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ABSTRACT

Machine learning models typically struggle to swiftly adapt to novel tasks while
maintaining proficiency on previously trained tasks. This contrasts starkly with
animals, which demonstrate these capabilities easily. The differences between
ML models and animals must stem from particular neural architectures and rep-
resentations for memory and memory-policy interactions. We propose a new
task that requires rapid and continual learning, the sequential Morris Water Maze
(sWM). Drawing inspiration from biology, we show that 1) a content-addressable
heteroassociative memory based on the entorhinal-hippocampal circuit with grid
cells that retain knowledge across diverse environments, and 2) a spatially invariant
convolutional network architecture for rapid adaptation across unfamiliar environ-
ments together perform rapid learning, good generalization, and continual learning
without forgetting. Our model simultaneously outperforms ANN baselines from
both the continual and few-shot learning contexts. It retains knowledge of past
environments while rapidly acquiring the skills to navigate new ones, thereby
addressing the seemingly opposing challenges of quick knowledge transfer and
sustaining proficiency in previously learned tasks.
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Figure 1: Schematic of the sequential Morris Water Maze task. (a) The water maze environment.
The rodent icon represents the agent, arrows indicate the rodent’s allowed actions, gold circles
indicate the hidden platforms, and curves parallel to the walls of each environment denote patterns
along the walls. The agent observes a portion of the wall pattern. (b) our training setup. Agents
must generalize in three distinct ways. 1. Find a fixed goal location starting from random points
in the environment. 2. Quickly learn new goal location within one environment, and reach it from
random starting locations. 3. Learn various new environments, each with random start positions and
multiple goal locations. The agent is evaluated on rapidly learning to navigate to new goal locations
and in new environments and remembering navigation strategies from previously seen environments.
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1 INTRODUCTION

Animals can rapidly learn new tasks that are conceptually similar to previously encountered tasks,
but have different inputs and surface-level details; simultaneously, they retain the ability to solve
the previous tasks. Neural modeling of this process of rapid conceptual knowledge transfer with
retention of past learning has been limited. In some ways, rapid learning and learning retention seem
to be in opposition: the former requires fast adaptation of parameters while the latter requires stable
parameters. In machine learning, models tend to focus on either solving rapid learning and transfer,
or on continual learning without forgetting; models tend not to do well at both.

Here, we build a biologically motivated neural model to solve a sequential version of the classic
Morris Water Maze task (Morris, [1981; [Vorhees & Williams), [2006), in which a rodent must find and
then navigate to a submerged platform in a pool of cloudy water across multiple trials starting from
different positions. We term our variant of this task the Sequential Morris Water Maze (sWM) task.
This task necessitates sequential learning across multiple unique environments, each characterized by
a different platform location. Within a single environment, the task demands two generalizations from
the agent. First, it must generalize its learning from a variety of starting locations. Second, it must
rapidly adapt to changes in the goal locations. In our sequential version of the task, an additional layer
of complexity is introduced. Here, the agent is required to learn new environments while preserving
the knowledge of the previous ones. This requirement tests the agent’s ability to avoid catastrophic
forgetting, a significant challenge in machine learning. Thus, the sWM task not only involves the
aforementioned intra-environment generalization and adaptation but also inter-environment learning
and memory retention.

Conventional unstructured neural networks suffer from catastrophic forgetting: a phenomenon where
networks trained on a sequence of tasks fail to perform well on previously trained tasks (McCloskey
& Cohen, [1989). Unstructured neural networks generally also lack an intrinsic ability to generalize
rapidly to unseen tasks. Networks that perform rapid task transfer are typically extensively trained
on a large number of related tasks (e.g. using multi-task learning techniques (Caruanal [1997) or
meta-learning (Thrun & Pratt, [1998))).

We propose that certain inductive biases, like those present in the brain, allow networks to avoid
these shortcomings and achieve performance on rapid and continual learning that is comparable to
animals. It is known that animals use specialized computations in the hippocampus and entorhinal
cortex to enable efficient spatial navigation and learning (O’Keefe & Dostrovskyl |1971} Hafting
et al.| 2005). We use a structured neocortical-entorhinal-hippocampal circuit, the Memory Scaffold
with Heteroassociation (MESH) architecture (Sharma et al., 2022), to enable such generalization in
the Water Maze after training only on a single environment. Our model proceeds as follows: first,
MESH maps observation signals to a grid cell pattern, a type of spatial representation found in the
entorhinal cortex. The grid code is then inputted into a randomly initialized, fixed Convolutional
Neural Network (CNN), yielding a spatially invariant output feature vector. Lastly, this feature is
processed by an attention module to determine the agent’s action.

