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Abstract

Many systems contain latent variables that make
their dynamics partially unidentifiable or cause
distribution shifts in the observed statistics be-
tween offline and online data. However, existing
control techniques often assume access to com-
plete dynamics or perfect simulators with fully
observable states, which are necessary to verify
whether the system remains within a safe set (for-
ward invariance) or safe actions are consistently
feasible at all times. To address this limitation, we
propose a technique for designing probabilistic
safety certificates for systems with latent variables.
A key technical enabler is the formulation of in-
variance conditions in probability space, which
can be constructed using observed statistics in
the presence of distribution shifts due to latent
variables. We use this invariance condition to con-
struct a safety certificate that can be implemented
efficiently in real-time control. The proposed
safety certificate can continuously find feasible
actions that control long-term risk to stay within
tolerance. Stochastic safe control and (causal)
reinforcement learning have been studied in isola-
tion until now. To the best of our knowledge, the
proposed work is the first to use causal reinforce-
ment learning to quantify long-term risk for the
design of safety certificates. This integration en-
ables safety certificates to efficiently ensure long-
term safety in the presence of latent variables. The
effectiveness of the proposed safety certificate is
demonstrated in numerical simulations.
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1. Introduction
Autonomous control systems must operate safely even in
the presence of latent variables. For instance, autonomous
ground vehicles must anticipate objects suddenly emerg-
ing from behind occlusions or pedestrians unexpectedly
changing their intent to cross the road. In such scenarios,
risk-critical variables may be unobservable. These latent
variables can induce distribution shifts between offline and
online settings in visible variables and render the partial
models associated with the latent variables unidentifiable
(see Section 2.2 for mathematical details). Moreover, the
effects of latent variables on observed states may remain sub-
tle within a short time horizon, but by the time they become
apparent, corrective action may no longer be feasible. For
example, if a child suddenly emerges from behind a large
bus, the vehicle may not have sufficient time to stop safely.
The presence of such irrecoverable states further compli-
cates safety assurance. While myopic safety can often be
efficiently enforced, it is insufficient for ensuring long-term
safety. However, the complexity of safety assurance in-
creases unfavorably with the time horizon, particularly in
the presence of latent variables.

Motivated by these challenges, this paper explores the fol-
lowing research question:

How can we efficiently assure long-term safety for stochastic
systems in the presence of latent variables, which induce
distribution shifts in offline vs. online statistics and partially
unobservable dynamics?

Existing safety certificates often rely on complete system
models or fully observable states to verify whether the sys-
tem remains within a safe set and whether safe actions ex-
ist continuously (Hsu et al., 2023; Wabersich et al., 2023).
These methods commonly determine actions that satisfy
forward invariance conditions in the state space (Blanchini,
1999), which require full knowledge of system dynamics
and state observability for evaluation. However, many real-
world systems do not meet these requirements due to the
presence of latent variables. While myopic controllers are
more practical for real-time control with limited onboard
resources (Ames et al., 2016; 2019), they may fail to guar-
antee long-term safety due to the presence of irrecoverable
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states and the accumulation of tail-risk events over time.
On the other hand, achieving long-term safety—especially
in systems with latent variables—often demands complex
approaches to handle distribution shifts (e.g., reevaluation of
long-term probabilities or retraining using new data), which
impose additional challenges in real-time control.

In this paper, we focus on safety certificates for stochastic
systems with latent variables, uncertainties with unbounded
support, and actuation limits. We formulate invariance con-
ditions in probability space in a way that accounts for latent
variables and distribution shifts and can be computed using
observed statistics. First, we show a relation between risk
measures and marginalized value or Q-functions by employ-
ing a modified Bellman equation—adapted to account for
latent variables. Next, we present the conditions on the
control action that are sufficient to manage risk within a
specified tolerance, based on invariance conditions in prob-
ability space. Based on this relation, we then show action
constraints can be obtained from observed statistics, even in
the presence of distribution shifts between observed offline
vs. online statistics. In particular, action constraints are con-
structed to assure long-term safety with persistent feasibility,
and this construction leverages probabilistic invariance and
the inherent conditions satisfied by marginalized value or
Q-functions. These conditions are then utilized to design a
safety certificate that can be used by a myopic controller to
guarantee long-term safety. This approach also allows the
design of safety certificates to easily exploit the large exist-
ing body of literature from such domains: the risk measure
can be evaluated using existing risk quantification meth-
ods, and its equivalent form in marginalized value function
and Q-function can be evaluated by causal reinforcement
learning technique.

2. Problem Statement
2.1. System Model

We consider a confounded Markov decision process de-
scribed by the tuple (X ,U ,W,P, H). Here, Xt ∈
X 1 is the observable (visible) state, Ut ∈ U is the
action, Wt ∈ W is the unobservable latent variable,
P(Xt+1,Wt+1|Xt,Wt, Ut) is the transition kernel that cap-
tures the transition dynamics of the system, and H ∈ Z+ is
the length of the episode.

We make the following assumption about the latent variable.
Here, the notation ⊥ denotes statistical independence.

1To avoid confusion with later context, we don’t include reward
when describing the process. It is a trivial extension to incorporate
reward and maximize the reward during control by adding the
reward to the optimization objective in (55).

Assumption 2.1. The sequence {Wt} satisfies

Wt ⊥ {Wτ}τ<t, {Xτ}τ<t, {Uτ}τ≤t|Xt. (1)

Due to Assumption 2.1, the transition kernel ad-
mits the decomposition P(Xt+1,Wt+1|Xt,Wt, Ut) =
P(Wt|Xt)P(Xt+1|Xt, Ut,Wt). This condition gives
Markovian property in the observable state Xt, i.e.,

P (Xt+1|Xt, Ut) = P (Xt+1|{Xτ}τ≤t, {Uτ}τ≤t). (2)

Let D = {D1,D2, · · · ,DND
} denote the available offline

data. Here, ND is the size of the training dataset, and
each individual data Di, i ∈ {1, 2, · · · , ND} contains the
sequence of observable state {Xt}t∈{0,1,··· ,H} := X0:H

and control action U0:H in an episode. The control ac-
tions are generated by a behavioral policy πb, i.e., Ut ∼
πb(Ut|Xt,Wt), which is assumed to be unknown. Accord-
ingly, in dataset D, the observable state satisfies the follow-
ing offline statistics:

Poffline(Xt+1|Xt, Ut) =

EWt∼P(Wt|Xt)[P(Xt+1|Xt, Ut,Wt)π
b(Ut|Xt,Wt)]

EWt∼P(Wt|Xt)[π
b(Ut|Xt,Wt)]

.

