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ABSTRACT

Object detection systems are essential in safety-critical applications, but they are
vulnerable to object disappearance (OD) threat, in which valid objects become
undetected under small input perturbations, creating serious risks. This paper ad-
dresses the problem of verifying the robustness of YOLO

:::
(You

:::::
Only

:::::
Look

:::::
Once)

networks against OD by proposing a three-step probabilistic verification frame-
work: (1) estimating output ranges under a distribution of input perturbations, (2)
formally verifying the Non-Maximum Suppression (NMS) process within these
ranges, and (3) iteratively refining the results to reduce over-approximation. The
framework scales to practical YOLO models. Both theoretical analysis and ex-
perimental results demonstrate that our method achieves comparable probabilistic
guarantees and provides tighter Intersection-over-Union (IoU) lower bounds while
requiring significantly fewer samples than existing methods.

1 INTRODUCTION

Object detection (Zhao et al., 2019; Zou et al., 2023) is a fundamental computer vision task that
combines object localization and classification. Neural network architectures, including YOLO
::::
(You

:::::
Only

:::::
Look

::::::
Once) (Redmon, 2016; Redmon & Farhadi, 2017; Farhadi & Redmon, 2018;

Bochkovskiy et al., 2020a), Fast R-CNN (Girshick, 2015), and SSD (Liu et al., 2016; Li et al., 2017),
have achieved significant progress in both accuracy and computational efficiency, enabling their
widespread deployment in real-world applications. Despite these advances, neural network-based
detection systems remain vulnerable to minute, often imperceptible, input perturbations (Im Choi &
Tian, 2022; Lin et al., 2025; Goodfellow et al., 2015; Madry et al., 2018; Dong et al., 2018; Carlini
& Wagner, 2017). Of particular concern is the object disappearance (OD) problem, in which mi-
nor input perturbations suppress the detection of valid objects. Such perturbations pose substantial
risks in safety-critical domains, potentially leading to catastrophic consequences due to detection
failures. Consequently, verifying the safety of object detection systems is crucial for their reliable
deployment.

To measure network robustness, verification methods are commonly employed. For a given network
F, an input x, and a property function ϕ, verification methods can be grouped into three categories:
Formal Verification. The goal is to find the maximum perturbation radius ε such that ϕ(F(x′)) =
ϕ(F(x)) for all x′ ∈ Bp(x, ε), where Bp(x, ε) = {x′ : ∥x′ − x∥p ≤ ε} is the p-norm ball of
radius ε centered at x. Alternatively, for a fixed ε, one can verify whether the property holds for all
x′ ∈ Bp(x, ε). However, formal verification is NP-complete (Katz et al., 2017), making it infeasi-
ble for large-scale networks. Even state-of-the-art tools (Zhang et al., 2022b;a) face challenges in
handling networks with millions of neurons (Brix et al., 2023; 2024).
Probabilistic Verification. Given a radius ε and a tolerance α, the goal is to verify whether
Px′∼D(ϕ(F(x

′)) = ϕ(F(x))) ≥ 1 − α, where D is a distribution over Bp(x, ε). Although this
approach leverages probabilistic guarantees to reduce verification time and memory, its reliance on
processing internal network nodes prevents it from scaling to larger network architectures. Repre-
sentative works include (Weng et al., 2019; Boetius et al., 2025).
PAC Verification. Given ε, α, and β, the goal is to verify whether Px′∼D(ϕ(F(x

′)) =
ϕ(F(x))) ≥ 1 − α holds with confidence at least 1 − β. PAC methods rely on sampling and
do not require access to internal network nodes, which allows them to scale further to larger mod-
els and datasets. Representative works include (Tran et al., 2023; Park et al., 2020; Li et al., 2022)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Tran et al., 2023; Park et al., 2020; Li et al., 2022; Blohm et al., 2025).
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Verifying object detection networks with these methods, however, presents additional challenges
beyond the large parameter scales:
(1) Post-Processing Stage: Critical post-processing steps, such as Non-Maximum Suppression
(NMS) (Neubeck & Van Gool, 2006), generally fall outside the scope of current formal verification
methods (Cohen et al., 2024; Elboher et al., 2024);
(2) Large Input-Output Spaces: The dimensionality of the detec-
tion inputs and outputs even renders PAC-based methods (Li et al., 2022)
:::::::::::::::::::::::::::::::::::::::::::::::::
(Li et al., 2022; Blohm et al., 2025; Haussler & Welzl, 1987) computationally infeasible.

Due to these limitations, even recent verification methods specifically designed for object detec-
tion (Cohen et al., 2024; Elboher et al., 2024) are restricted to simplified models or do not account
for complex operations such as NMS. To address this gap, we propose a PAC-based Object Detection
Probabilistic Verification (ODPV) framework for YOLO networks under OD threats. To our knowl-
edge, this is the first framework that effectively verifies the robustness of the original object
detection networks at a practical scale. Although PAC verification cannot provide deterministic
guarantees, it currently offers the most practical means to validate YOLO in a reasonable time.

Our methodology includes three main components: (1) estimating output ranges under input pertur-
bations, (2) formally verifying NMS within the estimated output space, and (3) iteratively refining
verification results. We implement our approach and evaluate it on standard benchmarks. Our main
contributions are as follows.

(1) We formally define the PAC verification problem of the object disappearance
:::
OD

:
threat in object

detection and propose a novel verification approach to address it.
(2) We implement a complete verification process that includes the NMS step, which has been under-
explored in previous work, and provide probabilistic guarantees for each step.
(3) We conduct experiments on widely used networks and datasets to evaluate our proposed method.
We demonstrate that our method requires fewer samples to achieve comparable probabilistic guar-
antees and tighter certified Intersection-over-Union (IoU) bounds.

In summary, we are the first to address the challenges of verifying large-scale detection networks
and to provide an efficient probabilistic verification method.

Remark 1. We emphasize an important distinction: Our work differs from randomized smoothing
in the type of guarantee it provides (Cohen et al., 2019; Yang et al., 2020). Randomized smoothing
establishes robustness for modified, ”smoothed” classifiers, not the original detector. In contrast,
we leave the network unchanged and provide statistical guarantees for the original model.

2 RELATED WORK

Object detection. Early detectors relied on hand-crafted features such as HOG (Dalal & Triggs,
2005) and sliding windows (Viola & Jones, 2001), but lacked adaptability. CNN-based approaches
transformed feature extraction; R-CNN variants (Girshick et al., 2014; Ren, 2015) combined region
proposals with deep learning methods. More recent approaches such as YOLO (Redmon, 2016;
Redmon & Farhadi, 2017; Farhadi & Redmon, 2018; Bochkovskiy et al., 2020b) and SSD (Liu
et al., 2016; 2017) achieved real-time detection in complex scenarios.

Verification techniques for Neural Networks. Formal verification determines whether a property
holds under given input constraints. State-of-the-art tools (Katz et al., 2017; 2019; Zhang et al.,
2022a; 2018) employ Branch-and-Bound, combining relaxations (Singh et al., 2019; Bak, 2021),
bound propagation (Wang et al., 2018b; Weng et al., 2018; Wang et al., 2018a; Gowal et al., 2019),
and constraint solving (Khedr et al., 2021; Ehlers, 2017; Henriksen & Lomuscio, 2020; Kouvaros &
Lomuscio, 2021). However, for large networks such as YOLO (with 640 × 480 × 3 inputs), even
basic bound propagation may require more than 5000 GB of memory, rendering formal verification
infeasible in practice. To address scalability, probabilistic verification estimates the likelihood of
property satisfaction. Sampling-based methods (Webb et al., 2019; Cardelli et al., 2019; Mangal
et al., 2019; Anderson & Sojoudi, 2023) provide probabilistic estimates, but may miss rare cases,
thereby creating gaps between analysis and actual robustness. DeepPAC (Li et al., 2022) approxi-
mates local network behavior with linear equations and high-confidence error bounds, but it requires
prohibitively large sample sizes for models such as YOLO. Techniques like median smoothing (Chi-
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Figure 1: (First Stage) The net-
work tries to find all boxes that
may contain objects. A subset
of these boxes is shown here.

Figure 2: (Second Stage) Final
output boxes selected by NMS
include the corresponding label
and its confidence score.

Figure 3: Under imperceptible
input perturbations, YOLO can
no longer recognize these ob-
jects.

ang et al., 2020) certify robustness for a modified, ”smoothed” detector, whereas our approach di-
rectly verifies the original network.

Verification of Object Detection. Current efforts mainly focus on small or simplified detectors.
(Cohen et al., 2024) propagate bounds to certify Intersection-over-Union (IoU)

:::
IoU, while (Elboher

et al., 2024) encode IoU into networks for existing verifiers. Both approaches ignore the NMS step
and fail to scale to real-world detectors. Comprehensive verification of complete detection pipelines
remains an open problem.

3 PRELIMINARIES

This section outlines the key stages of YOLO object detection, as shown in Fig. 1- 3 with
an image from the COCO validation dataset (Lin et al., 2014) and defines the threat of object
disappearance

:::
OD.

3.1 KEY STAGES OF YOLO OBJECT DETECTION

Bounding Box Prediction (First Stage). The YOLO network F : Rd0 → RdL processes an input
x (with dimension d0) to generate an output y = F(x) (with dimension dL). The output y can be
reformulated as a set of bounding boxes {boxi}nx

i=1, where nx is a constant determined by the fixed
input dimension. Each bounding box boxi is represented as (xi, yi, wi, hi, ci, pi1 , pi2 , . . . , pin).
Here, (xi, yi) denotes the box’s center coordinates, (wi, hi) its width and height, ci its confidence
score, and pij the probability of the object belonging to class j (for j ∈ [n], where n is the total
number of classes). The class of boxi is assigned as Class(boxi) = argmaxj∈[n] pij . These boxes
collectively identify possible object locations in the input image, as Figure 1 illustrates.

Non-Maximum Suppression (Second Stage). Let y = F(x) be the output tensor from the first
stage. The second stage processes y by using an operator N to select a subset of bounding boxes
{boxij}ij∈[nx] ⊆ y = {boxi}nx

i=1, forming the final YOLO output (Figure 2). The standard operator
N is Non-Maximum Suppression (NMS)

::::
NMS (Neubeck & Van Gool, 2006) in YOLO, which uses

y and predefined thresholds η, ι ∈ (0, 1) to select the final output. For simplicity, we denote this as
N(y), as η and ι are fixed, so we omit them. NMS selects boxes based on the following three rules:
(n1): If ij ∈ [nx] and boxij ∈ N(y), then it must satisfy cij ≥ ι;
(n2): If ij ∈ [nx] satisfies boxij /∈ N(y) and cij ≥ ι, then there must exist a boxik ∈ N(y) such
that Class(boxij ) = Class(boxik) and cij ≤ cik , IoU(boxij , boxik) ≥ η;
(n3): If ij , ik ∈ [nx] such that boxij , boxik ∈ N(y) and Class(boxij ) = Class(boxik), then it must
satisfy IoU(boxij , boxik) < η.

The IoU(box1, box2) =
Area(box1∩box2)
Area(box1∪box2)

measures overlap between two boxes, where Area(box1 ∩
box2) and Area(box1∪box2) denote the intersection and union

::::
IoU areas. The NMS-selected subset

is unique and we focus on its properties, as implementation details are beyond our scope.
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Figure 4: Our verification framework for object detection networks. The green cube represents the
network’s true but unknown output space under input constraints. The yellow cube is the over-
approximated region calculated by our method, which is probabilistically guaranteed to contain the
true output space. Part 3 of our framework (Refinement) progressively shrinks the yellow region by
identifying and excluding areas that do not intersect with the true output space, thereby tightening
the verification bounds.

3.2 OBJECT DISAPPEARANCE THREAT ON OBJECT DETECTION

An object detection model successfully detects an object O in the image x if there exists at least
one boxi ∈ N(F(x)) satisfying: Class(boxi) = Class(boxgt) and IoU(boxi, boxgt) ≥ τ , where
τ is a predefined IoU threshold and boxgt is O’s ground truth bounding box. We define the object
disappearance (OD )

:::
OD threat as follows:

Object Disappearance (OD )
::::::
Threat

:::::::::
Definition. Given ground truth box boxgt, perturbation radius

ε, IoU threshold τ , and class Class(boxgt), OD occurs if there exists a perturbation δ with ∥δ∥p ≤ ε
such that

max
boxi∈N(F(x+δ))

[
IoU(boxi, boxgt) · I (Class(boxi) = Class(boxgt))

]
< τ.

where I(·) denotes an indicator function (returns 1 if true, 0 otherwise).

4 VERIFICATION FRAMEWORK FOR OBJECT DETECTION

In this section, we introduce the verification target and our verification approach.

First, we formally define the OD PAC-Verification problem.
Definition 1 (OD PAC-Verification Problem). Given input constraints C, IoU threshold τ , error
rate α ∈ [0, 1] and significance level β ∈ [0, 1] and ground truth box boxgt, verify whether with
confidence at least 1− β, the following holds:

Px∼C (∃boxi ∈ N(F(x)) s.t. [IoU(boxi, boxgt) ≥ τ ∧ Class(boxi) = Class(boxgt)]) ≥ 1− α

If true, the system is deemed PAC-safe in C under τ . This definition reduces to the OD Formal
Verification Problem when α = 0, β = 0.

::::
Here

:::
we

:::
use

::::::
x ∼ C

::
to

::::::
denote

:::
that

::
x
::
is
::::::::
sampled

::::
from

:
a

:::::::::
distribution

::::
over

:::
the

:::::
input

::::::::
constraint

:::
set

::
C.

:

Then, we propose a three-part verification framework (see Alg. 1 and Fig. 4) to solve it:

Part 1: Network Output Approximation. For input x(0) and constraint C, approximate the output
set {F(x)}x∈C with a regular region Z (hyperrectangles/hyperspheres) such that: {F(x)}x∈C ⊆ Z .

Part 2: NMS Verification. Verify whether, for all y ∈ Z , there exists a boxi ∈ N(y) that satisfies
the OD safety property (Definition 1). If this holds, the detector is safe. Otherwise, identify a y that
violates the IoU or class-matching condition.

Part 3: Counterexample Validation and Refinement. Compute dmin = minx∈C ∥F(x) − y∥2.
If dmin ≤ κ (with κ ≥ 0 as a tolerance), the system is unsafe. Otherwise, refine Z by excluding

4
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Algorithm 1 Verification framework for the OD PAC-Verification problem

Require:
The network F; the input constraints C; the threshold in OD verification problem τ ; the thresh-
old for Part Three κ; the number of refinement steps T ; the ground truth bounding box boxgt.

Ensure:
Whether YOLO is safe under OD attack.

1: Get Z over-approximating {F(x)}x∈C ▷ Part One
2: repeat
3: if ∀y ∈ Z, ∃boxi ∈ N(y) such that IoU(boxi, boxgt) ≥ τ ∧ Class(boxi) = q then
4: return Safe. ▷ q = Class(boxgt), Part Two
5: else
6: Get y′ ∈ Z violating the specified property ▷ Part Two
7: dmin = minx∈C ∥F(x)− y′∥2 ▷ Part Three
8: Z = Z \ B2(y′, dmin) ▷ Part Three
9: end if

10: until dmin ≤ κ or refine T steps
11: return Unsafe ▷ Part Three

Algorithm 2 Algorithm for Part 1: Network Output Approximation
::::
(Part

::
1)

Require:
The neural network F; the input constraints C, N1, N2 ∈ Z+

:::::::::::
N1, N2 ∈ Z+, a threshold ζ.

Ensure:
The bounding box Z .

1: {x(i)}N1
i=1 ←Randomly select N1 points in C. ▷ Find the vmax

2: for j ∈ [dL] do ▷ Find the vmax

3: (vmax)j ← max{maxi{|F(x(i))j − F(x(0))j |}, ζ} ▷ Use ζ to prevent division by zero
4: end for
5: {z(i)}N2

i=1 ←Randomly select N2 points in C. ▷ Find the c1

6: c1 ← maxi∈[N2],j∈[dL]
|F(z(i))−F(x(0))|j

(vmax)j
. ▷ Find the c1

7: return Z ← {F(x(0)) + ϵ : |ϵ| ≤ c1vmax}.

B2(y, dmin) = {y′ : ∥y − y′∥2 < dmin} as the regular region we obtained may be larger than the
actual output space {F(x)}x∈C , and then go back to Part 2. Note that we limit Part 3 iterations for
high-dimensional outputs to prevent computational overload.

Remark 2. Because our goal is PAC verification, each of the three steps is implemented using
probabilistic methods with probability guarantees, rather than exact computation, as shown in the
next section.

5 VERIFICATION METHOD FOR YOLO OBJECT DETECTION

We illustrate the application of the verification framework from Section 4 to YOLO object detection.
Because of YOLO’s complexity and scale, formal verification becomes intractable; therefore, we
adopt PAC verification, i.e. black-box verification via sampling. Proofs for Propositions, Lemmas,
and Theorems are provided in the Appendix.

We define the input constraint as C = {x : ∥x − x(0)∥p ≤ ε} for a given sample x(0), norm
p ∈ Z+ ∪ {∞}, and perturbation radius ε ∈ (0, 1). We consider a probability distribution over
the input set C, and write x ∼ C to denote that x is a sample drawn from this distribution. For
convenience, we define the comparison a ≤ b for vectors a, b ∈ Rn to mean ∀j ∈ [n] : aj ≤ bj ,
where aj is the j-th component of a. Similarly, scalar-vector multiplication is defined element-wise.

5
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Algorithm 3 Algorithm for Part 2: NMS Verification
::::
(Part

::
2)

Require:
{{boxk

i }
nx
i=1}k∈∆ reinterpreted from Z; IoU threshold τ ; ground truth bounding box boxgt.

Ensure:
Either a non-empty safe set Q(Z, τ, boxgt), or an unsafe witness z ∈ Z .

1: Q← ∅.
2: for i ∈ [nx] do
3: Calculate τ1(i,Z, boxgt) and τ2(i,Z, boxgt) ▷ Appendix I
4: τ(i,Z, boxgt)← min(τ1(i,Z, boxgt), τ2(i,Z, boxgt)) ▷ Lemma 2
5: if τ(i,Z, boxgt) > τ then Q← Q ∪ {i} ▷ Lemma 1
6: end if
7: end for
8: if Q ̸= ∅ then return (Safe, Q)
9: else i← argmaxi∈[nx]{τ(i,Z, boxgt)}

10: end if
11: return (Unsafe, z) ▷ z ∈ Z such that its corresponding box i leads to the value τ(i,Z, boxgt)

5.1 IMPLEMENTATION PART 1 ON YOLO

Consider a network F : Rd0 → RdL and an input constraint C. In Part 1 of our approach, we aim to
determine the range of {F(x)}x∈C with a probabilistic guarantee. We first find a constant c1 ∈ R+

and a vector vmax ∈ RdL such that ∀x ∈ C, c1vmax ≥ |F(x)− F(x(0))| holds element-wise. Then
let Z = {F(x(0)) + ϵ : |ϵ| ≤ c1vmax}, and it is easy to see that {F(x)}x∈C ⊂ Z .

As shown in Algorithm 2, we first randomly select N1 samples from C, and define (vmax)j =

max{maxi{|F(x(i))j − F(x(0))j |}, ζ}, where ζ > 0 is a small constant to ensure all components
are positive. When finding c1, directly solving the problem c1 = minc≥0 c s.t. c ∈

⋂
x∈C{|F(x)−

F(x(0))| ≤ cvmax} is infeasible. Since each constraint is convex for c, by the RCPN (Campi et al.,
2009), we can get c1 by randomly selecting N2 samples {x(i)}N2

i=1 from C, then we calculate c1 by
the following optimization problem:

c1 = min
c≥0

c s.t. |F(x(i))− F(x(0))| ≤ cvmax, ∀i ∈ [N2]. (1)

Proposition 1 (probabilistic guarantee for Part 1). For any N1 > 1, let vmax be a vector with pos-
itive components (e.g., as estimated from N1 samples in Algorithm 2). If c1 is computed based
on this vmax using N2 ≥ [ 2 ln 1/β

α + 2 + 2 ln 2/α
α ] samples as described in Algorithm 2, then

with probability 1 − β, we have: Px∼C
(
|F(x)− F(x(0))| ≤ c1 · vmax

)
≥ 1 − α, which implies

Px∼C (F(x) ∈ Z) ≥ 1− α.