Our approach integrates a high-capacity content-addressable memory system with a spatially-invariant
network specifically designed to facilitate zero-shot policy learning in new environments. Conceptu-
ally, this combination is beneficial as it allows the system to store and retrieve relevant information
efficiently, while also adapting rapidly to new environments without requiring additional training.
This functionality reflects the learning behavior of biological entities, contributing to the agent’s
capacity for both knowledge retention and rapid, flexible learning. We would like to emphasize that
we are the first work that employs MESH in continual learning tasks.

The contribution of this paper is threefold:

* We propose a new lifelong learning task, sequential Morris Water Maze task (sWM), based
on the widely used Morris Water Maze test of spatial learning in animals.

* We propose a neuro-inspired lifelong learning algorithm based on MESH (Sharma et al.,
2022); the algorithm is specifically designed to perform rapid learning while retaining
knowledge over long time-scales.

* In sWM, our method achieves significantly higher performance than baseline methods in
both standard continual and few-shot learning.
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2 RELATED WORK
2.1 CONTINUAL LEARNING IN ARTIFICIAL INTELLIGENCE

Continual learning methods can be categorized into three approaches; 1) regularization-based methods,
2) replay-based methods, and 3) architecture-based methods. Regularization-based methods (Cheung
et al.} 2019; [Kirkpatrick et al.| 2017} [Li & Hoiem, 2017} Zenke et al.,2017) employ regularization
terms to constrain the changes in model parameters to preserve previous model weights. They
balance the trade-off between stability and plasticity in the learning process. EWC (Kirkpatrick et al.
2017) leverages the Fisher information matrix to estimate an importance matrix used for parameter
regularization so that the network can remember old parameters. LwF (Li & Hoiem, 2017) finds
the output logits from an old model trained on a previous task and distills them into a new model.
Replay-based methods (Robins, |1995) prevent forgetting by forming a replay buffer, a small exemplar
set of previous data, or synthetic data (Van de Ven et al.,[2020) to interleave with new tasks during
training. Since the memory size is constrained, there are several approaches to find smaller subset;
reservoir sampling, reinforcement learning (Rebutfi et al.| 2017)), gradient-based selection (Aljundi
et al.,|2019). Another line of research employs existing sampling techniques and focuses on other
aspects such as distillation (Douillard et al., [2020; | Kang et al., 2022)). Architecture-based methods
focus on altering the model’s structure to accommodate new tasks without affecting the performance
of previous tasks. DEN (Yoon et al.,|2018) dynamically expands neurons in the network. On the other
hand, PNN (Rusu et al.,|2016)), DER (Yan et al.| 2021)) generates a new architectural backbone for
each task, and FOSTER (Wang et al.|[2022) distills a previous backbone network and a new backbone
network into a single network applicable to the tasks corresponding to either backbone network.

2.2 CONTINUAL LEARNING IN NEUROSCIENCE

Unlike continual learning with an artificial neural network, biological neural networks do not suffer
from catastrophic forgetting (Morris, [1981). |Aimone et al.| (2010) argue that adult-born neurons
contribute to learning new information while separating previous patterns. In the Morris Water Maze
task, where a rodent navigates toward a hidden escape platform relaying on distal cues, it directly
heads to the platform even in an environment that was learned a few days ago (Morris| |1981}; |Vorhees
& Williams| [2006). Place cells in the hippocampus play a key role in solving the task; they facilitate
self-localization and route replay (Redish & Touretzky, |1998)). Furthermore, they organize spatial
information into separate maps when there is a significant shift in context or other non-spatial or
spatial variables (remapping) (Colgin et al., 2008}; [Fyhn et al., [2007). This allows the rodent to
remember each environment with associated platform location information, which enables it to find
to navigate to the platform directly. Our method is based on MESH (Sharma et al., 2022) which
models the entorhinal-hippocampal circuit.

