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ABSTRACT

Object detection systems are essential in safety-critical applications, but they are
vulnerable to object disappearance (OD) threat, in which valid objects become
undetected under small input perturbations, creating serious risks. This paper ad-
dresses the problem of verifying the robustness of YOLO (You Only Look Once)
networks against OD by proposing a three-step probabilistic verification frame-
work: (1) estimating output ranges under a distribution of input perturbations, (2)
formally verifying the Non-Maximum Suppression (NMS) process within these
ranges, and (3) iteratively refining the results to reduce over-approximation. The
framework scales to practical YOLO models. Both theoretical analysis and ex-
perimental results demonstrate that our method achieves comparable probabilistic
guarantees and provides tighter Intersection-over-Union (IoU) lower bounds while
requiring significantly fewer samples than existing methods.

1 INTRODUCTION

Object detection (Zhao et al., |2019; [Zou et al., 2023) is a fundamental computer vision task that
combines object localization and classification. Neural network architectures, including YOLO
(You Only Look Once) (Redmon, 2016; Redmon & Farhadi, |2017; [Farhadi & Redmon, [2018};
Bochkovskiy et al.,2020a), Fast R-CNN (Girshick}2015)), and SSD (Liu et al.;,[2016;|L1 et al.,|2017)),
have achieved significant progress in both accuracy and computational efficiency, enabling their
widespread deployment in real-world applications. Despite these advances, neural network-based
detection systems remain vulnerable to minute, often imperceptible, input perturbations (Im Choi &
Tian, 2022; Lin et al., 2025} |Goodfellow et al.,|2015; Madry et al., 2018} |Dong et al., [2018}; |Carlini
& Wagner, 2017). Of particular concern is the object disappearance (OD) problem, in which mi-
nor input perturbations suppress the detection of valid objects. Such perturbations pose substantial
risks in safety-critical domains, potentially leading to catastrophic consequences due to detection
failures. Consequently, verifying the safety of object detection systems is crucial for their reliable
deployment.

To measure network robustness, verification methods are commonly employed. For a given network
F, an input «, and a property function ¢, verification methods can be grouped into three categories:
Formal Verification. The goal is to find the maximum perturbation radius ¢ such that ¢(F(x')) =
¢(F(x)) for all ' € By(x,¢), where By(x,e) = {x' : ||’ — x|, < €} is the p-norm ball of
radius € centered at . Alternatively, for a fixed €, one can verify whether the property holds for all
x' € By(x,e). However, formal verification is NP-complete (Katz et al., 2017), making it infeasi-
ble for large-scale networks. Even state-of-the-art tools (Zhang et al.l [2022bfa)) face challenges in
handling networks with millions of neurons (Brix et al.,[2023};[2024).

Probabilistic Verification. Given a radius € and a tolerance «, the goal is to verify whether
Py p(¢(F(x')) = ¢(F(x))) > 1 — o, where D is a distribution over B, (x,c). Although this
approach leverages probabilistic guarantees to reduce verification time and memory, its reliance on
processing internal network nodes prevents it from scaling to larger network architectures. Repre-
sentative works include (Weng et al.||2019; |[Boetius et al.| 2025).

PAC Verification. Given ¢, «, and (3, the goal is to verify whether Py p(¢(F(x')) =
¢(F(x))) > 1 — « holds with confidence at least 1 — 3. PAC methods rely on sampling and
do not require access to internal network nodes, which allows them to scale further to larger mod-
els and datasets. Representative works include {Fran-et-al}12023-Parket-al 12020 Eietal 2022)
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Verifying object detection networks with these methods, however, presents additional challenges
beyond the large parameter scales:

(1) Post-Processing Stage: Critical post-processing steps, such as Non-Maximum Suppression
(NMS) (Neubeck & Van Gool} [2006), generally fall outside the scope of current formal verification
methods (Cohen et al., [2024; Elboher et al., 2024);

(2) Large Input-Output  Spaces: The  dimensionality = of the  detec-
tion inputs and outputs even renders PAC-based methods {Eietal}{2022)-
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Due to these limitations, even recent verification methods specifically designed for object detec-
tion (Cohen et al.l [2024; Elboher et al., 2024) are restricted to simplified models or do not account
for complex operations such as NMS. To address this gap, we propose a PAC-based Object Detection
Probabilistic Verification (ODPV) framework for YOLO networks under OD threats. To our knowl-
edge, this is the first framework that effectively verifies the robustness of the original object
detection networks at a practical scale. Although PAC verification cannot provide deterministic
guarantees, it currently offers the most practical means to validate YOLO in a reasonable time.

Our methodology includes three main components: (1) estimating output ranges under input pertur-
bations, (2) formally verifying NMS within the estimated output space, and (3) iteratively refining
verification results. We implement our approach and evaluate it on standard benchmarks. Our main
contributions are as follows.

(1) We formally define the PAC verification problem of the objeet-disappearance-OD threat in object
detection and propose a novel verification approach to address it.

(2) We implement a complete verification process that includes the NMS step, which has been under-
explored in previous work, and provide probabilistic guarantees for each step.

(3) We conduct experiments on widely used networks and datasets to evaluate our proposed method.
We demonstrate that our method requires fewer samples to achieve comparable probabilistic guar-
antees and tighter certified Intersection-over-Union (IoU) bounds.

In summary, we are the first to address the challenges of verifying large-scale detection networks
and to provide an efficient probabilistic verification method.

Remark 1. We emphasize an important distinction: Our work differs from randomized smoothing
in the type of guarantee it provides (Cohen et al.} 2019; Yang et al., |2020). Randomized smoothing
establishes robustness for modified, ”smoothed” classifiers, not the original detector. In contrast,
we leave the network unchanged and provide statistical guarantees for the original model.

2 RELATED WORK

Object detection. Early detectors relied on hand-crafted features such as HOG (Dalal & Triggs),
2005) and sliding windows (Viola & Jones| 2001), but lacked adaptability. CNN-based approaches
transformed feature extraction; R-CNN variants (Girshick et al.l 2014} Ren} 2015) combined region
proposals with deep learning methods. More recent approaches such as YOLO (Redmon) 2016;
Redmon & Farhadil 2017} [Farhadi & Redmon), |2018; Bochkovskiy et al.l 2020b) and SSD (Liu
et al.| 20165 /2017) achieved real-time detection in complex scenarios.

Verification techniques for Neural Networks. Formal verification determines whether a property
holds under given input constraints. State-of-the-art tools (Katz et al., |2017; 2019} Zhang et al.,
2022a}; [2018) employ Branch-and-Bound, combining relaxations (Singh et al.| [2019; Bakl [2021),
bound propagation (Wang et al., |2018b; Weng et al.,|2018; Wang et al.,|2018a}; |Gowal et al., 2019),
and constraint solving (Khedr et al., 2021} [Ehlers, 2017; |Henriksen & Lomuscio} 2020; Kouvaros &
Lomuscio} [2021). However, for large networks such as YOLO (with 640 x 480 x 3 inputs), even
basic bound propagation may require more than 5000 GB of memory, rendering formal verification
infeasible in practice. To address scalability, probabilistic verification estimates the likelihood of
property satisfaction. Sampling-based methods (Webb et al.l 2019} (Cardelli et al., |2019; [Mangal
et al., |2019; |Anderson & Sojoudil [2023) provide probabilistic estimates, but may miss rare cases,
thereby creating gaps between analysis and actual robustness. DeepPAC (Li et al., [2022) approxi-
mates local network behavior with linear equations and high-confidence error bounds, but it requires
prohibitively large sample sizes for models such as YOLO. Techniques like median smoothing (Chi-
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Figure 1: (First Stage) The net- Figure 2: (Second Stage) Final Figure 3: Under imperceptible
work tries to find all boxes that output boxes selected by NMS input perturbations, YOLO can
may contain objects. A subset include the corresponding label no longer recognize these ob-
of these boxes is shown here. and its confidence score. jects.

2020) certify robustness for a modified, “smoothed” detector, whereas our approach di-
rectly verifies the original network.

Verification of Object Detection. Current efforts mainly focus on small or simplified detectors.

Co en et al. propagate bounds to certify Interseetion-over-Hnten-HethloU, while g_@
nco e IoU into networks for existing verifiers. Both approaches ignore the NMS step
and fall to scale to real-world detectors. Comprehensive verification of complete detection pipelines
remains an open problem.

3 PRELIMINARIES

This section outlines the key stages of YOLO object detection as shown in Fig. [T} 3] with
an image from the COCO validation dataset (Lin et al 2014) and defines the threat of objeet

disappearaneeQD.
3.1 KEY STAGES OF YOLO OBJECT DETECTION

Bounding Box Prediction (First Stage). The YOLO network F : R% — R~ processes an input
@ (with dimension dj) to generate an output y = F(x) (with dimension dy,). The output y can be
reformulated as a set of bounding boxes {boz; };"*,, where n, is a constant determined by the fixed
input dimension. Each bounding box boz; is represented as (x;, yi, Wi, Ni, Ciy Diy s Pigs - - - s Di, )-
Here, (z;,y;) denotes the box’s center coordinates, (w;, h;) its width and height, ¢; its confidence
score, and p;, the probability of the object belonging to class j (for j € [n], where n is the total
number of classes) The class of box; is assigned as Class(boxl) = arg max;c[n) Pi,;- Lhese boxes
collectively identify possible object locations in the input image, as Flguremlllustrates

Non-Maximum Suppression (Second Stage). Let y = F(x) be the output tensor from the first
stage. The second stage processes y by using an operator N to select a subset of bounding boxes
{boa:ZJ }ijeine) © Y = {box;};=,, forming the final YOLO output (Figure2). The standard operator
N is Nea-Maximum-Suppression(NMS)NMS (Neubeck & Van Gool, in YOLO, which uses
y and predefined thresholds 7, ¢ € (0, 1) to select the final output. For simplicity, we denote this as
N(y), as n and ¢ are fixed, so we omit them. NMS selects boxes based on the following three rules:
(nl): If i; € [ng] and box;; € N(y), then it must satisfy ¢;; > ¢;

(n2): If 45 € [ng] satisfies box;, ¢ N(y) and c;; > ¢, then there must exist a box;, € N(y) such
that Class(boxZ )= Class(boxlk) and ¢;; <c¢;,, IoU(boxla ybox;, ) > m;

(n3): If i, is, € [ng) such that bo:czj,boxzk € N(y) and Class(box;,) = Class(box;, ), then it must
satisfy IoU(box;;, boxs, ) < 1.

A
The IoU(box1, boxs) = % measures overlap between two boxes, where Area(box N

boxa) and Area(boxy Uboxs) denote the interseetion-and-unionloU areas. The NMS-selected subset
is unique and we focus on its properties, as implementation details are beyond our scope.
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Figure 4: Our verification framework for object detection networks. The green cube represents the
network’s true but unknown output space under input constraints. The yellow cube is the over-
approximated region calculated by our method, which is probabilistically guaranteed to contain the
true output space. Part 3 of our framework (Refinement) progressively shrinks the yellow region by
identifying and excluding areas that do not intersect with the true output space, thereby tightening
the verification bounds.

3.2 OBIECT DISAPPEARANCE THREAT ON OBJECT DETECTION

An object detection model successfully detects an object O in the image x if there exists at least
one box; € N(F(x)) satisfying: Class(boxl) = Class(boxgt) and IoU(box;, boxg,) > 7, where
7 is a predefined IoU threshold and box; is O’s ground truth bounding box. We define the ebjeet

disappearancetOB>-OD threat as follows:

ObjeetDisappearanee-(OD )Threat Definition. Given ground truth box box, perturbation radius
e, IoU threshold 7, and class Class(boxgt ), OD occurs if there exists a perturbation d with ||6]|, < e
such that

boziegl(%)((m+5)) [IoU(boxi, bowgy) - I (Class(bow;) = Class(boxgt))} <T.

where I(-) denotes an indicator function (returns 1 if true, 0 otherwise).

4  VERIFICATION FRAMEWORK FOR OBJECT DETECTION

In this section, we introduce the verification target and our verification approach.

First, we formally define the OD PAC-Verification problem.

Definition 1 (OD PAC-Verification Problem). Given input constraints C, IoU threshold 7, error
rate o € [0,1] and significance level 8 € [0, 1] and ground truth box bozg, verify whether with
confidence at least 1 — 3, the following holds:

Pe~c (Fboz; € N(F(x)) s.t. [IoU(boz;, boxg,) > 7 A Class(box;) = Class(bozgt)]) > 1 —«

If true, the system is deemed PAC-safe in C under 7. This definition reduces to the OD Formal

Verification Problem when o = 0,3 = 0. Here we use « ~ C to denote that x is sampled from a
distribution over the input constraint set C.