Remark 3. The probabilistic guarantee imposes no special requirements on N1. We select vmax in
this way because a larger N1 yields a tighter approximation of the true output range (Appendix D).

5.2 IMPLEMENTATION PART 2 ON NMS

To better illustrate the NMS verification, we use an infinite index set ∆ to enumerate all possible
values in Z , i.e., Z = {zk}k∈∆, where each zk ∈ Z is a possible output vector. Each zk can be
interpreted as a set of boxes {boxk

i }
nx
i=1 according to the YOLO output format. We assume that boxk

i

can be written boxk
i = (xk

i , y
k
i , w

k
i , h

k
i , c

k
i , p

k
i1
, pki2 , . . . , p

k
in
). To soundly verify the NMS, we first

define the safe set Q(Z, τ, boxgt), which contains indices of boxes that satisfy the NMS conditions.

Definition 2 (Safe Set). The safe set Q(Z, τ, boxgt) ⊆ [nx] and i ∈ Q(Z, τ, boxgt) if and only if:

(1): ∀k ∈ ∆, Class(boxk
i ) = Class(boxgt), cki ≥ ι and IoU(boxk

i , boxgt) ≥ τ ;
(2): ∄k ∈ ∆, n ∈ [nx] \ {i} such that ckn ≥ ι, Class(boxk

n) = Class(boxgt), ckn ≥ cki ,
IoU(boxk

i , box
k
n) ≥ η, and IoU(boxgt, box

k
n) < τ .

Then we can soundly verify the NMS by checking whether the safe set is empty.
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Proposition 2 (NMS Soundness Verification). For given Z , τ , and boxgt, if Q(Z, τ, boxgt) ̸= ∅,
then for ∀k ∈ ∆ : ∃boxi ∈ N(zk), s.t.IoU(boxi, boxgt) ≥ τ ∧ Class(boxi) = Class(boxgt).

According to this proposition, verification reduces to calculating the safe set. To calculate the safe
set, we need the following key metric:

Definition 3 (Safe IoU Threshold). The Safe IoU Threshold τ(i,Z, boxgt) := inf{τ ′ ∈ [0, 1]|i /∈
Q(Z, τ ′, boxgt)}, where inf is the infimum operator.

The following lemmas about τ(i,Z, boxgt) can help us compute the safe set Q(Z, τ, boxgt).

Lemma 1 (Threshold Properties). τ < τ(i,Z, boxgt)⇒ i ∈ Q(Z, τ, boxgt)

We can obtain τ(i,Z, boxgt) by solving the following optimization problem:

Lemma 2 (Threshold Computation). The threshold can be calculated as τ(i,Z, boxgt) =
min{τ1(i,Z, boxgt), τ2(i,Z, boxgt)}, where:

τ1(i,Z, boxgt) = min
k∈∆

IoU(boxk
i , boxgt) · I(Class(boxk

i ) = q) · I(cki ≥ ι), q = Class(boxgt)

τ2(i,Z, boxgt) =

{
min

k∈∆,n̸=i
IoU(boxk

n, boxgt) if ∃(k, n) s.t. Ckn = 1

1 otherwise

where constraint Ckn ≡ I(ckn ≥ ι) · I(Class(boxk
n) = q) · I(IoU(boxk

i , box
k
n) ≥ η) · I(ckn ≥ cki ).

Appendix I shows how we encode the optimization problem in line 3 of Algorithm 3 as a mixed-
integer quadratic program (MIQP) and use the Gurobi solver to solve it.

5.3 IMPLEMENTATION PART 3 ON YOLO

Part 3 of our framework refines the initial output approximation Z . When Part 2 detects a potential
counterexample y ∈ Z , in part 3, we need to check whether y is actually reachable by F for some
x ∈ C. This is done by computing dmin = minx∈C ∥F(x)− y∥2.

Due to the high dimensionality, even if y ∈ {F(x)}x∈C , the dmin derived from the sampled outputs
converges to zero very slowly as the sample size increases, so directly estimating dmin simply by
taking the minimum distance from a set of sampled outputs {F(x(i))} to y may be unreliable.

To address this, we introduce Algorithm 4, a two-step procedure for estimating dmin with proba-
bilistic guarantees. Step One (Estimating C): This step aims to characterize the local variability of
the function F within the input constraint set C. It computes a constant C by repeatedly sampling
pairs of points and observing the ratio B′

i

A′
i−B′

i
. Step Two (Estimating dmin using C): Using the

constant C and a new set of M2 samples, this step estimates dmin for the specific target vector y.
The formula dmin ← max{Bm−C(Am−Bm)

1+2C , 0} leverages C to provide a more conservative estimate
of the minimum distance than Bm (the minimum observed distance from the M2 samples) alone.

Let V(y, dmin) = Px∼C(F(x) ∈ B2(y, dmin)), and V(y, 0) = 0. We use V(y, dmin) to measure
the intersection between B2(y, dmin) and {F(x)}x∈C . We show that with high probability, the
V(y, dmin) is very small.

Theorem 1 (probabilistic guarantee for Part 3). For any α, β, δ, ϵ ∈ (0, 1) satisfying (1−2ϵ)M−δ >
0 and N ·((1−2ϵ)M−δ) > 2

α ln( 1β )+2+ 2
α ln( 2

α ), with the algorithm 4, for any y, with probability

at least 1− e−2Nδ2 − β − 2(1− ϵ)M2 over steps one and two, we have V(y, dmin) ≤ α.

Remark 4. Take N = 3000,M = 10,M2 = 2000, and ϵ = 1/200, δ = 0.1, α, β = 0.0099, then
1− e−2Nδ2 − β ≥ 0.99 and 1− α− 2(1− ϵ)M2 ≥ 0.99.

We also provide a sound refinement algorithm for small networks, shown in Appendix K.

5.4 THE PROBABILISTIC GUARANTEE FOR THE ENTIRE ALGORITHM

We prove that the whole algorithm implemented above has a probabilistic guarantee as follows, by
combining proposition 1, 2 and theorem 1:

7
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Algorithm 4 Algorithm for Part 3: Counterexample Validation and Refinement
::::
(Part

::
3)

Require:
The neural network F; the input constraints C, N,M,M2 ∈ Z+

:::::::::::::
N,M,M2 ∈ Z+, a vector y.

Ensure:
Estimate dmin = minx∈C ∥y − F(x)∥2.

1: C ← 0; {x(i)}Ni=1 ← Randomly select N samples from C ▷ Step One
2: for i ∈ [N ] do
3: {x(i,j)}Mj=1 ← Randomly select M samples from C again ▷ Step One
4: A′

i ← maxj∈[M ] ∥F(x(i,j))− F(x(i))∥2, B′
i ← minj∈[M ] ∥F(x(i,j))− F(x(i))∥2

5: C ← max{C, B′
i

A′
i−B′

i
} ▷ Step One

6: end for
7: {x(i)}M2

i=1 ←Select M2 samples from C ▷ Step Two
8: Let Am ← maxi∈[M2] ∥F(x(i))− y∥2, Bm ← mini∈[M2] ∥F(x(i))− y∥2 ▷ Step Two
9: return dmin ← max{Bm−C(Am−Bm)

1+2C , 0} ▷ Step Two

Theorem 2. Using the notation from the three algorithms above. Given α, β, δ, ϵ ∈ (0, 1) satisfying
(1−2ϵ)M −δ > 0, N · ((1−2ϵ)M −δ) > 2

α ln( 1β )+2+ 2
α ln( 2

α ) and N2 ≥ [ 2 ln 1/β
α +2+ 2 ln 2/α

α ].
Then, after executing the algorithms defined above, with any κ in part 3, if for a sample x, these
algorithms output ’safe’ after T refinement turns, then with probability at least 1−T (e−2Nδ2 +β+
2(1− ϵ)M2)− β of parts one and three, we have Px∼C(x is safe) > 1− (1 + T )α.

:
If
:::::

we
::::::

take
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

N1 = 30,000, N2 = 5,000, N = 3,000,M = 10,M2 = 2,000, α = β = 0.0099,
:::::::::
ϵ = 1/200,

::::::::
δ = 0.1,

:::
we

:::
can

:::::::
achieve

::
a
:::::
98%

::::::::::
probabilistic

:::::::::
guarantee

::::
with

:::::
98%

:::::::::
confidence

:::::
using

::::
only

::::::
37,000

:::::::
samples,

::::::
which

::::::
means

::::
with

::
at

::::
least

:::::
98%

::::::::::
confidence,

:::
the

:::::::::
probability

::
of
:::

an
::::
OD

::::
event

::::::::
occurring

:::::
under

:::
the

:::::
given

::::::::::
perturbation

:::::::::
distribution

::
is
::
at
:::::
most

:::
2%.

:

Remark 5.
::::
Note

:::
all

:::
our

:::::::::
theoretical

::::::::::
guarantees

::::::
depend

::::
only

:::
on

:::
the

::::
i.i.d.

::::::::::
assumption

:::
and

:::::
hold

::
for

:::
any

::::::::
sampling

::::::::::
distribution,

:::
not

:::
just

::::::::
uniform.

6 EXPERIMENTS

Our experiment consists of the evaluations of the bounds accuracy and the safety guarantee. Detailed
experimental settings and more experimental results are provided in Appendix N to Appendix T.

Basic setting. Our experiments used the medium and large versions of the YOLOv3, YOLOv5,
YOLOv8 and YOLO11 models by Ultralytics (Jocher et al., 2023). We conduct verification on
the COCO dataset (Lin et al., 2014), a widely used benchmark for object detection, and randomly
select 100 validation images containing more than 520 objects. We use a uniform distribution for
sampling, which is a common choice in the literature (Li et al., 2022; Cohen et al., 2024). The IoU
threshold τ ∈ {0.5, 0.7}, the constants in NMS are η = 0.45 and ι = 0.25, which are commonly
used in object detection tasks.

::
In

:::::::::
Appendix

:
X
:::
we

::::
also

:::::::
evaluate

:::
our

:::::::
method

:::::
under

::::
other

::::::::::
perturbation

::::::::::
distributions

:::::
(e.g.,

::::::::
Gaussian,

::::
Salt

:::
and

:::::::
Pepper)

:::
on

:::::::
different

:::::
threat

:::::::
models

::::
(e.g.,

:::::
False

:::::::::::
Appearance).

We set ζ = 0.001 (Alg. 2) and κ = 0.01 (Alg. 4). The perturbation radius is set to 1
255 or 2

255 .
Larger radii make the network overly fragile, enabling counterexamples to be found with very few
samples, and thus eliminating meaningful differences between methods.

Baseline Selection. By Theorem 2, our method achieves a 98% probabilistic guarantee with 98%
confidence using only 37,000 samples. In contrast, RCPN requires over 560

::
11,000,000 samples,

while DeepPAC (Li et al., 2022) requires over 100,000,000 samples and needs to solve LPs with
more than 1012 variables to achieve the same guarantee (see Appendix N), making both approaches
impractical. Formal verification methods are also infeasible: existing tools (Cohen et al., 2024;
Elboher et al., 2024) handle only 2-3 convolutional layers with 2-3 linear layers, far below the scale
of YOLO, and cannot address its complex architecture or NMS. Therefore, direct comparisons
with DeepPAC, RCPN , and formal verification are not feasible. Instead, we use RCPN with 106

samples (yielding weaker guarantees) as a baseline.
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Table 1: Comparison of our method with RCPN . ∆PGD denotes the mean absolute difference of
IoU lower bounds relative to the PGD attack. Bold values indicate the best performance.

ε method model time ∆PGD model time ∆PGD

τ = 0.5 τ = 0.7 τ = 0.5 τ = 0.7

1
255

Ours

v3spp

109.0 0.49 0.45

v8m

50.7 0.48 0.44
RCPN 563.5 0.55 0.53 455.0 0.52 0.52

2
255

Ours 106.3 0.48 0.41 49.6 0.53 0.45
RCPN 562.9 0.58 0.54 454.7 0.59 0.55

1
255

Ours

v3

108.5 0.52 0.46

v8x

132.3 0.49 0.46
RCPN 561.0 0.57 0.55 591.3 0.55 0.54

2
255

Ours 105.0 0.48 0.42 129.0 0.51 0.44
RCPN 560.3 0.60 0.55 590.6 0.61 0.57

1
255

Ours

v5m

43.6 0.42 0.39

11m

59.1 0.48 0.43
RCPN 445.5 0.47 0.47 468.8 0.53 0.52

2
255

Ours 42.8 0.48 0.42 58.0 0.50 0.43
RCPN 444.4 0.55 0.50 467.8 0.57 0.53

1
255

Ours

v5x

131.5 0.48 0.44

11x

147.2 0.49 0.45
RCPN 593.8 0.54 0.54 618.1 0.54 0.54

2
255

Ours 128.4 0.52 0.45 141.9 0.50 0.44
RCPN 593.2 0.60 0.57 616.5 0.62 0.57

Table 2: Guarantee evaluation of our method with τ = 0.5 and ε = 1
255 ::::::::::::

ε ∈ { 1
255 ,

2
255} under 106

uniform perturbations. TPR/FPR: True/False Positive Rate. TNR/FNR: True/False Negative Rate.
A detection is considered positive if verified robust by our method, and negative otherwise. Certified
Robust Accuracy (CRA): percentage of detections verified robust that are indeed robust. Average
Bounds Improvement (ABI): average gain in certified IoU lower bounds.

model ε TPR (%) FPR (%) TNR (%) FNR (%) CRA (%) ABI

yolo11x 1/255 94.9 2.9 97.1 5.1 98.9 0.10
2/255 85.2 1.4 98.6 14.8 99.4 0.17

yolo11m 1/255 95.0 3.0 97.0 5.0 98.6 0.10
2/255 93.1 1.1 98.9 6.9 99.4 0.11

yolov8x 1/255 95.1 0.0 100.0 4.9 100.0 0.09
2/255 89.7 0.6 99.4 10.3 99.7 0.14

yolov8m 1/255 97.3 2.6 97.4 2.7 98.9 0.08
2/255 93.9 2.4 97.6 6.1 98.8 0.11

yolov5xu 1/255 94.8 0.7 99.3 5.2 99.7 0.09
2/255 90.6 0.6 99.4 9.4 99.7 0.13

yolov5mu 1/255 96.0 2.9 97.1 4.0 98.6 0.10
2/255 92.4 0.5 99.5 7.6 99.7 0.11

yolov3-sppu 1/255 95.6 0.0 100.0 4.4 100.0 0.08
2/255 87.4 0.0 100.0 12.6 100.0 0.15

yolov3u 1/255 95.7 1.3 98.7 4.3 99.4 0.09
2/255 85.8 0.0 100.0 14.2 100.0 0.16

Bounds Accuracy. Table 1 compares our method with RCPN , showing that our approach is both
faster and more accurate. In particular, it achieves a smaller mean absolute difference between IoU
lower bounds and the worst-case input found by the PGD attack (∆PGD), indicating tighter certified
bounds. Figure 5 further confirms this, as our bounds remain consistently closer to those of PGD.

9
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Square attack

PGD attack

Verification

(Ours)

RCPN

Figure 5: IoU lower
:::::
Lower

:
bounds of

::
the

::::
IoU

:::::::
between

::::::::
detected

:
boxes and their corresponding

ground truth
::::::::::
ground-truth boxes

:::::
under

:::
our

:::::::
method,

:::::::
RCPN ,

:::
the

::::::
square

::::::
attack,

:::
and

:::
the

:::::
PGD

:::::
attack.

::::::
Results

:::
are

::::::::
computed

:::
on

:::::::::
YOLO11x

::::
with

:::::::
ε = 1

255::::
and

:::::::
τ = 0.5.

:::::
Each

:::::
x-axis

::::
tick

::::::::::
corresponds

::
to

::
an

:::::
object

::
in

:::
the

::::::
COCO

::::::
dataset.

Safety Guarantee. Table 2 further shows results under 106 uniform perturbations: the certified
robust accuracy (CRA) exceeds 98%, and the false positive rate (FPR) remains very low, consistent
with theory. The true positive rate (TPR) is lower, as expected since our certification is stricter than
empirical robustness. Finally, the average bounds improvement (ABI) confirms that our method
yields tighter certified IoU lower bounds.

Additional Experiments. We further evaluate (i) the effect of Part 3 (Appendix P), (ii) an abla-
tion study on hyperparameters (Appendix T), (iii) real-world applications (Appendix R), and (iv) a
comparison with median smoothing (Appendix S).

7 CONCLUSION

This paper presents a novel probabilistic framework for verifying
:::::::::
framework

::
to

:::::::
provide

:::::::
provable

::::::::::
probabilistic

:::::::::
guarantees

::::
for YOLO-based object detection systems against object disappearance

attacks,
::::::
specific

::::::
threats

:::::
(e.g.,

:::::::
Object

:::::::::
Disappear,

:::::
False

::::::::::::
Appearance)

:::::
under

:::::::
various

::::::::::
perturbation

::::::::::
distributions,

:
a key step toward trustworthy deployment. Our contributions are threefold: (i) a formal

definition of the OD verification problem, (ii) a practical three-stage methodology that explicitly in-
corporates formal analysis of Non-Maximum Suppression (NMS)

::::
NMS, and (iii) strong probabilistic

guarantees for the full pipeline. Experiments on multiple YOLO architectures and the COCO dataset
::::::::::
distributions show that our approach delivers reliable safety assurances and achieves tighter certified
IoU bounds with far greater sample efficiency than prior methods.
Limitations and Future Directions: Our method relies on an assumed distribution of input per-
turbations, a limitation inherent to the PAC framework. Developing verification methods for other
types of attacks remains an important direction for future work.

:::::::
Another

:::::::
valuable

:::::::
direction

:::::::
involves

::::::::
leveraging

::::::::::
adversarial

:::::
attack

::::::::
strategies

::
to

::::::
further

:::::
refine

:::::
Stages

::
1
:::
and

::
3,

::::::::
alongside

:::::::::::
investigating

::::
more

:::::::
efficient

:::::::
methods

:::
for

::::::
interval

:::::::::
estimation

:::
and

::::::::::
refinement.

:
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A APPENDIX

This appendix provides more related work, supplementary discussions, proofs, and experiments to
support the main text. We organize the appendix as follows:

• Section B: Summarizes additional related work.

• Section C: Provides the proof of Proposition 1 (probabilistic guarantee for part 1).

• Section D: Explains the role of sample size in Part 1 Step 1 and its effect on vmax.

• Section E: Gives the proof of Proposition 2 (NMS Soundness Verification).

• Section F: Proves Lemma 1 (threshold properties).

• Section G: Proves Lemma 2 (explicit threshold computation formulas).

• Section H: Defines and estimates the verification bound for object detection and provides
proofs for Lemmas 4 and 5.

• Section I: Details the verification procedure for Non-Maximum Suppression, including
abstract box construction and IoU bound computation.

• Section J: Proves Theorem 1 (probabilistic guarantee for Part 3).

• Section K: We propose a strict sound gradient-based refinement algorithm to implement
Part Three on small-scale networks(Theorem 4).

• Section L: Provides the proof of Theorem 4 based on dual formulations.

• Section M: Gives the proof of Theorem 2, combining probabilistic guarantees across all
parts.

• Section N: Reports detailed experimental settings, sample number calculations, and server
configuration.

• Section O: Discuss the efficiency of the NMS verification process.

• Section P: Shows the effectiveness of Part 3 refinement for YOLO and CNNs.

• Section Q: Shows time-verified box comparison between our method and RCPN .

• Section R: Demonstrates our method’s effectiveness on real-world images.

• Section S: Compares our method against median smoothing under Gaussian noise.

• Section T: Presents an ablation study on parameters η and ι.

