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Abstract

Recent studies demonstrated that large lan-001
guage models (LLMs) can excel in many tasks002
via in-context learning (ICL). However, recent003
works show that ICL-trained models tend to004
produce inaccurate results when presented with005
adversarial inputs. In this work, we investi-006
gate whether augmenting ICL with natural lan-007
guage explanations (NLEs) improves the ro-008
bustness of LLMs on adversarial datasets cov-009
ering natural language inference and paraphras-010
ing identification. We prompt LLMs with a011
small set of human-generated NLEs to produce012
further NLEs, yielding more accurate results013
than both a zero-shot-ICL setting and using014
only human-generated NLEs. Our results on015
five popular LLMs (GPT3.5-turbo, LLaMA2,016
Vicuna, Zephyr, and Mistral) show that our ap-017
proach yields over 6% improvement over base-018
line approaches for eight adversarial datasets:019
HANS, ISCS, NaN, ST, PICD, PISP, ANLI,020
and PAWS. Furthermore, previous studies have021
demonstrated that prompt selection strategies022
significantly enhance ICL on in-distribution023
test sets. However, our findings reveal that024
these strategies do not match the efficacy of025
our approach for robustness evaluations, result-026
ing in an accuracy drop of 8% compared to the027
proposed approach.028

1 Introduction029

The landscape of AI has recently undergone a sig-030

nificant transformation with the advent of large lan-031

guage models (LLMs). These models can produce032

accurate predictions on test data after observing033

a small number of demonstrations. Remarkably,034

they can achieve this based on examples provided035

directly in their inputs, without explicit retraining036

or fine-tuning – this learning paradigm is referred037

to as in-context learning (ICL, Brown et al., 2020;038

Rae et al., 2021). However, ICL struggles to exe-039

cute complex tasks, such as arithmetic, common-040

sense, and symbolic reasoning (Rae et al., 2021).041

To improve the effectiveness of ICL in solving tasks 042

requiring complex reasoning, Wei et al. (2022b) 043

drew inspiration from natural language explana- 044

tions (NLEs) to introduce a method denoted as the 045

Chain-of-Thought (CoT) prompting. CoT prompt- 046

ing involves prompting a model with a sequence of 047

intermediate steps or reasoning processes to guide 048

it towards generating more accurate answers.1 In 049

this work, we denote ICL equipped with NLEs as 050

X-ICL. Despite its simplicity, X-ICL has advanced 051

the performance of ICL across a broad range of 052

complex reasoning tasks (Wei et al., 2022b; Wang 053

et al., 2023b). 054

Similarly to supervised learning, ICL tends to 055

be vulnerable to adversarial examples (Wang et al., 056

2023a). Previous research shows that improving 057

the robustness of fine-tuned models against such 058

adversarial datasets is possible by fine-tuning with 059

task-relevant NLEs (Chen et al., 2022; Ludan et al., 060

2023). Inspired by this, we hypothesize that in- 061

corporating NLEs into ICL could also improve the 062

robustness of LLMs against adversarial examples. 063

To this end, we evaluate the robustness of X-ICL 064

on eight adversarial datasets: HANS, ISCS, NaN, 065

ST, PICD, PISP, ANLI, and PAWS. 066

Moreover, the effectiveness of X-ICL so far re- 067

lies on the availability of human-written NLEs (Wei 068

et al., 2022b), which usually require domain- 069

specific knowledge, making them hard to collect. 070

However, the advent of LLMs uncovered a range 071

of possibilities where LLMs can assist human an- 072

notators (Bang et al., 2023; Guo et al., 2023). Mo- 073

tivated by this development, we investigate using 074

three LLMs, namely GPT3.5-turbo, LLaMA2, and 075

Vicuna, to generate NLEs for ICL. We then use hu- 076

man annotators to assess the quality of 200 human- 077

written and LLM-generated NLEs. As shown in 078

1CoTs and NLEs are similar concepts, as they both de-
scribe the reasoning process behind a decision in natural lan-
guage; as NLEs were introduced before CoTs (Camburu et al.,
2018; Hendricks et al., 2018), we use the former term.
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Figure 1: Human evaluation on 100 NLEs generated
by GPT3.5-turbo (labeled as ChatGPT NLEs) and 100
NLEs generated by human annotators (labeled as Hu-
man NLEs). The satisfaction scores span from 1 (ex-
tremely dissatisfied) to 5 (extremely satisfied).

Figure 1, most annotators (3 out of 4) prefer NLEs079

produced by ChatGPT (GPT3.5-turbo) over those080

crafted by humans.2 This observation further mo-081

tivates us to evaluate models trained with LLM-082

generated NLEs.083

We then evaluate the improvement in the robust-084

ness of X-ICL in three settings – in two of the085

settings, an LLM is prompted with LLM-generated086

NLEs (generated in zero-shot-ICL and few-shots-087

ICL settings, and in the last setting, the LLM is088

prompted with human-generated NLEs. In the089

evaluation, we consider five popular LLMs (i.e.,090

Mistral (Jiang et al., 2023), Zephyr (Tunstall et al.,091

2023), Vicuna (Chiang et al., 2023), LLaMA2 (Tou-092

vron et al., 2023) and GPT3.5-turbo) on eight ad-093

versarial datasets. Our experimental results suggest094

that X-ICL produces more accurate results than ICL095

and, moreover, that NLEs generated by ChatGPT096

in a few-shots-ICL setting (by prompting ChatGPT097

with human-generated NLEs) significantly improve098

over the ICL baseline (+6%) for the majority of the099

considered datasets and LLMs. Thus, our find-100

ings suggest that an integrated approach, combin-101

ing human inputs with LLMs, can provide a more102

effective solution than utilizing either human an-103

notators or LLMs in isolation. Finally, we show104

that while prompt selection strategies (i.e., retriev-105

ing relevant training examples) can significantly106

improve the accuracy of ICL on in-distribution test107

sets (Gupta et al., 2023; Levy et al., 2023; Ye et al.,108

2023), they are less effective on adversarial datasets109

when compared to X-ICL methods, with our ap-110

proach (fs-ICL) outperforming them by more than111

8% in accuracy.112

2More details are available in Appendix D.1.

2 Related Work 113

Learning with Explanations. There has been a 114

surge of work on explaining predictions of neural 115

NLP systems, from highlighting decision words 116

(Ribeiro et al., 2016; Alvarez-Melis and Jaakkola, 117

2017; Serrano and Smith, 2019) to generating 118

NLEs (Camburu et al., 2018; Narang et al., 2020; 119

Wiegreffe and Marasovic, 2021). Our work con- 120

centrates on the latter category, namely, the self- 121

generation of NLEs for justifying model predic- 122

tions. Rajani et al. (2019) propose a two-stage 123

training process to improve the prediction perfor- 124

mance for commonsense reasoning tasks. In their 125

work, the first stage revolves around generating 126

NLEs, which are then used to inform the label pre- 127

diction training process in the second stage. Alter- 128

natively, one can leverage a multi-task framework 129

to generate NLEs and labels simultaneously (Hase 130

et al., 2020). Li et al. (2022) propose advancing the 131

reasoning abilities of smaller LMs by leveraging 132

NLEs generated by GPT-3 (Brown et al., 2020). 133

NLEs have also vastly been employed beyond NLP, 134

such as in computer vision (Hendricks et al., 2018; 135

Zellers et al., 2019; Majumder et al., 2022), in the 136

medical domain (Kayser et al., 2022), and for self- 137

driving cars (Kim et al., 2018), with some works 138

showing improved task performance when train- 139

ing with NLEs (Kayser et al., 2021). However, 140

these studies primarily concentrate on supervised 141

fine-tuning approaches, which is different from the 142

focus of this work, i.e., ICL. 143

Prompting with NLEs. Despite its remarkable 144

performance on several downstream tasks (Brown 145

et al., 2020), ICL can still produce inaccurate re- 146

sults in tasks requiring reasoning abilities, such 147

as arithmetic, logical, and commonsense reason- 148

ing tasks (Rae et al., 2021; Srivastava et al., 2022). 149

To improve the reasoning abilities of LLMs, Wei 150

et al. (2022b) introduced CoT prompting. This 151

technique prompts a LM to generate a sequence of 152

concise sentences that imitate the reasoning pro- 153

cess an individual might undergo to solve a task 154

before providing the ultimate answer, essentially 155

to provide a NLE/CoT before generating the final 156

answer. Furthermore, Wang et al. (2023b) propose 157

to improve CoT prompting by combining multiple 158

diverse reasoning paths generated by LLMs, im- 159

proving the accuracy of a greedy CoT prompting 160

approach. However, these aforementioned methods 161

need human-written NLEs as CoT in the prompts. 162

Instead, our LLM-based zero-shot-ICL regime har- 163
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nesses the power of an LLM to synthesize NLEs164