(3)

On the other hand, the online statistics of the observable
state Xt is given by

Ponline(Xt+1|Xt, Ut) :=

EWt∼P(Wt|Xt)[P(Xt+1|Xt, Ut,Wt)], (4)

where the latent variable Wt is marginalized. The unobserv-
able nature of the latent variable also causes a mismatch
between the online statistics (4) and the offline statistics (3)
of the offline data D.

Unlike the behavioral policy from the offline setting, in the
online setting, a decision policy cannot depend on the latent
variable because the latent variable W cannot be observed
by an online controller. The online policy is designed to
satisfy multifaceted design considerations. Some objectives,
such as performance objectives, are captured in a nominal
policy πn, i.e., Ut ∼ πn(·|Xt). The safety objective is
ensured by a safety certificate. The safety certificate is
represented by a mapping S : X × U × Z → R, where
a control action U is considered to be safe with respect to
a state X at time t when the constraint S(Xt, Ut, t) ≥ 0
is not violated. Here, safety is characterized by an event
C(Xt) that can be evaluated by the state Xt. For example, a
common definition for safety is that the state must remain in
a safe set C. In this example, we have C(Xt) = {Xt ∈ C}.
The long-term safety with respect to a certain control policy
π at time t is quantified by the long-term safe probability

Pπ(C(Xt) ∩ C(Xt+1) ∩ · · · ∩ C(XH)), (5)
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where the probability is calculated assuming the use of
policy π in the closed loop system with the online statistics
Ponline. Here, the policy π has the form π : X ×Z→ ∆(U),
i.e., a mapping from x ∈ X and time t ∈ Z to a distribution
of control action in the action space U , which we denote as
∆(U)2.

In this paper, our goal is to study the design technique for
safety certificates that ensure not only that the safety of
the immediate future state but also that states irrecoverably
leading to risk (no feasible control action leads the system
to safe future states) are avoided. Specifically, the proposed
technique assures that the long-term safe probability condi-
tioned on the initial observable state X0 is not smaller than
a threshold 1− ϵ for the entire episode, i.e.,

Pπ̂,π(C(Xt) ∩ C(Xt+1) ∩ · · · ∩ C(XH)|X0) ≥ 1− ϵ,

∀t ∈ {0, 1, · · · , H},
(6)

given certain initial conditions. Here, the probability is
calculated assuming the use of online policy π̂ for times
{0, 1, · · · , t−1} and policy π for times {t, t+1, · · · , H−1}
in the closed loop system with the online statistics Ponline.
This is achieved by characterizing the action constraints
S(Xt, Ut, t) ≥ 0 that are sufficient to assure the safety
objective (6) and are continuously feasible at all time t.

2.2. Technical Challenges

Due to the presence of latent variables, samples of complete
state {Xt,Wt}t cannot be obtained, and thus the underlying
transition dynamics P(Xt+1,Wt+1|Xt,Wt, Ut) is not fully
identifiable. On the other hand, one cannot treat the ob-
served statistics (statistics of the observed variable {Xt}t)
as if it is the underlying transition dynamics. This is be-
cause the observed statistics has distribution shifts between
the offline vs. online settings: i.e., Ponline(Xt+1|Xt, Ut) ̸=
Poffline(Xt+1|Xt, Ut). Accordingly, the safe probability esti-
mated from observed offline statistics can be misleading (see
Appendix A for an example). This prohibits the use of exist-
ing stochastic safe control techniques (see Section 2.3.1 and
references therein) that require accurate transition dynamics
or a perfect simulator to sample data. We show in Figure 1
and 2 that the safety guarantee from these techniques can
fail under this distribution shift.

2.3. Related Work

2.3.1. SAFE CONTROL

Many design techniques are developed for the safety cer-
tificate in stochastic or deterministic dynamical systems.
These techniques include barrier/Lyapunov functions (Clark,

2In Section 3, we define the augmented state Ŷ which captures
time, so that the input to the policy π is Ŷ .

2021; Wang et al., 2021a; Vahs et al., 2023; Jahanshahi et al.,
2020; Dean et al., 2021), barrier certificates (Prajna et al.,
2007; Ahmadi et al., 2020; 2018), and predictive safety fil-
ters (Wabersich & Zeilinger, 2018; 2023; 2021; Wabersich
et al., 2021). For partially observed systems with known
dynamics, existing literature has proposed robust control
barrier functions for deterministic systems with bounded
estimation errors (Zhang et al., 2022; Dean et al., 2021;
Wang & Xu, 2022; Qin et al., 2022b; Zhao & Yu, 2024),
as well as control barrier functions and barrier certificates
constructed on belief space or estimated state for stochastic
systems (Vahs et al., 2023; Ahmadi et al., 2020; Carr et al.,
2023; Jahanshahi et al., 2022; Clark, 2019; Dean et al., 2021;
Jahanshahi et al., 2020; Ahmadi et al., 2018). When perfect
simulators are available, barrier/Lyapunov functions can
be designed through optimization problems that check the
existence of functions satisfying barrier/Lyapunov function
conditions at all states using sampled data (Nejati & Zamani,
2023; Anand & Zamani, 2023; Dai et al., 2023; Qin et al.,
2022a; Wang et al., 2023; Lindemann et al., 2021; Xiao
et al., 2023). These techniques are commonly built based
forward invariance conditions in the state space3 (Blanchini,
1999). Some techniques also construct safety conditions
based on invariance conditions in the probability space to
ensure long-term safety (Wang et al., 2022; Jing & Nakahira,
2022). These conditions commonly require complete transi-
tion dynamics and fully observable states to evaluate. It is
also difficult to check such conditions using noisy data in
stochastic systems or biased offline data resulting from the
presence of latent variables.