• Section U: Discusses the broader impact of our verification method.

• Section V : LLM Usage Statement.

•
::::::
Section

:::
W:

:::::
Lists

:::
and

:::::::
explains

:::
all

::::::::::::::
hyperparameters

::::
used

::
in

:::
our

::::::::::
algorithms.

•
::::::
Section

::
X

:
:
:::::::
Provides

::::::
details

::
on

::::
how

::
to

:::::
adapt

:::
our

::::::
method

::
to

::::
other

::::::
attacks

:::::::
beyond

:::
OD

::::::
attacks.

B ADDITIONAL RELATED WORK

Adversarial attacks.

::::::::::
Adversarial

:::::::
attacks. Adversarial methods induce misclassification through imperceptible pertur-

bations. White-box attacks exploit gradient information (Goodfellow et al., 2015; Madry et al.,
2018; Carlini & Wagner, 2017) and can be adapted to OD attacks (Choi & Tian, 2022; Li et al.,
2020). Black-box attacks use transferability (Chen & Liu, 2024) or query-based optimization (Li
et al., 2020); these are more practical but may be computationally costly.

::::
Using

::::::::::
adversarial

::::::
attacks

:
in

:::::::
isolation

::::
only

:::::::::::
demonstrates

:::::::::::::
non-robustness

:
if
:::
the

:::::
attack

::
is
:::::::::
successful,

::::::::
whereas

:::
our

::::::
method

:::::::
provides

:
a
:::::::
rigorous

::::::::::
probabilistic

:::::::::
certificate

::
of

:::::::::
robustness.

::
A

:::::::
network

:::
that

::
is

:::::
robust

::::
with

::::
high

::::::::::
probability

::::
under

:::::::
common

:::::::::::::::
perturbations(e.g.

::::::
sensor

:::::
noise)

::
is

:::::::::
acceptable

:::
for

:::::::
practical

:::::::::::
deployment,

:::::::
whereas

:::
the

::::
strict

::::::::::
requirement

::
of

::::::::
complete

:::::::::
robustness

::
in

:
a
::::::::::::
neighborhood

:::::
often

::::
leads

:::
to

:
a
:::::::::
significant

::::
drop

::
in
:::::::
network

:::::::::::
performance.

::::
Thus

:::::
focus

::
is

:::
on

::::::::
providing

::::::::::
probabilistic

:::::::::
robustness

:::::
under

:::::::
realistic

:::::::::::
perturbations

::::
such

::
as

:::::
sensor

:::::
noise

:::::
rather

::::
than

:::::::::
adversarial

::::::
attacks

::::::
(which

:::::
often

::::::::
represent

:::::::::
worst-case

:::::::::
scenarios).

:
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::::::
Bound

::::::::::
Estimate

::::::::::
Methods.

:::::
There

:::::
are

::::::::
several

:::::::::
classical

:::::::::
methods

:::::
for

::::::::::
estimating

::::::::::
probabilistic

:::::::
output

::::::::
bounds

::::
of

:::::::
neural

::::::::::
networks,

:::::::::::
including

::::::::::::
DKW-based

::::::::::
confidence

::::::
regions

::::::::::::::::::::::::::::::
(Massart, 1990; Naaman, 2021)

:
,
:::::::::::::::

ERM-based
:::::::::::::::::::

hyper-rectangles,
::::::::

and
:::::
ϵ-nets

:::::::::::::::::::::::::::::::::::::
(Haussler & Welzl, 1987; Blohm et al., 2025).

::::::
While

:::::
these

:::::::
methods

:::
are

::::::::::
theoretically

::::::
robust,

::::
their

::::::
sample

::::::::::
complexity

:::::::
typically

::::::
scales

::::
with

:::
the

::::::
output

:::::::::
dimension

::
dL:::::

(e.g.,
::::::::
Õ(dL/ϵ):::

for
::::::
ϵ-nets).

:::::
Given

:::
the

:::::::::
extremely

:::::::::::::::
high-dimensional

::::::
output

:::::
space

:::
of

::::::
YOLO

:::::::::
networks,

::::::::::::::::::
dimension-dependent

::::::
bounds

:::
like

:::::
those

:::::
from

:::::
ϵ-nets

:::
or

:::::
DKW

::::::
would

::
be

::::::::::::::
computationally

:::::::::
infeasible.

::::
We

:::::::
therefore

:::::
focus

::
on

::::::::::::::::::::
dimension-independent

::::
PAC

:::::::
bounds,

:::::::
making

::::::::::
estimation

:::::::
feasible

::::
even

::::
for

::::::::::::::
high-dimensional

::::::
outputs.

:

::::
PAC

::::
with

:::::::
Attack.

::::
There

:::
are

::::::
several

:::::
PAC

:::::::::
verification

:::::::
methods

::::
that

:::::::::
incorporate

:::::::::
adversarial

::::::
attacks

::
to

:::::
refine

:::
the

::::::::
estimated

::::::
output

::::::
bounds

:::::::::::::::::::::::::::::::::::::::::::::
(Blohm et al., 2025; Li et al., 2022; Baluta et al., 2021)

:
.
:::
For

:::::::
example,

:::::::::::::::::
Blohm et al. (2025)

::::::::
evaluates

:::
the

:::::::::
robustness

::
of

:::::::::
individual

::::::
points

:::
via

::
a

::::
local

:::::::::
robustness

:::::
oracle

:::::
(such

::
as

:::::
PGD

::
or

:::::::
LiRPA)

:::
and

::::::::
leverages

:::::
ϵ-net

::::::::
sampling

:::::::
methods

::
to

:::::::
provide

:::::::::::::
high-probability

::::::::
statistical

:::::::::
guarantees

::::
for

::::::
global

::::::::::
robustness.

:::::::::::
Combining

:::::::
attacks

::::
with

:::::
PAC

::::::::::
verification

:::
is

::
an

::::::::
interesting

:::::::::
direction,

::
we

::::
will

::::::
explore

::::
this

::
in

:::::
future

:::::
work.

:

C THE PROOF OF PROPOSITION 1

Proposition (probabilistic guarantee for part 1). For any N1 > 1, let vmax be a vector with
positive components (e.g., as estimated from N1 samples in Algorithm 2). If c1 is computed
based on this vmax using N2 ≥ [ 2 ln 1/β

α +2+ 2 ln 2/α
α ] samples as described in Algorithm 2,

then with probability 1−β, we have: Px∼C
(
|F(x)− F(x(0))| ≤ c1 · vmax

)
≥ 1−α, which

implies Px∼C (F(x) ∈ Z) ≥ 1− α.

This proposition can be directly obtained by classic method RCPN , which is introduced below.

C.1 CLASSIC METHOD FOR PROBABILITY SAMPLING.

We begin by introducing a well-known method,
:::::
result

::::
from

:
the RCPN method (Campi et al., 2009),

which forms the basis of our approach in this section. Consider the
::::::::
following optimization problem

with possibly infinite constraints:

::
an

::::::
infinite

:::::::
number

::
of

::::::::::
constraints:

min
x∈Rd

a⊤x+ b
::
s.t.

::
x ∈ ∩

⋂
::

δ∈∆Xδ, (2)

Where
:::::
where

:
∆ is a index set

::
an

::::::
index

:::
set,

:
and Xδ ⊆ Rd is the

::::::
denotes

:::
the

:::::::::
constraint

:::
set

:::::::::::
corresponding

::
to
:::
the

:::::
index

:
δ-th constraint set .

Since the constraints are infinite
::::
there

:::
are

::::::::
infinitely

:::::
many

:::::::::
constraints, we can not solve the problem

directly. Thus we consider sample the constraints {δi}Ni=1 from ∆ , and estimate the possibility
that the optimal value of the optimization problem equation 3with the constraints {Xδi}Ni=1 is the
optimal value of the problem equation 2 with the constraints {Xδ}δ∈∆.

::::::::
according

::
to

:
a
::::::::::

probability
::::::::::
distribution

::
Q

::
on

:::
∆,

::::
and

:::::::
consider

:::
the

:::::::
sampled

:::::::
problem

::::::::
equation

::
3.

:::
We

::
are

:::::::::
interested

::
in

::::::::::
quantifying

::::
how

:::::
likely

::
it
::

is
::::

that
:::
the

:::::::
optimal

:::::::
solution

:::
of

:::
the

:::::::
sampled

:::::::
problem

::
is

:::::::
(almost)

::::::
feasible

:::
for

:::
the

:::::::
original

::::::::
problem.

min
x∈Rd

a⊤x+ b s.t. x ∈ ∩δi,i∈[N ]

⋂
i∈[N ]
:::

Xδi . (3)

When Xδ:::
Xδ is convex for every δ ∈ ∆, we have that:

::
the

::::::::
following

::::::
result.

:
If Q is a distribution

defined on ∆, and N ≥ [2 ln(1/β)
α + 2d+ 2d ln(2/α)

α ], thenwith probability

N ≥
⌈
2 ln(1/β)

α
+ 2d+

2d ln(2/α)

α

⌉
,

::::::::::::::::::::::::::::::::
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::::
then,

::::
with

::::::::::
probability

::
at

::::
least

:
1 − β of {δi}Ni=1 ∼ Q::::

over
:::
the

::::
i.i.d.

:::::::
samples

:::::::::::::
{δi}Ni=1 ∼ QN , if the

following optimization problem equation 3 has a unique solution xmin, such
::
this

:
solution xmin

satisfies Pδ∼∆(xmin ∈ Xδ) ≥ 1− α.

Pδ∼Q
(
xmin ∈ Xδ

)
≥ 1− α.

:::::::::::::::::::::::

A classic application for
::
of

:
RCPN is to find the minimum (or maximum) value

:::::::
compute

:
a

:::::::::::::
high-probability

:::::
upper

::::::
bound

:
of a function f when input in a constraint

:::
f(t)

::::
over

::
a
:::::::
domain ∆,

which can be written as :
:
.
::::
This

::::
can

:::
be

:::::::::
formulated

::
as

:::
an

:::::::::::
optimization

:::::::
problem

:::::
with

:
a
:::::::
decision

::::::
variable

::::::
x ∈ R

::::
(i.e.,

:::::::::
dimension

::::::
d = 1):

:

min x∈Rx∈R
:::

x
::

s.t. x x
:::
≥ f(t), ∀t ∈ ∆. (4)

By
::
By

::::::::
applying

::
the

:
RCPN :::::

result
::::
with

:::::
d = 1, we know that when N ≥ [2 ln(1/β)

α + 2d+ 2d ln(2/α)
α ]

and we select
:
if
:::
we

::::
draw

:
N samples {ti}Ni=1 in

::::
from

:
∆ , then with probability

::::::::
according

::
to

::
Q,

:::::
where

N ≥
⌈
2 ln(1/β)

α
+ 2 +

2 ln(2/α)

α

⌉
,

::::::::::::::::::::::::::::::

::::
then,

::::
with

::::::::::
probability

::
at

:::::
least 1 − β , there are Pt∼∆(f(t) ≤ maxi{f(ti)}) ≥ 1− α.

:::
over

:::
the

::::::::
sampling,

:::
we

::::
have

:::::::::::::::::::::::::::::::::::
Pt∼Q

(
f(t) ≤ maxi=1,...,N f(ti)

)
≥ 1− α.

:

D ABOUT THE EFFECT
:::::::::::
ANALYSIS

:
OF

::::
THE SAMPLE NUMBER

:::::
SIZE

:::::::::
EFFECT IN

PART 1 STEP 1

In this section, we will demonstrate why we choose
:::::
justify

:::
the

::::::
choice

::
of

:
vmax as show in the

algorithm 2. Then main result is that we want
::::::::
presented

::
in

:::::::::
Algorithm

::
2.
:::::

The
::::
main

::::::::
objective

::
is

::
to

:::::
ensure

::::
that

:
the range Z we obtained by algorithm should not far beyond the real

:::::::
obtained

::
by

::::::::
Algorithm

::
2
::::
does

:::
not

::::::::::
significantly

::::::
exceed

:::
the

::::::
actual range {F(x)}x∈C .

And algorithm 2 can guarantee such thing under some assumption as shown in the below:
::::::::
Algorithm

::
2
::::::::::

guarantees
::::
this

:::::::
property

::::::
under

::::::
certain

::::::::::::
assumptions,

:::
as

:::::::
detailed

::
in
::::

the
::::::::
following

::::::::::
proposition.

Proposition 3. Let |(F(x))i − (F(x(0)))i| ∼ Ni when x ∼ C, and vi ∈ R+ is the minimum value
such that Px∼Ni(x ≤ vi) = 1.

If αi
1 ≤ αi

2 ≤ 1 and β1, β2 satisfy that: Px∼Ni
(x ≤ αi

1vi) = β1 and Px∼Ni
(x ≤ αi

2vi) = β2 for
any i ∈ [dL].

Let zi = (c1vmax)i where c1 and vmax are obtained by algorithm 2, then we have that: zj
vj
≤

maxi{α
i
2

αi
1
}αj

2 for any j ∈ [dL] with probability 1− dL(1 + βN1
1 − βN1

2 )− dL(1 + βN2
1 − βN2

2 ).

Proof. Easy to see that , for any i ∈ [dL], for the random selected
:::::::
Observe

:::
that

:::
for

:::
any

:::::::::
coordinate

:::::::
i ∈ [dL],:::::

given
::::

the
:
N1 points {xj} in

::::::::
randomly

:::::::
selected

::::::
points

:::::
{xk}:::::

from
:
C in algorithm 2,

there are P(αi
2vi ≥ maxj(xj)i ≥ αi

1vi) ≥ −β
N1
1 + βN1

2 for any i ∈ [dL]. So with probability
1− dL(1 + βN1

1 − βN1
2 ), there are αi

2vi ≥ maxj(xj)i ≥ αi
1vi stand for any i ∈ [dL]::::::::

Algorithm
::
2,

::
we

:::::
have:

:

P

(
αi
2vi ≥ max

k
(xk)i ≥ αi

1vi

)
≥ βN1

2 − βN1
1 .

::::::::::::::::::::::::::::::::::::::

::::::::
Applying

::
the

:::::
union

::::::
bound,

::::
with

::::::::::
probability

::::::::::::::::::::::::::::::::::::::::::::
1− dL(1− (βN1

2 − βN1
1 )) = 1− dL(1 + βN1

1 − βN1
2 ),

::
the

::::::::
condition

:::::::::::::::::::::::
αi
2vi ≥ maxk(xk)i ≥ αi

1vi:::::
holds

:::
for

::
all

:::::::
i ∈ [dL].

Similar
:::::::
Similarly, for the N2 points {x′

j} random selected in the algorithm
::::
{x′

k} ::::::::
randomly

:::::::
selected

:
in

::::::::
Algorithm

:
2, with probability 1− dL(1 + βN2

1 − βN2
2 ), there are αi

2vi ≥ maxj(x
′
j)i ≥ αi

1vi stand

17
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Figure 6: This is a picture about the distribution around a sample x. When we take α1 = 2.3/3.5
and α2 = 2.8/3.5, by such figure, we have that β1 ≤ 0.99 but β2 ≈ 1. Thus (α2/α1)α2 ≈ 0.97.
Hence, if there are N1 = N2 = 3000, then 1− dL(1 + βN1

1 − βN1
2 )− dL(1 + βN2

1 − βN2
2 ) ≥ 0.99

when dL ≤ 107.

for any i ∈ [dL]:::::::::::::::::::::
1− dL(1 + βN2

1 − βN2
2 ),

:::
the

::::::::
condition

:::::::::::::::::::::::
αi
2vi ≥ maxk(x

′
k)i ≥ αi

1vi:::::
holds

::::
for

::
all

::::::
i ∈ [dL].

Hence
:::::::::::
Consequently, based on the algorithm 2, we know that c1 ≤ maxi{αi

2/α
i
1} when the above

results hold for any i ∈ [dL]. Hence, there are (c1vmax)j ≤ maxi{α
i
2

αi
1
}αj

2vj any j ∈ [dL], which is

what we want
::::::::::
construction

::
in

:::::::::
Algorithm

::
2,

::
if

:::
the

:::::
above

::::::
events

:::::
occur,

:::
we

::::
have

:::::::::::::::::
c1 ≤ maxi{αi

2/α
i
1}.

::::::::
Therefore,

:::
for

::::
any

:::::::
j ∈ [dL],:::::::

implies:
:

(c1vmax)j ≤ max
i

{
αi
2

αi
1

}
αj
2vj ,

:::::::::::::::::::::::::

:::::
which

::::::::
completes

:::
the

:::::
proof.

Based on our observations of many
::::::::
numerous neural network outputs, we have found that the outputs

of neural networks
::::
find

:::
that

:::
the

:::::
output

::::::
values are highly likely to be concentrated in a certain

:::::
within

:
a
:::::::
specific region. An example is given in the figure

:::::::
provided

::
in

::::::
Figure

:
6. Based on this , there

can be α1 ≈ α2 but 1 ≈ β2 and 1 > β1. Hence, because α1 ≈ α2, we know
:::::::::
observation,

::
it
::

is
:::::::
possible

:::
that

::::::::
α1 ≈ α2:::::

while
::::::
β2 ≈ 1

::::
and

:::::::
β1 < 1.

::::::::::::
Consequently,

:::::
since

::::::::
α1 ≈ α2,

:::
we

:::
can

:::::
infer

:::
that

each dimension of Z will not far
:::::
extend

::::::::::
significantly

:
beyond vi; because 1 ≈ β2 and 1 > β1, we

know 1− dL(1 + βN1
1 − βN1

2 )− dL(1 + βN2
1 − βN2

2 ) ≈ 1, which is what we want. .
:::::::::::
Furthermore,

::::
since

::::::
β2 ≈ 1

::::
and

::::::
β1 < 1,

:::
the

::::::::::
probability

::::
term

:::::::
satisfies:

:

1− dL(1 + βN1
1 − βN1

2 )− dL(1 + βN2
1 − βN2

2 ) ≈ 1.
:::::::::::::::::::::::::::::::::::::::::::

However, in reality
::::::
practice, we cannot accurately estimate αi and βi, so

:
.
:::::::::

Therefore,
:

the choice
of N1 is mainly determined by experiments. The above theorem is only used to support

:::::::
primarily

:::::::::
determined

::::::::::
empirically.

::::
The

:::::::
theorem

:::::
above

:::::
serves

::
to
:::::::::::
theoretically

:::::
justify

:
the accuracy of

:::
the

:::::
region

Z we found
:::::::
obtained when N1 is sufficiently large.
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E THE PROOF OF PROPOSITION 2

Proposition (NMS Soundness Verification). For givenZ , τ , and boxgt, if Q(Z, τ, boxgt) ̸=
∅, then for ∀k ∈ ∆ : ∃boxi ∈ N(zk), s.t.IoU(boxi, boxgt) ≥ τ ∧ Class(boxi) =
Class(boxgt).

We give a lemmaat first
:::
first

::::::
present

::
a

::::::
lemma.

Lemma 3. For a given z ∈ Z , if there is no boxi ∈ N(z) satisfies that IoU(boxi, boxgt) ≥ τ and
Class(boxi) = q, where q = Class(boxgt)::::::::::::::::::::::::

Class(boxi) = Class(boxgt) then:
For any boxi ∈ z with ci ≥ ι, Class(boxi) = q and IoU(boxi, boxgt) ≥ τ , there exists another
boxj ∈ z such that cj ≥ ι, Class(boxj) = Class(boxi), ci ≤ cj , IoU(boxj , boxgt) < τ and
IoU(boxi, boxj) ≥ η.

Proof. Assume that there exists a boxi ∈ z with ci ≥ ι, Class(boxi) = Class(boxgt), and
IoU(boxi, boxgt) ≥ τ . By assumption, there must be

:::
the

::::::::::
assumption

::
of

:::
the

:::::::
lemma,

::
it

::::::
implies

:::
that boxi /∈ N(z). According to

::::::::
According

:::
to

:::::::::
condition

:
(n2) in Section

::
3.1, there must exist a boxj ∈ N(z) such that

IoU(boxi, boxj) ≥ η, ci ≤ cj:,:and Class(boxi) = Class(boxj) = Class(boxgt). By
:::::::
condition

(n1) in Sec.
::::::
Section 3.1, boxj ∈ N(z) implies that cj ≥ ι.

