe et al., 2021) (5-shot)

. MathQA (Amini et al., 2019) (5-shot)

PIQA (Bisk et al., 2019) (5-shot)

PubMedQA (Jin et al., 2019) (5-shot)
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BENCHMARK ZEPHYR-7B-BETA  TVN SPUNGE
ARC-C (1) 63.90 64.50 63.73
ARC-E (1) 84.89 83.96  83.37
HELLASWAG (1) 84.21 84.41 84.28
MMLU (1) 59.75 58.14  58.52
WINOGRANDE (1) 77.42 78.05 77.82
GSMSK (1) 34.42 34.79 3343
MATHQA (1) 38.05 36.88 36.71
PIQA (1) 82.69 82.26  82.42
PUBMEDQA (1) 76.80 76.60  77.00
TRUTHFULQA (1) 55.12 57.20 58.01
AVERAGE (7T) 65.72 65.67 65.52

Table 4: Accuracy on the benchmarks for the ZEPHYR-
7B-BETA model and the models after performing un-
learning on ToxiGen.

D Additional Experimental Results

D.1 Performance on Academic Benchmarks

We present the performance on 10 academic bench-
marks (Appendix C) in Tables 4, 5, 6, and 7.

D.2 Toxicity per Demographic Group

We analyze the percentage of toxic generations for
each demographic group. We focus on the same 5
demographic groups used during unlearning: Na-
tionality (Mexican), Gender and Sex (Women),
Religion (Muslim), Sexual Orientation (LGBTQ),
and Health Condition (Physical Disability). In
Figures 3 and 2, we present radar plots for toxi-
city percentage per demographic group. The plots
show results for the base model, TVN, and SPUNGE
used with TVN. SPUNGE reduces the toxicity for
every demographic group for LLAMA2-7B (Fig-
ure 3) whereas for ZEPHYR-7B-BETA, SPUNGE
cuts down toxicity percentage for most demo-
graphic groups (Figure 2).

BENCHMARK LLAMA2-7B TVN SPUNGE
ARC-C (1) 53.32 53.32 52.04
ARC-E (1) 81.48 81.64 81.69
HELLASWAG (1) 78.57 77.44 74.39
MMLU (1) 45.99 44.74 44.22
WINOGRANDE (1) 72.45 73.71 74.11
GSMS8K (1) 15.01 8.11 9.47
MATHQA (1) 29.41 29.31 29.14
PIQA (1) 79.37 79.97 79.65
PUBMEDQA (1) 68.40 71.00 69.80
TRUTHFULQA (1) 38.97 44.34 42.72
AVERAGE (1) 56.29 56.35 55.72

Table 5: Accuracy on the benchmarks for the LLAMA2-
7B model and the models after performing unlearning
on ToxiGen.



Algorithm 2 SPUNGE Framework Instantiated with RMU (Li et al., 2024) and TIES-Merging (Yadav et al.,

2023)

Input: Initial model parameters 6y, Dataset D for unlearning, Retain dataset D" (as needed by RMU),
Data attributes aq, . . . , a,, Parameters for RMU ¢, a, Parameters for TIES-merging A, k

Output: Unlearned model 6,
fort =1ton do

Select subset associated with data attribute a; as Dy = {x € D | attr(x) = a;}
Process subset for unlearning D}* = {proc(x) | x € D;}
Perform unlearning 6} <— RMU(6init, Dy, D", ¢, @)

end for
Perform merging 0" < TIES(6Y, ...

»Ymo

Function RMU(6, D%, D", ¢, @)

0%, Oinit, \)

Sample unit vector u with entries drawn independently, and uniformly at random from [0, 1)

for data points x,, ~ D%, x,, ~ D" do
Set Eu = % ZtGXU,

fo(t) — ¢ - ul|3, where x,, contains L tokens

Set £, = 1 D iex, 1fo(t) — f,gim(t)Hg, where x, contains L tokens

Update parameters 6 using £L = L, + « - L,
end for
return 6

Function TIES(6,, . .
fort = 1tondo
Create task vector 7, = 0} —

. 79113 einita )‘7 k)

Binit

Sparsify the task vector to keep only largest k£ elements to obtain 7;

Collect signs for components 4 <— sign(7;)

Collect magnitudes for components /i < |7
end for
Elect final signs as y,, < sign (> ;| 7;)
forp=1toddo

AP ={t € [n] | 47 =}

p__ 1 AP
Tu = 2P| Dtear Tt
end for
Ou ¢ Oinic + ATy
return 0,
BENCHMARK ZEPHYR-7B-BETA  TVN  SPUNGE
ARC-C (1) 63.90 63.13 63.23
ARC-E (1) 84.89 84.34  83.71
HELLASWAG (1) 84.12 85.05 85.13
MMLU (1) 59.75 59.65 59.66
WINOGRANDE (1) 77.42 76.16  76.48
GSMSK (1) 34.42 34.04 34.42
MATHQA (1) 38.05 36.95 36.78
PIQA (1) 82.69 82.26  81.66
PUBMEDQA (1) 76.80 77.0 77.2
TRUTHFULQA (1) 55.12 59.01 60.14
AVERAGE (1) 65.72 65.76  65.84