3  MORRIS WATER MAZE TASK

We have developed a variant of the Morris Water Maze task called the sequential Morris Water Maze
(sWM). This task assesses an artificial rodent’s ability to remember previously explored environments
while quickly learning new ones. In the original task, a rodent is placed in a circular tub filled with
opaque fluid. Distal cues provide spatial information to the rodent. Inside the tank, there is a hidden
platform that the rodent must find to avoid exhaustion from swimming. Once the rodent discovers the
platform, it is placed in a different starting location within the same environment. This process is
repeated multiple times. Then, the rodent is introduced to a different environment where the goal
location and wall cues have changed, and the process repeats. Impressively, after training in multiple
environments, the rodent retains knowledge of previous environments and rapidly navigates toward
the platforms, even when faced with new ones.

For our task, we simplified the setup by using a square tub with distinctive markings on the walls as
cues. These markings help the agent localize itself within the environment. The agent receives these
cues as a vector input, which it uses to make informed navigation decisions. The agent’s objective is
to efficiently locate a hidden platform within the environment. The agent’s movements are limited to
four cardinal directions - north, south, east, or west.

Once the agent has been sufficiently trained in one environment, we introduce a sequential training
regime. In this phase, the agent is exposed to both familiar and unfamiliar environments, with
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Figure 2: Schematic of our model: MESH for Spatial Navigation (MSN) The agent observes a portion
of wall. Observations, along with velocity inputs, are fed into a MESH network that produces grid
cell activations representing the agent’s location. An external memory module stores the grid code of
the goal location. Grid codes of the current location and goal location are fed to the displacement
network, a spatially-invariant convolutional neural network to produce a representation of the relative
goal position. This is fed to a policy that produces actions.

different starting points in each. Varying the starting points adds complexity, and requires the agent
to adapt its strategies based on its current position and the goal location.

Our task provides a comprehensive evaluation of the agent’s cognitive abilities, specifically focusing
on its capacity to retain knowledge from past experiences and its ability to quickly learn from new
ones. These are qualities that biological entities, like rodents, naturally possess and demonstrate with
remarkable efficiency. By replicating these attributes in our artificial agent, we aim to create a system
capable of navigating complex tasks with similar adeptness.

4 MESH

MESH (Sharma et al.,[2022)) is a content-addressable memory (CAM) model based on the architecture
of the neocortical-entorhinal-hippocampal memory circuit in the brain. Content-addressable memory
models are networks that can store vectors (patterns to be memorized) as fixed points of their dynamics,
and thereby recall/reconstruct them from noisy cues. Specifically, given a corrupted version of a
previously encountered pattern, CAM models aim to reconstruct the original un-corrupted ground
truth pattern. CAM models often suffer from a memory cliff problem: when the number of stored
patterns crosses a certain threshold, the model not only fails to learn any new patterns, but also
abruptly fails to recall all previously stored patterns. This is a form of catastrophic forgetting.

MESH addresses the memory cliff problem by constructing a fixed scaffold of pre-defined content-
independent fixed points, which are then used to store the content-laden patterns through hetero-
associative learning, thus mimicking the neocortical-entorhinal-hippocampal circuit to store patterns.
The MESH architecture consists of three layers; features, hidden states, and labels, which biologically
correspond to sensory input, place cell layer, and grid cell layer, respectively. We use grid code as
labels instead of the k-hot labels in MESH. The place cell layer p € {—1,+1}"7 represents an Np
dimensional binary vector, the grid cell layer g € {0, 1}Z i is defined as the concatenation of \;
dimensional one-hot vectors each of which represents a grid module in the brain, and the sensory
layer is N; dimensional.

Before starting experiments, the memory scaffold (grid and place cells sates, as well as the projections
between the grid and place cell layers) is pre-defined. The projection matrix from the grid cell layer
to the place cell layer, W p¢ is randomly generated so that it maintains an injective projection. On
the other hand, the weight matrix from the place cell layer to the grid cell layer is trained by Hebbian
learning such that it associates each active place cell (defining a place code) to the concurrently active
grid cells (defining a corresponding grid code):

=N
War = i D8+ (sign(Wra -g))" M
pn=1

where N is the number of training patterns.