without human-written NLEs.165

Learning Robust Models. Several works show166

that NLP models are prone to performance degra-167

dation when presented with adversarial examples,168

a consequence of inherent artifacts or biases within169

the annotation of the training dataset (Naik et al.,170

2018; McCoy et al., 2019; Nie et al., 2020; Liu171

et al., 2020b). Various strategies have been pro-172

posed to mitigate biases within NLP models, e.g.,173

initially training a weak model to recognize superfi-174

cial features, subsequently enforcing a target model175

to learn more robust and generalizable characteris-176

tics (He et al., 2019; Clark et al., 2019; Karimi Ma-177

habadi et al., 2020; Yaghoobzadeh et al., 2021;178

Korakakis and Vlachos, 2023). Additionally, data179

augmentation presents another viable option (Min-180

ervini and Riedel, 2018; Wu et al., 2021, 2022).181

Moreover, studies have shown that supervised fine-182

tuning of models using rationales or human-written183

NLEs can significantly enhance the models’ re-184

silience against adversarial datasets (Chen et al.,185

2022; Stacey et al., 2022; Kavumba et al., 2023;186

Ludan et al., 2023). Unlike them, our research187

examines the robustness of X-ICL across eight188

adversarial datasets, highlighting a novel finding:189

NLEs generated by LLMs surpass those produced190

by human annotators in enhancing model robust-191

ness. In addition, unlike human-written NLEs,192

those produced by LLMs exhibit greater scalability193

and adaptability across diverse tasks.194

3 Methodology195

This section first outlines the workflow of X-ICL.196

Then, the focus shifts to detailing how an LLM can197

generate an NLE for a labeled instance.198

3.1 ICL with NLEs (X-ICL)199

LLMs can provide significantly more accurate200

predictions across various reasoning tasks when201

supplied with human-written NLEs (Wei et al.,202

2022b,a).203

In X-ICL, given an instance, the task is to gen-204

erate the most likely prediction and NLE for that205

instance. More formally, in X-ICL, given an un-206

labeled instance x′ ∈ X and a set of training ex-207

amples (xi, ri,yi), where xi ∈ X is an instance,208

yi ∈ Y is its label, and ri ∈ E is the corresponding209

explanation, the task is to identify the most likely210

label and explanation for x′: 211

argmax
(r′,y′)∈E×Y

Pθ

(
(r′,y′) | (xi, ri,yi)

k
i=1, (x

′)
)
, 212

where θ denotes the model parameters, and X , Y , 213

and E are the sets of all possible instances, labels, 214

and explanations, respectively. 215

The objective of X-ICL is to maximize the like- 216

lihood of generating the optimal NLE, r′ ∈ E , 217

and its corresponding label, y′ ∈ Y , given a 218

demonstration set (xi, ri,yi)
k
i=1 and an unlabeled 219

instance x′. The most likely combination of label 220

y′ and explanation r′ is generated by an LLM, after 221

prompting it with the training examples an NLEs 222

(xi, ri,yi)
k
i=1 and the unlabeled instance x′. 223

3.2 Generating NLEs with LLMs 224

In existing X-ICL works, human-written NLEs r 225

were used for the instances within the demonstra- 226

tion set. Instead, in this work, we opt for the NLEs 227

synthesized via LLMs. This preference is driven 228

by noting that NLEs produced by LLMs tend to 229

receive higher approval ratings from human evalu- 230

ators, as indicated in Figure 1. We argue that this 231

preference will boost the performance of X-ICL. 232

The methods utilized for the generation of NLEs 233

are outlined below. 234

Few-shot prompting for NLEs Our methodol- 235

ogy, also shown in Figure 2, initiates by leveraging 236

a set of labeled instances, each accompanied by 237

a human-crafted NLE, to prompt LLMs. The pri- 238

mary aim is to encourage the LLMs to generate a 239

correct NLE (i.e., the ground-truth arguments) for 240

the correctly predicted answer for a test instance. 241

The most likely NLE is then generated as follows: 242

argmax
r′∈E

Pθ(r
′ | s, (xj ,yj , rj)

m
j=1, (x

′,y′)), (1) 243

where s denotes a meta-prompt representing the 244

task. More details on the meta-prompt are available 245

in Appendix B. 246

Zero-shot prompting for NLEs We further ex- 247

tend our approach to situations where human- 248

written NLEs are absent, which is generally more 249

prevalent across most datasets. In this context, 250

LLMs are prompted to generate an NLE for a la- 251

beled instance devoid of any pre-existing examples 252

with NLEs. The objective bears a resemblance to 253

Equation (1), albeit without the inclusion of the 254

demonstration set (xj ,yj , rj)
m
j=1. 255
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Task Description
===============
Premise: A boy peers out of an open window.
Hypothesis: The boy looks out the window.
Label: entailment
Reason: The boy peers out of a window, so the boy 
looks out the window.
………
Premise: A man in a jean jacket is sitting outside 
painting.
Hypothesis: There is a man outside.
Label: entailment
Reason:

The premise states that a man in a jean jacket is 
sitting outside painting, which implies that there is 
a man outside. Therefore, the hypothesis is true 
based on the information provided in the premise.

Task Description
===============
Premise: A man in a jean jacket is sitting outside 
painting.
Hypothesis: There is a man outside.
Label: entailment
Reason:

The hypothesis, "There is a man outside," logically 
follows from the premise, "A man in a jean jacket is 
sitting outside painting." The presence of a man in 
a jean jacket sitting outside painting implies the 
existence of a man outside, thus establishing an 
entailment relationship between the premise and 
hypothesis.

Step 1A: Few-shot prompting for explanation

Step 1B: Zero-shot prompting for explanation

Step 2: Few-shot in-context learning with NLEsTask Description
===============
Premise: A man in a jean jacket is sitting outside 
painting.
Hypothesis: There is a man outside.
Reason: The premise states that a man in a jean 
jacket is sitting outside painting, which implies that 
there is a man outside. Therefore, the hypothesis is 
true based on the information provided in the premise.
Label: entailment
………
Premise: Children are playing in the street with a toy .
Hypothesis: The children have a ball .

Reason: The premise mentions that children are 
playing with a toy, but it does not specify what type 
of toy they are playing with. The hypothesis 
suggests that the children have a ball, which is a 
possibility but cannot be confirmed or denied 
based on the given information. Therefore, the 
label assigned is neutral.
Label: neutral

or

Figure 2: Illustrction of using LLM-generated NLEs for ICL: (1) prompt an LLM in a few-shot or zero-shot manner
to generate NLEs for new instances; (2) prompt LLMs using ICL with the NLEs generated in step 1.