Then, we propose a three-part verification framework (see Alg. [I|and Fig.[d) to solve it:

Part 1: Network Output Approximation. For input 2(®) and constraint C, approximate the output
set {F ()} sec with a regular region Z (hyperrectangles/hyperspheres) such that: {F(x)}.cc C Z.

Part 2: NMS Verification. Verify whether, for all y € Z, there exists a box; € N(y) that satisfies
the OD safety property (Definition[T). If this holds, the detector is safe. Otherwise, identify a y that
violates the IoU or class-matching condition.

Part 3: Counterexample Validation and Refinement. Compute dyi, = mingec [|F(z) — yl|2.
If dmin < & (With Kk > 0 as a tolerance), the system is unsafe. Otherwise, refine Z by excluding
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Algorithm 1 Verification framework for the OD PAC-Verification problem

Require:
The network F'; the input constraints C; the threshold in OD verification problem 7 ; the thresh-
old for Part Three «; the number of refinement steps 7'; the ground truth bounding box box.
Ensure:
Whether YOLO is safe under OD attack.

1: Get Z over-approximating {F(x)}rcc > Part One
2: repeat
3: if Yy € Z,3box; € N(y) such that IoU(box;, boxg;) > T A Class(box;) = ¢ then
4: return Safe. > ¢ = Class(boxgy ), Part Two
5: else
6: Get ¢y’ € Z violating the specified property > Part Two
7: dmin = mingec ||[F(z) — ¢'||2 > Part Three
8: Z=Z\ B3y, dmin) > Part Three
9: end if
10: until d,,;, < & or refine T steps
11: return Unsafe > Part Three

Algorithm 2 Algorithm-for-Part-+--Network Output Approximation (Part 1)

Require:
The neural network F; the input constraints C, N ~No-%4=Ny, Ny € Z*, a threshold (.
Ensure:

The bounding box Z.

1: {x® }5\21 +Randomly select N7 points in C. > Find the vpax
2: for j € [dy] do > Find the vyax
30 (Umax); « max{max;{|F(z®); — F(z®);[},{} > Use ( to prevent division by zero
4: end for
5: {z0}N2, « Randomly select Ny points in C. > Find the ¢;
6 RGO -F@O); -

01 4 MaXie[Ny) jeldL] om); . > Find the ¢;
7: return Z + {F(x(?) 4+ € : |€| < ¢1Vmax }-

Ba(Y,dmin) = {¥' : |y — ¥'|l2 < dmin} as the regular region we obtained may be larger than the
actual output space {F(x)}zec, and then go back to Part 2. Note that we limit Part 3 iterations for
high-dimensional outputs to prevent computational overload.

Remark 2. Because our goal is PAC verification, each of the three steps is implemented using
probabilistic methods with probability guarantees, rather than exact computation, as shown in the
next section.

5 VERIFICATION METHOD FOR YOLO OBJECT DETECTION

We illustrate the application of the verification framework from Sectiond]to YOLO object detection.
Because of YOLO’s complexity and scale, formal verification becomes intractable; therefore, we
adopt PAC verification, i.e. black-box verification via sampling. Proofs for Propositions, Lemmas,
and Theorems are provided in the Appendix.

We define the input constraint as C = {z : ||z — (9|, < &} for a given sample x(*), norm
p € Z* U {oco}, and perturbation radius ¢ € (0,1). We consider a probability distribution over
the input set C, and write  ~ C to denote that x is a sample drawn from this distribution. For
convenience, we define the comparison a < b for vectors a,b € R™ to mean Vj € [n] : a; < by,
where a is the j-th component of a. Similarly, scalar-vector multiplication is defined element-wise.
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Algorithm 3 Algorithm for Part 2- NMS Verification (Part 2)

Require:
{{box¥}7=, } ke reinterpreted from Z; IoU threshold 7; ground truth bounding box bozy.

Ensure:

Either a non-empty safe set QQ(Z, 7, boxgy ), or an unsafe witness z € Z.

Q <+ 0.

for i € [ng] do
Calculate 7 (¢, Z, boxgy) and 72 (i, Z, boxgy,) > Appendix
7(i, Z,boxgt) <— min(7 (4, Z, boxgt), T2(i, Z, boxgy)) > Lemma
if 7(i, Z,boxg) > 7 then Q <+ Q U {i} > Lemmal|
end if

end for

if Q # () then return (Safe, Q)

else i < arg max;c[n, {7 (i, Z,boxg)}

end if

return (Unsafe, z) > z € Z such that its corresponding box i leads to the value 7 (i, Z, boxg )

TN RERN

—_—

5.1 IMPLEMENTATION PART 1 ON YOLO

Consider a network F : R% — R?~ and an input constraint C. In Part 1 of our approach, we aim to
determine the range of {F(x)},cc with a probabilistic guarantee. We first find a constant ¢; € R
and a vector vy € R such that Va € C, ¢jVmax > |F(x) — F(2(?))| holds element-wise. Then

let Z = {F(2(?) + € : |€| < ¢;Vmax}. and it is easy to see that {F(x)}zec C Z.

As shown in Algorithm [2| we first randomly select N; samples from C, and define (vVmax); =
max{max;{|F(z®); — F(z();|}, ¢}, where ¢ > 0 is a small constant to ensure all components
are positive. When finding c;, directly solving the problem ¢; = min¢>g ¢ s.t. ¢ € (.o {|F(x) —
F(:v(o))| < CUmax } 18 infeasible. Since each constraint is convex for ¢, by the RCP y (Campi et al.,

2009), we can get c; by randomly selecting No samples {m(i)}ivjl from C, then we calculate ¢; by
the following optimization problem:

= In>igc st. |F(x®) = F(@)| < cvmax, Vi€ [No]. (1)

Proposition 1 (probabilistic guarantee for Part 1). For any N; > 1, let vy,.x be a vector with pos-
itive components (e.g., as estimated from Ny samples in Algorithm [2). If ¢1 is computed based
on this Vymax using No > [% + 2 + %] samples as described in Algorithm then
with probability 1 — B3, we have: Py c (|[F(z) — F(2©)| < ¢1 - vmax) > 1 — a, which implies
Pec(F(x) e Z2)>1—q.

Remark 3. The probabilistic guarantee imposes no special requirements on Ny. We select Uyax in
this way because a larger N yields a tighter approximation of the true output range (Appendix D).

5.2 IMPLEMENTATION PART 2 ON NMS

To better illustrate the NMS verification, we use an infinite index set A to enumerate all possible
values in Z, i.e., Z = {z"}reca, where each z¥ € Z is a possible output vector. Each z* can be
interpreted as a set of boxes {boz¥}!'=, according to the YOLO output format. We assume that box*

iJi=1
can be written box? = (x¥, yF wk hk ok pk pk ... pk). To soundly verify the NMS, we first
define the safe set QQ(Z, 7, boxs ), which contains indices of boxes that satisfy the NMS conditions.

Definition 2 (Safe Set). The safe set Q(Z, 7, boxg) C [ng] and i € Q(Z, T, boxgt ) if and only if:

(1): Vk € A, Class(boxf) = Class(boxy), cf > ¢ and IoU(boxf, boxgt) > T;
(2): Pk € A;n € [ng] \ {i} such that & > ¢, Class(bozk) = Class(boxg), ck > cF,
ToU(box¥, boxk) > n, and ToU(boxg, boxk) < 7.

Then we can soundly verify the NMS by checking whether the safe set is empty.
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Proposition 2 (NMS Soundness Verification). For given Z, T, and bozg, if Q(Z,T,boxg) # 0,
then for Vk € A : Jbox; € N(2%), s.t.IoU(box;, boxg;) > 7 A Class(box;) = Class(bozgs ).

According to this proposition, verification reduces to calculating the safe set. To calculate the safe
set, we need the following key metric:

Definition 3 (Safe IoU Threshold). The Safe IoU Threshold 7 (i, Z, boxg) := inf{r" € [0,1]|i ¢
Q(Z,7',boxg)}, where inf is the infimum operator.

The following lemmas about 7(¢, Z, boxg) can help us compute the safe set Q(Z, T, boxy).

Lemma 1 (Threshold Properties). 7 < 7(i, Z,boxgt) = ¢ € Q(Z, T, boxgy)

We can obtain 7(i, Z, box) by solving the following optimization problem:

Lemma 2 (Threshold Computation). The threshold can be calculated as 7(i,Z,boxg) =
min{7 (i, Z, boxg ), 72(1, Z, boxet) }, where:

71 (1, Z,boxg) = Lréln ToU (box?, boxg;) - 1(Class(box¥) = q) - I(cF > 1), ¢ = Class(boxgy)

min ToU(box”, box if 3(k,n) s.t. Cpp, = 1
T2 (%, Z,boxgt) = {keA n#i ( gt) (k,n)
1

otherwise
where constraint Cy, = 1(ck > 1) - I(Class(bozk) = q) - I(ToU(box¥, boxk) > n) - I(ck > cF).

Appendix [I| shows how we encode the optimization problem in line |3 of Algorithm [3|as a mixed-
integer quadratic program (MIQP) and use the Gurobi solver to solve it.

5.3 IMPLEMENTATION PART 3 ON YOLO

Part 3 of our framework refines the initial output approximation Z. When Part 2 detects a potential
counterexample y € Z, in part 3, we need to check whether y is actually reachable by F for some
@ € C. This is done by computing dyi, = mingec ||F(z) — y||2-

Due to the high dimensionality, even if y € {F(x)}zec, the duin derived from the sampled outputs
converges to zero very slowly as the sample size increases, so directly estimating d,;, simply by
taking the minimum distance from a set of sampled outputs {F ("))} to y may be unreliable.

To address this, we introduce Algorithm [4] a two-step procedure for estimating d,,;;, with proba-

bilistic guarantees. Step One (Estimating C): This step aims to characterize the local variability of
the function F within the input constraint set C. It computes a constant C' by repeatedly sampling

pairs of points and observing the ratio A, B,. Step Two (Estimating d.,;, using C): Using the
constant C' and a new set of M2 samples, this step estimates dy,;, for the specific target vector y.

The formula d,;, < max{ C1(+Az o —Bm) ,0} leverages C to provide a more conservative estimate

of the minimum distance than B,,, (the minimum observed distance from the M5 samples) alone.

Let V(y, dmin) = Pz~c(F(x) € Ba(y, dmin)), and V(y,0) = 0. We use V(y, dmin) to measure
the intersection between Ba(y, dmin) and {F(x)}zcc. We show that with high probability, the
V(y, dmin) is very small.

Theorem 1 (probabilistic guarantee for Part 3). For any o, 3,9, € € (0, 1) satisfying (1—2€)M -5 >
Oand N-((1—26)M —§) > 2 ln( )42+ 2 In(2), with the algorithm} for any y, with probability

atleast 1 — e~ 2N8" _ 8—2(1- )M2 over steps one and two, we have V(y, dmin) <

Remark 4. Take N = 3000, M = 10, My = 2000, and ¢ = 1/200, § = 0.1, o, 3 = 0.0099, then
1—e 2N _3>099and1— o —2(1—e)M2 > 0.99.

We also provide a sound refinement algorithm for small networks, shown in Appendix [K]

5.4 THE PROBABILISTIC GUARANTEE FOR THE ENTIRE ALGORITHM

We prove that the whole algorithm implemented above has a probabilistic guarantee as follows, by
combining proposition and theorem
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Algorithm 4 Algorithm-for-Part-3:--Counterexample Validation and Refinement (Part 3)

Require:

The neural network F'; the input constraints C,
Ensure:

Estimate dp,in = mingec ||y — F(x)||2-

N, M, M, € 7", a vector y.