When the agent explores the environment, the weights between sensory inputs and the place cells
(Wgp and W pg) are learned by a pseudoinverse learning rule (Personnaz et al.,|[1985) in an online
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manner (Tapson & van Schaik] 2013)), yielding the following final weights:
Wsp=S-Pf, 2
Wps =P ST, 3)

where S and P are Ny x N and Np x N dimensional matrices of sensory patterns and place patterns
respectively, and { indicates the pesudoinverse.

In summary, given the sensory input s; at time ¢, the corresponding place cell and grid cell activations
are computed through the model dynamics as follows:

p: = Sign(Wps - s;), )
g: = CAN(Wgp - py). 5

where CAN(-) represents the continuous attractor recurrence in the grid layer that is implemented
using a module-wise winner-take-all dynamics. This ensures that the equilibrium grid state is always
a valid grid code i.e., a concatenation of one-hot vectors corresponding to each grid module.

The grid cell layer receives velocity signals (action input a;) for path integration, where the activated
index for each grid cell module is shifted according to the action direction to infer the next grid state.
Once we obtain the next grid code g; 1, its corresponding place code p; is associated with the
sensory input (s;11).

In our implementation, we extend the grid cell modules to 2D space (with A? dimensions for each
one-hot grid cell module) and adapt the path integration described above to suit the proposed 2D
sequential Morris Water Maze environments.

5 MESH FOR SPATIAL NAVIGATION (MSN)

5.1 MOTIVATION AND OVERVIEW

Artificial neural networks, despite their significant advancements, are still prone to a major short-
coming known as ’catastrophic forgetting’ during continual learning. This issue arises when these
networks, after being trained on new tasks, tend to forget the old ones, thereby undermining their
learning continuity. By contrast, natural organisms like rodents and humans showcase a remarkable
resilience to such forgetting. This ability to continuously learn and adapt without forgetting past
learning underscores the sophistication of biological learning systems. A wealth of scientific research
has demonstrated that specific types of neurons, known as grid and place cells, play instrumental roles
in counteracting catastrophic forgetting, particularly in the context of spatial memory. These cells,
predominantly found in the hippocampus, are believed to create cognitive maps of the environment,
helping the organism to navigate and remember spatial information.

Inspired by this, we design a novel method for continual learning based on MESH (Sharma et al.|
2022) called MESH for Spatial Navigation (MSN). To begin with, the MESH converts observations
into grid cell patterns (grid code). This involves representing the acquired data in a structured
format that mimics the function of grid cells in the brain, which are integral to understanding
spatial positioning and navigation. Next, the grid code is inputted into a randomly initialized fixed
Convolutional Neural Network (CNN) to leverage its inherent spatial invariance, ensuring consistent
output regardless of shifting inputs. Finally, an attention module takes the feature vector and retrieves
the appropriate action based on features that have been observed previously.

5.2 ASSOCIATING GRID CODE DISPLACEMENTS WITH MOVEMENTS

We develop a model of how rodents rapidly learn to navigate in new environments. Using a randomly
initialized fixed convolutional neural network (CNN), our model maps the rodent’s current and
goal locations (encoded in a grid code, provided by MESH) to a spatially-invariant representation
of the displacement of the goal relative to its current position. We use an attention mechanism
with the keys being the spatially-invariant representation of the grid code and the values being the
appropriate actions. During the training phase, these key-value pairs are associated and stored within
the mechanism. During the testing phase, the agent’s current state generates a spatially invariant
representation of displacement that is used as the query. This query is then processed through a dot
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product operation with the existing keys in the dictionary. The action associated with the key most
similar to our query is identified and used. This process allows for efficient action selection based
on the spatially invariant displacement of the agent. Our architecture’s spatial invariance allows the
agent to rapidly learn to navigate in unseen environments by only learning associations between new
observations and the grid code (it does not need to learn new associations to actions) as we will
discuss in the next section. Figure [2]illustrates our model architecture. In our appendix Algorithm|T]
illustrates the pseudocode of our model.

5.3 AGENT TRAINING AND ZERO-SHOT POLICY LEARNING IN NOVEL ENVIRONMENTS

The agent under consideration is now equipped with two crucial functionalities: the ability to
counteract catastrophic forgetting and the capacity to facilitate forward transfer to novel environments.
These two attributes together expedite the learning process.

During the initial phase of training, the agent is introduced to a novel environment where it initiates
exploration. Concurrently, it collects observational data, forming associations between these observa-
tions and a grid code via the Memory Scaffold with Heteroassociation (MESH) framework. This
process effectively constructs a memory scaffold, enabling the agent to effectively navigate within a
specific environmental context.