Notably, the NLEs generated by the aforemen-256

tioned approaches can be seamlessly integrated257

into the existing X-ICL framework as delineated258

in Section 3.1. We primarily focus on using GPT-259

3.5 (more specifically, GPT3.5-turbo-0613 – we260

will refer to this model as ChatGPT) to synthesize261

NLEs. Given that LLMs, such as ChatGPT, may262

have been trained on datasets incorporating NLEs,263

it challenges the assumption of genuine zero- or264

few-shot learning scenarios. To clarify terminol-265

ogy and avoid confusion, we redefine ‘zero-shot266

learning’ as the absence of demonstration sets, and267

‘few-shot ICL’ as learning that utilizes a demon-268

stration set. Thus, we denote the aforementioned269

two approaches as fs-X-ICL (ChatGPT) and zs-270

X-ICL (ChatGPT), respectively. In addition, we271

explore the application of two other widely used272

open-source LLMs for generating NLEs. Detailed273

results of these experiments are provided in Ap-274

pendix C.275

4 Experiments276

We conduct a series of experiments to assess the277

performance of our proposed X-ICL framework.278

4.1 Experimental Setup 279

Tasks and datasets We consider the Natural Lan- 280

guage Inference (NLI) and paraphrasing identifi- 281

cation tasks as our testbed. To ascertain the ro- 282

bustness of LLMs when employing the proposed 283

approach, we evaluate it across eight adversarial 284

datasets. For the NLI task, we include HANS, 285

ISCS, ST, PICD, PISP, NaN, and ANLI. The first 286

five datasets (HANS, ISCS, ST, PICD, PISP) are 287

from Liu et al. (2020b), while NaN and ANLI 288

are sourced from Truong et al. (2022) and Nie 289

et al. (2020), respectively. Regarding the paraphras- 290

ing identification task, we use the PAWS-QQP (or 291

PAWS) dataset (Zhang et al., 2019). 292

Additionally, the SNLI dataset (Bowman et al., 293

2015) and QQP (Wang et al., 2018), which are 294

non-adversarial, are employed for a comparative 295

purpose. The details of these datasets are provided 296

in Appendix A. 297

Language models and prompts The evaluation 298

of our approach is undertaken across five prominent 299

LLMs: (1) Mistral, (2) Zephyr, (3) Vicuna, (4) 300

LLaMA2, and (5) GPT3.5-turbo (version 0613). 301

Specifically, the Mistral and Zephyr models have 302
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Models Methods Natural Language Inference Paraphrasing Avg.
SNLI HANS ISCS NaN ST PICD PISP ANLI QQP PAWS

M
is

tr
al

7B
ICL 59.8 54.0 51.9 55.0 44.4 58.2 23.0 39.8 69.9 68.3 50.3

±3.4 ±2.2 ±1.4 ±1.3 ±1.7 ±2.6 ±2.6 ±4.6 ±1.7 ±2.7

X-ICL (Human) 60.0 56.0 54.7▽ 58.6▽ 51.7▼ 56.9 35.8▼ 43.9▼ 69.9 66.4 53.5
±2.0 ±2.9 ±2.5 ±2.9 ±4.0 ±3.3 ±6.7 ±1.7 ±0.8 ±1.5

zs-X-ICL (ChatGPT) 56.7 51.8 47.7 55.9 44.9 56.7 25.1 28.8 67.3 64.7 46.4
±6.3 ±5.1 ±3.5 ±5.0 ±4.8 ±6.6 ±8.9 ±4.4 ±2.3 ±3.1

fs-X-ICL (ChatGPT) 61.8 58.2▼ 57.2▼ 62.4▼ 55.2▼ 59.2 47.6▼ 46.9▼ 70.3 72.5▽ 57.1
±3.1 ±2.5 ±2.2 ±2.6 ±1.5 ±2.7 ±1.8 ±2.3 ±1.1 ±1.3

Z
ep

hy
r

7B

ICL 67.1 71.0 63.4 65.7 60.5 64.8 48.4 47.1 76.9 57.7 59.8
±3.4 ±1.8 ±1.2 ±1.8 ±1.0 ±1.5 ±1.4 ±1.6 ±0.4 ±1.1

X-ICL (Human) 72.4▼ 64.3 58.3 62.0 57.0 60.6 52.0 49.4 75.8 61.4▽ 59.3
±4.3 ±6.7 ±5.5 ±5.3 ±6.3 ±9.7 ±6.7 ±3.0 ±1.7 ±2.3

zs-X-ICL (ChatGPT) 67.2 72.7 60.4 64.0 61.4 64.1 50.8 40.9 74.7 59.1 58.1
±3.9 ±2.6 ±5.3 ±5.2 ±5.7 ±5.4 ±5.2 ±3.8 ±1.8 ±2.4

fs-X-ICL (ChatGPT) 74.2▼ 77.4▼ 67.0 67.7 69.3▼ 70.0▼ 65.6▼ 52.1▽ 77.3 61.5▽ 65.5
±3.6 ±2.2 ±1.6 ±2.3 ±1.5 ±2.1 ±2.5 ±2.8 ±0.9 ±1.0

V
ic

un
a

30
B

ICL 65.2 69.4 62.7 61.4 58.7 67.1 50.9 50.0 81.8 69.7 61.4
±2.7 ±1.2 ±0.9 ±3.5 ±0.8 ±1.6 ±1.3 ±2.6 ±0.5 ±2.6

X-ICL (Human) 67.8 62.9 60.9 64.2 57.3 63.7 55.0 48.2 77.4 63.4 59.8
±3.2 ±3.7 ±2.2 ±1.2 ±2.0 ±7.2 ±5.8 ±4.7 ±2.8 ±3.5

zs-X-ICL (ChatGPT) 64.2 61.4 64.9 60.2 61.7 57.9 51.8 49.7 72.1 61.8 58.8
±5.9 ±7.7 ±2.3 ±4.0 ±3.1 ±8.7 ±8.7 ±3.6 ±3.2 ±4.9

fs-X-ICL (ChatGPT) 65.0 74.5▽ 65.5▽ 66.3▽ 64.8▼ 61.6 65.9▼ 57.5▼ 78.6 70.0 65.4
±3.1 ±4.4 ±1.6 ±1.1 ±1.8 ±8.9 ±4.7 ±1.3 ±1.7 ±3.3

L
L

aM
A

2
70

B

ICL 69.3 65.7 63.1 61.5 58.8 67.6 48.5 54.2 80.8 44.5 60.3
±1.2 ±3.4 ±1.6 ±2.3 ±4.4 ±3.0 ±7.3 ±2.9 ±0.6 ±2.9

X-ICL (Human) 73.0▼ 65.2 59.6 62.4 55.7 64.3 50.4 49.0 74.5 42.6 57.7
±3.1 ±4.6 ±4.4 ±3.3 ±3.9 ±2.3 ±5.1 ±2.6 ±3.0 ±3.3

zs-X-ICL (ChatGPT) 55.4 64.0 37.4 58.1 47.7 53.5 44.2 35.8 69.1 37.8 48.1
±5.5 ±6.3 ±6.0 ±5.4 ±5.4 ±8.5 ±8.7 ±0.8 ±4.1 ±4.8

fs-X-ICL (ChatGPT) 74.2▼ 73.3▼ 57.7 65.9▽ 63.1▽ 70.6▽ 55.8▼ 59.2▼ 77.6 46.5▽ 63.6
±2.5 ±8.5 ±1.2 ±3.2 ±3.7 ±6.5 ±5.9 ±1.6 ±0.6 ±1.9