Table 6: Accuracy on the benchmarks for the ZEPHYR-
7B-BETA model and the models after performing un-
learning on StereoSet.
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D.3 SPUNGE Leveraging Type of Toxicity

We consider the goal of unlearning implicit as well
as explicit toxicity from LLMs. Explicit toxicity
is a conventional form of toxicity containing pro-
fanity, slurs, swearwords, and offensive language.
On the other hand, implicit toxicity does not in-
clude such terms in contrast to explicit toxicity and
can even be positive in sentiment (Hartvigsen et al.,
2022). Examples of implicit toxicity include stereo-
typing and microaggressions. The ToxiGen dataset
(Hartvigsen et al., 2022) is focused on implicit and
subtly toxic samples. There are datasets that con-
tains samples with explicit toxicity such as Civil
Comments (Borkan et al., 2019).



BENCHMARK LLAMA2-7B  TVN  SPUNGE
ARC-C (1) 53.32 53.49  52.81
ARC-E (1) 81.48 82.28 81.90
HELLASWAG (1) 78.57 78.24  78.54
MMLU (1) 45.99 44.74  45.49
WINOGRANDE (7) 72.45 72.13  71.51
GSMSK (1) 15.01 12.43 13.04
MATHQA (1) 29.41 29.21  29.31
PIQA (1) 79.37 80.08  79.97
PUBMEDQA (1) 68.40 72.8 72.0
TRUTHFULQA (1) 38.97 40.08 42.16
AVERAGE (T) 56.29 56.55 56.67

Table 7: Accuracy on the benchmarks for the LLAMA2-
7B model and the models after performing unlearning
on StereoSet.

Toxicity Score
Physical Disability

— Zephyr-Tb-beta
— TN
— SPUNGETVN

Mexican Muslim

Figure 2: Toxicity scores per demographic group on
ToxiGen test set for the ZEPHYR-7B-BETA base model,
after unlearning with TVN, and after unlearning with
SPUNGE used with TVN.

Toxicity Score

Physical Disability — lama2-7b

— TVN
—— SPUNGE-TVN

Muslim

Mexican

Figure 3: Toxicity scores per demographic group on
ToxiGen test set for the LLAMA2-7B base model, after
unlearning with TVN, and after unlearning with SPUNGE
used with TVN.
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MODEL TOXICITY AVERAGE
+ METHOD ToxiGEN () RTP () Acc. (1)
LLAMA2-7B 15.95 6.40 56.29
+ TVN 8.42 3.17 56.14
+ SPUNGE-TVN 4.81 1.97 55.23

Table 8: Evaluation of toxicity unlearning on ToxiGen
and RealToxicityPrompts (RTP). We consider LLAMA2-
7B with TVN. Toxicity is the percentage of toxic genera-
tions and Average Acc. is the average performance on
the 10 benchmarks (Appendices C and D). SPUNGE is
configured to leverage type of toxicity: implicit versus
explicit toxicity.

As a baseline, we perform unlearning on
LLAMA2-7B with TVN using a dataset consisting
of samples with implicit as well as explicit toxic-
ity. To represent implicit toxicity, we take samples
from the (annotated) train set of ToxiGen with hu-
man toxicity level of 5 (highest level). To represent
explicit toxicity, we take samples from Civil Com-
ments with severe toxicity score greater than 0.35.

For comparison, we instantiate SPUNGE to lever-
age type of toxicity. Specifically, we separate the
unlearning set into two subsets: examples with
implicit toxicity (D7) and examples with explicit
toxicity (D2). We separately unlearn the two sub-
sets, and then merge the unlearning models with
TIES-merging.

Experimental Results: Table 8 compares TVN
and its SPUNGE-enhanced version. In addition to
computing toxicity on the ToxiGen test set (which
contains implicitly toxic and benign samples), we
also compute toxicity on Real Toxicity Prompts
(RTP) (Gehman et al., 2020) (which contains ex-
plicitly toxic and benign samples). We see that
SPUNGE amplifies the performance of TVN on both
ToxiGen and RTP, while maintaining the perfor-
mance on benchmark tasks. We present the accu-
racy results on benchmark tasks in Table 9.



BENCHMARK LLAMA2-7B RMU SPUNGE

ARC-C (1) 53.32 53.75 53.24
ARC-E (1) 81.48 81.35 79.33
HELLASWAG (1) 78.57 78.41 77.82
MMLU (1) 45.99 4432  44.16
WINOGRANDE (7) 72.45 73.16  73.16
GSMBK (1) 15.01 11.44 4.16
MATHQA (1) 29.41 29.34  29.41
PIQA (1) 79.37 79.05  79.65
PUBMEDQA (1) 68.40 70.20  70.20
TRUTHFULQA (1) 38.97 40.40 41.23
AVERAGE (1) 56.29 56.14  55.23

Table 9: Accuracy on the benchmarks for the LLAMA2-
7B model and the models after performing unlearning
on Civil Comments and ToxiGen.
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