1: C <+ 0; {x™}Y | « Randomly select N samples from C > Step One
2: fori € [N]do

3: {1} | <+ Randomly select M samples from C again > Step One
4: A} max;ea ||F(a:(’3j)) —F(z™)|l2, B} + minjepy [[F(z)) — F(z®)||,

5: C <+ max{C, A, ,} > Step One
6: end for

7: {x}M2 ¢+ Select M, samples from C > Step Two
8: Let Ay, < max;es,) [[F(z®) — yll2, B < mine(ar, [[F(@@) — yl|2 > Step Two
9: return d;, < maux{M 0} > Step Two

1+2C

Theorem 2. Using the notation from the three algorithms above. Given «, 3,6, € € (0, 1) satisfying
(1-2)M =0 >0, N-((1-26)™ =5) > 2In(1)+2+ 2 In(2) and Ny > [221E 494 22/
Then, after executing the algorithms deﬁned above wzth any k in part 3, if for a sample x, these

algorithms output ’safe’ after T' refinement turns, then with probability at least 1 — T(672N52 + 5+
2(1 — €)M2) — B of parts one and three, we have Py..c(x is safe) > 1 — (1 + T)cv.

If we take N =30,000, Ny = 5,000, N = 3,000, M =10, My = 2,000, = 8 = 0.0099,

€ =1/200, 6 = 0.1, we can achieve a 98% robabilistic guarantee with 98% confidence usin
only 37,000 samples, which means with at least 98% confidence, the probability of an OD event
occurring under the given perturbation distribution is at most 2%.

Remark 5. Note all our theoretical guarantees depend only on the i.i.d. assumption and hold for
any sampling distribution, not just uniform.

6 EXPERIMENTS

Our experiment consists of the evaluations of the bounds accuracy and the safety guarantee. Detailed
experimental settings and more experimental results are provided in Appendix [N]to Appendix [T}

Basic setting. Our experiments used the medium and large versions of the YOLOv3, YOLOVS,
YOLOvVS and YOLO11 models by Ultralytics (Jocher et al., 2023). We conduct verification on
the COCO dataset (Lin et al.,|2014), a widely used benchmark for object detection, and randomly
select 100 validation images containing more than 520 objects. We use a uniform distribution for
sampling, which is a common choice in the literature (L1 et al., 2022; |Cohen et al.,2024). The IoU
threshold 7 € {0.5,0.7}, the constants in NMS are 7 = 0.45 and ¢ = 0.25, which are commonly
used in object detection tasks. In Appendix [Xlwe also evaluate our method under other perturbation

distributions (e.g., Gaussian, Salt and Pepper) on different threat models (e.g., False A earance .

We set ¢ = 0.001 (Alg.[2) and k = 0.01 (Alg. The perturbation radius is set to ﬁ or %
Larger radii make the network overly fragile, enab 1ng counterexamples to be found with very few

samples, and thus eliminating meaningful differences between methods.

Baseline Selection. By Theorem 2} our method achieves a 98% probabilistic guarantee with 98%
confidence using only 37,000 samples. In contrast, RCP y requires over 56011,000,000 samples,
while DeepPAC (Li et al.l 2022) requires over 100,000,000 samples and needs to solve LPs with
more than 102 variables to achieve the same guarantee (see Append1x' ), making both approaches
impractical. Formal verification methods are also infeasible: existing tools (Cohen et al.| 2024;
Elboher et al.,2024) handle only 2-3 convolutional layers with 2-3 linear layers, far below the scale
of YOLO, and cannot address its complex architecture or NMS. Therefore, direct comparisons
with DeepPAC, RCP y, and formal verification are not feasible. Instead, we use RCP y with 108
samples (yielding weaker guarantees) as a baseline.
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Table 1: Comparison of our method with RCPy. Apgp denotes the mean absolute difference of
IoU lower bounds relative to the PGD attack. Bold values indicate the best performance.

e  method model time S OépG? —0r7 model  time S 0.€PG7]? — 07

1 Ours 109.0 0.49 0.45 50.7 0.48 0.44

255 RCPy 563.5 0.55 0.53 455.0 0.52 0.52
v3spp v8m

2 Ours 106.3 0.48 0.41 49.6 0.53 0.45

255 RCPy 562.9 0.58 0.54 454.7 0.59 0.55

1 Ours 108.5 0.52 0.46 1323 0.49 0.46

255 RCPy 561.0 0.57 0.55 591.3 0.55 0.54
v3 v8x

2 Ours 1050 048 0.42 1290 0.1 0.44

255 RCPy 560.3 0.60 0.55 590.6 0.61 0.57

1 Ours 43.6  0.42 0.39 591 048 0.43

255 RCPy 445.5 0.47 0.47 468.8 0.53 0.52
vSm 11m

2 Ours 42.8 0.48 0.42 58.0 0.50 0.43

255 RCPy 444.4 0.55 0.50 467.8 0.57 0.53

1 Ours 131.5 0.48 0.44 147.2 0.49 0.45

255 RCPy 593.8 0.54 0.54 618.1 0.54 0.54
v5x 11x

2 Ours 128.4 0.52 0.45 141.9 0.50 0.44

255 RCPy 593.2 0.60 0.57 616.5 0.62 0.57

Table 2: Guarantee evaluation of our method with 7 = 0.5 and e=—1—¢ € {5-, 52} under 10°

uniform perturbations. TPR/FPR: True/False Positive Rate. TNR/FNR: True/False Negative Rate.
A detection is considered positive if verified robust by our method, and negative otherwise. Certified
Robust Accuracy (CRA): percentage of detections verified robust that are indeed robust. Average
Bounds Improvement (ABI): average gain in certified IoU lower bounds.

model ¢ TPR(%) FPR(%) TNR(%) FENR(%) CRA (%) ABI
ool 1x 11255 949 2.9 97.1 5.1 989  0.10
y 2255 852 1.4 98.6 14.8 994  0.17
ool Im 1255  95.0 3.0 97.0 5.0 98.6  0.10
y 2255  93.1 1.1 98.9 6.9 99.4  0.11
olovex 1255  95.1 0.0 100.0 4.9 100.0  0.09
y 2255 897 0.6 99.4 103 99.7  0.14
olov&im 1255 973 2.6 97.4 2.7 989  0.08
y 2255 939 2.4 97.6 6.1 988  0.11
olovSxu 11255  94.8 0.7 99.3 52 99.7  0.09
y 2255 90.6 0.6 99.4 9.4 99.7  0.13
olovsmu 1255 960 2.9 97.1 4.0 98.6  0.10
y 21255 924 0.5 99.5 7.6 99.7  0.11
olovauspny 1255 956 0.0 100.0 4.4 1000 0.08
y PPU 555 874 0.0 100.0 12.6 100.0  0.15
olov3u 11255  95.7 1.3 98.7 43 99.4  0.09
y 2255  85.8 0.0 100.0 14.2 1000 0.16

Bounds Accuracy. Table [I] compares our method with RCP , showing that our approach is both
faster and more accurate. In particular, it achieves a smaller mean absolute difference between IoU
lower bounds and the worst-case input found by the PGD attack (Apgp), indicating tighter certified
bounds. Figure |§| further confirms this, as our bounds remain consistently closer to those of PGD.
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Figure 5: leU-ewer-Lower bounds of the IoU between detected boxes and their corresponding
g%ﬂ&&ﬁ%g%mboxes under our method ir method, RCPy, the square attack, and the PGD attack.

Results are computed on YOLO11x with ¢ = 5=+ and 7 = 0.5. Each x-axis tick corresponds to an
object in the COCO dataset.

Safety Guarantee. Table [2| further shows results under 10° uniform perturbations: the certified
robust accuracy (CRA) exceeds 98%, and the false positive rate (FPR) remains very low, consistent
with theory. The true positive rate (TPR) is lower, as expected since our certification is stricter than
empirical robustness. Finally, the average bounds improvement (ABI) confirms that our method
yields tighter certified IoU lower bounds.

Additional Experiments. We further evaluate (i) the effect of Part 3 (Appendix EI), (ii) an abla-
tion study on hyperparameters (Appendix [T)), (iii) real-world applications (Appendix [R), and (iv) a
comparison with median smoothing (Appendix [S).

7 CONCLUSION

This paper presents a novel probabilistie framewerkfor—verifyingframework to provide provable
robabilistic guarantees for YOLO-based object detection systems against ebjeekét%appe&faﬁee
attacks;—specific threats (e.g., Object Disappear, False Appearance) under various perturbation

distributions, a key step toward trustworthy deployment. Our contributions are threefold: (i) a formal

definition of the OD verification problem, (ii) a practical three-stage methodology that explicitly in-
corporates formal analysis of Nen-Maximum-Suppression-INMS)NMS, and (iii) strong probabilistic
guarantees for the full pipeline. Experiments on multiple YOLO architectures and the-COEO-dataset
distributions show that our approach delivers reliable safety assurances and achieves tighter certified
IoU bounds with far greater sample efficiency than prior methods.

Limitations and Future Directions: Our method relies on an assumed distribution of input per-
turbations, a limitation inherent to the PAC framework. Developing verification methods for other
types of attacks remains an important direction for future work. Another valuable direction involves

leveraging adversarial attack strategies to further refine Stages 1 and 3, alongside investigating more

efficient methods for interval estimation and refinement.
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A APPENDIX

This appendix provides more related work, supplementary discussions, proofs, and experiments to
support the main text. We organize the appendix as follows:

« Section B} Summarizes additional related work.

» Section[C} Provides the proof of Proposition [I] (probabilistic guarantee for part 1).
* Section D} Explains the role of sample size in Part 1 Step 1 and its effect on vpax.
» Section[E} Gives the proof of Proposition 2] (NMS Soundness Verification).

» Section[F} Proves LemmalT] (threshold properties).

* Section[G} Proves Lemma 2] (explicit threshold computation formulas).

» Section [H} Defines and estimates the verification bound for object detection and provides
proofs for Lemmas [ and [3}

* Section [} Details the verification procedure for Non-Maximum Suppression, including
abstract box construction and IoU bound computation.

* Section[J} Proves Theorem|I] (probabilistic guarantee for Part 3).

» Section [K} We propose a strict sound gradient-based refinement algorithm to implement
Part Three on small-scale networks(Theorem [)).

* Section[L} Provides the proof of Theorem ] based on dual formulations.

» Section [M} Gives the proof of Theorem [2} combining probabilistic guarantees across all
parts.

* Section|N} Reports detailed experimental settings, sample number calculations, and server
configuration.

* Section[O} Discuss the efficiency of the NMS verification process.

* Section[Pt Shows the effectiveness of Part 3 refinement for YOLO and CNNG.

* Section[Q} Shows time-verified box comparison between our method and RCP .
* Section Rt Demonstrates our method’s effectiveness on real-world images.

* Section[S} Compares our method against median smoothing under Gaussian noise.
* Section[T} Presents an ablation study on parameters 7 and ¢.

» Section[U} Discusses the broader impact of our verification method.

* Section|[V]: LLM Usage Statement.

 Section[Wt Lists and explains all hyperparameters used in our algorithms.
* Section[Xl Provides details on how to adapt our method to other attacks beyond OD attacks.

B ADDITIONAL RELATED WORK
Adversarial attacks.

Adversarial attacks. Adversarial methods induce misclassification through imperceptible pertur-
bations. White-box attacks exploit gradient information (Goodfellow et al., |2015; Madry et al.,
2018 |Carlini & Wagner, [2017) and can be adapted to OD attacks (Choi & Tian| 2022} [Li et al.,
2020). Black-box attacks use transferability (Chen & Liul [2024) or query-based optimization (Li
et al.,2020); these are more practical but may be computationally costly. Using adversarial attacks in

Isolation only demonstrates non-robustness if the attack is successful, whereas our method provides
arigorous probabilistic certificate of robustness. A network that is robust with high probability under
common perturbations(e.g. sensor noise) is acceptable for practical deployment, whereas the strict
requirement of complete robustness in a neighborhood often leads to a significant drop in network
performance. Thus focus is on providing probabilistic robustness under realistic perturbations such

as sensor noise rather than adversarial attacks (which often represent worst-case scenarios).
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Bound [Estimate Methods. There are several classical methods for estimatin

robabilistic output bounds of neural networks, includin DKW based confidence
i ERM-based per-rectangles and

c-nets (Haussler & WelzlLITQT]; 7. Blohm ot al. I, . While these method are theoretically robust,

their sample complexity typically scales with the output dimension dz, (e.g., O(dy./€) for e-nets).

Given the extremely high-dimensional output space of YOLO networks, dimension-dependent
bounds like those from e-nets or DKW would be computationally infeasible. We therefore focus
on_dimension-independent PAC bounds, making estimation feasible even for high-dimensional
outputs.

PAC with Attack. There are several PAC verification methods that incorporate adversarial attacks
m&%%mmtmohm et al.|[2025} [Li et al., 2022}, [Baluta et al.| [2021]). For

example, Blohm et al/| (2025) evaluates the robustness of individual points via a local robustness
Wmmmmm
statistical guarantees for global robustness. _Combining attacks with PAC verification is_an
interesting direction, we will explore this in future work.