G
PT

3.
5-

tu
rb

o

ICL 71.9 72.4 64.4 70.0 62.1 64.0 51.2 56.1 81.5 42.9 62.4
±1.4 ±0.6 ±0.9 ±0.8 ±1.6 ±3.1 ±0.4 ±2.0 ±0.3 ±2.8

X-ICL (Human) 78.0▼ 71.0 69.0▽ 70.5 65.7▽ 72.7▼ 59.3▽ 59.8▽ 76.0 53.4▼ 66.2
±1.7 ±1.7 ±1.2 ±2.2 ±1.0 ±1.3 ±1.9 ±2.3 ±3.9 ±5.3

zs-X-ICL (ChatGPT) 71.9 71.6 68.4▽ 70.2 67.6▽ 67.7▽ 61.7▼ 60.4▼ 80.4 51.2▼ 66.0
±2.7 ±0.8 ±0.3 ±0.0 ±1.3 ±4.1 ±1.9 ±2.0 ±0.8 ±3.1

fs-X-ICL (ChatGPT) 75.5▽ 76.0▼ 74.9▼ 73.1▼ 73.3▼ 76.9▼ 75.5▼ 59.6▽ 79.0 54.0▼ 69.7
±2.8 ±2.0 ±0.1 ±1.4 ±0.4 ±0.4 ±3.0 ±1.8 ±1.7 ±2.6

Table 1: Accuracy of multiple LLMs using (1) standard ICL without NLEs, (2) X-ICL with human-written NLEs:
X-ICL (Human), (3) X-ICL with ChatGPT-generated NLEs in a zero-shot scenario: zs-X-ICL (ChatGPT), (4)
X-ICL with ChatGPT-generated NLEs in a few-shot scenario: fs-X-ICL (ChatGPT). The best performance for
each task within a model is shown in bold. Significance testing was assessed via an unequal variances t-test in
comparison with ICL: ▼ (resp. ▽) represents a p-value lower than 10-3 (resp. 10-1). The results of ANLI are the
average of ANLI R1, R2, and R3.

7B parameters each. For Vicuna and LLaMA2, we303

use the 30B and 70B-chat versions, respectively.304

We perform all experiments in an 8-shot setting,305

wherein each experiment is conducted four times in-306

dependently, thereby drawing 32 unique instances307

from the training-associated datasets as follows.308

Specifically, for NLI datasets (except ANLI, which309

includes its own training set and NLEs) we ad-310

here to the established methodology of using the311

e-SNLI dataset as the demonstration set, as sug-312

gested by Liu et al. (2020b). The e-SNLI dataset is313

a modified version of SNLI, where each instance314

is annotated with NLEs written by humans. In315

the case of the QQP and PAWS datasets, the QQP316

dataset is utilized as the demonstration set. As no317

NLEs are available, we contribute the correspond- 318

ing NLEs (refer to Appendix F). 319

Regarding the generation of NLEs via few-shot 320

learning described in section 3.2, the methodology 321

involves selecting a random instance from each la- 322

bel category within the training dataset to form the 323

demonstration set. Consequently, the demonstra- 324

tion set comprises three instances for the e-SNLI 325

dataset and two for the QQP dataset. 326

Baselines In addition to the proposed method, 327

our study investigates two baselines for compara- 328

tive analysis. The first baseline uses standard ICL 329

without NLEs. The second employs human-written 330

NLEs within the X-ICL process, referred to as X- 331

ICL (Human). 332
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4.2 Main Results333

This section examines ICL and X-ICL across the334

studied datasets using Mistral, Zephyr, Vicuna,335

LLaMA2, and GPT3.5-turbo. The results are sum-336

marized in Table 1.337

The results demonstrate a consistent outcome338

across both scenarios: with and without the appli-339

cation of X-ICL. As the capabilities of the models340

increase, there is a noticeable improvement in av-341

erage accuracy. This progression is evident when342

comparing the least potent model, exemplified by343

Mistral, to the most advanced one, represented by344

GPT3.5-turbo.345

Table 1 demonstrates that X-ICL (Human) yields346

a better predictive accuracy than ICL across all347

five LLMs assessed using the SNLI dataset, with348

enhancements of up to 6.1%. This performance349

elevation is, however, limited to the Mistral and350

GPT-3.5-turbo models when subjected to all ad-351

versarial NLI test sets. The advantage of X-ICL352

(Human) relative to ICL diminishes when applied353

to the QQP and PAWS datasets.354

For fs-X-ICL (ChatGPT), both Mistral and355

Zephyr platforms demonstrate a significant perfor-356

mance advantage in all evaluated tasks, outperform-357

ing ICL and X-ICL (Human) by at least 5.7% and358

3.6%, respectively. Despite the notable improve-359

ment on ICL when employing GPT3.5-turbo in360

comparison to other LLMs, fs-X-ICL (ChatGPT)361

offers substantially additional gains, with an in-362

crease in absolute accuracy between 11%-24% on363

tasks such as ISCS, ST, PICD, PISP, and PAWS.364

This suggests that X-ICL enhances LLM effective-365

ness on in-distribution test sets and increases their366

robustness against adversarial test sets.367

Remarkably, despite the predominant prefer-368

ence of human evaluators for NLEs generated by369

GPT3.5 over those written by humans, zs-X-ICL370

(ChatGPT) consistently produces less accurate re-371

sults than X-ICL (Human) across all models under372

study. The exception to this trend is GPT3.5-turbo,373

where a tie is observed. Furthermore, it appears374

counter-intuitive that zs-X-ICL (ChatGPT) is out-375

performed by ICL for 4 out of the 5 LLMs analyzed,376

especially on LLaMA2. We conduct a systematic377

analysis in section 4.4 to understand this apparent378

discrepancy between human preferences and LLM379

performance.380

In light of the encompassment of diverse ro-381

bustness scenarios by the seven adversarial NLI382

datasets, our primary focus henceforth will be the383

Models Methods SNLI AdvNLI ∆

Z
ep

hy
r

ICL 67.1 57.2 9.9
fs-X-ICL (ChatGPT) 74.2 63.7 10.5
COSINE 77.0 55.6 21.4
BM25 70.1 53.7 16.4
SET-BSR 79.9 59.7 20.2

G
PT

3.
5-

tu
rb

o ICL 71.9 61.4 10.5
fs-X-ICL (ChatGPT) 75.5 69.8 5.6
COSINE 75.0 58.1 16.9
BM25 71.4 56.0 15.4
SET-BSR 77.4 59.5 17.9

Table 2: Performance of ICL, fs-X-ICL (ChatGPT) and
three data selection approaches on SNLI and AdvNLI
(i.e., seven adversarial test sets). ∆ indicates the differ-
ence between SNLI and adversarial NLI test sets. We
report the average performance over all adversarial test
sets.

examination of these NLI datasets. 384

4.3 Impacts of NLEs 385

Our research has demonstrated that using NLEs 386

generated by GPT3.5 can substantially enhance the 387

performance of X-ICL. To provide a more compre- 388

hensive understanding of the NLEs’ influence, we 389

conducted two investigations, presented below. 390

Data selection vs. X-ICL. The effectiveness of 391

ICL in LLMs is closely linked to the quality of 392

demonstrations provided, as these demonstrations 393

are critical for the model’s ability to understand and 394

address the test instances (Zhao et al., 2021; Liu 395

et al., 2022; Lu et al., 2022). Consequently, con- 396

siderable research has focused on developing data 397

selection techniques to optimize the curation of ICL 398

demonstrations from relevant candidate data pools, 399

aiming to enhance their alignment with the test in- 400

stances (Gupta et al., 2023; Levy et al., 2023; Ye 401

et al., 2023). While these approaches have proven 402

to be highly effective on in-distribution test sets, 403

their performance on adversarial test sets remains 404

uncertain, as these sets have the potential to mis- 405

guide the selection algorithms. 406

In this context, we compare the performance 407

of fs-X-ICL (ChatGPT) to three prevalent data se- 408

lection techniques: COSINE, BM25, and SET- 409

BSR. COSINE incorporates sentence embed- 410

dings (Reimers and Gurevych, 2019) to identify the 411

most relevant demonstrations for each test instance, 412

while BM25 employs the BM25 algorithm (Sparck 413

Jones et al., 2000) for retrieving candidate demon- 414

strations. SET-BSR utilizes BERTScore (Zhang 415

et al., 2020), integrated with set theory, to ensure 416

comprehensive information coverage and diversity 417
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Figure 3: ICL performance of GPT3.5-turbo using (1)
standard ICL without NLEs, (2) X-ICL with GPT3.5-
generated NLEs in a few-shot scenario:fs-X-ICL (Chat-
GPT), (3) X-ICL with GPT3.5-generated NLEs, where
the NLEs of the prompt are swapped and do not match
the instances: fs-X-ICL (ChatGPTswap), and (4) X-ICL
with random human NLEs: X-ICL (Humanrand).