Existing work has also studied the techniques to handle dis-
tribution shifts. A common approach is avoid distribution
shifts by constraining the system to stay within the states
with known distribution. For example, Lyapunov density
model is used to constrain the state within the distribution
sampled in the offline training data (Kang et al., 2022; Cas-
taneda et al., 2023; Wu et al., 2023). Another approach
assumes all possible transition distribution is known or can
be samples, or policies or safety certificates for all possi-
ble distributions can be sampled in advanced. For instance,
meta-learning is used to learn effective policies under differ-
ent distributions (Guan et al., 2024; Richards et al., 2023).
Our problems differ from that from the first approach in
the sense that the distribution shifts (arising from latent
variables) cannot be avoided. Our problem differ from that
of the second approach in the sense that do not have ac-
cess to offline samples for all possible statistics of observed
variables, and data with latent variables are not accessible.

3The system state stays within a certain set if it originated from
within the set. The information of the full system state and state
dynamics is needed to check this condition.
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2.3.2. CAUSAL REINFORCEMENT LEARNING

There has been extensive work in causal reinforcement learn-
ing that aim to address the biasing (confounding) effect of
the latent variables. Existing works have developed esti-
mation methods for value function and/or Q function in
the context of confounded Markov decision process (Wang
et al., 2021b; Chen et al., 2022; Bennett et al., 2021; Shi
et al., 2024; Fu et al., 2022; Xu et al., 2023) and partially
observable Markov decision process (Bennett & Kallus,
2024; Miao et al., 2022; Shi et al., 2022). Many algorithms
are developed for settings with different available informa-
tion, such as the availability of backdoor/frontdoor adjust-
ment variable (Wang et al., 2021b), proxy variables (Miao
et al., 2022; Bennett & Kallus, 2024), and instrumental
variables (Chen et al., 2022; Fu et al., 2022). While these
approaches offer techniques to manage latent variables in
diverse settings, to the best of our knowledge, none have
been applied to stochastic safe control problems with per-
sistent feasibility guarantee. This paper bridges that gap
by introducing a framework that integrates causal reinforce-
ment learning into safety certificate design. Although there
exist methods such as Srinivasan et al. 2020 that use Q-
function to represent safety and integrate safe control with
learning, critical assumptions about the existence of actions
that brings the state to safety has to be made. Our method
does not rely on such assumptions and gives persistent fea-
sibility guarantee on the control policy. While we employ
the method of Shi et al. 2024 for safe controller design,
the proposed framework is expected to generalize to other
causal reinforcement learning techniques and their respec-
tive settings.

3. Proposed Method
Before introducing the proposed method, we first define a
function Ψπ : X × Z → [0, 1] that captures the long-term
safety probability with respect to a policy π conditioned on
a state x:

Ψπ(x, t) :=

Pπ(C(Xt) ∩ C(Xt+1) ∩ · · · ∩ C(XH)|Xt = x), (7)

where t ≤ H . Here, the probability is evaluated with the as-
sumption that the sequence Xt:H has statistics (4). We then
define two auxiliary Markov decision processes (MDPs).
The first MDP is described by the tuple (Y,U , P̃online, r,H),
where Ŷt := [X̂T

t ,Kt]
T ∈ X × Z := Y is the state, and

Ut ∈ U is the control action. In this process, the sequence
X̂0:H has the online statistics (4) when C(X̂t) occurs and

the transition X̂t+1 = X̂t when C(X̂t) does not occur, i.e.,4

P̃online(X̂t+1|X̂t, Ut)

=

{
Ponline(Xt+1|Xt, Ut), C(X̂t) occurs
δ(X̂t+1 − X̂t), C(X̂t) doesn’t occur,

(8)

where δ(·) is the Dirac delta function. We define K0:H to be
a sequence that captures the remaining time in the episode.
Its statistics satisfies Kt+1 = Kt − 1, i.e.,

P̃online(Kt+1|Kt) = δ(Kt+1 −Kt + 1). (9)

The transition kernel of the MDP
is given by P̃online(Ŷt+1|Ŷt, Ut) =
P̃online(X̂t+1|X̂t, Ut)P̃online(Kt+1|Kt). The reward
function r : Y → {0, 1} is defined by

r([xT , k]T ) = 1{k = 0}1{C(x)}, (10)

where 1{E} is the indicator function which takes the value
1 if event E occurs and 0 otherwise. The second MDP is
described by the tuple (Y,U , P̃offline, r,H), where Ȳt :=
[X̄T

t ,Kt]
T ∈ Y is the state. In this process, the sequence

X̄0:H has the offline statistics (3) when C(X̄t) occurs and
the transition X̄t+1 = X̄t when C(X̄t) does not occur, i.e.,

P̃offline(X̄t+1|X̄t, Ut)

=

{
Poffline(Xt+1|Xt, Ut), C(X̄t) occurs
δ(X̄t+1 − X̄t), C(X̄t) doesn’t occur.

(11)

The transition kernel of the MDP
is given by P̃offline(Ȳt+1|Ȳt, Ut) =
P̃offline(X̄t+1|X̄t, Ut)P̃offline(Kt+1|Kt), where
P̃offline(Kt+1|Kt) = P̃online(Kt+1|Kt).

The rest of Section 3 is organized as follows. In section 3.1,
we show that certain value function defined for the MDP
(Y,U , P̃online, r,H) is equal to the function Ψπ. In Sec-
tion 3.2, we introduce a safety certificate formulated based
on the value function and show that the satisfaction of the
safety certificate provably ensures the safety objective (6).
In Section 3.3, we propose an equivalent condition to the
safety certificate that can be evaluated using certain Q func-
tion defined for the MDP (Y,U , P̃online, r,H). We then
show that there always exists a control action Ut ∈ U such
that this condition is satisfied. In Section 3.4, we show
that, using offline dataset D, one can obtain offline dataset
D̃ that has sequences with statistics P̃offline, which can be
used to learn value function and/or Q function defined for

4Here, with slight abuse of notation, we use
P̃online(X̂t+1|X̂t, Ut) = Ponline(Xt+1|Xt, Ut) to represent
that, when X̂t = Xt, X̂t+1 has the same distribution as Xt+1

when the statistics of X0:H is Ponline. We use this notation system
in (11) as well.
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the MDP (Y,U , P̃online, r,H) with existing causal reinforce-
ment learning methods. We then propose an integrated safe
control algorithm using one existing causal reinforcement
learning method as an example.