C THE PROOF OF PROPOSITION/]]

Proposition (probabilistic guarantee for part 1). For any N1 > 1, let vy, be a vector with
positive components (e.g., as estimated from Ny samples in Algorithm[2)). If ¢y is computed
based on this Vi using No > [2 lnal/ 8 +2+4 2 lnj / 2| samples as described in Algorithm
then with probability 1 — 3, we have: Pyc (|F(z) — F(z)| < €1 - Omax) > 1—a, which
implies Pgoc (F(z) € Z2) > 1 —

This proposition can be directly obtained by classic method RCP y, which is introduced below.

C.1 CLASSIC METHOD FOR PROBABILITY SAMPLING.

We begin by introducing a well-known method; result from the RCP y method (Campi et al.,[2009),
which forms the basis of our approach in this section. Consider the following optimization problem

with pessibly-infinite-constraints:—

an infinite number of constraints:

min a'x + b- - st—_=xe€ QﬂgeAXg, 2)
xR ~~
Where-where A is a—index—setan_index set, and X5 C R is—the—denotes the constraint set

corresponding to the index J-th-constraint set-

Since the-constraints-are-infinitethere are infinitely many constraints, we can not solve the problem
dlrectly Thus we c—eﬂﬂderample the constraints {(5 } from A —&ﬂekeeﬁma%e%he—pe%%bih%y

according to a probability distribution Q@ on A, and consider the sampled problem equation [3] We
are interested in quantifying how likely it is that the optimal solution of the sampled problem is
almost) feasible for the original problem.

mina' € +b st. x € A5 ey ﬂ Xs, . 3
eeR? . i€[N]

When X545 is convex for every § € A, we have that:—the following result. If Q is a distribution

defined on A, and %[M%Fw}mﬂgmfebm
N > Pln(l/ﬂ +92d + 2dln(2/a)"
a a

)
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then, with probability at least 1 — 3 e#{é%—we@over the i.i.d. samples {§; 1V , if the

feHewmgoptlmlzatlon problem equation El s a unique solution Ti,, sueh-this solutlon Tmin
satisfies ToTEs} oD

P5N9($min S X(;) >1—a.

A classic application fer-of RCPy is to find—the—minimum—(or—maximum)—valse—compute a
high-probability upper bound of a function -when-inpui-in-a-eonsiraint-f () over a domain As
which-ean-be-writtenas——,_This can be formulated as an optimization problem with a decision
variable x € R (i.e., dimensiond = 1):

min zereer®—_ 8.t x> f(t), Yt e A. 4

By-By applying the RCP y result with d = 1, we know that when-N-—>-{2200 4 og 4 2dln2/0)]

and-weseleetif we draw N samples {t;}Y | infrom A sthenwithprebabitity-according to Q, where
N> PIn(l/ﬂ) to4 21n(2/a)—‘ ’

« (0%

then, with probability at least 1 — 8 %@%—%T%—%%%%HOVCF the

sampling, we have P,

D ABOUTTHEEFFECT-ANALYSIS OF THE SAMPLE NUMBER-SIZE EFFECT IN
PART 1 STEP 1

In this section, we Wﬁl—defneiistrat&welry—w&ehees&]ustlf the choice of v, as shew—in—the

a%geﬁthmg—qihe&maiﬁesu%tﬁ%th%we—w&ne resented in Al orithm The main objective is
to _ensure that the range Z we-obtained-b hm-sh not-fa he-real-obtained b

Algorithm 2ldoes not significantl exceed the actua range {F( )}mec-

Al 0r1thm l uarantees thls O ert under certain assum tions, as detailed in the followin
proposition.

Proposition 3. Let |(F(x)); — (F(z(©));| ~ N; when & ~ C, and v; € R is the minimum value
such that Py, (x < wv;) = 1.

If o} < ob < 1and By, Bo satisfy that: Py, (v < abv;) = B1 and Pron, (z < abv;) = B for
any i € [dr].

Let z; = (€1Umax); Where ¢1 and vpax are obtained by algorithmEI then we have that: i—’ <
. J

maxi{%%}agfor any j € [dr] with probability 1 — dr, (1 + BN — YY) — dp(1 4 522 — B32).
1
Proof. bserve that for any coordinate

i € [dy], given the N; points—{=;1-in—randomly selected points from C in a}geﬂthffr@
2V — g\t — 1_ 1) = 1 2 ;
Mg A, Ay >er —efer}Algorithm

the condition a,v; > maxy (x); > ofv; holds for all i € [dy].
StmitarSimilarly, for the Vo p01nts{af‘—}—r&ndem~%e1eeted—m—the-a}geﬁthm randoml selected in

Algorithm [2| with probability
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Distribution around x

120 1

100 A

80 A

60 1

Frequency

40 1

20 A

0.0 0.5 1.0 1.5 2.0 25 3.0 3.5
Value

Figure 6: This is a picture about the distribution around a sample z. When we take a; = 2.3/3.5
and ap = 2.8/3.5, by such figure, we have that 5; < 0.99 but 83 &~ 1. Thus (a2/a1)as = 0.97.
Hence, if there are N; = Ny = 3000, then 1 — d, (1 + 8 — ) —dp (14 N2 — 22) > 0.99
when d;, < 107.

- > a'v; holds for all

i€ [dy]-
Heﬂc—egg%gggevgtly based on the

max )] —

Whaswe—wantconstructlon in Algorithm [2] if the above events occur, we have ¢ < max;{ad/al

Therefore, for any 7 € |d]|, implies:

i
< &2 Ty
(C1Vmax); < max o ajv;,
1
1

which completes the proof. O

Based on our observations of many-numerous neural network outputs, we havefound-thatthe outputs
of-neuralnetworksfind that the output values are highly likely to be concentrated in-a-eertain-within

Mnggg@cregmn An example is gave&%%he«ﬁgur&rovﬂed in Figure |6} Based on this Tthere

' - we—know-observation, it is
0551ble that a1 =~ « wh11e By~ 1 and < 1. Conse uentl since a3 & a9, we can infer that
each dimension of Z will not far-extend si mﬁcantl beyond vl,—beeauee&ﬁ%%g—aﬂdﬂl%ﬁl,—we

Va Va /-
r—pg . Furthermore,

g 1
since 5 &~ 1 and < 1 the robablht term satlsﬁes:

Lodi(L+ A =B ) — AL+ B — ") ~ 1.

However, in feahfyp;agg& we cannot accurately estimate o and Bz—%&wvl“lvlgrvevfggekthe choice

of Ny is primarily

determined em 1r1ca11 The theorem above serves to theoretlcall ustlf the accuracy of the region
Z wefound-obtained when [V is sufficiently large.
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E THE PROOF OF PROPOSITION 2]

Proposition (NMS Soundness Verification). For given Z, 7, and box g, if Q(Z, T, boxgt) #
0, then for Vk € A : Jbox; € N(zF), s.tIoU(box;,boxg) > T A Class(box;) =
Class(boxgy).

We give-alemmaatfirstfirst present a lemma.

Lemma 3. Fora given z € Z, lf there is no box; € N(z) satisfies that IoU(box;, boxgs) > T and
S ss)-Class(box; ) = Class(boxey) then:

For any boxl € zwithe; > o, Class(bo:cl) = ¢ and loU(box;, boxs,) > T, there exists another
box; € z such that ¢; > 1, Class(box;) = Class(box;), ¢; < c¢j, IoU(boxJ7boxgt) < T and
IoU(boz;, box;) > n.

Proof. Assume that there exists a box; € z with ¢; > 1, Class(box;) = Class(bozgt) and
IoU(box;, boxg) > 7. By ; the assumption of the lemma, it implies

that boz; ¢ N(z). Aeccordingto-

According_to_condition (n2) in Section [3.1, there must exist a box; € N(z) such that
IoU(bon,boxj) > 1, ¢ < ¢y, and Class ox) = Class(box;) = Class(boxg;). By condition
(nl) in Se&Sectlonn bor; € N(z) implies that ¢; > ¢.

However, by the assumptions, there is no box; € N(z) that satisfies Class{boz;)=-¢
Class(box;) = Class(bozg) and IoU(boxj,borg;) > 7i—and—._ _Since we have shown that
Class(box;) = Class(boxg;) above, se—we—ean—getit follows that IoU(box;, boxg;) < 7. This
completes the proof. O

Using sueh-a-this lemma, we can directly geﬁh&pfepesiﬁeﬁpgg\ygvmvs\ijviggg

Proof. Assume that Q(Z, T, boxg) # (), but for some k € Asuch-, the stated result does not hold.

Base-on—the-Based on condition (1) of the definition of Q(Z,T,boxg), let i € Q(Z,T,boxy )
then—based—on—theJtemma— Then, based on Lemma EI, we know that there exists another

WWW\)VVWVVWWWWM
box; € z* such that c;“ > 1, Class(box ) = Class(boz¥), cF < ck IoU(boz;, boxgt) < T,

(2

and IoU(box} , box%) > WW&W%W&WMW(Z) of the
definition of Q(Z, 7, boxt).

Thus, the assumption leads to a contradiction, and
the result follows. O

F THE PROOF OF LEMMA [T]

Lemma (Threshold Properties). 7 < 7(i, Z,boxgt) = 1 € Q(Z, T, boxgy)

Proof. Fi T boEg hoEgT )
First, we demonstrate that for any 7’ > 7, the inclusion Q(Z, 7/, box,) C Q(Z, T,boxy¢) holds.
M@ satisfied-the-satisfies Condition (1) in definition-Blwith-Definition 2] with a

threshold 7/, thenit-also-satisfied-the-it necessarily satisfies Condition (1) tﬁ—deﬁﬂt&eﬂ-@-wﬁh—aﬂy
fhfeshe}dﬁ*—e%—uﬂde%w1th any lower threshold 7 < 7/, assuming the input constraints and ground

truth wnehanged—Similarforremain unchanged. A s1m11ar argument applies to Condition (2) in
definition2}-Then-we-getthe Definition 2l This establishes the monotonicity result.

Seo—ﬁ—%ﬁ:{%—Z—beﬁL—t—}Now su ose for the sake of contradiction that T <13, 2, box st and

f—>—'F€?—Z—beAr—r)ﬂeeefdmg / Z T, hoXes the monotonlclt estabhshed above this
implies that ¢ Z.17". box,) for any 7/ > 1. Accordln to the definition of +{(#Zbozgr)
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but-this—is—contrad § T2 00T ) he-asstmption—is—wrong,—and—we—p
lemma—1 (1, Z, box,y ), this entails 7 > 7(i, Z, box, ), which contradicts the initial h othes1s that

7 < 7(1, Z,boxst ). Thus, the assumption leads to a contradlctlon, which completes the proof. [

G THE PROOF OF LEMMA 2]

Lemma (Threshold Computation). The threshold can be calculated as 7(i, Z,boxg) =
min{r (¢, Z, boxgt ), 72(i, Z, boxgy) }, where:

T1(2, Z,boxgt) = irélnloU(box ,boxg) - I(Class(boxt) = q) - I(cF > 1), ¢ = Class(boxg;)

min ToU(box®  box ifd(k,n) s.t. Cpp = 1
To(t, Z,boxg) = § kEAMF ( et) (k,n)
1 otherwise

where constraint Cy,, = I(ck > 1) - 1(Class(box®) = q) - I(IoU(box ¥, box®) > n) - I(ck >
k).

Proof. 2 boEg s
P} gt )

We prove the equality by showing both directions of the inequality.

Part 1: Proof of 7(i, Z,boxyy) < min{7y, 75 }.

Observe that if 7’ > 71(4, Z,box index ¢

) ) 'g
is not contained in the safe set Z., 7', box,) because it violates Condition (1) in

de%maﬁﬂ—%eerﬁ%ﬁ&—%beﬁ—t—)—eveﬁﬂ#Deﬁnmon Similarly, 1f 7' > 19(1, Z,b0oXet ),
. T . 2

index @ ¢ is_excluded from

the safe set O(Z T box " because it Vlolates Cond1t1on (Z)Hﬁm&eﬂ—g—é}e%hefe—afe
; ; ; - even if Condition (1) is satisfied.