However, by the assumptions, there is no boxj ∈ N(z) that satisfies Class(boxj) = q

:::::::::::::::::::::::
Class(boxj) = Class(boxgt): and IoU(boxj , boxgt) ≥ τ , and .

:::::::
Since

:
we have shown that

Class(boxj) = Class(boxgt) above, so we can get
:
it
:::::::

follows
::::
that IoU(boxj , boxgt) < τ . This

completes the proof.

Using such a
:::
this lemma, we can directly get the proposition

::::
prove

::::::::::
Proposition

:
2.

Proof. Assume that Q(Z, τ, boxgt) ̸= ∅:, but for some k ∈ ∆such
:
,
::
the

::::::
stated result does not hold.

Base on the
::::
Based

:::
on

:::::::::
condition (1) of the definition of Q(Z, τ, boxgt), let i ∈ Q(Z, τ, boxgt),

then based on the lemma
:
.
::::::

Then,
::::::

based
:::

on
:::::::

Lemma
:

3, we know that there exists another
boxj ∈ zk such that ckj ≥ ι, Class(boxk

j ) = Class(boxk
i ), c

k
i ≤ ckj , IoU(boxj , boxgt) < τ ,

and IoU(boxk
i , box

k
j ) ≥ η, which is a contradiction with the

:
.
::::
This

:::::::::
contradicts

::::::::
condition

:
(2) of the

definition of Q(Z, τ, boxgt).

So the assumption is wrong and we get the result
::::
Thus,

:::
the

::::::::::
assumption

::::
leads

::
to

::
a

:::::::::::
contradiction,

:::
and

::
the

:::::
result

:::::::
follows.

F THE PROOF OF LEMMA 1

Lemma (Threshold Properties). τ < τ(i,Z, boxgt)⇒ i ∈ Q(Z, τ, boxgt)

Proof. Firstly, we show that when τ ′ > τ , we have Q(Z, τ ′, boxgt) ⊂ Q(Z, τ, boxgt). Because if

::::
First,

:::
we

:::::::::::
demonstrate

:::
that

:::
for

::::
any

::::::
τ ′ > τ ,

::::
the

::::::::
inclusion

::::::::::::::::::::::::::::
Q(Z, τ ′, boxgt) ⊆ Q(Z, τ, boxgt):::::

holds.
::::::
Indeed,

::
if

:::
an

:::::
index i satisfied the

:::::::
satisfies

::::::::
Condition

:
(1) in definition 2 with

::::::::
Definition

::
2

::::
with

:
a

threshold τ ′, then it also satisfied the
:
it

:::::::::
necessarily

:::::::
satisfies

:::::::::
Condition (1) in definition 2 with any

threshold τ < τ ′ under
:::
with

::::
any

:::::
lower

::::::::
threshold

::::::
τ < τ ′,

::::::::
assuming

:::
the

:
input constraints and ground

truth unchanged. Similar for
::::::
remain

::::::::::
unchanged.

::
A
:::::::

similar
::::::::
argument

::::::
applies

:::
to

::::::::
Condition

:
(2) in

definition 2. Then we get the
::::::::
Definition

::
2.

::::
This

:::::::::
establishes

:::
the

:::::::::::
monotonicity

:
result.

So if τ < τ(i,Z, boxgt) ::::
Now,

:::::::
suppose

:::
for

:::
the

:::::
sake

::
of

:::::::::::
contradiction

::::
that

::::::::::::::::
τ < τ(i,Z, boxgt):and

i /∈ Q(Z, τ, boxgt), then i /∈ Q(Z, τ ′, boxgt) for any τ ′ > τ by the preceding result, which implies
τ ≥ τ(i,Z, boxgt) according

::::::::::::::::
i /∈ Q(Z, τ, boxgt). ::::

By
:::
the

::::::::::::
monotonicity

:::::::::
established

:::::::
above,

:::
this

::::::
implies

::::
that

:::::::::::::::::
i /∈ Q(Z, τ ′, boxgt) :::

for
:::
any

:::::::
τ ′ > τ .

::::::::::
According

:
to the definition of τ(i,Z, boxgt),
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but this is contradiction to τ < τ(i,Z, boxgt). So the assumption is wrong, and we prove the
lemma.

::::::::::::
τ(i,Z, boxgt), :::

this
::::::
entails

::::::::::::::::
τ ≥ τ(i,Z, boxgt),:::::

which
::::::::::
contradicts

:::
the

:::::
initial

:::::::::
hypothesis

:::
that

::::::::::::::::
τ < τ(i,Z, boxgt). :::::

Thus,
:::
the

:::::::::
assumption

:::::
leads

::
to

:
a
::::::::::::
contradiction,

:::::
which

:::::::::
completes

:::
the

:::::
proof.

:

G THE PROOF OF LEMMA 2

Lemma (Threshold Computation). The threshold can be calculated as τ(i,Z, boxgt) =
min{τ1(i,Z, boxgt), τ2(i,Z, boxgt)}, where:

τ1(i,Z, boxgt) = min
k∈∆

IoU(boxk
i , boxgt) · I(Class(boxk

i ) = q) · I(cki ≥ ι), q = Class(boxgt)

τ2(i,Z, boxgt) =

{
min

k∈∆,n̸=i
IoU(boxk

n, boxgt) if ∃(k, n) s.t. Ckn = 1

1 otherwise

where constraint Ckn ≡ I(ckn ≥ ι) · I(Class(boxk
n) = q) · I(IoU(boxk

i , box
k
n) ≥ η) · I(ckn ≥

cki ).

Proof. There are τ(i,Z, boxgt) ≤ min{τ1(i,Z, boxgt), τ2(i,Z, boxgt)}.
It is easy to see that when τ ′ > τ1(i,Z, boxgt),

:::
We

:::::
prove

:::
the

::::::
equality

:::
by

:::::::
showing

::::
both

:::::::::
directions

::
of

:::
the

:::::::::
inequality.

::::
Part

::
1:

:::::
Proof

::
of

:::::::::::::::::::::::::
τ(i,Z, boxgt) ≤ min{τ1, τ2}.

:::::::
Observe

::::
that

::
if
:::::::::::::::::::
τ ′ > τ1(i,Z, boxgt), ::::::

index
:
i will not in safe-set Q(Z, τ ′, boxgt) because

violate
::
is

:::
not

:::::::::
contained

:::
in

:::
the

:::::
safe

:::
set

::::::::::::::
Q(Z, τ ′, boxgt):::::::

because
::

it
:::::::

violates
::::::::::

Condition
:
(1) in

definition 2. When τ ′ > τ2(i,Z, boxgt), even if
:::::::::
Definition

::
2.

:::::::::
Similarly,

::
if

:::::::::::::::::
τ ′ > τ2(i,Z, boxgt),

::::
index

:
i satisfies (1), i will not in safe-set Q(Z, τ ′, boxgt) because violate

:
is
:::::::::

excluded
::::
from

::
the

:::::
safe

:::
set

::::::::::::::
Q(Z, τ ′, boxgt):::::::

because
:::

it
:::::::
violates

:::::::::
Condition

:
(2)in definition 2. So there are

τ(i,Z, boxgt) ≤ min{τ1(i,Z, boxgt), τ2(i,Z, boxgt)}. :
,
:::::

even
:::

if
:::::::::
Condition

::::
(1)

::
is
::::::::

satisfied.
:::::::::::
Consequently,

:::
the

::::::::
threshold

:::::
must

::::::
satisfy:

:

τ(i,Z, boxgt) ≤ min{τ1(i,Z, boxgt), τ2(i,Z, boxgt)}.
:::::::::::::::::::::::::::::::::::::::::::::

There are τ(i,Z, boxgt) ≥ min{τ1(i,Z, boxgt), τ2(i,Z, boxgt)}.::::
Part

::::
2:

::::::::::
Proof

::::
of

::::::::::::::::::::::::
τ(i,Z, boxgt) ≥ min{τ1, τ2}.

Easy to see that when τ ′ < τ1(i,Z, boxgt), ::::
Note

::::
that

:::::
when

::::::::::::::::::
τ ′ < τ1(i,Z, boxgt),:::::

index
:
i must

satisfied the
:::::
satisfy

:::::::::
Condition (1) in definition 2for such τ ′; when τ ′ < τ2(i,Z, boxgt),:::::::::

Definition
:
2.

::::::::
Likewise,

:::::
when

:::::::::::::::::
τ ′ < τ2(i,Z, boxgt),:::::

index
:
i must satisfied the

::::::
satisfy

::::::::
Condition

:
(2)in definition 2

for such τ ′. .
:::::::::
Therefore,

::
if
:::
we

::::::
choose

:
a
::::::::
threshold

::::::::::::::::::::::::::::::::::::
τ < min{τ1(i,Z, boxgt), τ2(i,Z, boxgt)}, ::::

index
:
i
:::::::
satisfies

::::
both

::::::::::
conditions,

:::::
which

:::::::
implies

::::::::::::::::
i ∈ Q(Z, τ, boxgt).::::

By
:::
the

:::::::::
definition

::
of

:::
the

::::::::
threshold

::::::::::::
τ(i,Z, boxgt),:::

this
:::::::
implies:

:

τ(i,Z, boxgt) ≥ min{τ1(i,Z, boxgt), τ2(i,Z, boxgt)}.
:::::::::::::::::::::::::::::::::::::::::::::

So when τ < min{τ1(i,Z, boxgt), τ2(i,Z, boxgt)}, there must be i ∈ Q(Z, τ, boxgt), which
implies τ(i,Z, boxgt) ≥ min{τ1(i,Z, boxgt), τ2(i,Z, boxgt)}.
So we get the result

:::::::::
Combining

:::
the

:::::
results

:::::
from

::::
Part

:
1
:::
and

::::
Part

::
2,

:::
the

:::::::
equality

:::::
holds.

H GET THE VERIFICATION BOUND

In this section, we show how to Calculate the verification bound for NMS.

We first define the verification bounds:
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Definition 4 (OD Verification Bounding). For constraints C and boxgt, define:

min
x∈C

max
boxi∈N(F(x))

IoU(boxi, boxgt) · I(Class(boxi) = Class(boxgt)),

as the OD verification bounding. This quantifies robustness against OD attacks.

We need to estimate the verification bound minz∈Z maxboxi∈N(z) IoU(boxi, boxgt)I(Class(boxi) = Class(boxgt))

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
minz∈Z maxboxi∈N(z) IoU(boxi, boxgt)I(Class(boxi) = Class(boxgt)) under the input restriction
Z and ground truth boxgt, according to definition 4.

To estimate such bound, firstly, we need the following lemma:

Lemma 4. For any Z, τ, boxgt, there is:

min
z∈Z

max
boxi∈N(z)

IoU(boxi, boxgt)II(Class(boxi) = Class(boxgt)) ≥ τ II({|Q(Z, τ, boxgt)| ≥ 1})

So we will try to find the maximum τ that makes Q(Z, τ, boxgt) bigger than 0, but sometimes this
maximum value does not exist (can only approach the maximum value arbitrarily), so we look for
the following value instead:

min
τ∈[0,1]

τ s.t. |Q(Z, τ ′, boxgt)| = 0, ∀1 ≥ τ ′ > τ (5)

We use the following lemma to calculate such minimum value:

Lemma 5. The solution of problem 5 is equal to: maxi∈[nx] τ(i,Z, boxgt).

Use such lemma, we just to need calculate τ(i,Z, boxgt) as said before, and then we can estimate
the verification bounding.

H.1 THE PROOF OF LEMMA 4

Proof. By the proposition
::
By

:::::::::::
Proposition

:
2, if |Q(Z, τ, boxgt)| ≥ 1

:::::::::::::::::
|Q(Z, τ,boxgt)| ≥ 1,

then for any z ∈ Z , there is a boxi ∈ N(z) such that IoU(boxi, boxgt) ≥ τ and
Class(boxi) = Class(boxgt), which implies

::::::
z ∈ Z ,

::::::
there

:::::::
exists

:::
a

::::::::::::
boxi ∈ N(z)

:::::
such

:::
that

::::::::::::::::::::
IoU(boxi, boxgt) ≥ τ

::::::
and

::::::::::::::::::::::::::
Class(boxi) = Class(boxgt).:::::::::::

This
::::::::

implies
:::::

that
the value of minz∈Z maxboxi∈N(z) IoU(boxi, boxgt)I(Class(boxi) = Class(boxgt))

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
minz∈Z maxboxi∈N(z) IoU(boxi, boxgt) · I(Class(boxi) = Class(boxgt))::

is greater than or
equal to τ , so we get the

:::::
which

:::::
yields

:::
the

::::::
desired

:
result.

H.2 THE PROOF OF LEMMA 5

Proof. We have shown that when τ ′ > τ , we have Q(Z, τ ′, boxgt) ⊂ Q(Z, τ, boxgt) in Lemma 1.

By the definition of τ(i,Z, boxgt) and above result, we know that the safe set Q(Z, τ ′, boxgt)
is ∅ for any τ ′ > maxi∈[nx] τ(i,Z, boxgt), so the solution of problem 5 is not more than
maxi∈[nx] τ(i,Z, boxgt).

If τ is the solution of problem 5, then for any i ∈ [nx], there must be i /∈ Q(Z, τ ′, boxgt) for any
τ ′ ≥ τ , so τ ≥ maxi∈[nx] τ(i,Z, boxgt).

So we prove the lemma.

I VERIFICATION PROCESS OF NMS

To illustrate Non-Maximum Suppression (NMS) verification, we define constraints as Z = H \ S.
Here, H constrains the neural network output y, and S constrains bounding box parameters. This
formulation is equivalent to the original. Algorithm 5 details the NMS verification process.
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Algorithm 5 Soundness Object Disappear Thread Verification for NMS

Require: Constraints Z = H \ S; input x; output y; ground truth boxgt; confidence threshold ι;
IoU threshold τ ; upper bound η.

Ensure: Calculate τ1, τ2.
1: Bcand,Bother ← ∅, ∅
2: {boxi}

nx
i=1 = CONSTRUCT ABSTRACT BOX(Z)

3: for all boxi ∈ {boxk}
nx

k=1 do
4: τ1(i)← 0, τ2(i)← 1
5: if ∀k ∈ [n] \ {Class(boxgt)}, pi,Class(boxgt) ≤ p

i,k
then

6: continue ▷ Skip boxes must not match boxgt class
7: end if
8: if ci ≥ ι then ▷ Ensure indicator I(ci ≥ ι) = 1

9: τ1(i)← IOU LOWER BOUNDS(boxi, boxgt)
10: if ∀k ∈ [n] \ {Class(boxgt)}, pi,Class(boxgt)

≥ pi,k then

11: Bcand ← Bcand ∪ {boxi} ▷ Box must match boxgt class
12: else
13: Bother ← Bother ∪ {boxi} ▷ Box may match boxgt class
14: end if
15: end if
16: end for
17: for all boxi ∈ Bcand do
18: for all boxj ∈ Bother do
19: if cj < ci then ▷ Ensure boxj may suppress boxi

20: continue ▷ Skip boxes that cannot suppress boxi

21: end if
22: ub← IOU UPPER BOUNDS(boxi, boxj)
23: if ub ≥ η then ▷ Ensure boxi may suppressed by boxj

24: lb← IOU LOWER BOUNDS(boxj , boxgt)
25: τ2(i)← min(τ2(i), lb)
26: end if
27: end for
28: end for
29: return {τ1(i)}nx

i=1, {τ2(i)}
nx
i=1

Next we show how to construct the abstract box box and how to calculate the lower and upper
bounds of IoU.

Let B be the ’box space’ (space of individual box structures). An interpretation function G : RdL →
{S ⊆ B | |S| = nx} maps y to a set {boxi}nx

i=1 of nx bounding boxes, where nx is a constant
determined by the fixed input dimension. A function S : B → P({1, . . . , dL}) (where P is the
power set) maps each distinct boxk ∈ B (that could form part of an output set) to its source indices
in y. We then define the regular region Z as follows:

Definition 5 (Regular Region). A regular region is a subset Z ⊆ RdL defined as Z = H\S, where:

• H is a hyperrectangle (axis-aligned rectangular region) centered at F(x(0)) with
component-wise perturbations bounded by c1vmax:

H =
{
F(x(0)) + ϵ ∈ RdL | ∀j ∈ {1, . . . , dL}, |ϵj | ≤ (c1vmax)j

}
• S is a union of k hyperspherical zones. Each zone Si = B(ci, di) is defined by a center ci

and radius di, where ci is the center of the exclusion zone and di is the radius. The union
of these zones is given by:

S =

k⋃
i=1

Si =
k⋃

i=1

B(ci, di),B(ci, di) =
{
y ∈ RdL

∣∣ ∥y − ci∥22 ≤ d2i
}
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Note, sometimes we just need part dimension of Si. Thus we can extend B to B(ci, di, Ii),
where Ii is the index set of dimensions in Si. Then we have:

B(ci, di, Ii) =
{
y ∈ RdL

∣∣ ∥yIi − ci,Ii∥22 ≤ d2i
}

where ci,Ii
is the component of ci for index set Ii.

I.1 ABSTRACT BOUNDING BOX CONSTRUCTION AND IOU BOUND COMPUTATION

We use x̃ to represent x is a Gurobi variable, R̃ to represent real number Gurobi variable space. Let
ỹ ∈ R̃dL be the Gurobi variable vector.

Then we encode the regular region Z as a set of constraints. To encode H, we need to
get the lower and upper bounds of each parameter of each bounding box. Suppose H ={
F(x(0)) + ϵ ∈ RdL | ∀j ∈ {1, . . . , dL}, |ϵj | ≤ (c1vmax)j

}
, where c1 and vmax (Note vmax > 0)

are obtained from Part 1. Let y = F(x(0)) + c1vmax and y = F(x(0))− c1vmax. Then we add the
following constraints to the Gurobi model:

y ≤ ỹ ≤ y

Here, ≤ is the component-wise less than or equal to operator.

Next, we need to add the exclusion zone constraints. For each exclusion zone Si, we need to add the
following constraints: ∑

j∈Ii

(ỹj − (ci)j)
2 ≥ d2i

where (ci)j is the component of ci for index j.

CONSTRUCT ABSTRACT BOX(Z) adds these constraints to the Gurobi model. And then reorga-
nizes ỹ as an abstract bounding box set {boxi}

nx
i=1, where nx is the number of bounding boxes.

Each bounding box boxi = (x̃i, ỹi, w̃i, h̃i, c̃i, {p̃i,j}nx
j=1). Note all the parameters of boxi are from

ỹ thus have constraints on them.

IoU bounds for abstract boxes involve:

1. Geometric Constraints: Box i coordinates are:

x̃i
min = x̃i −

w̃i

2
, x̃i

max = x̃i +
w̃i

2
,

ỹimin = ỹi −
h̃i

2
, ỹimax = ỹi +

h̃i

2
.

2. Intersection/Union Area
Iw = max(0,min(x̃i

max, x̃
j
max)−max(x̃i

min, x̃
j
min)),

Ih = max(0,min(ỹimax, ỹ
j
max)−max(ỹimin, ỹ

j
min)),

Aint = Iw · Ih,
Aunion = (x̃i

max − x̃i
min) · (ỹimax − ỹimin) + (x̃j

max − x̃j
min) · (ỹ

j
max − ỹjmin)−Aint.

We use big-M constraints to encode max(0, ·) and min(·, ·) operations in Gurobi. For example, to
encode Ãexpr = max(0, E), where E is an expression, we introduce an auxiliary binary variable
b̃ ∈ {0, 1} and a sufficiently large constant M . The variable Ãexpr is then constrained by:

Ãexpr ≥ E

Ãexpr ≥ 0

Ãexpr ≤ E +M · b̃
Ãexpr ≤M · (1− b̃)

where Ãexpr is a Gurobi variable representing the maximum. The inner terms of Iw and Ih, such as
min(x̃i

max, x̃
j
max), are handled similarly using appropriate big-M formulations or Gurobi’s built-in

functions. The constant M must be chosen such that M ≥ max(UE ,−LE), where UE and LE are
known upper and lower bounds for the expression E.
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• If E ≥ 0, the objective of minimizing Ãint (or other constraints) will force b̃ = 0. The
constraints become Ãint ≥ E, Ãint ≥ 0, Ãint ≤ E, and Ãint ≤ M . This correctly sets
Ãint = E.