3.1. Value Function Representation for Long-term Safe
Probability

We consider the value function representation inspired
by (Hoshino & Nakahira, 2024). We define the marginal-
ized value function V : Y → [0, 1] and the marginalized
Q function Q : Y × U → [0, 1] with respect to the MDP
(Y,U , P̃online, r,H):

V π([xT , k]T ) :=EP̃online
[

k∑
τ=0

r(Ŷτ )|Ŷ0 = [xT , k]T , π]

(12)

=EP̃online
[

∞∑
τ=0

r(Ŷτ )|Ŷ0 = [xT , k]T , π]

(13)

Qπ([xT , k]T , u) :=

EP̃online
[

k∑
τ=0

r(Ŷτ )|Ŷ0 = [xT , k]T , U0 = u, π] (14)

= EP̃online
[

∞∑
τ=0

r(Ŷτ )|Ŷ0 = [xT , k]T , U0 = u, π]. (15)

Here, we may sum to infinity because, given Ŷ0 = [xT , k]T ,
we have r(Ŷτ ) = 0 for all τ > k due to definition (10).
Throughout this paper, we use the subscript in the expecta-
tion to denote the distribution or the transition kernel where
the expectation is taken over.

Proposition 3.1. Consider the marginalized value function
defined in (12) for P̃online and the long-term safe probability
defined in (7) for Ponline. We have

V π([xT , k]T ) = Ψπ(x,H − k) (16)

for all x ∈ X and k ∈ Z.

The proof is given in Appendix B.

3.2. Safety Condition

Here, we present a sufficient condition to satisfy the safety
objective (6) using the value function representation. We
consider the condition

EP̃online(Ŷt+1|Ŷt,Ut)
[V π(Ŷt+1)|Ŷt, Ut]− V π(Ŷt) ≥ 0, (17)

where Ŷt = [XT
t , H − t]T ,∀t ∈ {0, 1, · · · , H − 1}.

Theorem 3.2. Consider the marginalized value function
defined in (12) for P̃online and the long-term safe probability

defined in (7) for Ponline. If Ψπ(X0, 0) > 1 − ϵ and the
condition (17) is satisfied at all times t ∈ {0, 1, · · · , H−1},
then the safety objective (6) for the system with transition
kernel P and online statistics Ponline holds.

Proof. We have

Pπ̂,π(C(Xt) ∩ C(Xt+1) ∩ · · · ∩ C(XH)|X0)

=EPπ̂(Xt|X0)[Ψ
π(Xt, t)|X0], (18)

where Pπ̂(Xt|X0) is the conditional distribution of Xt given
X0 assuming the sequence X0:t has statistics Ponline and a
policy π̂ is used for times {0, 1, · · · , t − 1}. From Propo-
sition 3.1, we have that V π([xT , k]T ) = Ψπ(x,H − k).
Therefore, to prove the theorem, it suffices to prove the
following statement: if

V π([XT
0 , H]) := V π(Ŷ0) > 1− ϵ, (19)

and the condition (17) is satisfied at all times t ∈
{0, 1, · · · , H − 1}, then

EP̃π̂(Ŷt|Ŷ0)
[V π(Ŷt)|Ŷ0] ≥ 1− ϵ (20)

holds for all t ∈ {0, 1, · · · , H}, where P̃π̂(Ŷt|Ŷ0) is the con-
ditional distribution of Ŷt given Ŷ0 assuming the sequence
Ŷ0,t has statistics P̃online and a policy π̂ is used for times
{0, 1, · · · , t− 1}. Note that we consider the policy π̂ to be
the online policy here. Since the online policy produces a
deterministic control action, we define the online policy as
a mapping π̂ : Y → U so that we have π̂(Ŷt) = Ut for all
t ∈ {0, 1, · · · , H − 1}. We show (20) holds for all times
t ∈ {0, 1, · · · , H} using mathematical induction. We first
show that (20) holds at time 0. We have

V π(Ŷ0) = EP̃π̂(Ŷ0|Ŷ0)
[V π(Ŷ0)|Ŷ0] ≥ 1− ϵ (21)

holds due to (19). We then show that, given (20) holds
at time t, it also holds at time t + 1. Taking conditional
expectation over the conditional distribution P̃π̂(Ŷ0|Ŷ0) on
both side of (17) yields

EP̃π̂(Ŷt|Ŷ0)
[EP̃online(Ŷt+1|Ŷt,Ut)

[V π(Ŷt+1)|Ŷt, Ut]|Ŷ0]

≥EP̃π̂(Ŷt|Ŷ0)
[V π(Ŷt)|Ŷ0]. (22)

From the law of total expectation, we have

EP̃π̂(Ŷt|Ŷ0)
[EP̃online(Ŷt+1|Ŷt,Ut)

[V π(Ŷt+1)|Ŷt, Ut]|Ŷ0]

=EP̃π̂(Ŷt|Ŷ0)
[EP̃online(Ŷt+1|Ŷt,π̂(Ŷt))

[V π(Ŷt+1)|Ŷt, π̂(Ŷt)]|Ŷ0]

(23)

=EP̃π̂(Ŷt+1|Ŷ0)
[V π(Ŷt+1)|Ŷ0]. (24)

Therefore, we have

EP̃π̂(Ŷt+1|Ŷ0)
[V π(Ŷt+1)|Ŷ0]

≥EP̃π̂(Ŷt|Ŷ0)
[V π(Ŷt)|Ŷ0] (25)

≥1− ϵ, (26)

which gives that (20) holds at time t+ 1.
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3.3. Evaluation of Safety Condition and Persistent
Feasibility Guarantee

Evaluating (17) can be difficult, since even if the marginal-
ized optimal value function V π is available in closed
form, the term EP̃online(Ŷt+1|Ŷt,Ut)

[V π(Ŷt+1)|Ŷt, Ut] cannot

be evaluated since the distribution P̃online(Ŷt+1|Ŷt, Ut) is un-
known. Here, we show a condition that guarantees the satis-
faction of (17) and can be evaluated with only the marginal-
ized Q function Qπ:

S(Xt, Ut, t) :=

Qπ(Ŷt, Ut)− EU∼π(U |Ŷt)
[Qπ(Ŷt, U)|Ŷt] ≥ 0. (27)

where Ŷt = [XT
t , H − t]T ,∀t ∈ {0, 1, · · · , H − 1}. This

formulation allows the Q function obtained from causal
reinforcement learning techniques to be used for evaluating
the safety condition. We then show that the satisfaction of
this safety condition implies the satisfaction of the safety
condition (17).