within the selected instances (Gupta et al., 2023).418

Note that these data selection techniques are de-419

signed to sift through the entirety of the training420

data to choose demonstrations, a computationally421

demanding and computationally expensive process422

for generating NLEs for the full dataset. There-423

fore, our analysis is confined to applying ICL to424

these methods. To facilitate a generic comparison425

with the in-distribution set, we consider the average426

performance across all adversarial NLI test sets.427

According to Table 2, as expected, the data se-428

lection approaches markedly enhance ICL perfor-429

mance on the SNLI dataset for all studied LLMs,430

with notable improvements observed in SET-BSR,431

achieving gains of up to 17.8% over standard ICL.432

However, this pronounced advantage diminishes433

considerably on adversarial test sets, particularly434

for COSINE and BM25 models, which are out-435

performed by ICL across all tested LLMs. This436

discrepancy results in a marked disparity between437

the in-distribution test set and adversarial test sets,438

contrary to what is observed in fs-X-ICL (Chat-439

GPT). These results imply that current data selec-440

tion approaches may be prone to overfitting on441

in-distribution tests, potentially leading to signifi-442

cant challenges in processing OOD and adversarial443

datasets due to their limited generalizability.444

Do proper NLEs really help? The prevailing as-445

sumption argues that the benefits of the X-ICL pri-446

marily originate from the NLEs provided. To con-447

clusively attribute these gains to the NLEs rather448

than any potential influence of additional sentences,449

Premise: None of them supported her.
Hypothesis: One of them supported her.
NLE [X-ICL (Human) ]: If none of them sup-
ported her, then one of them did not support
her.
NLE [fs-X-ICL (ChatGPT) ]: The hypothesis
contradicts the given premise, which states that
none of them supported her.

Premise: Not all people have had the opportu-
nities you have had.
Hypothesis: Some people have not had the
opportunities you have had.
NLE [X-ICL (Human) ]: If not all people have
had the opportunities you have had, then some
people have not had the opportunities you have
had.
NLE [fs-X-ICL (ChatGPT) ]: The hypothesis
is a direct result of the premise, and the label
assigned is entailment.

Table 3: Two test examples from the NAN dataset and
the corresponding NLEs generated by X-ICL (Human)
and fs-X-ICL (ChatGPT) using Zephyr.

we investigate two experimental setups. In the 450

first setup, we randomly swap the NLEs within 451

the prompt, leading to a mismatched NLE for each 452

instance. This variant is henceforth referred to as 453

fs-X-ICL (ChatGPTswap). Regarding the second 454

variant, for each instance in the demonstration set, 455

we randomly select an unrelated human NLE from 456

the corresponding training set, referred to as X-ICL 457

(Humanrand). 458

As depicted in Figure 3, despite identical con- 459

tent being provided to GPT3.5-turbo, a misalign- 460

ment between the NLE and the instance results 461

in a marked reduction in the performance of fs-X- 462

ICL (ChatGPTswap) when compared to fs-X-ICL 463

(ChatGPT). This decline is discernible across var- 464

ious datasets, including NaN, PICD, and ANLI 465

(R1/R2).3 It is also shown that an irrelevant and 466

arbitrary NLE triggers a performance reduction 467

within the X-ICL framework. Furthermore, the ef- 468

ficiency of both fs-X-ICL (ChatGPTswap) and X- 469

ICL (Humanrand) substantially lags behind that of 470

ICL. Therefore, it can be inferred that the efficacy 471

of the fs-X-ICL (ChatGPT) hinges on providing an 472

accurate and relevant NLE. 473

4.4 Supplementary Studies 474

Why is fs-X-ICL (ChatGPT) producing the most 475

accurate results? Our study demonstrates that fs- 476

X-ICL (ChatGPT) surpasses both X-ICL (Human) 477

3Similar patterns have been detected in other datasets
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Figure 5: Average length (#words) of NLEs generated
by fs-X-ICL (ChatGPT) and zs-X-ICL (ChatGPT).

and zs-X-ICL (ChatGPT) in accuracy. However,478

the reasons behind this superior performance are479

not yet understood. Therefore, this section focuses480

on systematically analyzing the efficacy of fs-X-481

ICL (ChatGPT).482

We first dissect the effectiveness of fs-X-ICL483

(ChatGPT) over X-ICL (Human). As shown in484

Table 3, NLEs from X-ICL (Human) are mere ver-485

batim copies of inputs rather than insightful ex-486

planations. To substantiate this, we calculate the487

ROUGE-L scores between the NAN test set and488

the corresponding NLEs from X-ICL (Human) and489

fs-X-ICL (ChatGPT) as a means of similarity mea-490

surement. As depicted in Figure 4, NLEs from491

X-ICL (Human) often replicate the given premise492

and hypothesis, resulting in high ROUGE-L scores.493

Instead, fs-X-ICL (ChatGPT) can produce mean-494

ingful NLEs, demonstrating lower similarity to the495

test instances.496

After analyzing the NLEs from zs-X-ICL (Chat-497

GPT), we attribute the inefficiency to verbose498

NLEs. Specifically, Figure 5 shows that zs-X-499

ICL (ChatGPT) produces longer NLEs than fs-X-500

ICL (ChatGPT). As a result, we observe inconsis-501

tency within the NLEs, leading to incorrect pre-502

Methods Mistral Zephyr Vicuna

X-ICL (Human) 53.5 59.3 59.8
zs-X-ICL (ChatGPT) 46.4 58.1 58.8
zs-X-ICL (ChatGPTs) 56.2 62.3 63.4
fs-X-ICL (ChatGPT) 57.1 65.5 62.1

Table 4: Average accuracy of X-ICL (Human), zs-X-
ICL (ChatGPT), zs-X-ICL (ChatGPTs) and fs-X-ICL
(ChatGPT) among all test sets.

dictions. As a remedy, we prompt ChatGTP to 503

generate shorter NLEs in the zero-shot setting, de- 504

noted as zs-X-ICL (ChatGPTs). Compared to zs-X- 505

ICL (ChatGPT), the NLEs generated by zs-X-ICL 506

(ChatGPTs) are reduced to an average of 27 tokens. 507

Consequently, with the help of the concise NLEs, 508

we can improve the accuracy significantly and even 509

surpass the X-ICL (Human) as shown in Table 4. 510

5 Summary and Outlook 511

We introduced a simple yet effective method called 512

fs-X-ICL (ChatGPT), leveraging human-written 513

NLEs to generate synthetic NLEs by prompting 514

ChatGPT. fs-X-ICL (ChatGPT) significantly boosts 515

accuracy across various adversarial datasets and 516

five LLMs, compared to standard in-context learn- 517

ing and X-ICL using human-written NLEs. Addi- 518

tionally, our analysis revealed that data selection 519

methodologies may exhibit overfitting within the 520

in-distribution dataset, thus potentially failing to 521

extend to unseen or adversarial datasets. In con- 522

trast, our approach employing NLEs has shown 523

consistent performance in both in-distribution and 524

adversarial contexts. Our work paves the way for 525

more robust performance and enhanced explain- 526

ability capabilities of LLMs. 527
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Limitations528