• If E < 0, the objective will force b̃ = 1. The constraints become Ãint ≥ E, Ãint ≥ 0,
Ãint ≤ E +M , and Ãint ≤ 0. This correctly sets Ãint = 0.

3. Binary Search for IoU bounds: To find IoU (lower bound of IoU):
1: τlb ← 0, τub ← 1, ϵsearch ← 10−5

2: while |τub − τlb| > ϵsearch do
3: τmid ← (τlb + τub)/2
4: Solve Lcheck = min(Aint − τmidAunion) by Gurobi
5: if Lcheck ≥ 0 then τlb ← τmid
6: elseτub ← τmid
7: end if
8: end while
9: return τlb

Checking IoU bounds against a value τ is often done via optimizing Aint−τAunion, as direct interval
ratio optimization Aint/Aunion is complex for solvers (e.g., Gurobi) without reformulation. For
instance, to check if IoU(boxi, boxgt) ≥ τ is possible, one can check if max(Aint − τAunion) ≥ 0.

It’s trivial to extend the above algorithm to find τub (upper bound of IoU).

The Gurobi solver, when minimizing or maximizing an objective subject to these constraints, returns
an assignment for ỹ (which corresponds to a specific point z ∈ Z). If a particular optimization (e.g.,
a step in the binary search showing Lcheck < 0) demonstrates a property violation, the returned ỹ is
the concrete instance z that exhibits this violation.

J THE PROOF OF THEOREM 1

Theorem (probabilistic guarantee for Part 3). For any α, β, δ, ϵ ∈ (0, 1) satisfying (1 −
2ϵ)M − δ > 0 and N · ((1− 2ϵ)M − δ) > 2

α ln( 1β ) + 2 + 2
α ln( 2

α ), with this algorithm, for

any y, with probability exceeding 1− e−2Nδ2 − β − 2(1− ϵ)M2 over step 1 and step 2, we
have V(y, dmin) ≤ α.

For convenience, name the step one in algorithm 4 as P1, the step two in algorithm 4 as P2.
:::::
denote

::::
Step

:
1
::
in

:::::::::
Algorithm

:
4
:::
by

:::
P1,

::::
and

::::
Step

:
2
:::
by

::
P2

:
.

J.1 SITUATION 1

Firstly, we show the situation that when y ∈ {F(x)}x∈C . We
:::::::
Theorem

::
1

::::
aims

::
to

:::::::
estimate

:
a
:::::::
constant

::
C

::::
such

::::
that,

::::
with

::::
high

:::::::::
probability

::::
over

:::
the

::::::::
sampling

::
in

::::
Part

::
3,

∥F(x)− y∥2 ≤ C for most x ∼ C,
:::::::::::::::::::::::::::::

::::::::
whenever

:
y
::::
lies

::
in

:::
the

:::::
region

:::
Z .

::::
The

::::
proof

::::::::
proceeds

::
in

:::::
three

:::::
steps:

::
1.

:::
For

::::
each

:::::::
sampled

::::
point

:::
x,

::
we

::::::::
estimate

:
a
::::
local

:::::::
interval

::::::::::::
[BF(x), AF(x)]:::

that
::::::
covers,

::::
with

:::::::::
probability

:
at
:::::
least

::::::
1− 2ϵ,

:::
the

::::::::
distances

::::::::::::::
∥F(x′)− F(x)∥2::

to
:::
its

:::
M

::::::::
neighbors.

:

::
2.

:::::
Using

::::::::::
Hoeffding’s

:::::::::
inequality,

::
we

:::::
show

:::
that

::::
with

::::
high

::::::::::
probability

::
at

::::
least

::::::::::::::::
N((1− 2ϵ)M − δ)

:::
base

:::::
points

::::
have

:::
all

::
M

:::::::::
neighbors

::::
lying

::::::
within

::::
their

:::::::::
respective

:::::::
intervals.

:

::
3.

:::
On

:::
this

::::::
subset,

:::
we

:::::
apply

::
an

:::::::::::
RCPN -style

:::::::
scenario

:::::
bound

::
to

:::
the

:::::::
function

::::::
SF(x),:::::::

yielding
::
an

:::::
upper

:::::
bound

::
C

::::::::
satisfying

::::::::::::::::::::::::
Px∼C(SF(x) ≤ C) ≥ 1− α.

J.1
:::::::::
SITUATION

::
1
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:::
We

:::
first

:::::::
consider

:::
the

::::
case

:::::
where

::
y

::
is

::::
itself

::::::::
realizable

::
as

:::::
F(x)

:::
for

::::
some

::::::
x ∈ C.

:::
We

:
have the following

theorem, which can directly get the theorem 1 when y ∈ {F(x)}x∈C :
Theorem 3. For any α, β, δ, ϵ ∈ (0, 1) satisfied (1 − 2ϵ)M − δ > 0 and N((1 − 2ϵ)M − δ) >
2
α ln( 1β ) + 2 + 2

α ln( 2
α ), by this algorithm, if y ∼ F(C) (that is, the distribution of the network

output when the input obeys C), then with probability 1− e−2Nδ2 − β − 2(1− ϵ)M2 of P1∪2, there
is

::
we

::::
have

:
Py (Bm − C(Am −Bm) < 0) ≥ 1− α.

Proof. For any given y, let Ay satisfy that Px∼C(∥F(x)− y∥2 ≤ Ay) = 1− ϵ, let By satisfy that
Px∼C(∥F(x)− y∥2 ≥ By) = 1− ϵ. Let Sy =

By

Ay−By
.

The proof is into four parts:

Part One: For any i, with probability (1 − 2ϵ)M of P1, there are
::
we

::::::
havee

:
∥F(x(i,j)) −

F(x(i))∥2 ∈ [BF(x(i)), AF(x(i))] for all j ∈ [M ].

This is obvious, based on the definition of BF(x(i)) and AF(x(i)), we know that
Px(i,j)∼C(∥F(x(i,j))− F(x(i))∥2 ∈ [BF(x(i)), AF(x(i))]) = 1− 2ϵ. Because each selection of

::
For

:::
any

::
i,

::::
since

:::
the

:::::::
samples

:
x(i,j) is independent, so we get the result

::
are

:::::
i.i.d.,

P
(
∥F(x(i,j))− F(x(i))∥2 ∈ [BF(x(i)), AF(x(i))]

)
= 1− 2ϵ.

::::::::::::::::::::::::::::::::::::::::::::::::

::::
Thus

::
all

:::
M

:::::::::
neighbors

::
lie

::
in

:::
the

:::::::
interval

::::
with

:::::::::
probability

:::::::::
(1− 2ϵ)M .

Part Two: With probability 1 − e−2Nδ2 of P1, there are
::
we

::::
have

:
at least N((1 − 2ϵ)M − δ)

numbers of i ∈ [N ] satisfied that ∥F(x(i,j))− F(x(i))∥2 ∈ [BF(x(i)), AF(x(i))] for all j ∈ [M ].

To proof that, we need use Hoeffding inequality. Let

:::::
Define

::::::::
indicator

::::::::
variables

Xi = I
{
∥F(x(i,j))− F(x(i))∥2 ∈ [BF(x(i)), AF(x(i))] ∀j ∈ [M ]

}
.

:::::::::::::::::::::::::::::::::::::::::::::::::::::

::::
Then

:
Xi is the random variable defined as: Xi = 1 if ∥F(x(i,j))− F(x(i))∥2 ∈ [BF(x(i)), AF(x(i))]

for all j ∈ [M ], or Xi = 0. Without a doubt, {Xi}Ni=1 are i.i.d, and by Part One, there are
E(Xi) = (1− 2ϵ)M .

Then by using Hoeffdinginequality, we have that: P(
∑N

i=1 Xi/N − (1− 2ϵ)M ≤ −δ) ≤ e−2Nδ2 ,
this is what we want.

::::
with

:::::::::::::::::
E[Xi] = (1− 2ϵ)M .

::::::::
Applying

::::::::::
Hoeffding’s

:::::::::
inequality

:::::
yields

P

(
1

N

N∑
i=1

Xi − (1− 2ϵ)M ≤ −δ

)
≤ e−2Nδ2 ,

::::::::::::::::::::::::::::::::::::::

:::::::
implying

:::
the

::::::
desired

::::::
bound

::
on

:::
the

:::::::
number

::
of

::::::
”good”

:::::::
indices.

:::::
Then

:::
the

::::::::::
complement

:::::
event

:::::
gives:

:

P

(
1

N

N∑
i=1

Xi − (1− 2ϵ)M > −δ

)
> 1− e−2Nδ2 ,

:::::::::::::::::::::::::::::::::::::::::

:::
i.e.,

::
at
:::::

least
::::::::::::::::
N((1− 2ϵ)M − δ)

:::::::
indices

:
i
:::::::

satisfy
:::
the

:::::::
desired

:::::::
property

:::::
with

::::::::::
probability

::
at

::::
least

::::::::::
1− e−2Nδ2 .

:

Part Three: With probability 1− e2Nδ2 − β of P1, there are Px∼C(SF(x) ≤ C) ≥ 1− α.

We have two simple facts:

Firstly, if i ∈ [N ] such that ∥F(x(i,j))−F(x(i))∥2 ∈ [BF(x(i)), AF(x(i))] for all j ∈ [M ], then there

must be C ≥ B′
i

A′
i−B′

i
≥ SF(x(i)).
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Secondly, for any N1 ≥ N((1 − 2ϵ)M − δ), by using RCPN to find the maximum of function
SF(x), we know that with probability 1 − β for i.i.d selected N1 samples {x(i)}N1

i=1 in C, then
Px∼C(SF(x) ≤ maxi∈[N1]{SF(x(i))}) ≥ 1− α.

By the two facts, we can deduce that:

For any N1 ∈ Z+, let QN1
⊂ 2C and a q ∈ 2C ∩QN1

if and
only if |q| = N1 and Px∼C(SF(x) ≤ max{SF(x(p))}x(p)∈q) ≥ 1− α

::
Let

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Qk = {q ⊂ C : |q| = k,Px∼C(SF(x) ≤ max{SF(x(p))}x(p)∈q) ≥ 1− α}. According to the
second fact, when N1 ≥ N((1− 2ϵ)M − δ), there are Px(i)∼C,i∈[N1]({x

(i)} ∈ QN1
) ≥ 1− β.

Then let T = {x(i)} mean the set contained all x(i) such
that ∥F(x(i,j))− F(x(i))∥2 ∈ [BF(x(i)), AF(x(i))] for all j ∈ [M ]

::
Let

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
T = {x(i) ∈ C : ∀j ∈ [M ], ∥F(x(i,j))− F(x(i))∥2 ∈ [BF(x(i)), AF(x(i))]}. If T ∈ ∪∞k=1Qk,
then by the first fact we have C > maxx(i)∈T SF(x(i)), hence we have Px∼C(SF(x) ≤ C) ≥
Px∼C(SF(x) ≤ max{SF(x(p))}x(p)∈T ) ≥ 1− α, so we only need to calculate PP1(T ∈ ∪∞k=1Qk).

We have that:
PP1(T ∈ ∪∞k=1Qk)

=
∑∞

k=1 PP1(T ∈ Qk)

=
∑N

k=1 PP1(T ∈ Qk)

According to the process of algorithm, which k index i satisfy the condition ∥F(x(i,j))−F(x(i))∥2 ∈
[BF(x(i)), AF(x(i))] for all j ∈ [M ] is determined by the second time randomize samples in P1, and
whether these samples are in the setQk is determined by first time randomize samples in P1. These
two processes are completely independent. So we have that:

PP1(T ∈ Qk)
=

∑
{ti}k

i=1⊂[N ] PP1({x(ti)}ki=1 = T , {x(ti)}ki=1 ∈ Qk)

=
∑

{ti}k
i=1⊂[N ] PP1({x(ti)}ki=1 ∈ Qk)PP1({x(ti)}ki=1 = T )

Then, there are
::
we

:::::
have

:::
that:

PP1(T ⊂ ∪∞k=1Qk)

=
∑N

k=1 PP1(T ⊂ Qk)

=
∑N

k=1

∑
{ti}k

i=1⊂[N ] PP1

(
{x(ti)}ki=1 ∈ Qk

)
· PP1

(
{x(ti)}ki=1 = T

)
≥

∑N
k=N((1−2ϵ)M−δ)

∑
{ti}k

i=1⊂[N ] PP1

(
{x(ti)}ki=1 ∈ Qk

)
· PP1

(
{x(ti)}ki=1 = T

)
≥ (1− β)

∑N
k=N((1−2ϵ)M−δ)

∑
{ti}k

i=1⊂[N ] PP1({x(ti)}ki=1 = T )
= (1− β)PP1

(
|T | ≥ N((1− 2ϵ)M − δ)

)
≥ (1− β)(1− e−2Nδ2)

≥ 1− β − e−2Nδ2

This is what we want.

Part Four: For any x ∈ C, with probability at least 1− 2(1− ϵ)M2 of i.i.d selected M2 samples
form C, there are two points z1, z2 such that z1 ≤ BF(x), z2 ≥ AF(x).

The probability of there is no points z1 such that z1 ≤ BF(x)

::
In

:::
P2,

::::::
among

:::
M2::::

i.i.d.
::::::::
samples,

:::
the

:::::::::
probability

:::
that

:::
no

:::::
point

:::
lies

::
at

:::::::
distance

:::::::
≤ BF(x):

is (1− ϵ)M2 ,
similar as z2. So,

:::
and

::::::::
similarly

:::
for

::::::::
≥ AF(x).::::::

Thus
::::
both

:::::
exist

:::::::::::::
simultaneously with probability

at most 2(1− ϵ)M2 , these two conditions do not hold simultaneously, this is what we want
:::
least

:::::::::::::
1− 2(1− ϵ)M2 .

Get the result
:::::::::
Conclusion.

For a x ∼ C, by part three, with probability 1 − e−2Nδ2 − β of P1, there are Px∼C(SF(x) ≤ C) ≥
1− α.
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When x satisfied SF(x) ≤ C, and the Part Four is stand in the P2, then there are Bm − C(Am −
Bm) ≤ BF(x) − C(AF(x) −BF(x)) ≤ 0.

Combine them, this is what we want.

J.2 SITUATION 2

Now, we show how to proof the theorem 1 when y /∈ {F(x)}x∈C .

Proof. The proof is a continuation of the previous proof of theorem 3.

Let p satisfy that Px∼C(SF(x) ≤ p) = 1− α and Q = {x ∈ C : SF(x) ≤ p}.

Then for a given y, let x(q) = argminx∈Q ∥y − F(x)∥2, and ∥y − F (x(q))∥2 = t.

For any randomly selected {x(i)}M2
i=1 samples in P2, let A′

m = maxi∈[M2] ∥F(x(q))−F(x(i))∥2 and
B′

m = mini∈[M2] ∥F(x(q))− F(x(i))∥2.

Then, there are Am = maxi∈[M2] ∥y − F(x(i))∥2 ≥ maxi∈[M2] ∥F(x(q)) − F(x(i))∥2 − ∥y −
F(x(q))∥2 = A′

m − t, similar, there are Bm ≤ B′
m + t. So, we have Bm − C(Am − Bm) ≤

B′
m − C(A′

m −B′
m) + t(1 + 2C).

As shown in the proof of theorem 3, with probability 1 − e−2Nδ2 − β of P1, there is C ≥ p, and
then, using x(q) ∈ Q, we have PP2(B

′
m −C(A′

m −B′
m) ≤ 0) ≥ 1− 2(1− ϵ)M2 , which can imply

that PP2(Bm − C(Am −Bm) ≤ t(1 + 2C)) ≥ 1− 2(1− ϵ)M2 by the above result.

And when Bm − C(Am − Bm) ≤ t(1 + 2C) holds, there are t ≥ Bm−C(Am−Bm)
(1+2C) = dmin, and

hence B(y, dmin) ∩ Q = ∅ by the definition of t, which implies that V(y, dmin) ≤ α, this is what
we want.

K THE PART THREE FOR SMALL NETWORKS

To demonstrate the superiority of our method in Section 4 and compare it with existing approaches,
we show how we can apply Part Three on small-scale object detection based on the feed-forward
ReLU neural networks. In this case, the problem in Part Three can be formulated as follows:

minx,x̂ ||y − x(L)||2
s.t. (i) x ∈ C, x̂(0) = x;

(ii) x(i) = W(i)x̂(i−1) + b(i), i ∈ [L];
(iii) x̂(i) = max

(
0,x(i)

)
, i ∈ [L− 1]

Where W(i) is the transition matrix of i-th layer in network, b(i) is the bias vector of i-th layer in
network. Unfortunately, finding an exact solution to this problem is NP-complete(Katz et al., 2017).
So, we consider bounds on the outputs of hidden-layers: l(i)j ≤ x

(i)
j ≤ u

(i)
j . Based on these bounds,

let I−(i) = {j : u
(i)
j ≤ 0}, I+(i) = {j : l

(i)
j ≥ 0} and I±(i) = {j : l

(i)
j < 0 < u

(i)
j }, the

condition (iii) can be replaced by the following constraints: x̂(i)
j ≥ 0, x̂

(i)
j ≥ x

(i)
j , (u

(i)
j − l

(i)
j )x̂

(i)
j ≤

u
(i)
j x

(i)
j − l

(i)
j u

(i)
j , j ∈ I±(i); x̂

(i)
j = x

(i)
j , j ∈ I+(i); x̂

(i)
j = 0, j ∈ I−(i). To solve this problem,

we prove that such minimum value is equal to the maximum value of the square root of d(α,ν)
which is defined in the following theorem. So, we can use the gradient to estimate the maximum of
d(α,ν), and use it to be the minimum distance in the part three.
Theorem 4. Under the setting in this section, we have that:

min
x∈C
||F(x)− y||2 = max

α∈[0,1]

√
d(α,ν)

, which is defined as below:
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d(α,ν) =y⊤ν(L) − ν(L)⊤ν(L)

4
− [ν(1)⊤W(1)]+u

(0) + [ν(1)⊤W(1)]−l
(0)

−
L∑

i=1

ν(i)⊤b(i) +

L−1∑
i=1

∑
j∈I±(i)

[
u
(i)
j l

(i)
j [ν̂

(i)
j ]+

u
(i)
j − l

(i)
j

] (6)

where

ν̂
(i)
j = ν(i+1)⊤W

(i+1)
:,j , ν̂

(i)
j = [ν̂

(i)
j ]+ − [ν̂

(i)
j ]−, ∀i ∈ {1, 2, ..., L− 1}

ν
(i)
j =


ν̂
(i)
j , j ∈ I+(i)

0 , j ∈ I−(i)

u
(i)
j

u
(i)
j −l

(i)
j

[ν̂
(i)
j ]+ − α

(i)
j [ν̂

(i)
j ]− , j ∈ I±(i)

∀i ∈ {1, 2, ..., L− 1}

L THE PROOF OF THEOREM 4

We mainly follow the proof idea in (Kotha et al., 2023).