Lemma 3.3. Consider the marginalized value function de-
fined in (12) and the marginalized Q function defined in (14).
For all times t ∈ {0, 1, · · · , H − 1}, if the control action
Ut ∈ U satisfies (27), then it also satisfies (17).

Proof. For all times t ∈ {0, 1, · · · , H − 1}, the modified
Bellman equation gives

Qπ(Ŷt, Ut) =r(Ŷt) + E[V π(Ŷt+1)|Ŷt, Ut] (28)

=E[V π(Ŷt+1)|Ŷt, Ut] (29)

since r(Ŷt) = 0 for all times t ̸= H . By definitions (12)
and (14), we have

V π(Ŷt) = Eu∼π(U |Ŷt)
[Qπ(Ŷt, U)|Ŷt]. (30)

Combining (29) and (30), we have

S(Xt, Ut, t) =Qπ(Ŷt, Ut)

− EU∼π(U |Ŷt)
[Qπ(Ŷt, U)|Ŷt] (31)

=E[V π(Ŷt+1)|Ŷt, Ut]− V π(Ŷt). (32)

To ensure the safety objective, there must always exist feasi-
ble control action that doesn’t violate the safety condition
(27). Here, we present a provable guarantee for such persis-
tent feasibility.

Theorem 3.4. For all times t ∈ {0, 1, · · · , H − 1}, there
always exists Ut ∈ U such that (27) holds.

Proof. Consider

u∗ = argmax
u∈U

Qπ(Ŷt, u), (33)

we have

Qπ(Ŷt, u
∗) ≥ Qπ(Ŷt, u),∀u ∈ U . (34)

We also have∫
u∈U

π(U = u|Ŷt = y)du = 1,∀y ∈ Y. (35)

Due to (34) and (35), we have

Qπ(Ŷt, u
∗) =Qπ(Ŷt, u

∗)

∫
u∈U

π(U = u|Ŷt)du (36)

=

∫
u∈U

Qπ(Ŷt, u
∗)π(U = u|Ŷt)du (37)

≥
∫
u∈U

Qπ(Ŷt, u)π(U = u|Ŷt)du (38)

=EU∼π(U |Ŷt)
[Qπ(Ŷt, U)|Ŷt]. (39)

As Ut = u∗ ∈ U satisfies (27), there exists a control action
in U that satisfies (27).

3.4. Proposed Algorithm

Before introducing the proposed algorithm, we first show
that, even if the MDP (Y,U , P̃offline, r,H) is an auxiliary
process and does not have the corresponding physical sys-
tem, we can obtain dataset D̃ = {D̃1, D̃2, · · · , D̃ND

} using
the available dataset D. Here, each individual data D̃i con-
tains the sequence of state Ŷ i

0:H and control action U i
0:H in

an episode, and the sequences follows the statistics P̃offline.
We propose Algorithm 1 that generates D̃ using D. Using
data D̃, one can estimate the value function and Q-function
defined in (12) and (14) using existing causal reinforce-
ment learning methods. Here, we introduce an example
method that uses the mediator variable to learn unbiased
Q-function (Shi et al., 2024). This method utilizes the front-
door adjustment (Pearl, 2009) to counter the confounding
effect. Note that the model and assumption introduced in
this subsection are specific to the application of the corre-
sponding method only. The proposed method works with
any causal safe control methods whose model satisfies As-
sumption 2.1.

We define an observable mediator variable Mt ∈M5, con-
sider the spaces X , U ,W andM to be discrete, and make
the following assumption.

Assumption 3.5. The mediator Mt intercepts every directed
path from Ut to Ut or to St+1. The observable state Xt

blocks all back-door paths from Ut to Mt. All back-door
paths from Mt to Xt+1 are blocked by (Xt, Ut).

Here, the definitions for directed path and back-door path
follow the definitions in Pearl 2009, Chapter 3.3.2. We also

5Since Mt is observable, in this example, the sequences
M i

0:H , i ∈ {1, 2, · · · , ND} is also in the offline dataset D.

6



Safety Certificate against Latent Variables with Partially Unidentifiable Dynamics

Algorithm 1 Generation of D̃ using D
1: Input: offline dataset D
2: D̃ ← ∅
3: for i in {1, 2, · · · , ND} do
4: {Xi

0:H , U i
0:H} ← Di

5: X̂0 ← Xi
0

6: Ŷ i
0 ← [X̂T

0 , H]T

7: for t in {0, 1, · · · , H − 1} do
8: if C(X̂t) occurs then
9: X̂t+1 ← Xi

t+1

10: else
11: X̂t+1 ← X̂t

12: end if
13: Ŷ i

t+1 ← [X̂T
t , H − t− 1]T

14: end for
15: D̃i ← {Ŷ i

0:H , U i
0:H}

16: D̃ ← D̃ ∪ {D̃i}
17: end for
18: Return D̃

define the Q function conditioned on the mediator as

Qπ
M ([xT , k]T , u,m) :=

EP̃online
[

k∑
τ=0

r(Ŷτ )|Ŷ0 = [xT , k]T , U0 = u,M0 = m,π]

(40)

EP̃online
[

∞∑
τ=0

r(Ŷτ )|Ŷ0 = [xT , k]T , U0 = u,M0 = m,π].