One limitation of X-ICL might be the observed529

lack of fidelity in the NLEs generated by LLMs,530

despite their capability to provide accurate answers.531

These NLEs may sometimes include unfaithful or532

hallucinated information, which if relied upon by533

users for model trust, can lead to severe implica-534

tions. Testing and enhancing the faithfulness of535

NLEs is a challenging open question (Atanasova536

et al., 2023). In this work, we show that X-ICL im-537

proves robustness, but we do not advocate for the538

usage of the generated NLEs as faitfhul explana-539

tions without further testing. Second, our approach540

exhibited promising results when tested against ad-541

versarial datasets in two notable NLP tasks: natural542

language inference and paraphrasing identification.543

However, further research is required to examine544

the performance of LLMs and their generalizability545

across diverse NLP tasks in the context of adversar-546

ial examples.547
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A Details of Datasets955

The details of all studied datasets are delineated as956

follows957

• SNLI Dataset: The SNLI dataset, a benchmark958

in natural language inference, encompasses ap-959

proximately 570,000 human-annotated sentence960

pairs, each pair formed by a premise and a hy-961

pothesis. These sentences originate from an ex-962

isting corpus of image captions, thus offering a963

broad spectrum of common subjects and linguis-964

tic structures (Bowman et al., 2015).965

• HANS Dataset: McCoy et al. (2019) developed966

a dataset with the express purpose of scrutiniz-967

ing the performance of models when confronted968

with sentences characterized by several types of969

distracting signals. These signals encompass the970

presence of lexical overlap, sub-sequences, and971

constituent heuristics between the corresponding972

hypotheses and premises.973

• Datasets Sensitive to Compositionality (ISCS):974

As proposed by Nie et al. (2019), a softmax re-975

gression model was employed to utilize lexical976

features present in the premise and hypothesis977

sentences, thereby generating instances of mis-978

classification. Here, the Lexically Misleading979

Score (LMS) denotes the predicted probability of980

the misclassified label. Adapting the approach of981

Liu et al. (2020b), we concentrated on the subsets982

possessing LMS values exceeding 0.7.983

• Not another Negation (NaN) NLI Dataset:984

NaN dataset is developed to probe the capabilities985

of NLP models in comprehending sub-clausal986

negation (Truong et al., 2022).987

• Stress Test Datasets (ST): Our analysis also in-988

corporates various stress tests described by Naik989

et al. (2018) such as “word overlap” (ST-WO),990

“negation” (ST-NE), “length mismatch” (ST-LM),991

and “spelling errors” (ST-SE). Specifically, ST-992

WO aims to identify lexical overlap heuristics be-993

tween the premise and hypothesis, ST-NE seeks994

to detect intense negative lexical cues in partial-995

input sentences, ST-LM aspires to create mis-996

leading predictions by artificially lengthening the997

premise using nonsensical phrases, and ST-SE998

employs spelling errors as a means to deceive the999

model.1000

• Datasets Detected by Classifier (PICD): In the1001

approach proposed by Gururangan et al. (2018),1002

fastText was applied to hypothesis-only inputs. 1003

Subsequent instances from the SNLI test sets 1004

(Bowman et al., 2015) that could not be accu- 1005

rately classified were designated as ‘hard’ in- 1006

stances. 1007

• Surface Pattern Datasets (PISP): Liu et al. 1008

(2020a) identified surface patterns that exhibit 1009

strong correlation with specific labels, thereby 1010

proposing adversarial test sets counteracting the 1011

implications of surface patterns. As suggested by 1012

Liu et al. (2020b), we employed their ‘hard’ in- 1013

stances extracted from the MultiNLI mismatched 1014

development set (Williams et al., 2018) as adver- 1015

sarial datasets. 1016

• Adversarial NLI (ANLI): ANLI dataset (Nie 1017

et al., 2020) is a challenging resource created 1018

for training and testing models on NLI, featuring 1019

adversarial examples intentionally curated to ob- 1020

fuscate or mislead benchmark models, thereby 1021

increasing its challenge factor. This dataset is 1022

constructed in multiple rounds, with each subse- 1023

quent round featuring human-created examples 1024

specifically designed to outsmart models trained 1025

on the previous rounds. In total, the dataset com- 1026

prises three distinct rounds, specifically ANLI 1027

R1, ANLI R2, and ANLI R3, highlighting the 1028

layered complexity of this resource. 1029

• Quora Question Pairs (QQP): QQP 1030

dataset (Wang et al., 2018) comprises pairs of 1031

questions sourced from the Quora community 1032

question-answering platform. The primary 1033

objective is to ascertain whether each question 1034

pair exhibits semantic equivalence. 1035

• Paraphrase Adversaries from Word Scram- 1036

bling (PAWS): The PAWS-QQP dataset (Zhang 1037

et al., 2019), derived from the QQP datasets, tar- 1038

gets the intricate task of paraphrasing identifica- 1039

tion, emphasizing the differentiation of sentences 1040

that, despite high lexical similarity, convey dis- 1041

tinct meanings. It incorporates adversarial exam- 1042

ples generated via word scrambling, presenting a 1043

stringent assessment for NLP models. 1044

B Meta-prompts for Generating 1045

Synthetic NLEs 1046

Table 5 and 6 present the meta-prompts employed 1047

for producing NLEs utilizing ChatGPT in zero- and 1048

few-shot scenarios. 1049
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Meta-prompt for zero-shot generation

Assume that you’re an expert working on natu-
ral language inference tasks. Given a premise,
a hypothesis, and the corresponding label.
Please write a concise and precise reason to
explain why the label is assigned to the exam-
ple:

Meta-prompt for few-shot generation

Assume that you’re an expert working on
natural language inference tasks. Given a
premise, a hypothesis and the corresponding
label. Please write a concise and precise rea-
son to explain why the label is assigned to the
example by following the provided examples:

Table 5: Meta-prompts used to generate NLEs via Chat-
GPT in zero- and few-shot scenarios for natural lan-
guage inference tasks.

Meta-prompt for zero-shot generation

Assume that you’re an expert working on para-
phrasing identification tasks. Given two sen-
tences and the corresponding label. Please
write a concise and precise reason to explain
why the label is assigned to the example:

Meta-prompt for few-shot generation

Assume that you’re an expert working on para-
phrasing identification tasks. Given two sen-
tences and the corresponding label. Please
write a concise and precise reason to explain
why the label is assigned to the example by
following the provided examples:

Table 6: Meta-prompts used to generate NLEs via Chat-
GPT in zero- and few-shot scenarios for paraphrasing
identification tasks.

C Supplementary Studies1050

Using NLEs Generated by Vicuna and LLaMA2.1051

Our research demonstrates that the integration1052

of NLEs generated by ChatGPT significantly en-1053

hances the performance of X-ICL for five advanced1054

LLMs. To assess the efficacy of these ChatGPT-1055

generated NLEs, we explore the generation of syn-1056

thetic NLEs using Vicuna and LLaMA2, ranked1057

as the third and second-best models respectively.1058

Likewise, these NLEs are generated in a few-1059

shot setting, referred to herein as Vicunafew and1060

Tasks NLEs

fs-Vicuna fs-LLaMA2 fs-ChatGPT

SNLI 62.9 ( -5.0) 64.1 ( -3.7) 65.0 ( -2.9)
HANS 55.5 ( -7.4) 67.4 ( +4.5) 74.5 (+11.6)
ISCS 65.1 ( +4.2) 63.6 ( +2.7) 65.5 ( +4.6)
NaN 62.6 ( -1.6) 65.1 ( +0.9) 66.3 ( +2.1)
ST 59.5 ( +2.2) 61.9 ( +4.6) 64.8 ( +7.5)

PICD 60.2 ( -3.5) 60.8 ( -2.9) 61.6 ( -2.1)
PISP 66.0 (+11.0) 66.1 (+11.1) 66.0 (+11.0)

ANLI (R1) 66.1 ( +9.1) 65.8 ( +8.8) 64.9 ( +7.9)
ANLI (R2) 55.4 ( +6.5) 55.9 ( +7.0) 55.5 ( +6.6)
ANLI (R3) 49.6 (+10.8) 50.7 (+11.9) 52.0 (+13.2)

Average 60.3 ( +3.8) 62.1 ( +5.6) 63.5 ( +6.9)

Table 7: ICL performance of Vicuna using (1) standard
ICL without NLEs, (2) X-ICL with Vicuna-generated
NLEs in a few-shot scenario: fs-Vicuna, (3) X-ICL with
LLaMA2-generated NLEs in a few-shot scenario: fs-
LLaMA2, (4) X-ICL with ChatGPT-generated NLEs
in a few-shot scenario: fs-ChatGPT. Numbers in the
parentheses represent differences compared to X-ICL
(Human).