Conse uentl the threshold must satlsf : ’
7(i, Z,boxgs) < min{r (i, Z,boxg), T2(i, Z, boxgt )}

Part  2: __ Proof _of

) Y g
(1, 2. boxg) = min{7, 75}
Easy%e%ee«fh&t—wheﬁ%ﬁﬁ—%beagﬁrNote that When 7' < 714, 2. b0xgt), index i must

satisfied the satisfy Condition (1) in ~Definition[]
Likewise, when 7/ < 75(7, Z, boxey), index ¢ must sﬁﬂsﬁed—fh&\m&jx&g%@)mdeﬁﬁmeﬁlﬂ
forsaeh—+"—, Therefore, if we choose a threshold 7 < min{7; (¢, Z, boxy ), 72(1, Z, box index

1 satisfies both conditions, which implies ¢ € Q(Z, 7,box,¢). By the definition of the threshold
7(1, Z,b0oXet ), this implies:
7(i, Z,boxgs) > min{m (i, Z, boxgy ), 72(i, Z, boxg) }.

Se-we-gettheresultCombining the results from Part 1 and Part 2, the equality holds. O

H GET THE VERIFICATION BOUND

In this section, we show how to Calculate the verification bound for NMS.

We first define the verification bounds:
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Definition 4 (OD Verification Bounding). For constraints C and box, define:

min boxig}\}&(}g({ﬂ)) IoU(box;, boxg) - I(Class(box;) = Class(boxgy)),

as the OD verification bounding. This quantifies robustness against OD attacks.
‘We need to estimate the verification bound

min mMaxXp,z. ToU(box;, boxg: )l Class box;) = Class box,)) under the input restriction
Z and ground truth box ¢, according to deﬁnmon@

To estimate such bound, firstly, we need the following lemma:

Lemma 4. For any Z,1,boxgy, there is:

H(lc_lélb magl(( )IOU(boxl,boxgt)HI(Class(boxl) Class(boxgy)) > TH({|Q(Z, T, boxg)| > 1})
z ox; EN(z

So we will try to find the maximum 7 that makes Q(Z, 7, box) bigger than 0, but sometimes this
maximum value does not exist (can only approach the maximum value arbitrarily), so we look for
the following value instead:

I%nl] T st |Q(Z,7,boxg) =0,V1>7 > 7 3)
7€|0,

We use the following lemma to calculate such minimum value:

Lemma 5. The solution ofproblem is equal to: max;c,,] T(1, Z, boxg).

Use such lemma, we just to need calculate 7(i, Z, boxgt) as said before, and then we can estimate
the verification bounding.

H.1 THE PROOF OF LEMMA [

Proof. W@m if {QZrborgt=HQ(Z,7,boxe)] > 1,

then for any

i bOT g
z € Z, there exists a box; € N(z) such

that IoU box- box i 7 and Class(box;) = Class(boxy ). This implies that
the value of i shots = = -

MVEMMMM%&DMB greater  than  or
equal to 7, se-we-get-the-which yields the desired result. 0

H.2 THE PROOF OF LEMMA[3

Proof. We have shown that when 7/ > 7, we have Q(Z, 7, bozg) C Q(Z, T, boxgy) in Lemma

By the definition of 7(i, Z,box,;) and above result, we know that the safe set Q(Z, 7', boxgy)
is O for any 7/ > max;c[p,] 7(i, Z,boxg;), so the solution of problem [5| is not more than
MaX;ein,] 7(4, Z,b0rgt).

If 7 is the solution of probleml 50 then for any i € [ng], there must be i ¢ Q(Z, 7, boxg,) for any
7' > 7,50 T > maX;g[pn,) T(i, Z, boxgt).

So we prove the lemma.

I VERIFICATION PROCESS OF NMS

To illustrate Non-Maximum Suppression (NMS) verification, we define constraints as Z = H \ S.
Here, H constrains the neural network output y, and S constrains bounding box parameters. This
formulation is equivalent to the original. Algorithm [5]details the NMS verification process.
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Algorithm 5 Soundness Object Disappear Thread Verification for NMS

Require: Constraints Z = # \ S; input ; output y; ground truth boz,; confidence threshold ¢;
IoU threshold 7; upper bound 7.
Ensure: Calculate 71, 75.
I: B@da Bother < ®7 0
2: {box;};"*, = CONSTRUCT_ABSTRACT_BOX(Z)

3: for all box; € {box;}}=, do

4: T1(i)<—0,7'2(i)(—1

5: if Vk € [n] \ {Class(boxgt)}, Pi Class(bory) < P; , then

6: continue > Skip boxes must not match boxg class
7: end if

8: if ¢; > ¢ then > Ensure indicator I(c; > ¢) =1
9: 71 (i) < IoU_LOWER_BOUNDS(box;, box)

10: if Vk € [n] \ {Class(boxit)},Qiycmss(bozgt) > D1 then

11: Beand < Beana U {box; } > Box must match bozg class
12: else L

13: Bother < Bother U {box; } > Box may match boxg class
14: end if

15: end if

16: end for

17: for all boz; € Beang do
18: for all @j € Bother do

19: if¢; <, then > Ensure box; may suppress box;
20: continue > Skip boxes that cannot suppress bozx;
21: end if -

22: ub <— IoU_UPPER_BOUNDS(boz;, Mj)

23: if ub > 7 then > Ensure box; may suppressed by box;
24: Ib < 10U _LOWER _BOUNDS(boz ;, box )

25: T2(%) < min(m2(7), 1b)

26: end if

27: end for

28: end for

20: return {r(i)}7=,, {2(i)} 1=,

Next we show how to construct the abstract box box and how to calculate the lower and upper
bounds of IoU.

Let B be the *box space’ (space of individual box structures). An interpretation function G : R% —
{§ C B | |S| = ngy} maps y to a set {boz;};=, of ng, bounding boxes, where n, is a constant
determined by the fixed input dimension. A function S : B — P({1,...,dL}) (where P is the
power set) maps each distinct box; € B (that could form part of an output set) to its source indices
in y. We then define the regular region Z as follows:

Definition 5 (Regular Region). A regular region is a subset Z C R defined as Z = H \ S, where:

« H is a hyperrectangle (axis-aligned rectangular region) centered at F(x(?)) with
component-wise perturbations bounded by ¢ vy ax:

H={F@")+ecR™ [Vje{l,....d}, || < (c1omar); }

S is a union of k hyperspherical zones. Each zone S; = B(¢;, d;) is defined by a center ¢;
and radius d;, where ¢; is the center of the exclusion zone and d; is the radius. The union
of these zones is given by:

k

i=1 i=1

IC:r

?
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Note, sometimes we just need part dimension of S;. Thus we can extend B to B(¢;, d;, Z;),
where 7, is the index set of dimensions in S;. Then we have:

B(ci;diaz’i) = {y S RdL | HyI7 - ci,I@H% S d72}
where ¢; 7, is the component of ¢; for index set Z;.

I.1 ABSTRACT BOUNDING BOX CONSTRUCTION AND IoU BOUND COMPUTATION

We use Z to represent x is a Gurobi variable, R to represent real number Gurobi variable space. Let
S R9~ be the Gurobi variable vector.

Then we encode the regular region Z as a set of constraints. To encode H, we need to
get the lower and upper bounds of each parameter of each bounding box. Suppose H =
{F(a:(o)) +ec R |Vje{l,...,d.}, lej| < (e1Vmax); }, where ¢ and V. (NOte Vay > 0)
are obtained from Part 1. Let § = F(2(?)) + c;vmax and y = F(2(?)) — ¢ 045 Then we add the
following constraints to the Gurobi model:

Yy<y<y

Here, < is the component-wise less than or equal to operator.

Next, we need to add the exclusion zone constraints. For each exclusion zone S;, we need to add the

following constraints:
~ 2 2

> (@5~ (e:);)* > d

JEL;
where (c;); is the component of ¢; for index j.
CONSTRUCT_ABSTRACT_BOX(Z) adds these constraints to the Gurobi model. And then reorga-
nizes g as an abstract bounding box set {box; };®,, where ng is the number of bounding boxes.
Each bounding box box; = (&;, i, Wi, hi, ¢, {Pi,j };2,). Note all the parameters of box; are from
g thus have constraints on them.

IoU bounds for abstract boxes involve:

1. Geometric Constraints: Box i coordinates are:

i A Wi o L _ s Wi
xmin_xi_?7 xmax_xi_F??
S S S U]
Ymin = Yi 2 ) Ymax = Yi 2 .

2. Intersection/Union Area

Iw = maX(07 min(i‘fnax’ max) - max(jfnin7 j}fmirl))’

jj
I = max(0, min (o, Foax) — MAX(Fiin, Foin))s
Aint - Iw : Iha

Aunion = (xfnax - x;;nin) . (gfnax - g:nm) + (‘T?nax - j?nin) : (ggnax - gfnin) - Aint-

We use big-M constraints to encode max(0, -) and min(-, -) operations in Gurobi. For example, to
encode Aexpr = max (0, F), where F is an expression, we introduce an auxiliary binary variable
b € {0,1} and a sufficiently large constant M. The variable Acyp, is then constrained by:

Agypr > E
Aexpr >0
Apr <E+ M -b
Acypr < M - (1 -b)

where Acxpr is a Gurobi variable representing the maximum. The inner terms of I, and Ij,, such as

min(Z: .., 7 .. ), are handled similarly using appropriate big-M formulations or Gurobi’s built-in
functions. The constant M must be chosen such that M > max(Ug, —Lg), where Ug and L are

known upper and lower bounds for the expression .
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e If £ > 0, the objectjve of miniglizing fLHE (or other consEraints) will force b = 0. The
constraints become A > E, Ajyy > 0, Ay < F, and Ay, < M. This correctly sets
Amt =FE.

e If E < 0, the ob_]ectwe will force b = 1. The constraints become Amt > F, Amt >0,
Ay < E+ M, and Ay < 0. This correctly sets A = 0.

3. Binary Search for IoU bounds: To find IoU (lower bound of IoU):

1: 7 = 0, Typ ¢ 1, €search < 107 5

2: while |75 — 75| > €search dO

3: Tmid(—(le+Tub)/2

4: Solve Leheck = min(Aing — Tmid Aunion) by Gurobi
5: if Lepeck > 0 then 75 < Thid

6: elser,, < Tmid

7: end if

8: end while

9: return Ty

Checking IoU bounds against a value 7 is often done via optimizing A;, — 7 Aunion, as direct interval
ratio optimization Ajn¢/Aunion is complex for solvers (e.g., Gurobi) without reformulation. For
instance, to check if IoU(box;, boxs) > T is possible, one can check if max(Ain, — TAunion) > 0.

It’s trivial to extend the above algorithm to find 7,; (upper bound of IoU).

The Gurobi solver, when minimizing or maximizing an objective subject to these constraints, returns
an assignment for ¢ (which corresponds to a specific point z € Z). If a particular optimization (e.g.,
a step in the binary search showing Lcpeck < 0) demonstrates a property violation, the returned vy is
the concrete instance z that exhibits this violation.

J  THE PROOF OF THEOREM]]

Theorem (probabilistic guarantee for Part 3). For any «, 3,0, ¢ € (0,1) satisfying (1 —
200 —§>0and N - (1 —2e)M —§) > 2 ln( )42+ 2 ln( ), with this algorithm, for

—2N6

any y, with probability exceeding 1 — e —-Bf-2(1- e)M2 over step 1 and step 2, we

have V(y, dmin) < .

For COIIVGIIIGHCC fram

Step 1 in Al orlthmmb P1, and Ste 2b P2

J1 et

C such that, with high probability over the sampling in Part 3
|F(z) —ylla <C formostx ~ C,

whenever y lies in the region Z. The proof proceeds in three steps:

1. For each sampled point x, we estimate a local interval | B LA that covers, with probabilit
at least 1 — 2¢, the distances ||F(z’) — F(x to its M neighbors.

2. Using Hoeffding’s inequality, we show that with high probability at least N((1 — 2¢)™ — §) base
oints have all M neighbors lying within their respective intervals.

3. On this subset, we apply an RCP y-style scenario bound to the function S , yielding an upper
bound C satisfying P_,..c (.S <C)Y>1-—a.

J.1 SITUATION 1
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We first consider the case where  is itself realizable as F(z) for some & € C. We have the following
theorem, which can directly get the theorem [I|when y € {F(x)},cc:

Theorem 3. For any «, 3,d,¢ € (0,1) satisfied (1 — 2e)™ — ¢ > 0 and N((1 — 2e)™ —§) >
%ln(%) + 2+ 21n(2), by this algorithm, if y ~ F(C) (that is, the distribution of the network

output when the input obeys C), then with probability 1 — e~2N&* _ B —2(1 — )Mz of Py, there
iswe have Py (B, — C(Ay, — Bp) <0) > 1 —

Proof.