Upon successful identification of the goal within the environment, the agent proceeds to store the
corresponding grid code. This stored grid code, signifying the goal location, serves as a key reference
point in the agent’s cognitive map of the environment.

Subsequently, from multiple locations within the environment, we use our spatially invariant CNN to
compute a representation of the vector displacement between the agent’s location and the pre-stored
goal location. This displacement vector encapsulates the navigational ’distance’ the agent must
traverse to reach the goal from its current position.

These displacement representations are then processed by the attention mechanism. The mechanism
associates displacement with the corresponding movement action required to progress toward the
goal. Storing these associations allows the agent to retrieve the appropriate action when a previously
observed displacement is encountered later.

Upon introduction to a new environment, the agent embarks on a similar exploration phase. Once
the goal is located in this new environment, a significant feature of our system emerges: the policy
requires no further training. The agent first computes a representation of goal displacement using
the spatially invariant CNN. Then, it uses applies the attention mechanism to the stored associations
between displacement representations and movements to retrieve the correct navigational action.

This unique process facilitates zero-shot policy learning in new environments, underscoring the
effectiveness and adaptability of our proposed framework. It exemplifies our agent’s capacity to
rapidly assimilate and apply knowledge, enabling successful navigation in unfamiliar environments.

6 EXPERIMENTS

6.1 EXPERIMENTAL DETAILS

We optimize parameters using Adam (Kingma & Ba, 2015) with a learning rate of 0.001 for 800
episodes for each environment. The maximum number of steps in each episode is set to 100 and the
starting configuration (head direction and coordinates) are different. The environment is a 30 x 30
grid with unique, noise-added step function markings on the walls. The agent has a field of view
(FOV) of 120 degrees (see Figure[Th). We use a public continual learning implementation (Zhou
et al.| |2023) for EWC (Kirkpatrick et al.,2017) and implement our own version of replay buffer
and fine-tuning. For fine-tuning, we sequentially train on each environment. In our replay buffer
implementation, we allocated a fixed buffer size (100 in our case) during the training of the neural
network within a single environment. Throughout this training phase, we stochastically selected
data points for inclusion in our replay buffer. Upon completion of training in one environment, we
initiated a fine-tuning process on our replay buffer by sampling from it, followed by an evaluation in
all previously trained environments. This procedure was replicated across all five environments. We
also examined the sensitivity to replay buffer size, as shown in the supplementary figure.
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Figure 3: Our model avoids catastrophic forgetting. The average success rate of each environment
while training on the following environments of our final model (a) and ours without MESH (b). The
full model rapidly outperforms the one without MESH. In both plots, we use a moving average of 25
points and Gaussian smoothing with o = 10.

Table 1: The average success rate (%) of each environment after training all environments. Our model
maintains high success rates across the entire environment while other methods have bad performance
except for the last environment (Env 5) due to catastrophic forgetting.

Training Scheme | Average | Envl Env2 Env3 Env4 Env5
Fine-Tune 19.5 2.2 3.6 24 0.5 99.9
EWC (Kirkpatrick et al., 2017) 23.2 0.0 0.0 16.0 0.0 100.0
Replay Buffer 4.0 0.0 9.0 0.0 3.0 8.0

Ours | 992 | 992 995 99.0 995 9838

6.2 COMPARISON WITH BASELINES

In Figure [3]in Appendix, our approach (a) exhibits rapid learning in the first environment compared to
the baseline neural network trained in a fine tuning framework shown in (b), where the observations
are fed directly into a neural network and supervised by the correct action. Furthermore, our
method successfully acquires a general, transferable navigation policy from this initial environment,
allowing rapid navigation in subsequent environments without any policy training. This contributes
to the prevention of catastrophic forgetting, as past environments can be recalled after recognizing
the current environment through a few trajectories. In sharp contrast, the baseline experiments
demonstrate an almost immediate onset of catastrophic forgetting upon exposure to a new environment.
This phenomenon is marked by a rapid performance decline following the training of a few new
trajectories, despite the initial successful knowledge transfer and adequate performance in the new
setting.