LLaMA2few, respectively. To ensure a fair compar- 1061

ison, we employ Vicuna as the underlying model to 1062

evaluate fs-X-ICL(Vicuna), fs-X-ICL (LLaMA2), 1063

and fs-X-ICL (ChatGPT) on all studied datasets. 1064

Our results, detailed in Table 7, highlight that 1065

X-ICL generally gains greater benefit from LLM- 1066

generated NLEs as opposed to those produced by 1067

humans. Meanwhile, fs-X-ICL (ChatGPT) consis- 1068

tently outperforms fs-X-ICL(Vicuna) and fs-X-ICL 1069

(LLaMA2) considerably, except for ANLI R1 and 1070

R2. These findings suggest that to harness the po- 1071

tential of AI-generated NLEs fully, the employment 1072

of a powerful LLM is integral. 1073

Does model size matter? We have shown the ef- 1074

ficacy of X-ICL across a range of LLMs of varying 1075

sizes. However, the variability in data and training 1076

processes among these models renders the appli- 1077

cability of our approach to smaller-scale models 1078

inconclusive, especially since the smaller models 1079

often exhibit less benefit from NLEs compared to 1080

larger models within the same family (Wei et al., 1081

2022a). Therefore, we have evaluated our approach 1082

using three distinct sizes of LLaMA2 models: 7B, 1083

13B, and 70B parameters. 1084

Referring to Figure 6, one can find the perfor- 1085

mance of both ICL and X-ICL generally improves 1086

in correspondence with the escalation of model 1087

size, except for zs-X-ICL (ChatGPT). Moreover, 1088

the gap in performance between ICL and fs-X-ICL 1089

(ChatGPT) widens, indicating that models with 1090

greater capabilities derive increased benefits from 1091
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Figure 6: ICL performance of LLaMA2 (7B, 13B, 70B) using (1) standard ICL without NLEs, (2) X-ICL with
human-written NLEs: X-ICL (Human), (3) X-ICL with ChatGPT-generated NLEs in a zero-shot scenario: zs-X-ICL
(ChatGPT), (4) X-ICL with ChatGPT-generated NLEs in a few-shot scenario:fs-X-ICL (ChatGPT). ANLI is the
average of R1, R2 and R3.

NaN PICD ANLI (R1) ANLI (R2)

e-SNLI ANLI |∆| e-SNLI ANLI |∆| e-SNLI ANLI |∆| e-SNLI ANLI |∆|

ICL 70.0 69.4 0.6 64.0 64.1 0.1 52.6 62.4 9.7 43.9 51.7 7.8
fs-X-ICL (ChatGPT) 73.1 71.8 1.2 76.9 76.1 0.8 65.0 68.5 3.5 53.2 54.4 1.2

Table 8: Performance of ICL and fs-X-ICL (ChatGPT) employing e-SNLI and ANLI as prompts for testing NaN,
PICD, and ANLI (R1/R2). |∆| signifies the absolute difference in the performance outcomes when utilizing e-SNLI
in contrast to ANLI. The backbone model is GPT3.5-turbo.

NLEs. This observation aligns with the results re-1092

ported by Wei et al. (2022a).1093

Distribution Shift Prompting. Previous works1094

indicate that X-ICL can potentially encourage1095

LLMs to engage in deliberate thinking, a predomi-1096

nant factor responsible for substantial performance1097

improvements over the standard ICL in complex1098

reasoning tasks (Wei et al., 2022b). In addition, our1099

findings have demonstrated a dramatic enhance-1100

ment in the robustness of LLMs due to X-ICL,1101

which contributes to significant improvements in1102

ICL when applied to various adversarial datasets.1103

Moreover, a previous study established that upon1104

understanding the concept underlying particular1105

tasks, humans can address similar tasks despite1106

a distribution shift (Scott, 1962). To explore the1107

robustness of ICL and X-ICL against distribution1108

shifts, we employ the e-SNLI dataset as the demon-1109

stration set for ANLI (R1/R2), while utilizing the1110

ANLI training set for testing NaN and PICD. Due1111

to its outstanding performance, we use GPT3.5-1112

turbo as the backbone model.1113

As suggested in Table 8, for NaN and PICD, us-1114

ing e-SNLI as the prompt proves to be more effec- 1115

tive than ANLI for both ICL and fs-X-ICL (Chat- 1116

GPT). This improvement can be attributed to the 1117

distribution shift. Likewise, the distribution shift 1118

results in a noticeable distinction between e-SNLI 1119

and ANLI for ICL on ANLI (R1/R2). Nonetheless, 1120

incorporating NLEs enables fs-X-ICL (ChatGPT) 1121

to substantially reduce this gap, from 9.7 to 3.5 for 1122

ANLI (R1), and from 7.8 to 1.2 for ANLI (R2). 1123

This finding indicates that X-ICL may improve 1124

the robustness of LLMs in the face of distribution 1125

shifts. 1126

Analysis on memorization LLMs such as Chat- 1127

GPT have occasionally replicated instances from 1128

renowned benchmark datasets, including MNLI 1129

and BoolQ (Sainz et al., 2023). This unintentional 1130

‘contamination’ might contribute to misconceptions 1131

regarding the superior performance of LLMs on 1132

these widespread benchmarks due to data memo- 1133

rization. 1134

Following Carlini et al. (2023), we merge the 1135

premise and hypothesis of each test instance into a 1136

single sentence, using the first part as the prefix. If 1137
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an LLM could perfectly replicate the second part,1138

we labeled the instance as ‘extractable’. Evaluating1139

all studied models, we observe that the proportion1140

of extractable instances is under 0.001% across1141

all datasets and backbone models, indicating that1142

the superior performance of LLMs might not be1143

ascribed to memorization.1144

D Qualitative Analysis on NLEs1145

D.1 Qualitative Analysis on NLEs for1146

Demonstration Set1147

We first conducted a qualitative analysis of NLEs1148

generated by ChatGPT under zero- and few-shot1149

scenarios, using the demonstration set as a basis.1150

Note that each instance in the demonstration set has1151

three distinct NLEs: (1) the zero-shot NLE from1152

ChatGPT, (2) the few-shot NLE from ChatGPT,1153

and (3) the human-written NLE. From these three1154

NLEs per instance, one was randomly selected,1155

and both the instance and the chosen NLE were1156

incorporated into the evaluation set.1157

Subsequently, this evaluation set was rated inde-1158

pendently by four authors on a 5-point Likert scale1159

to assess the quality of the NLEs. The scale ranges1160

were 1 (extremely dissatisfied), 2 (dissatisfied), 31161

(neutral), 4 (satisfied), and 5 (extremely satisfied).1162

Finally, we calculated the average scores for both1163

ChatGPT-generated and human-written NLEs for1164

each evaluator.1165

D.2 Qualitative Analysis on NLEs for1166

Inference Set1167

We also conducted a qualitative analysis of1168

NLEs generated by fs-X-ICL (ChatGPT), utilizing1169

GPT3.5-turbo as the foundational model. A total of1170

280 randomly sampled, correctly predicted exam-1171

ples from fs-X-ICL (ChatGPT) were distributed1172

evenly among seven evaluators. These evalua-1173

tors were tasked to assess the quality of the NLE1174

for each assigned instance, based on the premise-1175

hypothesis pair and its corresponding correctly pre-1176

dicted label.1177

The evaluators were required to rate the quality1178

of the NLE using the aforementioned 5-point Likert1179

scale. In case of dissatisfaction, they were asked to1180

identify the reason from a list of predefined factors,1181

including:1182

• template: The NLE simply restates the input1183

and employs it as a justification.1184
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5.1%
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neutral

dissatisfied
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23.9%
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13.0%
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too verbose

incorrect arguments

contradicts 
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hallucinations

Figure 7: Human evaluation on ChatGPT-generated
NLEs for the correct predictions from fs-X-ICL (Chat-
GPT). Top: distribution of satisfaction scores. Bottom:
distribution of reasons for dissatisfaction.