Part One: For any i, with probability (1 — 2¢) of P1, there-are-we havee |[F(z()) —
F(m(l))HQ c [BF(w<i))7AF(w(i))] for all] S [M]-

x(? F(ax® E/Q,r

¥ - IEEINEAN = = S
any i, since the samples #(*9) is-independent: so-we-get the resuttare i.i.d...
P(IIF(29) = F@?) 2 € [Bp(ato), Apen]) = 1 - 2

Thus all M neighbors lie in the interval with probability (1 — 2¢)M.

Part Two: With probability 1 — ¢=2V%" of P1, there-are-we have at least N((1 — 2¢)M — §)
numbers of i € [N] satisfied that |F(z(")) — F(z())||y € [By (), Ap (g0 for all j € [M].

T that. Hoefidine ] e

Define indicator variables

X; = H{HF(«’BU’”) —F(@)[l2 € [Br(a), Apm)] Vi € [M}}-

implying the desired bound on the number of ”good” indices. Then the complement event gives:
1
Z M —2N§?
P(Nlle—(1—2€) >—6>>1—€ s

M_§

i.e., at least N((1 — 2¢ indices ¢ satisfy the desired i robability at least

1— 6721\752

Part Three: With probability 1 — ¢2V%° — 3 of P1, there are Poc(Sp@) <C) > 1— o
We have two simple facts:
Firstly, if i € [N] such that ||F(z(*)) — F(x®)]|, € [Br(2(), Ap(aiy] forall j € [M], then there

must be C' > ﬁ > Sp(z)-
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Secondly, for any N7 > N((1 — 2¢e)™ — §), by using RCPy to find the maximum of function
Sr(x). we know that with probability 1 — /3 for i.i.d selected N; samples {D}N1 in C, then
Panc(Sp(x) < maxie(n, | {Sk@)}) > 1 — .

By the two facts, we can deduce that:

For any N_c Z+ let Or—c2C and a e 20AQ if and
. ’ 1 V1

5 =11 and T T~ <55(w) < H}&X{ SF (_(_)ﬂ_(_)—)g_lvﬁ‘w P zPIeq) = L/_Qt

cC: =k, Ppc(S < max{Sp(.» , >1—alt. According to the

second fact, when Ny > N((1 — 2¢)M — §), there are Pz<i>~c,ie[N1]({$(i)} €0n,)>1-0.

then by the first fact we have C > maxgm et Sp(z), hence we have Pyrc(Sr@) < _C) >
Pyrc(Sr) < max{SF(m<p))}m<p)ET) > 1 — a, so we only need to calculate Ppy (7 € U2, Qy).

‘We have that:
Ppy (T € U2, Q%)
= > e Ppi(T € Q)
= Yl Pei(T € Qi)

According to the process of algorithm, which k index i satisfy the condition ||F (2 (")) —F(x(®)||5 €
[Br(a(), Ap ()] for all j € [M] is determined by the second time randomize samples in P1, and
whether these samples are in the set Qy, is determined by first time randomize samples in P1. These
two processes are completely independent. So we have that:

Ppi(T € Qk)
> it M, ]PPl({fB(ti)}le =T, {z")}i, € Qp)
= Y, cm Pri{e}E € Qu)Ppi({2}E, = T)

Then, there-arewe have that:

PPl(T C Uiozl Qk)
Zk 1 Pri(T C Q)
Zk 1 2y o P ({at}r, e Qk) PP1 ({zt )}, =1T)

> Y N((1-20% ~5) Dt CIN] PPI ({z"Y, € Qr) - Per ({20}, =T)
> (1-8) N((1-26)™ —8) 22{t;}5_, C[N] PPl({ﬁc(t’)}le =T)

= (1-B)Pp (IT| 2 N( (1-2e)M —4))

> (1-B)(1—e2N)

> 1-B-— —2N52

This is what we want.

Part Four: For any = € C, with probability at least 1 — 2(1 — ¢)*2 of i.i.d selected M, samples
form C, there are two points 21, 2o such that z; < Br (), 22 > Ap(q)-

In P2, among M, i.i.d. samples, the probability that no point lies at distance < Bp gy is (1 — €)M2,
ﬁﬂﬁ%&ﬁs—zg—&kand similarly for > A Thus both exist 51multaneousl with probablhty
Mo,

at me hese-two-conditions—do-—not-held-simultaneet H vha a

L—MZQV:&)M
Get-theresultConclusion.

For a @ ~ C, by part three, with probability 1 — e=2N%" — 3 of P, there are Pyic(Sp@) < C) >
1—a.
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When zx satisfied Sp(m) < C, and the Part Four is stand in the P2, then there are B,,, — C'(4,, —
By) < Bpz) — C(Ap(@) — Br@)) < 0.

Combine them, this is what we want.

J.2  SITUATION 2

Now, we show how to proof the theorem[I|when y ¢ {F(x)},cc.

Proof. The proof is a continuation of the previous proof of theorem 3]
Let p satisfy that Pzc(Spz) <p) =1 —aand Q@ = {x € C: Sp(z) < p}.

Then for a given y, let z@ = arg mingeo ||y — F(x)||2, and |ly — F(x(q))||2 =1
For any randomly selected {z("}!*% samples in P2, let A}, = maxie (s, [F(z(®) —F(x(?) |, and
By, = mingep,) [F(2@) = F(z) .

Then, there are A, = max;c[as,] ||y — F(z®)||y > MaX;e|p,] |F (@) — F(x®)|y — ||y —
F(z@)|, = A/, — t, similar, there are B,, < B/, +t. So, we have B,, — C(A,, — By,) <
B, —C(Al, — B;,) +t(1+2C).

As shown in the proof of theorem with probability 1 — e =2V & _ B of P1, there is C' > p, and
then, using (9 € Q, we have Ppy(B!,, — C(A!, — B,) < 0) > 1—2(1 — €)™z, which can imply
that Ppa (B, — C(Ay, — Br) < t(1+2C)) > 1 —2(1 — €)™ by the above result.

And when B,,, — C(A4,, — Byn) < t(1 + 2C) holds, there are t > W = din, and

hence B(y, dmin) N Q = 0 by the definition of ¢, which implies that V(y, dmin) < a, this is what
we want. O]

K THE PART THREE FOR SMALL NETWORKS

To demonstrate the superiority of our method in Section[d]and compare it with existing approaches,
we show how we can apply Part Three on small-scale object detection based on the feed-forward
ReLU neural networks. In this case, the problem in Part Three can be formulated as follows:

ming & |y — ||

st. () zec, 20 =g;
() @ =wWOzgt-D L p@ 4Ll
(i) 2% =max (0,2%), i€e[L—-1]

Where W is the transition matrix of i-th layer in network, b is the bias vector of i-th layer in
network. Unfortunately, finding an exact solution to this problem is NP-complete(Katz et al.l[2017).

So, we consider bounds on the outputs of hidden-layers: ly) < xg-i) < ugi). Based on these bounds,
let -0 = {j : u{? < 0}, 70 = {5 : 1Y > 0} and IO = {5 : ly‘) <0< u‘g-z)},‘the
condition (iii) can be replaced by the following constraints: iy) >0, i;l) > xg-l), (uy) - ly) )i”;l) <
ugl)xy) — l;i)ugi’), jE Ii(i);zﬁy) = xg.i), jE I+(i);£§i) =0, j € Z-@. To solve this problem,
we prove that such minimum value is equal to the maximum value of the square root of d(c, v)

which is defined in the following theorem. So, we can use the gradient to estimate the maximum of
d(a, V), and use it to be the minimum distance in the part three.

Theorem 4. Under the setting in this section, we have that:

min [|F(z) - y|l2 = Jnax d(a,v)

, which is defined as below:
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L)yT,, (L
d(a,v) =y v — % — [ OTWD, 4O 4 [pOTWD]_g©
MONOIPIO) (6)
(T I L BEhs
-yonoe s 3 [l
i=1 =1 jez+(®)

where

W = pHOTW D 5O = 0 ) i e {1,2,.., L — 1)

19]
o ,j €Tt

=00 - o JETY yicq,2 . L—1)
e — a5 eEO

L THE PROOF OF THEOREM [4]

We mainly follow the proof idea in (Kotha et al., [2023).

Proof Consider the Z~(") = ={j: u; () < 0}, T+ = {j: ) >0} and 7+ — ={j: ) 20 <

j }, such optimization problem tends to the:

min  (z") - y)" (@) —y)

st 1O <3® <4
e® =wWOz0-D 4 p0): = (1,23, L}
) >0; j e =0
i) >Jf(z), j GI:E()
u — D)3 <y D2 Oy ¢ 7O

50

j ™)

X,

J

(
0 — 20 j e+

—

i =0,jez-®

Then we use the Lagrange dual of the optimization problem to solve it, the Lagrange dual of the
optimization problem is given by:
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min max (2P —y)T () —y)
T, B A\, p,V,T

+ XL: yOT (wu) W@ g6 _ b(“)

L—1
+> 2
i=1 jeT+()

L-1
3 X A -a) ®

i=1 jez(®
£ 3 [ (07 a7 e 7))
i=1 jez®

S.t. 1© < 2 < u(o)'

#0) =0, 17020 = ) j e T+

uZO,TZO,)\ZO,

According to it’s strong duality, the solution of the dual problem is the same as the primal problem.
The dual problem is given by:

max min (@9 — 2y + v T2 B 4y Ty — ) TWD O

AV, T T,
L-1 ) ' . ) _
T2 > ) e

i=1 jeT+(

L—-1

B3
=1 jez—-()
L—-1 ) ) ) ) .

£33 (A = A 2 ©)
=1 jez+®)

= ETWIED a0 ) 1))l
Zy(l)Tb( i) + Z Z )\( i) (l)l( i)

=1 jez(®
(0) « 4(0) 0). 2@ _ ¢ 4 —(@). () _ (@) +(4)
s.t. I“V<z%V <u ;T =0,7€7 & =1 ,JET

nw=>0;72>0 A>0;

Here, we adjust the order of each term in the formula and directly incorporate the constraints
A§) =0,j € 7-0; A() gi),j € 710 into the objective function. Then we can minimize
— (M) TW)3(0) subject to 19 < £ < 49 according to the each dimension of v()T W),
If (MTW( )) > 0, then a:(o) = u(o) Otherwise, xé ) = l(O) Since no additional constraints
applied to (%), we can minimize (w(L) 2y + (1)) T by setting (%) = y — (). Then
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we get:
L)T, (L
max min y @ — M_[,,<1)TW<1>]+u<o>+[,,<1>TW<1>]_5<0>
A1V, T & 4
L-1 .
, ; e (i
+22 20 0w
1=1 jez+{)
(@) (Z)
+Z 2. Y
JET- (%)
_ (10)
(@) (@, @Y .4
530> (7 = 7)o
i=1 jeT+(®)
i+1) Ty (D) Q) (4) (ORNTONNOAWAO)
+(—1/( ) W.J- =y =T+ (uy = )A )xj}
_ZV )T p) _,.Z Z )\ i) (z)l()
1=1 jeT+()
s.t. nw>0;,7>0 A>0;

Since variables «, & are unconstrained, any of thier coefficients are nonzero would make thier value
to —oo by the inner minimization. Therefore, the outer maximization require setting all the coeffi-
cients of «, & to zero. Then we get:
(L)T (L)
v v
max yTu(L .
Ap,Tv 4

_ [u<1>TW<1>]+u<0> LOTW] O

—ZV )sz>+z S A0

i=1 jeT+()
s.t. n>07>0A>0;
) —pEHDTWIED = ¢ j e 740

(1)

v =0,jez®
I/j(-i) n 7_j(i) _ )\(_i) (i) =0;j € 71

J
V(i+1)TW:(’i]{r1) ( 51) l( )))\ i) (My) + T(i)),j c 7@

(
J
Define V]( D= u(”l)TW(ZH) Then, we define (u () l](-i)))\g-i) = [A](-i)]+ and y1;'
we get the following bound propagation procedure

T, (L v(HT L) T T
max w0 = L OTWO ) [ OTW0)_0)
a,v
(30) 50
_ 0T 0 “J7+
vy s 3 [Blik]
i=1 jeZT+() u] -
~ i i+1) ~(2 7 ~ (2 .
s.t. V]() vl 'H)TVV(Jr ), ]() [ J(»)]+— [I/J( |-,Vie{l,2,..,.L -1} (12)
=00 o e wie{12,.,L-1}
MO 571 = o 57)- e TEO
J J

30



Under review as a conference paper at ICLR 2026

Here agi) is the optimizable parameter controlling the relaxation of neuron j in layer ¢ introduced in

(Xu et al.l2021). This is what we want. O

M THE PROOF OF THEOREM

Theorem. Using the notation from the three algorithms above Given «a, 6, d,e € (0,1)

satisfying (1 —26)M —§ >0, N- (1 —2e)M —§) > 2 ln( )+2+ 2In(2 ) and Ny >

[21n1/ﬂ 4924 21n2/a]
« [e%

. Then, after executing the algorithms defined above, if, for a sample
x, these algorithms output the ’safe’ after 'T' refinement turns, then with probability 1 —
T(e=2N%* 4+ B 4 2(1 — €)M2) — B of part one and three, there are Pg.c(x issafe) >
1-(1+T)a.