To address this shortcoming of the baseline, we employed strategies additional strategies in continual
learning such as the use of a replay buffer and Elastic Weight Consolidation (EWC) on the baseline
neural network. Despite these efforts, both the replay buffer strategy and EWC demonstrated signs
of catastrophic forgetting. Figure [] displays the average success rate of all previously trained
environments after training on the environment indicated on the x-axis. Our method consistently
outperforms the continual learning baselines, whereas other methods exhibit degraded performance
as more environments are introduced for training. Table 5] shows our method compared to baselines
on all five environments after all training is complete.

The underwhelming performance of EWC in our tasks appears to stem from the similarity of
inputs across different environments. Despite these similarities, the goal positions differ between
environments. Consequently, similar observations could map to two distinct actions. EWC aims to
maintain the weights of the network to find an overlap between all tasks. However, due to this subtle
complexity in our task design, EWC fails to perform optimally.

7
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Figure 4: The average success rate along incremental stages. Our method clearly outperforms the
continual learning baselines maintaining almost performance while other methods are degraded as
training goes on.

6.3 ABLATION STUDY

The effectiveness of each individual component in our proposed method is analyzed and summa-
rized in Table 2]in Appendix. Overall, the attention module plays a crucial role in achieving high
performance. In fact, when used alone, the attention module achieves a perfect success rate. This
is because when the goal location remains fixed, there is no need to rely on the spatial invariance
provided by CNN (policy). Instead, the grid code can be directly associated with the attention module.
This approach must learn associations between every observation and the corresponding ground-truth
actions, which is memory inefficient and non-transferable to new environments. Furthermore, this
approach becomes vulnerable when there are changes in the goal locations within the same environ-
ment since associations between observations and actions must be re-learned. On the other hand,
when the attention module is combined with MESH without CNN, the performance is significantly
lower. This is likely because MESH lacks spatial invariance, leading to the learning of conflicting
associations between the grid code and actions. As for the CNN without the attention module, it
corresponds to the "Fine-Tuning" model presented in Table 5] The use of MESH allows the CNN to
use different input encoding methods, enhancing its versatility.

In summary, the superior accuracy demonstrated by the encoding network with attention, or by the
attention mechanism in isolation, can primarily be attributed to its perfect memorization capabilities.
This becomes apparent when the attention mechanism undergoes training as it is just storing key-value
pairs. However, in the absence of such training, the model’s performance in future environments
significantly declines, often nearing zero. This reveals a lack of forward transfer or generalization
capabilities in the model.

To verify the effectiveness of spatial invariance from CNN, we train one environment with the fixed
goal location and evaluated it with the changed goal location. Table [3]shows that all three modules
should be combined together to solve the new location with further training. Furthermore, we also test
that using fully-connected layers (FC) instead of CNN cannot solve the problem, which emphasizes
the need to spatial invariance to find unseen goal locations.

Our framework, which includes MESH, the encoding network, and the attention mechanism, is
trained exclusively on one environment and subsequently evaluated on four unseen environments
and one seen environment. Conversely, all other ablated models are trained and then evaluated in
all five environments. We adopted this strategy due to the observation that, without any training
in future environments, each of our ablation study networks merely exhibited random movement,
demonstrating no ability to generalize.
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Table 2: Combined components of MSN allows for zero-shot transfer to new environments. The
last row is our final model. We measure the average success rate (%) across all environments after
training the last environment. The exception is the case of MSN: MESH, the encoding network, and
attention mechanism, where the system is trained in a single environment and subsequently tested
across five different environments.

MESH Policy Attention Training Environment ID \ Success Rate

1,2,3,4,5 100
v 1,2,3,4,5 19.5
v v 1,2,3,4,5 99.7
v v 1,2,3,4,5 0.9
v v 1,2,3,4,5 5.4
v v v 1 | 992

Table 3: Our model allows for adaptation to new goal locations not included during training. The
last row is our final model, MSN. We measure the average success rate (%) of a new goal location
after training the different goal in one environment. The exception is the case of MESH, the
encoding network, and attention mechanism, where the system is trained in a single environment and
subsequently tested across five different environments.