• insufficient justification: The NLE requires 1185

more support for the prediction. 1186

• too verbose: The NLE is overly detailed and 1187

includes unnecessary information. 1188

• incorrect arguments: Despite the prediction 1189

being accurate, the NLE fails to support it due 1190

to erroneous arguments. 1191

• contradict commonsense: The NLE is incor- 1192

rect and contradicts commonsense. 1193

• hallucinations: The NLE includes fabricated 1194

information. 1195

According to Figure 7, 46.6% and 39.3% of 1196

NLEs are marked as ‘extremely satisfied’ and ‘sat- 1197

isfied’ respectively, constituting 85.9% of the total 1198

280 NLE samples. This suggests a high-quality 1199

output from GPT3.5-turbo in general. As for the 1200

lower-quality NLEs, the primary reasons for dissat- 1201

isfaction include ‘template’, ‘insufficient justifica- 1202

tion’, and ‘too verbose’. Interestingly, this suggests 1203

that, despite the expressed dissatisfaction, evalua- 1204

tors generally did not find incorrect justifications 1205

in most instances. 1206

E Using AI Assitants 1207

We use ChatGPT for the purpose of proofreading. 1208
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F Human-written NLEs for QQP1209

Given the absence of NLEs for the QQP dataset,1210

we have conducted a randomized sampling of 201211

instances from the QQP training set. For each se-1212

lected instance, we crafted a corresponding NLE.1213

The details of these QQP instances and their re-1214

spective NLEs are presented in Table 9, 10, and1215

11.1216
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Q1: Is 6 foot 4 too tall as an ideal height for a man?
Q2: My height is 5’6 and I’m 14 year old boy, my mom is 5’4 and my dad is 5’7. How tall will
I be?
Label: not duplicate
NLE: Predicting future height given parents’ heights concerns genetic factors of height, whereas
ideal height for man concerns more about its social aspect.

Q1: Approximately how many hours have you spent on the internet till date?
Q2: What amount of time do you spent on the Internet?
Label: not duplicate
NLE: Total number of hours spend on Internet till date not just depend on the average hours on
internet per day, but also many other factors such as the age the user started using it.

Q1: What are the most ridiculous statements made by Donald Trump?
Q2: My black friend supports Donald Trump, is that ridiculous?
Label: not duplicate
NLE: Asking the most ridiculous statement made by Donald Trump is different than asking
why a supporter support him. A supporter can support him for other reasons.

Q1: "What is the origin of the phrase ""pipe dream""?"
Q2: "How did the phrase ""toe head"" originate?"
Label: not duplicate
NLE: The two questions asked about the origin of two different words.

Q1: What is a good first programming language to learn?
Q2: What is the most valuable programming language for the future to learn?
Label: duplicate
NLE: When picking a good first programming language to learn, people may consider the most
valuable one language if they learn it for making money.

Q1: What is best way for earning money?
Q2: How can I start making money? What are the best ways to make money?
Label: duplicate
NLE: Both questions ask about what are best ways to make money

Q1: Does the Indian education system need a reformation?
Q2: Should the education system be changed in India? If so why or why not?
Label: duplicate
NLE: Both questions essentially inquire about the necessity and justification for changing the
Indian education system.

Q1: What is the application of quantum physics?
Q2: What are some applications of quantum physics?
Label: duplicate
NLE: The two questions both seek information about the practical use of quantum physics.

Table 9: QQP instances and the corresponding NLEs.
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Q1: How is the word ’calumny’ used in a sentence?
Q2: How is the word ’mischievous’ used in a sentence?
Label: not duplicate
NLE: The two questions ask about two different words with different meanings.

Q1: What are your views on the abolishment of 500 rupees note?
Q2: How will the ban of Rs 500 and Rs 1000 notes affect Indian economy?
Label: not duplicate
NLE: The former question asks specifically about the abolishment of the Rs 500 note, while
the latter asks about the Rs 500 and the Rs 1000 notes.

Q1: What are the valence electrons of titanium?
Q2: What is the number of valence electrons in hydrogen? How is this determined?
Label: not duplicate
NLE: The former question asks about titanium, while the latter is about hydrogen.

Q1: Do movie actors get paid each time their movie is played on TV?
Q2: Why are film actors so highly paid whereas scientists are paid relatively quite little?
Label: not duplicate
NLE: The former question asks some details about how actors get paid, while the latter asks
about the gap between actor and scientist salaries.

Q1: How do I build an electromagnetic propulsion engine?
Q2: How would I build a magnetic propulsion system?
Label: duplicate
NLE: Both question asks about building magnetic propulsion systems.

Q1: Why is salt water taffy candy imported in France?
Q2: Why is Saltwater taffy candy imported in The Bahamas?
Label: duplicate
NLE: Both questions ask about the reasons behind importing salt water taffy candy.

Q1: Why do we call Java platform independent language when it still requires platform
dependent JVM to get executed?
Q2: How is the Java platform independent when we need to have JVM on every machine to
run Java programs?
Label: duplicate
NLE: Both questions ask why do we call Java platform-independent, since it still depends on
the availability of a JVM.

Q1: What are the various ways through which one can earn money online?
Q2: How do you make easy money online?
Label: duplicate
NLE: Both questions ask how to make money online.

Q1: Does life get harder as you get older?
Q2: Does life really get harder as you get older?
Label: duplicate
NLE: Both questions ask whether life does get harder as you get older.

Table 10: QQP instances and the corresponding NLEs.
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Q1: Why can’t some people think for themselves?
Q2: Why don’t people think for themselves?
Label: not duplicate
NLE: "some people" means not all people as the second question seems to imply

Q1: Why don’t we use Solar Furnace to produce electricity?
Q2: Why don’t we make Solar Cars?
Label: not duplicate
NLE: using Solar Furnace you can produce some amount of electricity but it may not enough
to power a whole car

Q1: What is an intuitive explanation of the fractional quantum Hall effect?
Q2: What is an intuitive explanation of the Quantum Hall effect?
Label: not duplicate
NLE: fractional quantum Hall effect is different than the Quantum Hall effect, which refers to
the integer quantum Hall effect

Q1: Can INTPs become successful entrepreneurs?
Q2: I am business associate in tcs?
Label: not duplicate
NLE: completely different questions

Q1: How can I be like Sheldon Cooper?
Q2: How do I become like Sheldon Cooper?
Label: duplicate
NLE: "be like" and "become like" someone is the same thing

Q1: What do people think about Anonymous?
Q2: What do you think about the ’Anonymous’ option on Quora?
Label: duplicate
NLE: "what do people think" and "what do you think" are usually used interchangeably

Q1: What’s the meaning of life?
Q2: "What is the meaning of ""Life""?"
Label: duplicate
NLE: same question with minor different spellings

Q1: What is it in for the Ibibo group employees with the Makemytrip merger / Buyout?
Q2: How do Ibibo employees feel about MakeMyTrip acquiring Ibibo?
Label: duplicate
NLE: "the Makemytrip merger / Buyout" refers to "MakeMyTrip acquiring Ibibo" and "what is
it in for the employees" means "how do the employees feel about"

Table 11: QQP instances and the corresponding NLEs.
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