Proof. Consider the I−(i) = {j : u
(i)
j ≤ 0}, I+(i) = {j : l

(i)
j ≥ 0} and I±(i) = {j : l

(i)
j < 0 <

u
(i)
j }, such optimization problem tends to the:

min
x,x̂

(x(L) − y)⊤(x(L) − y)

s.t. l(0) ≤ x̂(0) ≤ u(0)

x(i) = W(i)x̂(i−1) + b(i); i = {1, 2, 3, ..., L}

x̂
(i)
j ≥ 0; j ∈ I±(i)

x̂
(i)
j ≥ x

(i)
j ; j ∈ I±(i)

(u
(i)
j − l

(i)
j )x̂

(i)
j ≤ u

(i)
j x

(i)
j − l

(i)
j u

(i)
j , j ∈ I±(i)

x̂
(i)
j = x

(i)
j , j ∈ I+(i)

x̂
(i)
j = 0, j ∈ I−(i)

(7)

Then we use the Lagrange dual of the optimization problem to solve it, the Lagrange dual of the
optimization problem is given by:
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min
x,x̂

max
λ,µ,ν,τ

(x(L) − y)⊤(x(L) − y)

+

L∑
i=1

ν(i)⊤
(
x(i) −W(i)x̂(i−1) − b(i)

)
+

L−1∑
i=1

∑
j∈I±(i)

µ
(i)
j (−x̂(i)

j )

+

L−1∑
i=1

∑
j∈I±(i)

τ
(i)
j (x

(i)
j − x̂

(i)
j )

+

L−1∑
i=1

∑
j∈I±(i)

[
λ
(i)
j

(
(u

(i)
j − l

(i)
j )x̂

(i)
j − u

(i)
j x

(i)
j + l

(i)
j u

(i)
j

)]
s.t. l(0) ≤ x̂(0) ≤ u(0);

x̂
(i)
j = 0, j ∈ I−(i); x̂

(i)
j = x

(i)
j , j ∈ I+(i)

µ ≥ 0; τ ≥ 0; λ ≥ 0;

(8)

According to it’s strong duality, the solution of the dual problem is the same as the primal problem.
The dual problem is given by:

max
λ,µ,ν,τ

min
x,x̂

(x(L) − 2y + ν(L))⊤x(L) + y⊤y − (ν(1))⊤W(1)x̂(0)

+

L−1∑
i=1

∑
j∈I+(i)

(ν
(i)
j − ν(i+1)⊤W

(i+1)
i,j )x

(i)
j

+

L−1∑
i=1

∑
j∈I−(i)

ν
(i)
j x

(i)
j

+

L−1∑
i=1

∑
j∈I±(i)

[(
ν
(i)
j + τ

(i)
j − λ

(i)
j u

(i)
j

)
x
(i)
j

+(−ν(i+1)⊤W
(i+1)
:,j − µ1

(i)
j − τ

(i)
j + (u

(i)
j − l

(i)
j )λ

(i)
j )x̂

(i)
j

]
−

L∑
i=1

ν
(i)⊤
i b

(i)
i +

L−1∑
i=1

∑
j∈I(i)

λ
(i)
j u

(i)
j l

(i)
j

s.t. l(0) ≤ x̂(0) ≤ u(0); x̂
(i)
j = 0, j ∈ I−(i); x̂

(i)
j = x

(i)
j , j ∈ I+(i)

µ ≥ 0; τ ≥ 0; λ ≥ 0;

(9)

Here, we adjust the order of each term in the formula and directly incorporate the constraints
x̂
(i)
j = 0, j ∈ I−(i); x̂

(i)
j = x

(i)
j , j ∈ I+(i) into the objective function. Then we can minimize

−(ν(1))⊤W(1)x̂(0) subject to l(0) ≤ x̂(0) ≤ u(0) according to the each dimension of ν(1)⊤W(1).
If (ν(1)⊤W(1))j > 0, then x̂

(0)
j = u

(0)
j ; Otherwise, x̂(0)

j = l
(0)
j . Since no additional constraints

applied to x(L), we can minimize (x(L) − 2y + ν(L))⊤x(L) by setting x(L) = y − 1
2ν

(L). Then
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we get:

max
λ,µ,ν,τ

min
x,x̂

y⊤ν(L) − ν(L)⊤ν(L)

4
− [ν(1)⊤W(1)]+u

(0) + [ν(1)⊤W(1)]−l
(0)

+

L−1∑
i=1

∑
j∈I+(i)

(ν
(i)
j − ν(i+1)⊤W

(i+1)
i,j )x

(i)
j

+

L−1∑
i=1

∑
j∈I−(i)

ν
(i)
j x

(i)
j

+

L−1∑
i=1

∑
j∈I±(i)

[(
ν
(i)
j + τ

(i)
j − λ

(i)
j u

(i)
j

)
x
(i)
j

+
(
−ν(i+1)⊤W

(i+1)
:,j − µ

(i)
j − τ

(i)
j + (u

(i)
j − l

(i)
j )λ

(i)
j

)
x̂
(i)
j

]
−

L∑
i=1

ν(i)⊤b(i) +

L−1∑
i=1

∑
j∈I±(i)

λ
(i)
j u

(i)
j l

(i)
j

s.t. µ ≥ 0; τ ≥ 0; λ ≥ 0;

(10)

Since variables x, x̂ are unconstrained, any of thier coefficients are nonzero would make thier value
to −∞ by the inner minimization. Therefore, the outer maximization require setting all the coeffi-
cients of x, x̂ to zero. Then we get:

max
λ,µ,τ ,ν

y⊤ν(L) − ν(L)⊤ν(L)

4

− [ν(1)⊤W(1)]+u
(0) + [ν(1)⊤W(1)]−l

(0)

−
L∑

i=1

ν(i)⊤b(i) +

L−1∑
i=1

∑
j∈I±(i)

λ
(i)
j u

(i)
j l

(i)
j

s.t. µ ≥ 0; τ ≥ 0;λ ≥ 0;

ν
(i)
j − ν(i+1)⊤W

(i+1)
:,j = 0, j ∈ I+(i)

ν
(i)
j = 0, j ∈ I−(i)

ν
(i)
j + τ

(i)
j − λ

(i)
j u

(i)
j = 0; j ∈ I±(i)

ν(i+1)⊤W
(i+1)
:,j = (u

(i)
j − l

(i)
j )λ

(i)
j − (µ

(i)
j + τ

(i)
j ), j ∈ I±(i)

(11)

Define ν̂(i)j = ν(i+1)⊤W
(i+1)
:,j . Then, we define (u(i)

j − l
(i)
j )λ

(i)
j = [ν̂

(i)
j ]+ and µ

(i)
j +τ

(i)
j = [ν̂

(i)
j ]−,

we get the following bound propagation procedure:

max
α,ν

y⊤ν(L) − ν(L)⊤ν(L)

4
− [ν(1)⊤W(1)]+u

(0) + [ν(1)⊤W(1)]−l
(0)

−
L∑

i=1

ν(i)⊤b(i) +

L−1∑
i=1

∑
j∈I±(i)

[
u
(i)
j l

(i)
j [ν̂

(i)
j ]+

u
(i)
j − l

(i)
j

]

s.t. ν̂
(i)
j = ν(i+1)⊤W

(i+1)
:,j , ν̂

(i)
j = [ν̂

(i)
j ]+ − [ν̂

(i)
j ]−, ∀i ∈ {1, 2, ..., L− 1}

ν
(i)
j =


ν̂
(i)
j , j ∈ I+(i)

0 , j ∈ I−(i)

u
(i)
j

u
(i)
j −l

(i)
j

[ν̂
(i)
j ]+ − α

(i)
j [ν̂

(i)
j ]− , j ∈ I±(i)

∀i ∈ {1, 2, ..., L− 1}

0 ≤ α
(i)
j ≤ 1, j ∈ I±(i)

(12)
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Here α(i)
j is the optimizable parameter controlling the relaxation of neuron j in layer i introduced in

(Xu et al., 2021). This is what we want.

M THE PROOF OF THEOREM 2

Theorem. Using the notation from the three algorithms above. Given α, β, δ, ϵ ∈ (0, 1)
satisfying (1 − 2ϵ)M − δ > 0, N · ((1 − 2ϵ)M − δ) > 2

α ln( 1β ) + 2 + 2
α ln( 2

α ) and N2 ≥
[ 2 ln 1/β

α + 2 + 2 ln 2/α
α ]. Then, after executing the algorithms defined above, if, for a sample

x, these algorithms output the ’safe’ after T refinement turns, then with probability 1 −
T (e−2Nδ2 + β + 2(1 − ϵ)M2) − β of part one and three, there are Px∼C(x issafe) >
1− (1 + T )α.

Proof. We use the sample fact that P(A ∩B) ≥ P(A) + P(B)− 1 to get the following result:

From Theorem 1, after T refinement steps, the reduction in the probability of the system being
certifiably safe due to these refinements is at most Tα. This statement holds with a confidence of at
least T

(
1− (e−2Nδ2 + β + 2(1− ϵ)M2)

)
− (T − 1) = 1− T

(
e−2Nδ2 + β + 2(1− ϵ)M2

)
.

According to Proposition 1, we can get that the probability of the box is safe is 1 − Tα − α with
probability 1−T (e−2Nδ2 +β+2(1− ϵ)M2)+(1−β)−1 = 1−T (e−2Nδ2 +β+2(1− ϵ)M2)−β.

Then we can get that the probability P(x is safe) > 1− (1+T )α with probability 1−T (e−2Nδ2 +
β + 2(1− ϵ)M2)− β.

Then we can get the final result.

Remark 6. Note we do not assume that the Part 1 and Part 3 are independent, so we can reuse the
samples in Part 1 to Part 3.

N EXPERIMENT DETAILS

Detailed Setting: We use N1 = 30000, N2 = 5000, N = 3000, M = 10, M2 = 2000, α = 0.0099,
β = 0.0099, ϵ = 1/200, δ = 0.1 as our default setting. As we do not assume that the Part 1 and Part
3 are independent, samples from Part 1(Algorithm 2) can be also used in Part 3(Algorithm 4), so we
only need to sample N1 + N2 + M2 = 37000 samples in total, where N1 = N ·M . We use one
turn refinement(T = 1) for all the experiments.

Attack Setting: We use square attack with 5000 iterations for each box. For PGD, we use 20
iterations with step size 1/255 and 2/255. Each iteration, We find the box with the highest IoU and
same class with the ground truth box, then use the GIoU of them as the loss function. Note each
turn may attack a different box. We found that this is a strong attack for YOLO networks.

Server Setting: We use a server with 8 NVIDIA V100 32G GPUs, 40 Intel(R) Xeon(R) Gold
5215 CPUs at 2.50GHz and 503GB memory. The code is implemented in Python with Gurobi and
PyTorch.

Sample Calculation: According to the theorem 2, we can get that the sample number is N1+N2+
M2 = 37, 000 for each box. Note this is the sample number of full algorithm. For RCPN methods,
from Appendix C.1, we need:

N ≥ [2 ln 1/β
α + 2d0 +

2d0 ln 2/α
α ]

to make sure thatwith 1− β confidence, the range is over-approximate the real range with
probability with probability 1− α. Here we use d0 = 640× 640× 3, α = 0.02, β = 0.02 to
achieve comparable results, then we have N ≥ 568341303. Note that this is the sample number
for Part

:::
Our

:::::
work

::::
(Part

:
1only.

:
)
::::
aims

::
to

::::
find

:
a
::::
tight

:::::::::::::
hyper-rectangle

::::::
bound

::
Z

:::
for

:::
the

:::::::::::::
dL-dimensional

:::::
vector

:::::
output

:::::
space

::::::::::
{F(x)}x∈C .

::
In

::::
this

:::::::
context,

:
a
:::::
more

:::::::::
appropriate

::::::::::
application

::
of

::::::
RCPN::

as
::
a

:::::::
baseline

::
for
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:::
this

::::
task

:::::
would

:::
be

::
to

:::::::
directly

:::::::
estimate

:::
an

:::::
upper

:::::
bound

:::
for

:::::
each

:::::::::
dimension

::
in

:::
this

:::::::::::::
dL-dimensional

:::::
space.

::::
The

::::::::::::::
decision-variable

:::::::::
dimension

:::
for

:::
this

:::::::
problem

::::::
would

::
be

:::::::
d = dL ::::

(i.e.,
:::
the

:::::::
network

:::::
output

:::::::::
dimension),

::::::::::::
corresponding

:::
to

::::::
finding

:
a
::::::
vector

:::::::
u ∈ RdL

:::::
such

::::
that,

:::
for

::
all

:::::
inputs

::::::
x ∈ C,

:::
the

:::::::
network

:::::
output

:::::::::
F(x) ≤ u

::::::::::::
element-wise.

:::::
Based

:::
on

::::
this,

::
the

::::::::
required

::::::
sample

:::::
count

:::::
would

:::
be:

:

N ≥
[
2 ln 1/β

α
+ 2dL +

2dL ln(2/α)

α

]
≈ 109

:::::::::::::::::::::::::::::::::::::

:::::::::::
Alternatively,

::
if
::::

one
:::::

were
:::

to
::::

use
:::
the

:::::::
RCPN:::::::

method
:::

to
:::::::

directly
::::::

verify
::::

the
:::::
entire

::::::::
problem,

:::
this

:::::
could

:::
be

:::::::
framed

:::
as

:::::::::
computing

:::
an

:::::
IoU

:::::
lower

::::::
bound

::::
for

::::
each

:::::::::
predicted

::::
box

:::::::
against

::
its

:::::::::::
corresponding

:::::::::::
ground-truth

:::::
(GT)

:::::
box.

::::
The

::::::::
decision

:::::::
variable

:::::::::
dimension

:::
in

::::
this

::::
case

::::::
would

::
be

:::::::::::::::::::::::::::::::::::::::::
d = (80× 80 + 40× 40 + 20× 20)× 3 = 25, 200

:::::
(i.e.,

:::
the

:::::::
number

::
of

:::::::::
bounding

::::::
boxes).

::::::
Based

::
on

::::
this,

:::
the

:::::::
required

::::::
sample

:::::
count

::::::
would

:::
be:

N ≥
[
2 ln 1/β

α
+ 2d+

2d ln(2/α)

α

]
≈ 107

:::::::::::::::::::::::::::::::::::

:::
The

:::::
order

::
of

:::::::::
magnitude

::
of

:::
the

::::::
sample

::::
size

:::::
under

:::::
either

:::::::::
estimation

::
is

:::
still

:::::::::::
prohibitively

::::
large

:::
for

:::
any

:::::::
practical

::::::::::
application.

For the PAC-based methods, according to (Li et al., 2022), to achieve 1− α probability with 1− β
confidence, we need N satisfies:

N ≥ 2

β
×
(
log(

1

α
) + d0

)
≥ 122880391.

Here we also use α = 0.02, β = 0.02.

In terms of randomized smoothing(Cohen et al., 2019), the number of samples required is strongly
correlated with the standard deviation (σ) and the certified radius. For example, to certify a radius
of 2/255 against noise with a standard deviation of σ = 1

255×3 , the randomized smoothing method
would require an impractical number of samples (approximately 3.9× 109). This severely limits its
application in real-world scenarios.

:::
Our

:::::::
method,

::
by

::::::::::
introducing

:::::
vmax :::

and
:::
the

:::::
scalar

::
c1,

:::::::
reduces

:::
the

:::::
entire

:::::::::
verification

:::::::
problem

::
to

:
a
:::::
d = 1

:::::
scalar

::::::::::
optimization

::::
(for

:::
c1)

::::
plus

:
a
::::::::::
constrained

:::::::::::
optimization

:::::::
(MIQP).

::::
Thus

:::
the

::::::::
required

::::::
sample

:::
size

:
is
:::::::::::
significantly

:::::::
reduced

::
to

:
a
::::::::::
manageable

:::::
level,

::::::
making

::
it
:::::::
feasible

:::
for

:::::::
practical

:::::::::::
applications.

Remark 7. Note that without refinement (only Part 1 and Part 2), our method can achieve 99%
confidence and 99% probability with α = 0.0099, β = 0.0099. After refinement, the true confidence
and probability are both 98%. For other two methods, we use error rate 0.02 and significance level
0.02, to get the same confidence and probability.

:::::::::::
Clarification

:::
on

:::::::
Sample

:::::::::::
Complexity

::::
There

::::
are

:::
two

:::::::
distinct

::::::::
sampling

::::::::::
procedures

:::::
used

::
in

:::
our

::::::::::
experiments,

::::::
which

::::
serve

::::::::
different

::::::::
purposes:

•
::::::::::
Verification

::::::::
Samples

::::::::
(37,000):

::::
This

::
is

:::
the

::::::
sample

::::::
budget

::::
used

:::
by

:::
our

:::::::::
algorithm

::
to

::::
issue

::
the

::::::::::
certificate.

::::
For

::::
each

:::::::::::
ground-truth

::::
box,

:::
we

::::
use

::::::
37,000

:::::::
samples

:::::::::::::::
(N1 +N2 +M2)

::
to

:::::::
construct

::
Z
::::
and

:::
the

:::::::::
refinement

:::::::
constant

:::
C,

::
as

:::::::::
prescribed

::
by

::::::::
Theorem

::
2.

•
::::::
RCPN :::::::

Baseline
::::::::

Samples
::::
(106

:::
in

:::::
Table

:::
1):

:::
For

:::
the

::::::
RCPN:::::::

baseline
::
in

:::::
Table

::
1,
:::

we
::::

also

:::
use

:::
106

::::::::
samples

::
to

::::::::
compute

::::::::
empirical

::::::::::
robustness,

::::
but

:::
this

:::::
does

:::
not

:::::
yield

::::::::::
comparable

::::::::
theoretical

::::::::::
guarantees.

:::
To

:::::::
achieve

:::
our

:::::
target

:::::
(98%

::::::::::
robustness,

::::
98%

:::::::::::
confidence),

::::::
RCPN

:::::
would

:::::::::::
theoretically

::::::
require

:::::
about

::::
11.6

:::::::
million

:::::::
samples.

:::::
With

:::::
only

:::
106

::::::::
samples,

::::::
RCPN

:::
can

::::
only

::::::
provide

:::
an

::::
86%

:::::::::
robustness

::::::::
guarantee

::
at

::::
98%

::::::::::
confidence.

:

•
:::::::::
Evaluation

::::::::
Samples

::::
(106

:::
in

:::::
Table

:::
2):

::::::::::::
Independently

::
of

:::
the

::::::::::
verification

:::::::::
algorithm,

:::
we

::::
draw

::::
106

:::::::::
additional

:::::::
uniform

::::::::::::
perturbations

::
to

::::::::::
empirically

::::::::
estimate

:::
the

::::::::
”ground

:::::
truth”

:::::::::
robustness.

:::::
These

:::::::
samples

:::
are

::::
only

:::::
used

::
to

:::::::
calculate

:::::::::
evaluation

::::::
metrics

::::::
(TPR,

::::
FPR,

:::::
TNR,

::::
FNR,

::::
and

:::::
CRA)

:::
and

:::
do

:::
not

::::::
inform

:::
the

::::::::
certificate

:::::
itself.

:
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Table 3:
::::::
Ground

:::::
Truth

::::::::::
Information

:::
for

:::::
Table

::
2.

:::::
#RB:

:::::::
Number

:::
of

:::::
robust

::::::
boxes;

::::::
#NRB:

:::::::
Number

::
of

:::::::::
non-robust

:::::
boxes

:::::
Model

: :
ε

::::
#RB

::::::::
(τ = 0.5)

: :::::::::::::
#NRB(τ = 0.5)

::::
#RB

::::::::
(τ = 0.7)

: :::::::::::::
#NRB(τ = 0.7)

:::::::
yolo11m

: :::::
1/255

:::
363

:::
164

: :::
335

:::
192

:

:::::::
yolo11m

: :::::
2/255

:::
346

:::
181

: :::
315

:::
212

:

:::::::
yolo11x

:::::
1/255

:::
390

:::
137

: :::
348

:::
179

:

:::::::
yolo11x

:::::
2/255

:::
379

:::
148

: :::
335

:::
192

:

::::::::::
yolov3-sppu

: :::::
1/255

:::
364

:::
163

: :::
332

:::
195

:

::::::::::
yolov3-sppu

: :::::
2/255

:::
356

:::
171

: :::
320

:::
207

:

:::::::
yolov3u

:::::
1/255

:::
374

:::
153

: :::
338

:::
189

:

:::::::
yolov3u

:::::
2/255

:::
365

:::
162

: :::
327

:::
200

:

::::::::
yolov5mu

: :::::
1/255

:::
354

:::
173

: :::
316

:::
211

:

::::::::
yolov5mu

: :::::
2/255

:::
344

:::
183

: :::
301

:::
226

:

::::::::
yolov5xu

:::::
1/255

:::
387

:::
140

: :::
354

:::
173

:

::::::::
yolov5xu

:::::
2/255

:::
372

:::
155

: :::
337

:::
190

:

:::::::
yolov8m

: :::::
1/255

:::
376

:::
151

: :::
342

:::
185

:

:::::::
yolov8m

: :::::
2/255

:::
361

:::
166

: :::
327

:::
200

:

:::::::
yolov8x

:::::
1/255

:::
385

:::
142

: :::
348

:::
179

:

:::::::
yolov8x

:::::
2/255

:::
370

:::
157

: :::
337

:::
190

:
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(a) Improvements with ε = 1
255
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(b) Improvements with ε = 2
255
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(c) Improvements in CNNs (Cohen
et al., 2024)

Figure 7: Verification bound improvement after Part 3

:::::::
Ground

:::::
Truth

:::::::::::
information

:::
of

:::::
Table

::
2:

::::::
Table

:
3
::::::
shows

:::
the

::::::
ground

:::::
truth

::::::::::
information

::
of

:::::
Table

::
2.