(41)

The Bellman equation is given by

Qπ
M (Ŷt, Ut,Mt)

=r(Ŷt) + EP̃online(Ŷt+1|Ŷt,Ut,Mt)
[V π(Ŷt+1)|Ŷt, Ut,Mt]

(42)

=r(Ŷt) + EP̃offline(Ŷt+1|Ŷt,Ut,Mt)
[V π(Ŷt+1)|Ŷt, Ut,Mt],

(43)

where (43) holds because P̃online(Ŷt+1|Ŷt, Ut,Mt) =
P̃offline(Ŷt+1|Ŷt, Ut,Mt) (P̃online(Ŷt+1|Ŷt, Ut,Mt) can be
consistently estimated from offline data (Pearl, 2009)). Due
to (43), we can estimate Qπ

M iteratively with data D̃ by
solving

arg min
Q∈Q

ND∑
i=1

H−1∑
t=0

(
r(Ŷ i

t )−Q(Ŷ i
t , U

i
t ,M

i
t ) + V̂ l(Ŷ i

t+1)
)2

(44)

at iteration l + 1, where Q is the class of functions of the
form Y ×U ×M→ [0, 1], and V̂ l is the estimation for the
value function V π in iteration l. To evaluate (44), one needs

to evaluate V π using Qπ
M and known offline statistics. The

value function can be written as

V π(y)

=
∑
u∈U

Qπ(y, u)π(Ut = u|Ŷt = y) (45)

=
∑
u∈U

EP̃online(Ŷt+1|Ŷt,Ut)
[V π(Ŷt+1)

+ r(y)|Ŷt = y, Ut = u]π(Ut = u|Ŷt = y) (46)

=
∑
u∈U

∑
y′∈Y

(V π(y′) + r(y))

P̃online(Ŷt+1 = y′|Ŷt = y, Ut = u)π(Ut = u|Ŷt = y),
(47)

where (46) is due to the Bellman equation. From the front-
door adjustment formula in Pearl 2009, Chapter 3.3.2, con-
ditioned on Ŷt, we have

P̃online(Ŷt+1 = y′|Ut = u, Ŷt = y) =∑
m∈M

∑
u′∈U

P̃offline(Ŷt+1 = y′|Ut = u′,Mt = m, Ŷt = y)

P̃offline(Ut = u′|Ŷt = y)P̃offline(Mt = m|Ut = u, Ŷt = y)
(48)

given Assumption 3.5. Substituting into (47), we have

V π(y)

=
∑
u∈U

∑
y′∈Y

(V π(y′) + r(y))

∑
m∈M

∑
u′∈U

P̃offline(Ŷt+1 = y′|Ut = u′,Mt = m, Ŷt = y)

P̃offline(Ut = u′|Ŷt = y)P̃offline(Mt = m|Ut = u, Ŷt = y)

π(Ut = u|Ŷt = y) (49)

=
∑

m∈M

∑
u′∈U

∑
u∈U

∑
y′∈Y

(V π(y′) + r(y))

P̃offline(Ŷt+1 = y′|Ut = u′,Mt = m, Ŷt = y)

P̃offline(Ut = u′|Ŷt = y)P̃offline(Mt = m|Ut = u, Ŷt = y)

π(Ut = u|Ŷt = y). (50)

Similar to (47), from Bellman equation (43), we can write
Qπ

M as

Qπ
M (y, u,m) =

∑
y′∈Y

(V π(y′) + r(y))

P̃offline(Ŷt+1 = y′|Ut = u,Mt = m, Ŷt = y). (51)

7



Safety Certificate against Latent Variables with Partially Unidentifiable Dynamics

Substituting into (50), we have

V π(y)

=
∑

m∈M

∑
u′∈U

∑
u∈U

Qπ
M (y, u′,m)P̃offline(Ut = u′|Ŷt = y)

P̃offline(Mt = m|Ut = u, Ŷt = y)π(Ut = u|Ŷt = y),
(52)

whose RHS only includes Qπ
M and distributions in the of-

fline statistics. It is also easy to obtain Qπ using Qπ
M . We

have

Qπ(y, u)

=EP̃online(Mt|Ut,Ŷt)
[Qπ

M (Ŷt, Ut,Mt)|Ŷt = y, Ut = u] (53)

=EP̃offline(Mt|Ut,Ŷt)
[Qπ

M (Ŷt, Ut,Mt)|Ŷt = y, Ut = u]

(54)

because P̃online(Mt|Ut, Ŷt) = P̃offline(Mt|Ut, Ŷt)
(P̃online(Mt|Ut, Ŷt) can be consistently estimated from
offline data (Pearl, 2009)). We introduce the proposed
algorithm in Algorithm 2. To ensure the safety objective
while preserving as much performance as possible, we
use the following optimization problem to obtain the safe
control action:

argmin
u∈U

J(Un, u) (55)

s.t. S(Xt, u, t) ≥ 0,

where Un is the control action obtained from the policy πn

and J : U × U → R is a function that penalizes deviation
from Un.

Algorithm 2 Proposed control algorithm
1: Require: offline dataset D
2: Obtain dataset D̃ with dataset D and Algorithm 1
3: l← 0
4: Initialize Q̂π,0

M ∈ Q
5: while not converged do
6: Q̂π,l+1

M ← (44)
7: l← l + 1
8: end while
9: Qπ

M ← Q̂π,l
M

10: t← 0
11: while t < H do
12: observe state Xt

13: Un ∼ πn(·|Xt)
14: Estimate Qπ using (54) with Qπ

M

15: Ut ← (55)
16: execute control action Ut

17: t← t+ 1
18: end while

4. Numeric Simulation
We consider a setting that resembles a simplified driving sce-
nario with discrete state space. Let Xt = [X1

t , X
2
t ]

T ∈ Z2

be the state of the system, where X1
t represents the po-

sition of the vehicle on a 1-dimensional road, and X2
t

represents the velocity of the vehicle. The control ac-
tion Ut ∈ {−3,−2,−1, 0, 1} represents the acceleration
or deceleration applied to the wheels. The latent variable
Wt ∈ {0, 1, 2, 3} represents the slipperiness of the road,
which can make the acceleration or deceleration applied to
the wheels less effective. The system also has uncertainty
Nt = [N1

t , N
2
t ]

T ∈ {−1, 0, 1} × {−2,−1, 0, 1, 2}. The
system transition is given by

X1
t+1 =X1

t +X2
t (56)

X2
t+1 =max(0, X2

t +

sign(Ut +N1
t )max(0, |Ut +N1

t | −Wt) +N2
t ).
(57)

The distributions of Wt and Nt are given in Appendix C.
The safety requirement is that the vehicle obeys a varying
speed limit. Specifically,

C(Xt) ={1{X1
t mod 10 < 4} ∩ {X2

t ≤ 3}}
∪ {1{X1

t mod 10 ≥ 4} ∩ {X2
t ≤ 5}}. (58)

The offline dataset can be considered as human driving
dataset where the human observes the slipperiness of the
road in their behavioral policy, but the slipperiness is not
recorded by the sensor. Specifically, we consider a behav-
ioral policy πb that applies heavier brakes when the road is
more slippery. The detailed distribution for the behavioral
policy is given in Appendix C. The nominal policy simply
chooses actions in the action space with identical probability,
i.e., π(Ut|Xt) = 0.2,∀Ut ∈ {−3,−2,−1, 0, 1}, Xt ∈ Z2.
We consider H = 10 and ϵ = 0.2. We run 100 simulations,
where each simulation simulates 100 trajectories starting
from X0 = [0, 0]T , with the following 2 methods:

1. The proposed method. The proposed method has ac-
cess to an unbiased estimate for the Q-function Qπ,
which can be estimated using causal reinforcement
learning method such as Wang et al. 2021b and Shi
et al. 2024.