MESH Policy Attention | Success Rate

v 1.6

v 2
v v 1.8

v v 1
v v 5.6
v OVEO) 0.1
v v v | 95

7 DISCUSSION

We introduce a novel neural model, powered by the MESH architecture, which exhibits remarkable
proficiency in rapidly learning and retaining knowledge across a range of environments. Further-
more, it facilitates an impressive transfer to unfamiliar settings. This capability for quick learning,
generalization, and seamless adaptation represents a significant advancement in addressing complex
cognitive tasks—tasks that often pose challenges to conventional machine learning methods but are
effortlessly handled by biological agents.

Experimental results illuminate not only the successful application of structured neural models to
complex real-world tasks but also the potential limitations of traditional deep learning methodologies.
These methods have historically grappled with issues such as rapid learning, generalization, and
the avoidance of catastrophic forgetting. In stark contrast, our model deftly navigates these hurdles,
underscoring the potential benefits of incorporating inductive biases into neural models.

Our findings carry implications for both artificial intelligence research and neuroscience. They
suggest a promising role for structured neural models, inspired by architectures found in the brain, in
tackling complex tasks, thereby pushing the boundaries of what artificial intelligence systems can
achieve. Given these encouraging results, we believe that continued exploration and development of
structured neural models may herald significant advancements in the field. Looking ahead, it would
be beneficial to explore how our proposed model could be further optimized or adapted to other tasks.
Additionally, assessing its scalability and performance in even more complex, dynamic environments
will be a valuable direction for future work.
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A APPENDIX

A.1 DYNAMIC SEQUENTIAL WATER MAZE

In this section, we extend our original task, developing a more complex paradigm called the Dynamic
Sequential Water Maze (dsWM). In the previous model, an agent was positioned within five distinct
environments, each containing a unique goal location. However, the increased complexity of dsWM
necessitates a more advanced set of cognitive capabilities from the agent.

In this version of the task, the agent must now retain the goal position for each environment while
additionally adapting to altered goal positions within a single environment. To elaborate, the agent is
initially trained in one environment, with a fixed goal position. Following this training period, the
goal position is changed twice, yet the agent’s policy is not trained further. The agent is then tested a
further 800 times each in two different goal positions. This procedure is subsequently repeated in
four additional unique environments, without the initial training period.

In our primary study, we had compared our approach to several baseline models. These baseline
models involved training the policy in one environment with a fixed goal position, followed by the
relocation of the goal position within the same environment for testing. The results demonstrated
that our method was unique in its ability to generalize without further training, while the baseline
methods exhibited poor performance.

The Dynamic Sequential Morris Water Maze represents an extension of this original work, offering a
more complex task and demanding greater cognitive adaptability from the agent. This enhanced task
complexity will allow us to analyze the capability of our method further. Figure [6] shows that our
MSN is robust against all inter- and intra-environment changes.
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Algorithm 1 Pseudocode for MSN

1: agent = Agent() > Initialize agent
2: attention = Attention() > Initialize attention block
3: mesh = MESH(A, Npiace celis) > Initialize the mesh, A: set of grid periods for grid cells
4: all_obs = empty set() > Create an empty set to store all observations
5: for each env in envs do > Loop through each environment
6: goal_state = null > Initialize goal as null
7: for trial_number in range(n_trajectories) do > Loop for a fixed number of trajectories
8: if observation is associated with grid cell then
9: found_where_i_am = True

10: else

11: found_where_i_am = False

12: end if

13: for each step in range(L) do > L: max trajectory length

14: obs = env.sensory_input() > Get the current sensory input

15: if trial_number = 0 and not found_where_i_am then

16: found_where_i_am = True

17: mesh.remap_grid(obs) > Remap to a randomly set grid state

18: grid_state = mesh.get_grid_activations()

19: end if

20: if obs in all_obs and not found_where_i_am then

21: found_where_i_am = True

22: mesh.remap_grid(obs) > Remap to set grid state to a visited location

23: grid_state = mesh.get_grid_activations()

24: end if

25: if found_where_i_am then

26: mesh.update_weights(obs) > Associate observation with the current grid state

27: all_obs.add(obs)

28: end if

29: if found_where_i_am and goal is not null then

30: displacement = fixedCNN(goal_state, grid_state) > Calculate displacement

31: if in the first env then

32: action = Attention.associate(displacement, ground_truth_action) > Learn

Association between displacement and action

33: else

34: action = Attention.retrieve(displacement)

35: end if

36: else

37: action = random_action() > Randomly wander until finding the goal and location

38: end if

39: agent.step(action) > Agent takes a step in the env

40: mesh.update_grid(action) > Update the grid state based on the action

41: if env.reached_goal() then

42: goal_state = grid_state > Update the goal if the agent reached it

43: break

44: end if

45: end for

46: end for

47: end for
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Figure 5: Our method shows robustness against all inter- and intra- environment changes. The average
success rate of each environment while training on the following environments of our final model.
Each dotted line indicates a goal position change. We use a moving average of 25 points and gaussian
smoothing with o = 10.