::::
Here,

:::::
#RB

:::::
means

:::
the

:::::::
number

::
of

::::::
robust

::::::
boxes,

:::
and

::::::
#NRB

::::::
means

:::
the

::::::
number

:::
of

:::::::::
non-robust

:::::
boxes.

:::
The

::::::
ground

:::::
truth

:
is
:::::::::
calculated

::
by

::::
106

:::::::
uniform

:::::::::::
perturbations

:::
for

::::
each

::::
box.

:

O THE EFFECTIVENESS OF NMS VERIFICATION

The NMS optimization step is highly efficient. Verifying one ground-truth box against all candidate
boxes takes an average of only 4.9 seconds. This efficiency arises because we only perform sound
verification: boxes that could potentially cause unsafe behavior are filtered out in advance, leaving
only a small number of boxes to be verified.

P THE EFFECT OF PART 3

This section shows that Part 3 in Section 4 and Appendix K is effective for both large-scale networks
(YOLO) and small-scale CNNs. For the LARD dataset, we use a six-layer CNN network provided
in (Cohen et al., 2024). As seen in Figure 7c, with Part 3, the IoU lower bound we obtain is higher
than the bound obtained without using Part 3. This improvement occurs because Part 3 reduces the
over-approximation of the network’s output, implying our bound is closer to the true bound. Note
that we use sound formal verification on small object detection, instead of probabilistic verification,
so that the network can indeed achieve such a bound. For YOLO, we also show the effect of Part 3
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(a) Image 378 (b) Image 397

Figure 8: The effect of Part 3 in small object detection. The middle panel shows the bound from
prior methods; the right panel shows our improved bound.
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Figure 9: Verification time comparison

in Fig. 7a and Fig. 7b. After refinement, most of the lower bounds are improved, which means Part
3 is also helpful in YOLO networks.

:::
We

::::::
observe

::::
that

:::
the

:::
first

:::::::
iteration

::::::
yields

:::
the

::::
most

:::::::::
significant

:::::
gains.

:::::
Since

::::::
further

:::::::::
refinement

::::::
linearly

::::::::::
accumulates

:::::::::
confidence

::::
loss

::
as

:::::::::
described

::
in

::::::::
Theorem

::
2,

:::::::::
employing

::::::
T = 1

:::::::::
represents

:
a
::::::::

favorable
:::::::
trade-off

::
in

::::
most

::::::
cases.

Q TIME COMPARISON

Fig. 9 shows the detailed time comparison of our method and RCPN on different YOLO models
with ε = 1

255 and ε = 2
255 . The results show that our method is significantly faster than RCPN in

all images.

R REAL-WORLD EXAMPLES.

We take 40 images from sensor cameras of our autonomous vehicles and annotated ground truth
by ourselves. Table 4 shows the results of our method on these images. The results show that our
method can also work well in real-world scenarios. Our method still uses less time and achieve
better bounds than RCPN . Both CRA are high in these images, which means most boxes verified
as robust by our method are reasonably robust.

S COMPARED WITH MEDIAN SMOOTHING

Table 5 compares our method with median smoothing (MS) (Cohen et al., 2019) under normal dis-
tribution on 50 images from the COCO dataset. We set the standard deviation of normal distribution
as σ = 1

255∗3 and σ = 2
255∗3:::::::::

σ = 1
255×3 :::

and
::::::::::
σ = 2

255×3 . The results show that our method signifi-
cantly achieves a smaller mean absolute difference of IoU lower bounds relative to the worst-case
input found by the PGD attack(∆PGD), indicating more precise IoU lower bounds. Besides, in most
cases, the CRA of our method is higher than median smoothing. This also prove that our method
works well in different distributions.
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Table 4: Real world examples of our method.

model ε method time ∆PGD CRA
τ = 0.5 τ = 0.7 τ = 0.5 τ = 0.7

yolo11x
1/(3 * 255) RCPN 571.0 0.53 0.52 1.00 1.00

ODPV 32.1 0.47 0.44 1.00 1.00

2/(3 * 255) RCPN 569.6 0.57 0.55 1.00 1.00
ODPV 32.1 0.43 0.37 1.00 1.00

Table 5: Comparison of our method with median smoothing. ∆PGD denotes the mean absolute dif-
ference of IoU lower bounds relative to the PGD attack. Bold values indicate the best performance.

model ε method ∆PGD CRA
τ = 0.5 τ = 0.7 τ = 0.5 τ = 0.7

yolo11x

1/255
RCPN 0.45 0.47 1.00 1.00
ODPV 0.42 0.40 0.99 0.98

MS 0.44 0.45 0.99 0.98

2/255
RCPN 0.59 0.56 1.00 1.00
ODPV 0.54 0.47 1.00 1.00

MS 0.59 0.53 0.96 0.97

T ABLATION STUDY OF PARAMETERS

Fig. 10 shows the ablation study of parameters η and ι. The results show that our method still
maintains more accurate bounds than RCPN under different parameters. Besides, the results show
that a larger η and a larger ι will lead the bounds to be closer to the worst-case bound found by PGD
attack. This is because a larger η and a larger ι will results in a stricter NMS condition, fewer boxes
can remain and the resulting boxes will be more robust.

U BROADER IMPACT

Our method focuses on verifying the safety of the object detection model, which may help people
to better understand the model and give a safety metric. We do not think there is a negative social
impact of our method as our method is not used to attack the model.

V LLM USAGE STATEMENT

In the preparation of this manuscript, a Large Language Model (LLM) was utilized as a writing
assistance tool. Its use was strictly confined to language polishing, which includes proofreading for
grammatical errors, improving sentence structure, and enhancing the overall clarity and readability
of the text.

All core intellectual contributions—including the research ideation, paper structure, and the initial
drafting of the content—are the original work of the authors. The LLM did not contribute to the
formulation of any hypotheses, experimental results, or conclusions presented herein. The authors
have reviewed all AI-generated suggestions and take full responsibility for the final content of this
paper.

W
::::::::::::::
DESCRIPTION

:::
OF

::::::::::::::::::::
HYPERPRAMETERS

:::
Our

::::::::::
framework

:::::::
consists

::
of

:::::
three

:::::
parts

:::::::::::
(Algorithms

:::::
1-4):

::::
Part

::
1
:::::::
(Output

::::::::::::::
Approximation),

::::
Part

:
2
::::::
(NMS

:::::::::::
Verification),

::::
and

::::
Part

::
3

::::::::::::::::::::
(Counterexample-Based

:::::::::::
Refinement).

:::::
Only

:::::
Parts

::
1
::::
and

:
3
:::

are
:::::::::::
probabilistic;

:::
Part

::
2
::
is

:::::
based

::
on

::::::
sound

:::::
MIQP

::::::::::
constraints

:::
and

:::::::::
introduces

::
no

:::::::::
additional

::::::::::
probabilistic

::::
error.

:
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Figure 10: Ablation study of parameters η, ι

W.1
::::
ROLE

:::
OF

::::::::::::
PARAMETERS

::::
AND

::::::::
FAILURE

::::::::
EVENTS

:::
We

:::
now

::::::::
describe

:::
the

:::
role

::
of

:::
the

::::
four

:::
key

::::::::::
parameters

:::::::
α, β, δ, ϵ

::::
used

::
in

:::
our

:::::::::
theoretical

:::::::::
guarantees

:::
and

::::::::::
experiments.

:

•
:
α
::::::
(Error

::::::
Rate)

–
:::::::
Appears

::
in

:::::::::
Definition

::
1

::::
(OD

:::::::::::::::
PAC-Verification),

::::::::::
Proposition

::
1
:::::
(Part

:::
1),

::::::::
Theorem

:
1

::::
(Part

:::
3),

:::
and

::::::::
Theorem

:
2
:::::::
(Overall

::::::::::
Guarantee).

:

–
:::::::
Controls

:::
the

:::::::::
allowable

::::::::
violation

::::::::::
probability

:
of
::::

the
::::
OD

:::::::
property

::::::
under

:::
the

:::::
input

::::::::::
distribution:

::
In

::::::::
Theorem

::
2,

::
if

:::
the

::::::::
algorithm

::::::
returns

::::::
“safe”

::::
after

::
at

::::
most

::
T

:::::::::
refinement

::::
steps,

:::
we

:::::::::
guarantee

Px∼C(x is safe) > 1− (1 + T )α.
:::::::::::::::::::::::::::

–
::
In

:::
our

:::::::::::
experiments,

:::
we

:::
set

::::::::::
α = 0.0099,

:::
so

::::
with

::::::
T = 1

:::
we

:::::
obtain

::
a
:::::
lower

::::::
bound

::
on

::
the

::::::
safety

:::::::::
probability

:::
for

::::
each

:::::::
certified

::::
box

::
of

::::::::::::
approximately

::::::::::::::::
1− 0.0198 ≈ 0.98.

:

•
:
β
::::::::::::
(Significance

:
/
::::::::::
Confidence)

–
::::
Used

:::
for

::::
the

:::::::::::
scenario-type

:::::::
bounds

::
in
:::::

Part
:
1
::::::

(Prop.
:::

1)
::::
and

::::
Part

::
3

:::::
(Thm.

:::
1),

::::
and

::::::::
combined

::
in

::::::::
Theorem

::
2.

–
:::::::
Controls

:::
the

::::::::::
confidence

:::
with

::::::
which

:::
the

::::::
above

:::::::::::
probabilistic

:::::
claim

::::::
holds,

::::
i.e.,

:::
the

:::::::::
probability

:::
that

::::
the

::::::::
inequality

:::::::::
regarding

::::::::::
P(x is safe)

::
is

:::::
valid

:::::
under

:::
the

::::::::::
randomness

::
of

:::
our

::::::::
sampling

:::::::
process.

::::::::
Theorem

:
2
:::::
gives

:::
the

::::::
overall

:::::::::
confidence:

:

P [Px∼C(x is safe) > 1− (1 + T )α] ≥ 1− T
(
e−2Nδ2 + β + 2(1− ϵ)M2

)
− β.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

–
:::
We

:::
use

:::::::::::
β = 0.0099;

::::
with

::::
our

::::::
default

:::
N ,

::::::::
δ, ϵ,M2,

:::
and

:::::::
T = 1,

:::
this

:::::
lower

::::::
bound

::
is

::::::
≈ 0.98

:::::::
(reported

:::
in

::::::::
Appendix

:::
N).

:

•
:
δ
:::::::::::::
(Concentration

:::::
slack

::
in

:::::
Part

::
3)
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–
:::::::
Appears

::::
only

:::
in

::::::::
Theorem

::
1

:
/
::::::::
Theorem

::
2.
:::

It
:::

is
:::
the

:::::
slack

::::
term

:::
in

:::
the

:::::::::
Hoeffding

::::::
bound,

:::::::::
controlling

::::
how

:::::
many

:::
of

:::
the

::
N

::::::::
sampled

:::::
points

::
in

::::
Part

::
3
::::
have

:::::::
“good”

::::
local

::::::::::::
neighborhoods

::::
(i.e.,

::::
have

::::::::
sufficient

::::::::
neighbors

::::::
within

:::
the

:::::::
interval

:::::::::::::
[BF(x), AF(x)]).:

–
:::
The

::::::::
condition

:

N((1− 2ϵ)M − δ) >
2

α
ln

1

β
+ 2 +

2

α
ln

2

α
:::::::::::::::::::::::::::::::::::::

::::::
ensures

:::
that

::::
with

::::::::::
probability

::
at

::::
least

:::::
1− β,

:::::::
enough

::::::
sample

:::::
points

:::
are

::::::
“good”

::
to
:::::
apply

::
the

:::::::::::
RCPN -style

:::::::
scenario

::::::
bound

::
to

:::
the

:::::::::
refinement

:::::::
constant

:::
C.

–
:::
We

::
fix

:::::::
δ = 0.1

::
in

::
all

:::::::::::
experiments

:::::::::
(Appendix

:::
N).

•
:
ϵ
::::::
(width

::
of

:::
the

:::::
local

::::::::::
uncertainty

:::::::
interval

::
in

:::::
Part

::
3)

–
::::
Used

:::
in

::::::::
Theorem

::
1

::
to

::::::
define

:::
the

::::::::::
probability

:::::
mass

:::
of

:::
the

:::::
local

:::::::
distance

:::::::
interval

::::::::::::
[BF(x), AF(x)].::::

For
:::::
each

::
x,

::
at
:::::

least
:
a
::::::
1− 2ϵ

:::::::
fraction

::
of
::::

the
::
M

:::::
local

:::::::::::
perturbations

:::
fall

:::
into

::::
this

:::::::
interval.

–
:::
The

:::::
term

:::::::::::
2(1− ϵ)M2 ::

in
:::::::::

Theorem
::
2

:::::::
bounds

:::
the

::::::::::
probability

::::
that

::::
the

::::::::
empirical

::::::::
estimation

::
of
::::

this
::::::
interval

:::::
fails.

–
:::
We

::
set

:::::::::
ϵ = 1/200

::
in
:::
all

:::::::::::
experiments.

::
In

:::::::
practice,

::::
one

:::::
needs

:::
to

:::::
select

::::::::::
appropriate

:::::::
α, β, δ, ϵ

::::::
based

::
on

:::
the

:::::::
desired

::::::::::
probability

::::::::
thresholds

:::
and

::::
then

::::::::
calculate

::
the

:::::::
sample

::::
sizes

::::::::::::::::
N1, N2, N,M,M2.

::::::
Below

:::
we

::::::
discuss

:::
the

::::::::::
relationship

:::::::
between

::::::
sample

::::
sizes

:::
and

:::::
these

::::::::::
parameters.

W.2
:::::::
SAMPLE

::::
SIZE

::::::::::::::
RELATIONSHIPS

:::
The

:::::
main

::::::
sample

:::
size

::::::::::
constraints

:::::
appear

::
in
::::::::
Theorem

::
2:

:

•
::::
Part

:
1
::::::::::
Sampling:

N2 ≥
2

α
ln

1

β
+ 2 +

2

α
ln

2

α
.

:::::::::::::::::::::::

:::
For

::::
fixed

:::::
α, β,

:::
we

::::
have

::::::::::::::::
N2 = O

(
1
α log 1

β

)
.
::::::::::
Importantly,

:::::
there

::
is

:::
no

:::::::
explicit

::::::::::
dependency

::
on

:::
the

::::::
output

::::::::::
dimension

::
dL ::

in
:::
this

::::::
bound.

:

•
::::
Part

:
3
::::::::::
Sampling:

::::
With

:::::
fixed

::::::
δ, ϵ,M ,

:::
the

::::::
bound

::
on

::
N

::::
can

::
be

::::::
written

::
as

:

N ≥ 1

(1− 2ϵ)M − δ

( 2
α
ln

1

β
+ 2 +

2

α
ln

2

α

)
,

::::::::::::::::::::::::::::::::::::::

:::::
Thus,

::
for

:::::
fixed

::::::
δ, ϵ,M ,

:::
we

:::::
again

::::
have

:::::::::::::::
N = O

(
1
α log 1

β

)
.
:

::
In

:::
the

::::::::::
experiments,

:::
we

:::::::::
instantiate

:::::
these

::::::::
quantities

::::
with

:::
the

::::::::
following

::::::
values:

:

N1 = 30
:::::::

,000, N2 = 5
::::::::::::

,000, N = 3
:::::::::::

,000, M = 10, M2 = 2
::::::::::::::::::::::

,000,
:::

:::
and

::::::::::::::
α = β = 0.0099,

::::::::::
ϵ = 1/200,

::::::
δ = 0.1

:::::::::
(Appendix

:::
N).

:::::::
Because

:::
the

:::::::
samples

::::
from

::::
Part

:
1
:::
are

:::::
reused

::
in

:::
Part

::
3

:::::::
(Remark

:::
6),

:::
the

::::
total

:::::::
number

::
of

:::::::
samples

:::
per

:::
box

:::
is:

Ntotal = N1 +N2 +M2 = 37
::::::::::::::::::::::::

,000
:::

::::
This

:::::::
quantity

::
is

::::::::::
independent

::
of

:::
dL::::

and
:::::
forms

:::
the

:::::
basis

::
for

::::
the

:::::
claim

:::::::::
“achieving

::::
98%

::::::::
guarantee

::
at

::::
98%

:::::::::
confidence

::::
with

::::::
37,000

::::::::
samples”

::
in

::::::
Section

::
6.

:

W.3
::::::::
NOTATION

::::
FOR

::::::::::
SAMPLING

::::::::::::
PARAMETERS

:::::::::
Throughout

:::::::::::
Proposition

::
1,

::::::::
Theorem

::
1

::::
and

:::
2,

:::
the

::::::::
symbols

:::::::::::::::::::::::::::::
N1, N2, N,M,M2, A

′
i, B

′
i, Am, Bm

:::
and

:::
C

:::
are

:::::::::
inherited

:::::
from

::::::::::
Algorithms

::
2
::::

and
::

4
:::

as
::::::::

follows.
::::

In
::::::::::

Algorithm
::
2,
::::
N1:::::::

denotes
::
the

::::::::
number

:::
of

:::::::
samples

:::::
used

:::
to

::::::::
estimate

:::
the

:::::::::::::
per-coordinate

:::::
scale

::::::
vector

::::::
vmax,

::::
and

::::
N2::

is
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::
the

::::::::
number

::
of

::::::::
samples

:::::
used

::
to
::::::::

compute
::::

the
::::::::

smallest
::::::
scaling

::::::
factor

:::
c1:::

in
:::
the

:::::::::::
optimization

:::::::
problem

::::::::
equation

::
1,

::::::
which

::::::
yields

:::
the

::::::
output

::::::::::::::
hyper-rectangle

:::
Z .

::::
In

:::::::::
Algorithm

:::
4,

:::
N

::
is

:::
the

::::::
number

:::
of

:::::::::
reference

::::::
points

:::::::::
{x(i)}Ni=1 ::::::

drawn
:::::
from

::
C
:::

in
:::::

Step
:::::
One,

::::
and

:::
M

:::
is

:::
the

:::::::
number

::
of

::::::::
auxiliary

::::::::
samples

::::::::::
{x(i,j)}Mj=1::::::

drawn
::::

for
:::::

each
:::::::::

reference
:::::
point.