2. The discrete-time control barrier function (DTCBF)
proposed in Cosner et al. 2023. This method cannot uti-
lize the Q-function, so the safety condition is evaluated
using the distribution obtained from the offline dataset.
The detailed parameters are given in Appendix C.

For both methods, the control policy is to maximize the
control action while ensuring the corresponding safety con-
dition.
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Figure 1. Probability of safety at each time for both controllers
with 95% confidence interval shown in the shady region.

Figure 2. Long-term safety at each time for both controllers with
95% confidence interval shown in the shady region. The long-term
safety is equal to Pπ̂,π(C(Xt) ∩ C(Xt+1) ∩ · · · ∩ C(XH)|X0)
defined in (6).

The simulation results are illustrated in Figure 1 and 2. The
results show that the proposed controller, although having no
access to the latent variable W or the ground truth transition
dynamics, can achieve a safety performance that satisfies the
safety objective (6) with the Q-function. On the other hand,
the discrete-time control barrier function cannot achieve the
safety objective with the offline statistics even if the control
action satisfies the safety condition.
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A. Mismatch between Online Statistics and Offline Statistics: An Example
Consider a system with observable state Xt ∈ {0, 1} and latent variable Wt ∈ {0, 1}. The control action is Ut ∈ {0, 1}.
The system is considered to be safe when Xt = 0. Suppose that the state transition probabilities are given by

P(Xt+1 = 0|Xt = 0,Wt = 0, Ut = 0) = 0.9 (59)
P(Xt+1 = 0|Xt = 0,Wt = 1, Ut = 0) = 1 (60)
P(Xt+1 = 0|Xt = 1,Wt = 1, Ut = 0) = 0 (61)
P(Xt+1 = 0|Xt = 0,Wt = 0, Ut = 1) = 1 (62)
P(Xt+1 = 0|Xt = 0,Wt = 1, Ut = 1) = 0.1 (63)
P(Xt+1 = 0|Xt = 1,Wt = 1, Ut = 1) = 0. (64)

The value for Wt is determined by

P(Wt = 0|Xt = 0) = 0.5 (65)
P(Wt = 0|Xt = 1) = 0. (66)

Note that P(Xt+1 = 1|·) = 1− P(Xt+1 = 0|·), and we omit the case for Xt = 1,Wt = 0 because it is not reachable from
other states. The behavioral policy πb is given by

πb(Ut = 0|Xt = 0,Wt = 0) = 0.5 (67)

πb(Ut = 0|Xt = 0,Wt = 1) = 1. (68)

We find out the safe probability of the immediate next time step given Ut = 1 for both the offline statistics and the online
statistics. We have

Poffline(Xt+1 = 0|Xt = 0, Ut = 1) =
EWt∼P(Wt|Xt)[P(Xt+1 = 0|Xt = 0,Wt, Ut = 1)πb(Ut = 1|Xt = 0,Wt)]

EWt∼P(Wt|Xt)[P(Ut = 1|Xt = 0,Wt)]
(69)

=1 (70)

and

Ponline(Xt+1 = 0|Xt = 0, Ut = 1) =EWt∼P(Wt|Xt)[P(Xt+1 = 0|Xt = 0,Wt, Ut = 1)] (71)
=0.55. (72)

We observe that the safe probability evaluated from the online statistics is significantly lower than the safe probability
evaluated from the offline statistics. This shows that if a controller uses the offline statistics to perform safe control, the safe
probabilities associated with some control actions will be significantly over-approximated.

B. Proof of Proposition 3.1
Proof. Consider a function Ψ̃π : X × Z→ [0, 1] defined as

Ψ̃π(x, t) := P̃π(C(X̂t) ∩ C(X̂t+1) ∩ · · · ∩ C(X̂H)|X̂t = x), (73)

where the probability is evaluated with the assumption that the sequence X̂t:H has the statistics (8). We first show that

Ψ̃π(x, t) = Ψπ(x, t),∀x ∈ X , t ∈ {0, 1, · · · , H}. (74)

We have

Ψπ(x, t) =

∫
XH−t+1

1{C(Xt) ∩ C(Xt+1) ∩ · · · ∩ C(XH)}Pπ(Xt:H |Xt = x)dXt:H , (75)

where Pπ(Xt:H |Xt = x) is the conditional distribution of the sequence Xt:H given Xt = x when the sequence has statistics
(4) and a policy π is used. Similarly, we have

Ψ̃π(x, t) =

∫
XH−t+1

1{C(X̂t) ∩ C(X̂t+1) ∩ · · · ∩ C(X̂H)}P̃π
x (X̂t:H |X̂t = x)dX̂t:H , (76)

12



Safety Certificate against Latent Variables with Partially Unidentifiable Dynamics

where P̃π
x (X̂t:H |X̂t = x) is the conditional distribution of the sequence X̂t:H given X̂t = x when the sequence has statistics

(8) and a policy π is used. Note that, when the sequences Xt:H and X̂t:H take the same value, Pπ(Xt:H |Xt = x) ̸=
P̃π
x (X̂t:H |X̂t = x) only if there exists a time τ ∈ {t, t+ 1, · · · , H} such that C(Xτ ) (and C(X̂τ ) since Xτ = X̂τ ) does

not occur. In such case, we have 1{C(Xt) ∩ C(Xt+1) ∩ · · · ∩ C(XH)} = 1{C(X̂t) ∩ C(X̂t+1) ∩ · · · ∩ C(X̂H)} = 0.
Therefore, we have (74). Next, we show that

Ψ̃π(x,H − k) = V π([xT , k]T ),∀x ∈ X , k ∈ {0, 1, · · · , H}. (77)