Proof. We use the sample fact that P(A N B) > P(A) + P(B) — 1 to get the following result:

From Theorem [I] after T refinement steps, the reduction in the probability of the system being
certifiably safe due to these refinements is at most T'c. This statement holds with a confidence of at

least T (1 — (e 4 34 2(1 - e)Mz)) —(T-1)=1-T (6—2”2 +B+2(1 - 6)M2).

According to Proposmon [T} we can get that the probability of the box is safe is 1 — Tov — v with
probability 1 — T(e =2V + B4 2(1—e)M2) 4 (1) =1 = 1—T(e "2V 4 B+2(1 — €)M2) — 3.

Then we can get that the probability P(z is safe) > 1 — (1 + T')a with probability 1 — T'(e =2V 4
B+2(1—e)M2) - 4.

Then we can get the final result. O

Remark 6. Note we do not assume that the Part 1 and Part 3 are independent, so we can reuse the
samples in Part I to Part 3.

N EXPERIMENT DETAILS

Detailed Setting: We use N; = 30000, No = 5000, N = 3000, M = 10, M2 = 2000, o = 0.0099,
B =10.0099, ¢ = 1/200,6 = 0.1 as our default setting. As we do not assume that the Part 1 and Part
3 are independent, samples from Part 1(Algorithm [2) can be also used in Part 3(Algorithm [}, so we
only need to sample N; + Ny + My = 37000 samples in total, where N; = N - M. We use one
turn refinement(7" = 1) for all the experiments.

Attack Setting: We use square attack with 5000 iterations for each box. For PGD, we use 20
iterations with step size 1/255 and 2/255. Each iteration, We find the box with the highest IoU and
same class with the ground truth box, then use the GIoU of them as the loss function. Note each
turn may attack a different box. We found that this is a strong attack for YOLO networks.

Server Setting: We use a server with 8 NVIDIA V100 32G GPUs, 40 Intel(R) Xeon(R) Gold
5215 CPUs at 2.50GHz and 503GB memory. The code is implemented in Python with Gurobi and
PyTorch.

Sample Calculation: According to the theorem[2] we can get that the sample number is Ny + N +

Ms = 37,000 for each box. Note this is the sample number of full algorithm. Fer RGP y-methods;
AL [2Inl/B | o
TV [ T

- «

2doIn2/a
1

(03

1274 —Ir
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this task would be to directly estimate an upper bound for each dimension in this d-dimensional
space. The decision-variable dimension for this problem would be d = d;, (i.e., the network output

dimension), corresponding to finding a vector u € R?~ such that, for all inputs & € C, the network
output F'(x) < u element-wise. Based on this, the required sample count would be:

N> 21n1/5+2dL+2dL1n(2/a) ~ 109
! o

Alternatively, if one were to use the RCPy method to directly verify the entire problem,
this could be framed as computing an IoU lower bound for each predicted box against its
corresponding_ground-truth (GT) box. The decision variable dimension in this case would be
d = (80 x 80 440 x 40 4+ 20 x 20) x 3 = 25,200 (i.e., the number of bounding boxes). Based

on this, the required sample count would be:

> ~ 107

N> 2In1/p od4 2dIn(2/«)
e fe!

The order of magnitude of the sample size under either estimation is still prohibitively large for an
ractical application.

For the PAC-based methods, according to (Li et al.| 2022), to achieve 1 — « probability with 1 — 3
confidence, we need N satisfies:

2 1
N > 3 X (log(a) +d0> > 122880391.
Here we also use o = 0.02, 3 = 0.02.

In terms of randomized smoothing(Cohen et al, 2019), the number of samples required is strongly
correlated with the standard deviation (o) and the certified radius. For example, to certify a radius
of 2/255 against noise with a standard deviation of ¢ = m, the randomized smoothing method

would require an impractical number of samples (approximately 3.9 x 10%). This severely limits its
application in real-world scenarios.

Our method, by introducing v,,, and the scalar ¢, reduces the entire verification problemtoad = 1
scalar optimization (for c;) plus a constrained optimization (MIQP). Thus the required sample size
is significantly reduced to a manageable level, making it feasible for practical applications.

Remark 7. Note that without refinement (only Part 1 and Part 2), our method can achieve 99%
confidence and 99% probability with o = 0.0099, 5 = 0.0099. After refinement, the true confidence
and probability are both 98%. For other two methods, we use error rate 0.02 and significance level
0.02, to get the same confidence and probability.

Clarification on Sample Complexity There are two distinct sampling procedures used in our
experiments, which serve different purposes:

¢ Verification Samples (37,000): This is the sample budget used by our algorithm to issue
the certificate. For each ground-truth box, we use 37,000 samples (Ny + No + M>) to
construct Z and the refinement constant C, as prescribed by Theorem 2.

* RCP, Baseline Samples (10° in Table [T): For the RCP  baseline in Table 1, we also

use 10° samples to compute empirical robustness, but this does not yield comparable
theoretical guarantees. To achieve our target (98% robustness, 98% confidence), RCP

would theoretically require about 11.6 million samples. With only 10® samples, RCP
can only provide an 86% robustness guarantee at 98 % confidence.
 Evaluation Samples (10° in Table 2): Independently of the verification algorithm, we

draw 10° additional uniform perturbations to empirically estimate the “ground truth”
robustness. These samples are only used to calculate evaluation metrics (TPR, FPR, TNR,
FNR, and CRA) and do not inform the certificate itself.
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Table 3: Ground Truth Information for Table @ #RB: Number of robust boxes; #NRB: Number of
non-robust boxes

yolollm 1255 363 164 33 192
volollm 2035 346 i1 315 22
volollx 2055 379 18 35 192
volovdu 2055 365 162 27 200
yolovsmu 2255 344 183 301 26
yolosm 2255 36l 166~ 27 200
volosx 2055 370 157 37 190
Ik+ -
7 100 g 100 g
210 £ 10 T
1 1 :
000 002 004 0.06 008 0.10 012 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 K]
Lower bound improves Lower bound improves Image Number
(a) Improvements with ¢ = 51 (b) Improvements with e = 52 (c) Improvements in CNNs

Figure 7: Verification bound improvement after Part 3

Ground Truth information of Table [2f Table [3] shows the ground truth information of Table

Here, #RB means the number of robust boxes, and #NRB means the number of non-robust boxes.

The ground truth is calculated by 10% uniform perturbations for each box.

O THE EFFECTIVENESS OF NMS VERIFICATION

The NMS optimization step is highly efficient. Verifying one ground-truth box against all candidate
boxes takes an average of only 4.9 seconds. This efficiency arises because we only perform sound
verification: boxes that could potentially cause unsafe behavior are filtered out in advance, leaving
only a small number of boxes to be verified.

P THE EFFECT OF PART 3

This section shows that Part 3 in Section[d]and Appendix [K]is effective for both large-scale networks
(YOLO) and small-scale CNNs. For the LARD dataset, we use a six-layer CNN network provided
in (Cohen et all, 2024). As seen in Figure [7c| with Part 3, the IoU lower bound we obtain is higher
than the bound obtained without using Part 3. This improvement occurs because Part 3 reduces the
over-approximation of the network’s output, implying our bound is closer to the true bound. Note
that we use sound formal verification on small object detection, instead of probabilistic verification,
so that the network can indeed achieve such a bound. For YOLO, we also show the effect of Part 3
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(a) Image 378 (b) Image 397

Figure 8: The effect of Part 3 in small object detection. The middle panel shows the bound from
prior methods; the right panel shows our improved bound.

&=1255 £-21255
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.............................

400 500 0 100 200 300
Verified Box Count

Figure 9: Verification time comparison

in Fig. |7aland Fig. After refinement, most of the lower bounds are improved, which means Part
3 is also helpful in YOLO networks.

We observe that the first iteration yields the most significant gains. Since further refinement linearl
accumulates confidence loss as described in Theorem 2, employing 7' = 1 represents a favorable

trade-off in most cases.

Q TIME COMPARISON

Fig. 0] shows the detailed time comparison of our method and RCP y on different YOLO models
with ¢ = % and e = % The results show that our method is significantly faster than RCP y in
all images.

R REAL-WORLD EXAMPLES.

We take 40 images from sensor cameras of our autonomous vehicles and annotated ground truth
by ourselves. Table f] shows the results of our method on these images. The results show that our
method can also work well in real-world scenarios. Our method still uses less time and achieve
better bounds than RCP ;. Both CRA are high in these images, which means most boxes verified
as robust by our method are reasonably robust.

S COMPARED WITH MEDIAN SMOOTHING

Table [5] compares our method with median smoothing (MS) (Cohen et al.| 2019) under normal dis-
tribution on 50 images from the COCO dataset. We set the standard deviation of normal distribution
as o= 25;)*3 and-o—= 25;30 = 2551 sand o = 725523. The results show that our method signifi-
cantly achieves a smaller mean absolute difference of IoU lower bounds relative to the worst-case
input found by the PGD attack(Apgp), indicating more precise IoU lower bounds. Besides, in most
cases, the CRA of our method is higher than median smoothing. This also prove that our method

works well in different distributions.
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Table 4: Real world examples of our method.

Apcp CRA
=05 =07 7=05 7=07

RCPy 5710 0.53 0.52 1.00 1.00
ODPV 321 0.47 0.44 1.00 1.00

RCPx  569.6 0.57 0.55 1.00 1.00
ODPV 321 0.43 0.37 1.00 1.00

model e method  time

1/(3 * 255)
yolol1x

2/(3 * 255)

Table 5: Comparison of our method with median smoothing. Apap denotes the mean absolute dif-
ference of IoU lower bounds relative to the PGD attack. Bold values indicate the best performance.

Apgp CRA
=05 7=07 =05 7=0.7

RCPy 0.45 0.47 1.00 1.00
1/255 ODPV 0.42 0.40 0.99 0.98
MS 0.44 0.45 0.99 0.98

RCPy 0.59 0.56 1.00 1.00
2/255 ODPV 0.54 0.47 1.00 1.00
MS 0.59 0.53 0.96 0.97

model € method

yolo11x

T ABLATION STUDY OF PARAMETERS

Fig. [I0] shows the ablation study of parameters 7 and ¢. The results show that our method still
maintains more accurate bounds than RCP  under different parameters. Besides, the results show
that a larger ) and a larger ¢ will lead the bounds to be closer to the worst-case bound found by PGD
attack. This is because a larger 7 and a larger ¢ will results in a stricter NMS condition, fewer boxes
can remain and the resulting boxes will be more robust.

U BROADER IMPACT

Our method focuses on verifying the safety of the object detection model, which may help people
to better understand the model and give a safety metric. We do not think there is a negative social
impact of our method as our method is not used to attack the model.

V LLM USAGE STATEMENT

In the preparation of this manuscript, a Large Language Model (LLM) was utilized as a writing
assistance tool. Its use was strictly confined to language polishing, which includes proofreading for
grammatical errors, improving sentence structure, and enhancing the overall clarity and readability
of the text.

All core intellectual contributions—including the research ideation, paper structure, and the initial
drafting of the content—are the original work of the authors. The LLM did not contribute to the
formulation of any hypotheses, experimental results, or conclusions presented herein. The authors
have reviewed all Al-generated suggestions and take full responsibility for the final content of this

paper.