::::::
For

:::::
each

::::::::
i ∈ [N ],

:::
we

:::::
define

::::::::::::::::::::::::::::::::
A′

i = maxj∈[M ] ∥F(x(i,j))− F(x(i))∥2::::
and

::::::::::::::::::::::::::::::::
B′

i = minj∈[M ] ∥F(x(i,j))− F(x(i))∥2,
::::
and

::
the

:::::::
constant

::
C

:::
is

:::::::
updated

:::
as

::::::::::::::::::::::::::
C ← max{C,B′

i/(A
′
i −B′

i)}. ::::
In

::::
Step

:::::
Two

:::
of

:::::::::
Algorithm

::
4,
::::
M2

::::::
denotes

:::
the

:::::::
number

::
of

:::::::::
additional

:::::::
samples

:::::::::
{x(i)}M2

i=1:::::
drawn

:::::
from

::
C

::
to

::::::::
estimate

:::
the

:::::::
distance

::::
from

:
a
::::::::
candidate

::::::
output

::
y
:::

to
:::
the

::::
true

::::::
output

:::
set

:::::::::::
{F(x)}x∈C ,

::::
with

::::::::::::::::::::::::::::
Am = maxi∈[M2] ∥F(x(i))− y∥2

:::
and

::::::::::::::::::::::::::::
Bm = mini∈[M2] ∥F(x(i))− y∥2.

::::::
These

:::::::::
quantities

:::
are

::::
then

::::::::
combined

:::
to

::::
form

:::
the

::::::::
estimator

:::::::::::::::::::::::::::::::::::::::::
dmin = max{(Bm − C(Am −Bm))/(1 + 2C), 0}

::::
used

:::
in

:::
Part

::
3.

:

X
:::::::::::::
EXTENDING

:::::
OUR

::::::::::
METHOD

:::
We

:::::::::::
acknowledge

:::
that

::::::::
different

::::::::::
architectures

::::
and

:::::
threat

::::::
models

::::
may

:::::::::
necessitate

:::::::
distinct

:::::::::
verification

::::::::
strategies,

:::::::
making

:
a
::::::::

universal
::::::::

solution
::::::::::
challenging.

::::::::::::
Nonetheless,

:::
for

:::::
many

::::::::
common

::::::
threats,

:::
our

:::::::
proposed

:::::::
method

:::
can

:::
be

:::::::
adapted

::
by

:::::::::
modifying

::::
only

:::
the

::::::::
encoding

::
in
::::

Part
::
2,
:::::
while

:::::::
keeping

:::::
Parts

:
1

:::
and

:
3
::::::::::
unchanged.

::::
The

::::::::
following

::::::::
describes

::::
how

::
to

::::
adapt

::::
our

::::::
method

::
to

:::::
verify

::::
two

::::::::
additional

::::::
threats:

::::
class

::::::::::::::
misidentification

:::
and

::::
false

:::::::::::
appearances.

:

X.1
:::::::::::
EXTENDING

::
TO

:::::::
CLASS

::::::::::::::::::
MISIDENTIFICATION

Algorithm 6
::::::::
Soundness

:::::
Class

::::::::::::::
Misidentification

::::::::::
Verification

:::
for

:::::
NMS

Require:
:::::::::
Constraints

:::::::::::
Z = H \ S;

::::
input

:::
x;

:::::
output

::
y;

:::::::
ground

::::
truth

:::::
boxgt;::::::::::

confidence
::::::::
threshold

:
ι.
:

Ensure:
::::::::
Calculate

:::::::
per-box

:::::
upper

::::::
bounds

:::::::::::
{τmis(i)}nx

i=1 :::
for

::::
class

::::::::::::::
misidentification.

:

1:
::::::::::::::::::::::::::::::::::::::::
{boxi}

nx
i=1 ← CONSTRUCT ABSTRACT BOX(Z)

2: for all
:::::::::::::::
boxi ∈ {boxk}

nx

k=1 do
3:

::::::::::
τmis(i)← 0 ▷ Initialize upper bound for misidentification IoU of box i

4: if
:::::::::::::::::::::::::::::::::::::::
∀k ∈ [n] \ {Class(boxgt)}, pi,Class(boxgt)

≥ pi,k then
5:

:::::::
continue ▷ Skip boxes that must match boxgt class (never misclassified w.r.t. this GT)

6: end if
7: if

:::::
ci ≥ ι then ▷ Box i may pass the confidence threshold in some realization

8:
::::::::::::::::::::::::::::::::::::::
τmis(i)← IOU UPPER BOUNDS(boxi, boxgt) ▷ Worst-case IoU to boxgt when boxi is

potentially of a wrong class
9: end if

10: end for
11:

:::::
return

::::::::::
{τmis(i)}nx

i=1:

::::::::::::
Formalization

::
of

::::
the

::::::::
property

:::::
(bad

:::::::
Event):

:::::
Given

::
an

:::::
input

:::::::::
constraint

:::
set

::
C,

::
if

:::::
there

:::::
exists

::
an

::::
input

::::::
x ∈ C

::::
such

:::
that

:::::
after

:::::::::
processing

::
by

:::
the

:::::::
network

::
F

:::
and

:::::
NMS

:::::::
module,

:::
the

::::::
output

:::
set

:::::::
N(F(x))

:::::::
contains

:
a
::::::::
predicted

::::
box

::::
boxi :::

that
:::
has

:::
an

:::
IoU

::::
≥ τ

::::
with

:::::
some

:::
GT

:::
box

::::::
boxgt,:::

but
::::
their

::::::::
predicted

:::
and

:::
GT

::::::
classes

::
do

:::
not

::::::
match,

:::
we

:::::::
consider

::::
this

:
a
::::
class

:::::::::::::::
misidentification.

::::::::
Formally:

:

∃x ∈ C, ∃boxi ∈ N(F(x)), ∃boxgt ∈ G : I(class(boxi) ̸= class(boxgt)) · IoU(boxi, boxgt) ≥ τ.
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

:::
We

::::
want

::
to

:::::
prove

:::
that

:::::
class

::::::::::::::
misidentification

::::
does

:::
not

::::
occur,

::::::
which

::
is

:::
the

:::::::
negation

::
of

:::
the

:::
bad

:::::
event,

::::::::::
equivalently

::::::
written

:::
as:

∀x ∈ C, ∀boxi ∈ N(F(x)), ∀boxgt ∈ G : I(class(boxi) ̸= class(boxgt)) · IoU(boxi, boxgt) < τ.
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

::
To

:::
this

::::
end,

:::
we

:::
can

::::::
define

:
a
:::::::::
worst-case

::::::::
function:

:

Φcls(x) = max
boxi∈N(F(x)), boxgt∈G

(I(class(boxi) ̸= class(boxgt)) · IoU(boxi, boxgt)) ,

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
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:::
The

:::::::
property

:::::
holds

::
if

:::
and

::::
only

:::
if:

:::::::::::::::::
supx∈C Φcls(x) < τ.

:

:::
Let

::
Z

::
be

:::
the

::::::::::::::::
over-approximation

::
of

:::
the

::::::::
pre-NMS

:::::::
network

::::::
output

:::::
range

:::::::::
{F(x)}x∈C::::::::

obtained
::
in

:::
Part

::::::
1.Since

:::
our

:::::
NMS

:::::::
analysis

::
in

::::
Part

::
2

:
is
:::::::
applied

::::::::
uniformly

::::
over

:::
all

::::::
y ∈ Z ,

:::
we

:::
can

::::::::
compute

::
an

:::::
upper

:::::
bound

::
of

::::::::::::::::::::::::::::::::::::::::
I(class(boxi) ̸= class(boxgt)) · IoU(boxi, boxgt):::

on
::
Z

::::
over

:::
all

:::::::
possible

::::::::
predicted

:::::
boxes

:::
and

:::
GT

:::::
pairs:

:

Ucls = sup
boxi∈Z,boxgt∈G

(I(class(boxi) ̸= class(boxgt)) · IoU(boxi, boxgt)) .

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

:
If
:::
we

:::
can

:::::
prove

::::::::
Ucls < τ,

::::
then

::
it
::
is

:::::::::
impossible

:::
for

:::
any

::::::
x ∈ C

:::
and

:::
any

::::::::::::
prediction/GT

::::
pair

::
to

::::
have

::
an

:::
IoU

::::
≥ τ

:::
and

::
a

::::
class

:::::::::
mismatch.

:::::
Thus,

:::
we

:::
can

::::::
certify

:::
that

:::
no

::::
class

::::::::::::::
misidentification

::::::
occurs

:::::
within

::
C,

:::
and

:::
the

:::::::
property

::
is

:::::::
verified.

:

::::::::
Algorithm

::
6
:::::
shows

::::
how

::
to

::::::::
compute

::::::
per-box

:::::
upper

:::::::
bounds

::
on

:::
the

::::::::::::::
misidentification

::::
IoU

::
in

:::
Part

::
2.
:

X.2
:::::::::::
EXTENDING

::
TO

::::::
FALSE

::::::::::::::
APPEARANCES

Algorithm 7
::::::::
Soundness

:::::
False

::::::::::
Appearance

::::::::::
Verification

:::
for

:::::
NMS

Require:
:::::::::
Constraints

:::::::::::
Z = H \ S;

:::::
input

:::
x;

::::::
output

::
y;

::::
set

::
of

:::::::
ground

::::
truth

::::::
boxes

::
G;

::::::::::
confidence

:::::::
threshold

::
ι.
:

Ensure:
::::::::
Calculate

:::::::
per-box

:::::
lower

::::::
bounds

::::::::::
{τFA(i)}nx

i=1:::
on

:::::::::::::::::::::::::
maxboxgt∈G IoU(boxi, boxgt).

1:
::::::::::::::::::::::::::::::::::::::::
{boxi}

nx
i=1 ← CONSTRUCT ABSTRACT BOX(Z)

2: for all
:::::::::::::::
boxi ∈ {boxk}

nx

k=1 do
3:

:::::::::
τFA(i)← 0

:
▷ Initialize lower bound for maximal IoU to GTs of box i

4: if
:::::
ci < ι then

5:
:::::::
continue ▷ Box i can never become a high-confidence detection, ignore it for False

Appearance
6: end if
7:

::::::
lb← 0 ▷ Lower bound on maxboxgt∈G IoU(boxi, boxgt)

8: for all
::::::::
boxgt ∈ G do

9:
::::::::::::::::::::::::::::::::::::
lbgt ← IOU LOWER BOUNDS(boxi, boxgt)

10:
:::::::::::::::
lb← max(lb, lbgt): ▷ Aggregate lower bounds to over-approximate maxboxgt

IoU
11: end for
12:

::::::::::
τFA(i)← lb

13: end for
14:

:::::
return

::::::::::
{τFA(i)}nx

i=1

::::::::::::
Formalization

::
of

:::
the

::::::::
property

:::::
(bad

::::::
Event):

:::::
Given

::
an

:::::
input

::::::::
constraint

::
set

:::
C,

:
if
:::::
there

:::::
exists

::
an

::::
input

:::::
x ∈ C

:::
and

::
a

:::::::
predicted

::::
box

::::::::::::::
boxi ∈ N(F(x))

:::::
whose

::::
IoU

::::
with

::
all

:::
GT

:::::
boxes

::
is
::::
less

:::
than

:::
τ ,

::
we

:::::::
consider

:::
this

:
a
:::::
False

:::::::::::
Appearance:

∃x ∈ C, ∃boxi ∈ N(F(x)), ∀boxgt ∈ G, IoU(boxi, boxgt) < τ.
::::::::::::::::::::::::::::::::::::::::::::::::::::

::::::::::
Equivalently,

::::::
define

:::
the

:::::::::
maximum

::::
IoU

:::
for

::::
each

::::::::
predicted

:::
box

::::
with

:::
all

:::
GT

::::::
boxes:

IoUmax(boxi,x) = max
boxgt

IoU(boxi, boxgt),

::::::::::::::::::::::::::::::::::

:::
The

:::
bad

:::::
event

::::
can

::
be

::::::
written

:::
as:

∃x ∈ C, ∃boxi ∈ N(F(x)) : IoUmax(boxi,x) < τ.
:::::::::::::::::::::::::::::::::::::::::

:::
We

::::
want

::
to

:::::
prove

:::
”no

:::::
false

::::::::::
appearances

::::::
occur”,

::::::
which

::
is

::
the

::::::::
negation

::
of

:::
the

:::
bad

::::::
event:

∀x ∈ C, ∀boxi ∈ N(F(x)) : IoUmax(boxi,x) ≥ τ.
:::::::::::::::::::::::::::::::::::::::::
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:::
We

:::
can

::::::
further

::::::
define:

ΦFA(x) = min
boxi∈N(F(x))

IoUmax(boxi,x),

:::::::::::::::::::::::::::::::::

:::
and

:::
the

:::::::
property

:::::
holds

::
if

:::
and

::::
only

::
if

:::::::::::::::::
infx∈C ΦFA(x) ≥ τ.

::::::::
Algorithm

::
7

:::::
shows

::::
how

::
to

:::::::
compute

:::::::
per-box

:::::
lower

::::::
bounds

:::
on

:::
the

::::::::
maximum

::::
IoU

::
to

:::
GT

:::::
boxes

::
in

:::
Part

::
2.

:::
For

:::
any

:::::
given

:::::::
property,

:::
we

::::
first

::::::::
formalize

::
the

::::::
attack

:::
and

:::::::::
verification

::::::::
objective

::
as

::::::::
described

::
in

::::::
Section

:
3
:::
and

:::
the

:::::::
process

::::::
above.

:::::
Then,

::
as

::
in

:::::::
Section

:
4
:::
and

::::::
above,

:::
we

:::::
adapt

::::
Part

:
2
::
of

:::
the

::::::::
algorithm

:::::
(e.g.,

::
by

:::::::
adjusting

:::
the

::::::
MIQP

:::::::::
constraints)

:::::
based

:::
on

::
the

:::::::
specific

:::::::::
verification

:::::::::
objective.

:::
We

:::
will

::::
add

:
a
::::::::
discussion

::
of

:::::
these

:::
and

:::::
other

::::::::
potential

:::::::::
extensions

::
in

:::
the

:::::::
revised

::::::::::
manuscript,

::::
and

::::::
specify

::::
how

::::
Part

::
2
::
of

:::
the

::::::::
algorithm

::::::
should

::
be

::::::::
modified

::
for

:::::
these

::::
two

::::::
threats.

X.3
:::::::::::
EVALUATION

::
To

::::::
assess

:::
the

:::::::::::
effectiveness

:::
of

::::
our

::::::::
proposed

:::::::
method

:::::
under

:::::::
diverse

:::::
noise

:::::::::
conditions

::::
and

:::::
threat

:::::
types,

:::
we

:::::::
conduct

::::::::::
experiments

:::::
using

::::
four

:::::::
distinct

:::::
noise

::::::
models

::::
and

:::::
verify

:::
the

:::::
False

::::::::::
Appearance

::::
(FA)

::::::::
detection

:::::::::::
performance

::
of

::::
our

:::::::::
YOLO11x

::::::
model.

::::
We

::::::
define

:
a
:::::

noise
::::::

tensor
::::
Nx :::

and
:::

set
:::

the
::::::::::
perturbation

:::::::::
magnitude

::
to
::::::::::
ε = 1/255.

:::::
The

:::::::
specific

:::::
noise

:::::::::::
distributions

::::
and

::::
their

::::::::::::
corresponding

::::::::
real-world

::::::::::
motivations

:::
are

:::::::
outlined

::::::
below:

:

•
:::::::
Uniform

:
:
:::::::::::::
Nx ∼ U(−ε, ε):::::::::::::::::::::::

(Quantization/Uncertainty).
:

•
::::::::
Gaussian:

:::::::::::::::::
Nx ∼ N (0, (ε/3)2)

:::::::
(Sensor

:::::::
Readout

::::::
Noise).

:

•
::::::::::::::
Salt-and-Pepper

:
:
:::
±ε

::::::
impulse

:::::
noise

::::
with

::::::::
p = 0.05

::::::::::::
(Transmission

::::::
Faults).

:

:::
We

::::::::
randomly

:::::
select

:::
10

::::::
images

:::::
from

:::
the

:::::::
COCO

::::::::
validation

:::
set

::::
and

:::::
apply

::::
each

:::::
noise

::::::
model

::::
with

:::::::::
ε = 1/255

::
to

:::::::
generate

:::::
noisy

::::::
inputs.

:::
We

::::
then

:::::::
evaluate

:::
the

:::
FA

::::::::
detection

::::::::::
verification

::::::::::
performance

::
of

:::
our

:::::::::
YOLO11x

:::::
model

:::
on

:::::
these

::::::::
perturbed

:::::::
images.

::::
For

::::
each

::::::
input,

:::
we

::::
draw

::::
106

:::::::
samples

::::
from

:::
the

:::::::::::
corresponding

:::::
noise

::::::::::
distribution

::
to

::::::::::
approximate

:::
the

::::::
ground

:::::
truth.

::::
The

:::::
results

:::
are

:::::::::::
summarized

::
in

::
the

::::
table

::::::
below:

Table 6:
::
FA

:::::::::
Detection

::::::::::
Verification

::::::::::
Performance

:::::
under

:::::::
Diverse

:::::
Noise

:::::::
Models

:::::
Model

: :::::
Noise

::::
type

::::::
CARFA ::::::

TPRFA: ::::::
TNRFA ::::::

FPRFA: ::::::
FNRFA:

:::::::
yolo11x

:::::::
gaussian

: :::::::
100.00%

: ::::::
92.31%

: :::::::
100.00%

: :::::
0.00%

:::::
7.69%

:::::::
yolo11x

:::
salt

:::
and

::::::
pepper

: :::::::
100.00%

: ::::::
85.71%

: :::::::
100.00%

: :::::
0.00%

::::::
14.29%

:

:::::::
yolo11x

:::::::
uniform

:::::::
100.00%

: ::::::
92.31%

: :::::::
100.00%

: :::::
0.00%

:::::
7.69%

:
A
:::::::::

detection
::
is

:::::::::
considered

:::::::
positive

::
if

::
it

:::::::
remains

::::::
robust

:::::
under

:::
the

::::::::::::
corresponding

:::::
noise

::::::
model

:::
and

:::::::
negative

:::::::::
otherwise.

::::
The

::::::
results

:::::::
indicate

:::
that

::::
our

::::::
method

:::::::
sustains

::
a
::::
high

::::::::
Certified

::::::::
Accuracy

::::
Rate

:::::
(CAR)

::::::
across

:::::::
different

:::::
noise

:::::
types,

::::::::::::
demonstrating

::::
that

:
it
::::::::
provides

::::::
reliable

:::::::::
guarantees

:::::
under

::::::
diverse

::::::::
real-world

:::::
noise

:::::::::
conditions

::::
and

:::::
threat

::::::
types.

:::::::::
Moreover,

::::
the

::::
True

:::::::
Positive

:::::
Rate

:::::
(TPR)

::::
and

::::
True

:::::::
Negative

:::::
Rate

::::::
(TNR)

::::::
remain

:::::::::::
consistently

:::::
high,

:::::
while

:::
the

:::::
False

:::::::
Positive

:::::
Rate

::::::
(FPR)

:::
and

:::::
False

:::::::
Negative

::::
Rate

::::::
(FNR)

::::
stay

::::
low,

:::::::::::
underscoring

:::
the

::::::::
method’s

:::::::::::
effectiveness

::
in

::::::::::::
distinguishing

:::::::
between

:::::
robust

:::
and

:::::::::
non-robust

::::::::::
detections.

::::::
Overall,

:::::
these

:::::::
results

::::::::::
demonstrate

::::
that

:::
our

:::::::
method

:::::::
remains

:::::::
reliable

::::::
across

::::::::::::
heterogeneous

:::::
noise

::::::::::
distributions

::::
and

::::::
diverse

::::::
threat

::::::
types.

:::::
This

::::::::
confirms

::::
that

:::
the

:::::::::
proposed

:::::::::
framework

::
is
:::::::

broadly
::::::::
applicable

::::
and

:::::::
provides

::::::::::
trustworthy

:::::::::
robustness

:::::::::
guarantees

:::::
under

::
a
::::
wide

:::::
range

:::
of

:::::::::
real-world

::::
noise

:::::::::
conditions.

:::
the

::::::::
algorithm

:::::
(e.g.,

::
by

::::::::
adjusting

:::
the

:::::
MIQP

::::::::::
constraints)

:::::
based

::
on

:::
the

:::::::
specific

:::::::::
verification

::::::::
objective.

:::
We

::::
will

:::
add

:
a
:::::::::
discussion

::
of

:::::
these

:::
and

:::::
other

:::::::
potential

:
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