We have

V π([xT , k]T ) =

∫
Yk+1

(
k∑

τ=0

r([X̂T
τ ,Kτ ]

T )

)
P̃π(Ŷ0:k|Ŷ0 = [xT , k]T )dŶ0:k, (78)

where P̃π(Ŷ0:k|Ŷ0 = [xT , k]T ) is the conditional distribution of the sequence Ŷ0:k given Ŷ0 = [xT , k]T when the sequence
has statistics P̃online(Ŷt+1|Ŷt, Ut) and a policy π is used. Since r([xT , k]T ) ̸= 0 only if k = 0, and Kτ = 0 when τ = k
given K0 = k, we have

V π([xT , k]T ) =

∫
Yk+1

r([X̂T
k , 0]

T )P̃π(Ŷ0:k|Ŷ0 = [xT , k]T )dŶ0:k. (79)

Since the distribution of sequence X0:k and the distribution of sequence K0:k are independent, we have

V π([xT , k]T ) =

∫
Xk+1

r([X̂T
k , 0]

T )P̃π
x (X̂0:k|X̂0 = x)dX̂0:k. (80)

From (76), we have

Ψ̃π(x,H − k) =

∫
Xk+1

1{C(X̂H−k) ∩ C(X̂H−k+1) ∩ · · · ∩ C(X̂H)}P̃π
x (X̂H−k:H |X̂H−k = x)dX̂H−k:H (81)

=

∫
Xk+1

1{C(X̂0) ∩ C(X̂1) ∩ · · · ∩ C(X̂k)}P̃π
x (X̂0:k|X̂0 = x)dX̂0:k. (82)

Note that r([X̂T
k , 0]

T ) = 1 iff C(X̂τ ) occurs for all τ ∈ {0, 1, · · · , k}, which gives r([X̂T
k , 0]

T ) = 1{C(X̂0) ∩ C(X̂1) ∩
· · · ∩ C(X̂k)}. Therefore, we have (77).

C. Details in Simulation
The distribution of Wt is given by

P(Wt = 0) = P(Wt = 1) =
1

2
(83)

if X1
t mod 6 ≥ 3 and

P(Wt = 1) = P(Wt = 2) = P(Wt = 3) =
1

3
(84)

if X1
t mod 6 < 3. The distribution of Nt is given by

P(N1
t = −1) = P(N1

t = 0) = P(N1
t = 1) =

1

3
(85)

and

P(N2
t = −2) = P(N2

t = −1) = P(N2
t = 0) = P(N2

t = 1) = P(N2
t = 2) =

1

5
. (86)

13
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The behavioral policy πb is defined as follows. When Wt ≥ 1, X1
t mod 10 < 4, and X2

t ≥ 2, the policy satisfies

πb(Ut = −3|Xt,Wt) = 0.5 (87)

πb(Ut = −2|Xt,Wt) = 0.4 (88)

πb(Ut = −1|Xt,Wt) = 0.05 (89)

πb(Ut = 0|Xt,Wt) = 0.04 (90)

πb(Ut = 1|Xt,Wt) = 0.01. (91)

When Wt ≥ 1, X1
t mod 10 ≥ 4, and X2

t ≥ 4, the policy satisfies

πb(Ut = −3|Xt,Wt) = 0.5 (92)

πb(Ut = −2|Xt,Wt) = 0.4 (93)

πb(Ut = −1|Xt,Wt) = 0.05 (94)

πb(Ut = 0|Xt,Wt) = 0.04 (95)

πb(Ut = 1|Xt,Wt) = 0.01. (96)

When Wt ≥ 2, X1
t mod 10 < 4, and X2

t ≥ 1, the policy satisfies

πb(Ut = −3|Xt,Wt) = 0.5 (97)

πb(Ut = −2|Xt,Wt) = 0.4 (98)

πb(Ut = −1|Xt,Wt) = 0.05 (99)

πb(Ut = 0|Xt,Wt) = 0.04 (100)

πb(Ut = 1|Xt,Wt) = 0.01. (101)

When Wt ≥ 2, X1
t mod 10 ≥ 4, and X2

t ≥ 3, the policy satisfies

πb(Ut = −3|Xt,Wt) = 0.5 (102)

πb(Ut = −2|Xt,Wt) = 0.4 (103)

πb(Ut = −1|Xt,Wt) = 0.05 (104)

πb(Ut = 0|Xt,Wt) = 0.04 (105)

πb(Ut = 1|Xt,Wt) = 0.01. (106)

When Wt ≥ 3, X1
t mod 10 < 4, and X2

t ≥ 2, the policy satisfies

πb(Ut = −3|Xt,Wt) = 0.9 (107)

πb(Ut = −2|Xt,Wt) = 0.05 (108)

πb(Ut = −1|Xt,Wt) = 0.03 (109)

πb(Ut = 0|Xt,Wt) = 0.01 (110)

πb(Ut = 1|Xt,Wt) = 0.01. (111)

When Wt ≥ 3, X1
t mod 10 ≥ 4, and X2

t ≥ 4, the policy satisfies

πb(Ut = −3|Xt,Wt) = 0.9 (112)

πb(Ut = −2|Xt,Wt) = 0.05 (113)

πb(Ut = −1|Xt,Wt) = 0.03 (114)

πb(Ut = 0|Xt,Wt) = 0.01 (115)

πb(Ut = 1|Xt,Wt) = 0.01. (116)

14
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Otherwise, the policy satisfies

πb(Ut = −3|Xt,Wt) = πb(Ut = −2|Xt,Wt) = πb(Ut = −1|Xt,Wt) = πb(Ut = 0|Xt,Wt)

= πb(Ut = 1|Xt,Wt) = 0.2. (117)

For the discrete-time control barrier function, we first represent the safety requirement using C(Xt) = 1{Xt ∈ C}, where
C = {x ∈ Z2 : h(x) ≥ 0}, and

h([x1, x2]T ) = tanh

4.5 +
∑

n∈{1,3,5,7}

4

nπ
sin(−π

5
n(x1 + 0.5))− x2

 . (118)

We use the safety condition

E[h(Xt+1)|Xt, Ut] ≥ αh(Xt) + δ (119)

with α = 0.01 and δ = −0.5, such that the condition (6) is guaranteed for ϵ = 0.2 due to Cosner et al. 2023, equation (13).
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