A.2 REPLAY BUFFER

In order to assess the sensitivity of our baseline replay buffer, we conducted tests using a variety
of replay buffer sizes, mirroring our original experimental setup. Initially, the network was trained
in one environment and fine-tuned using 100 randomly sampled data points from the replay buffer.
Subsequent testing was performed on all previously trained environments. The data obtained from
these tests reveals no correlation between replay buffer size and performance in the latter environments,
suggesting catastrophic forgetting.

®

Figure 6: Each graph (A-E) depicts the model’s performance accuracy in a specific environment (1-5).
This accuracy is evaluated following initial training in a new environment and subsequent refinement
via the replay buffer. The lines within each graph correspond to varying sizes of the replay buffer.
Each data point on these lines represents the model’s accuracy within the represented environment,
post-training in the preceding environment.

A.3 LARGE MORRIS WATER MAZE

To assess the adaptability of our system, we doubled the size of our Morris Water Maze and observed
a minor performance degradation. This test was conducted using the same number of time steps as in
the smaller maze configuration. Despite the reduction in search time relative to the increased area,
the system still maintained a high level of performance.

Table 4: The average success rate (%) of each environment after training all environments.

Training Scheme | Average | Envl Env2 Env3 Env4 Env5

MSN (15 x 15) 99.2 99.2 995 99.0 995 988
MSN (30 x 30) 93.1 945 9425 8725 9519 944
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A.4 MORE BASELINES

To benchmark against contemporary state-of-the-art methods, we selected four additional techniques:
Dark Experience Replay (Buzzega et al.,[2020), Dark Experience Replay ++ (Buzzega et al., 2020),
A-GEM (Chaudhry et al.l 2019)), and Exerpeicen Replay (Rolnick et al.|[2019).

In these benchmarks, we conducted tests over 100 epochs. For each epoch, the network is trained
on 200 trajectories. Each trajectory was limited to a maximum of 100 time steps, after which we
deemed it a timeout. Success was defined as the agent locating the goal within these 100 time steps.
In methods utilizing a buffer, we set its capacity to 200. For the DER++ algorithm, we adhered to the
optimal parameters recommended in the paper: « and /3 both set at 0.5. All tested methods employed
Cross Entropy loss and a learning rate of 0.001. Post-training in all five environments, we assessed
the accuracy of each on the previous environments. As a point of comparison, we introduce our
method wherein the action-selection network is trained exclusively in the first environment and then
subjected to zero-shot testing in the remaining environments.

Table 5: The average success rate (%) of each environment after training all environments. Our model
maintains high success rates across the entire environment while other methods have bad performance
except for the last environment (Env 5) due to catastrophic forgetting.

Training Scheme | Average | Envl Env2 Env3 Env4 Env5
Fine-Tune 19.5 22 3.6 24 0.5 99.9
EWC (Kirkpatrick et al.,[2017) 23.2 0.0 0.0 16.0 0.0 100.0
Replay Buffer 4.0 0.0 9.0 0.0 3.0 8.0
DER (Buzzega et al., [2020) 2.05 0.0 7.69 2.56 0.0 0.0
DER++ (Buzzega et al.,2020) 3.39 0.0 3.85 0.0 11.54 1.54
A-GEM (Chaudhry et al.,|2019) 7.31 0.0 7.69 15.38 13.46 0.0
ER (Rolnick et al.} 2019) 16.92 23.08 2692 30.77 3.85 0.0
Ours(MSN) ‘ 99.2 ‘ 99.2 99.5 99.0 99.5 98.8

A.5 COMPUTING INFRASTRUCTURE

We conducted our experiments on a high-performance computing system. The system was equipped
with an AMD EPYC 7713 64-Core Processor, 32 GB of RAM and a Nvidia RTX 2080 ti GPU.
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