W DESCRIPTION OF HYPERPRAMETERS

Our framework consists of three parts (Algorithms 1-4): Part 1 (Output Approximation), Part

2 (NMS Verification), and Part 3 (Counterexample-Based Refinement). Only Parts 1 and 3 are

robabilistic; Part 2 is based on sound MIQP constraints and introduces no additional probabilistic
eITor.
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Figure 10: Ablation study of parameters 7, ¢

W.1  ROLE OF PARAMETERS AND FAILURE EVENTS

We now describe the role of the four key parameters «, 3, 9, € used in our theoretical guarantees and
experiments.

* a (Error Rate)

— Appears in Definition [Tl (OD PAC-Verification), Proposition [I] (Part 1), Theorem [Tl
Part 3), and Theorem 2] (Overall Guarantee).

— Controls the allowable violation probability of the OD property under the input

distribution: In Theorem |2} if the algorithm returns “safe” after at most 7' refinement
steps, we guarantee
Pyc(xissafe) >1—(14+7T)c.

— In our experiments, we set o = 0.0099, so with 7" = 1 we obtain a lower bound on
the safety probability for each certified box of approximately 1 — 0.0198 = 0.98.

. Significance / Confidence)

— Used for the scenario-type bounds in Part 1 (Prop. [T) and Part 3 (Thm. [T), and
combined in Theorem 2
probability that the inequality regarding P(a is safe) is valid under the randomness

P[P, c(zissafe) > 1— (1+T)a] > 1—T(e 2N 4 542(1 - €)My) — 5.

— We use 5 = 0.0099; with our default N, d,¢, Mo, and T = 1, this lower bound is

~ 0.98 (reported in Appendix |N).
¢ ) (Concentration slack in Part 3
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— Appears only in Theorem [l / Theorem It is the slack term in the Hoeffdin
bound, controlling how many of the N sampled points in Part 3 have “good” local

neighborhoods (i.e., have sufficient neighbors within the interval | B
— The condition

2 1 2 2
N{(1—-2¢e)M —§ —In—-—4+2+—In—
(( €) )>an[3+ +ana

ensures that with probability at least 1 — (3, enough sample points are “good” to appl
the RCP y-style scenario bound to the refinement constant C'.

— We fix § = 0.1 in all experiments (Appendix [N).
¢ ¢ (width of the local uncertainty interval in Part 3
— Used in Theorem [II to define the probability mass of the local distance interval

B LA . For each x, at least a 1 — 2¢ fraction of the M local perturbations

— The term 2(1 — ¢)M5 in Theorem [2| bounds the probability that the empirical

— We set ¢ = 1/200 in all experiments.

In practice, one needs to select appropriate v, 3,9, € based on the desired probability thresholds
and then calculate the sample sizes Ny, No, N, M, M5. Below we discuss the relationship between
sample sizes and these parameters.

W.2 SAMPLE SIZE RELATIONSHIPS

The main sample size constraints appear in Theorem 2}

e Part 1 Sampling:
2 1 2. 2
No>—In—+2+ —1n—.
a f a o«
For fixed o, 3, we have No = O( log 1). Importantly, there is no explicit dependenc
on the output dimension d; in this bound.
e Part 3 Sampling: With fixed , ¢, M, the bound on N can be written as

1 2 1 2. 2
N>—(—l —+2+ -1 —),
— (1-2)M -6 an5+ +anoz

Thus, for fixed §, ¢, M, we again have N = O(L log 1).

In the experiments, we instantiate these quantities with the following values:
Ny = 30,000, N, =5,000, N =3,000,b M =10, My = 2,000,

AN AAAANAAAAAAA T A A AN A A A A A A AL

and o = 5 = 0.0099, ¢ = 1/200, 5 = 0.1 (Appendix N). Because the samples from Part 1 are reused
in Part 3 (Remark |6)), the total number of samples per box is:

This quantity is independent of d;, and forms the basis for the claim “achieving 98% guarantee at
98% confidence with 37,000 samples” in Section

W.3 NOTATION FOR SAMPLING PARAMETERS

Throughout Proposition [T| Theorem [I] and the symbols Ny, No, N, M, My, A:, B!, A,,, B
and O are inherited from Algorithms 2] and [ as follows. In Algorithm N;_denotes

the number of samples used to estimate the per-coordinate scale vector v,.., and N, is
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the number of samples used to compute the smallest scaling factor ¢ 1n the optimization

b . W
number of reference points {x( Y drawn from C in Ste One, and M is the number
of auxiliary samples {z()1M  drawn for each reference point. For each i € [N], we

define A" = max; F(z%9)) — F(2)||5 and B! = min; a1 [|F(29)) — F(z® and the
constant C' is updated as C + max{C,B!/(A. — B/)}. 1In Step Two of Algorithm Mo

denotes the number of additional samples {2912 drawn from C to estimate the distance from

a candidate output y to the true output set {F(x , with A,, = max; F(z®) — 2
and B,, — min, F(zx®) — . These quantities are then combined to form the estimator
dwin = max{(B,, — C(A,, — B 1+2C),0} used in Part 3.

X EXTENDING OUR METHOD

We acknowledge that different architectures and threat models may necessitate distinct verification
proposed method can be adapted by modifying only the encoding in Part 2, while keeping Parts 1
and 3 unchanged. The following describes how to adapt our method to verify two additional threats:
class misidentification and false appearances.

X.1 EXTENDING TO CLASS MISIDENTIFICATION.

Algorithm 6 Soundness Class Misidentification Verification for NMS

Require: Constraints Z = H \ S; input x; output round truth boz,; confidence threshold ¢.
Ensure: Calculate per-box upper bounds {7, (%)}, for class misidentification.

1: {box,}"= + CONSTRUCT_ABSTRACT BOX(Z

2: for all boz; € {box, };'*, do
3: Tis(1) <0 > Initialize upper bound for misidentification IoU of box
4 if Yk € [n] \ {Class(box , > D, 1, then
=t gt
5: continue > Skip boxes that must match box class (never misclassified w.r.t. this GT)
6: end if
7: if ¢; > ¢ then > Box ¢ may pass the confidence threshold in some realization
8: Timis(1) < IOU_UPPER_BOUNDS (box;, box.;) > Worst-case IoU to box g when bozx; is
potentially of a wrong class
9: end if
10: end for

11z return {7() 152,

Formalization of the property (bad Event): Given an input constraint set C, if there exists an
input & € C such that after processing by the network F and NMS module, the output set N(F(z))
contains a predicted box box; that has an IoU > 7 with some GT box box, but their predicted and
GT classes do not match, we consider this a class misidentification. Formally:_

Jdx € C, Jbox; € N(F(x)), Tbozg, € G : I(class(box;) # class(bozgt)) - IoU(box;, boxg,) > T.

We want to prove that class misidentification does not occur, which is the negation of the bad event,
equivalently written as:

Va € C, Ybox; € N(F(x)), Yboxg, € G : I(class(box;) # class(boxgy)) - IoU(box;, boxgs) < 7.

To this end, we can define a worst-case function:

Dos(x) = bomlemé{l@&)}){ S (I(class(box;) # class(boxgy)) - IoU(box;, boxgt)) ,
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The property holds if and only if: su Pos(x) < T

Let Z be the over-approximation of the pre-NMS network output range {F(x obtained in Part
1.Since our NMS analysis in Part 2 is applied uniformly over all ¥y € Z, we can compute an upper

bound of I(class(box; class(box -ToU(box;, box.i) on Z over all possible predicted boxes
and GT pairs:
Uas = sup (I(class(box;) # class(boxgy)) - IoU(box;, boxgt)) -

box; € Z,boxg €G

If we can prove U.s < 7, then it is impossible for any @ € C and any prediction/GT pair to have an
IoU > 7 and a class mismatch. Thus, we can certify that no class misidentification occurs within C,
and the property is verified.

Algorithm [6| shows how to compute per-box upper bounds on the misidentification IoU in Part 2.

X.2  EXTENDING TO FALSE APPEARANCES.

Algorithm 7 Soundness False Appearance Verification for NMS
Require: Constraints Z = \ S; input x; output y; set of ground truth boxes G; confidence

threshold ¢.

Ensure: Calculate per-box lower bounds {7pa (1)}, on max IoU(box;, boxet).
1: {boz,}"= <+ CONSTRUCT_ABSTRACT_BOX(Z
2: for all boz; € {box,}}=, do

3: TrA(1) < 0 > Initialize lower bound for maximal IoU to GTs of box ¢
4: if ¢; < ¢ then
5: continue > Box ¢ can never become a high-confidence detection, ignore it for False
Appearance
6: end if
7: <0 > Lower bound on maxp,g,,eg [oU(box;, boxgy)
8: for all boz,, € G do
9: Ibgy s~ 10U LOWER_BOUNDS (bo;, boxer)
10: 1b < max(lb, lbgy) > Aggregate lower bounds to over-approximate maxpo,,, loU
11: end for
12: TrA(2) < 1b
13: end for

14: return {7pa (1)},

Formalization of the property (bad Event): Given an input constraint set C, if there exists an input
x € C and a predicted box box; € N(F(x)) whose IoU with all GT boxes is less than 7, we consider
this a False Appearance:

Jdx € C, Jbox; € N(F(x)), Vbozg, € G, IoU(box;, boxe) < 7.

Equivalently, define the maximum IoU for each predicted box with all GT boxes:

IoU pax (box;, @) = max IoU(box;, boxgt ),
0T gt

The bad event can be written as:

Jx € C, Fbox; € N(F(x)) : IoUpax(box;, ) < 7.

We want to prove no false appearances occur”’, which is the negation of the bad event:
Va € C, Vbox; € N(F(x)) : ToUpax(box;, x) > 7.

39



Under review as a conference paper at ICLR 2026

We can further define:

CI)FA(.CI}) = bozigf\]i(rll?(z)) IoUmaX(boxi, CC),

and the property holds if and only if inf Ppp () > T

Algorithm[7]shows how to compute per-box lower bounds on the maximum IoU to GT boxes in Part
2,

=~

For any given property, we first formalize the attack and verification objective as described in Section
3 and the process above. Then, as in Section 4 and above, we adapt Part 2 of the algorithm (e.g., by
adjusting the MIQP constraints) based on the specific verification objective. We will add a discussion
of these and other potential extensions in the revised manuscript, and specify how Part 2 of the
algorithm should be modified for these two threats.

X.3  EVALUATION

To assess the effectiveness of our proposed method under diverse noise conditions and threat
types, we conduct experiments using four distinct noise models and verify the False Appearance
(FA) detection performance of our YOLOl1x model. We define a noise tensor N, and set the
perturbation magnitude to_¢ = 1/255. The specific noise distributions and their corresponding

real-world motivations are outlined below:
e Uniform: N, ~ U(—¢, e) (Quantization/Uncertainty).
 Gaussian; N, ~ A(0, (¢/3)?) (Sensor Readout Noise).

e Salt-and-Pepper: +< impulse noise with p = 0.05 (Transmission Faults).

We randomly select 10 images from the COCO validation set and apply each noise model with
€ = 1/255 to generate noisy inputs. We then evaluate the FA detection verification performance of
our YOLOI1x model on these perturbed images. For each input, we draw 10° samples from the

corresponding noise distribution to approximate the ground truth. The results are summarized in the
table below:

Table 6: FA Detection Verification Performance under Diverse Noise Models.

Model  Noise type CARen  TPRgs.  TNRga  FPRps ENRgy
yolollx  gaussian 100.00%  92.31%  10000%  0.00%  7.69%
yolollx  saltand pepper ~ 100.00%  85.71%  100.00%  0.00%  14.29%_
yolollx  uniform 100.00%  9231%_  10000%  0.00%  7.69%

A _detection is considered positive if it remains robust under the corresponding noise model and
negative otherwise. The results indicate that our method sustains a high Certified Accuracy Rate
(CAR) across different noise types, demonstrating that it provides reliable guarantees under diverse
real-world noise conditions and threat types. Moreover, the True Positive Rate (TPR) and True
Negative Rate (TNR) remain consistently high, while the False Positive Rate (FPR) and False
Negative Rate (FNR) stay low, underscoring the method’s effectiveness in distinguishing between

robust and non-robust detections.

Overall, these results demonstrate that our method remains reliable across heterogeneous noise
distributions and diverse threat types. This confirms that the proposed framework is broadly
applicable and provides trustworthy robustness guarantees under a wide range of real-world noise
conditions. the algorithm (e.g., by adjusting the MIQP constraints) based on the specific verification
objective. We will add a discussion of these and other potential
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