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Abstract001

Automating text content analysis, particularly002
topic modeling, faces challenges in topic in-003
terpretability, evaluation, and scalability. This004
paper introduces Textonomy, a novel method005
based on the TnT-LLM framework, designed006
to address these challenges. Textonomy op-007
erates in two phases: first, it iteratively gen-008
erates and refines a taxonomy using Large009
Language Models (LLMs) on batches of sum-010
maries, guided by a user-defined use case. Sec-011
ond, it pseudo-labels a subset of texts with this012
taxonomy via LLM-based zero-shot classifi-013
cation and trains a lightweight classifier for014
large-scale inference. We evaluate Texton-015
omy against traditional (LDA, BERTopic) and016
recent LLM-based (TopicGPT) topic models017
on the WikiText-103 dataset. Results show018
Textonomy achieves competitive or superior019
performance in aligning with human-annotated020
ground-truth clusters (e.g., average ARI of 0.68021
vs. 0.58 for TopicGPT) and demonstrates high022
stability. Specifically, Textonomy reduces the023
computational cost and time by approximately024
99.4% and 98.5%, respectively, compared to025
TopicGPT. These findings highlight Texton-026
omy’s potential for robust, interpretable, and027
efficient topic modeling on large corpora.028

1 Introduction029

The proliferation of digital text necessitates auto-030

mated methods for content analysis. Topic model-031

ing, a key technique for uncovering latent semantic032

structures in text corpora (Blei et al., 2003; Ab-033

delrazek et al., 2023), is predominantly used for034

content analysis (Hoyle et al., 2022).035

A critical challenge in topic modeling is align-036

ing model outputs with human needs and interpre-037

tations (Hoyle et al., 2021; Chang et al., 2009).038

Users often have specific research questions or039

goals, which require topic models to produce not040

just coherent clusters of words, but meaningful,041

interpretable, and task-relevant categories (Stamm-042

bach et al., 2023; Wang et al., 2023; Doogan and043

Buntine, 2021; Hoyle et al., 2022). Recent meth- 044

ods like TopicGPT (Pham et al., 2024) leverage 045

LLMs for interpretable topic generation and assign- 046

ment, but suffer from high costs. Li et al. (2025) 047

also highlight the expense of similar LLM-heavy 048

approaches. 049

To bridge the gap between interpretability and 050

scalability, we propose Textonomy, an implementa- 051

tion of the TnT-LLM framework (Taxonomy gener- 052

ation and Text classification with Large Language 053

Models) by Wan et al. (2024). Textonomy aims to 054

automate a form of emergent, goal-driven content 055

analysis (Stemler, 2000). 056

It operates in two main phases: 057

1. Taxonomy Generation: An LLM iteratively 058

creates and refines a taxonomy based on 059

user-provided use cases and batches of LLM- 060

generated summaries from a data sample. 061

2. LLM-Augmented Text Classification: A 062

subset of texts is pseudo-labeled by an LLM 063

using the generated taxonomy, and this data 064

is used to train a lightweight, efficient text 065

classifier for large-scale inference. 066

This paper makes the following contributions: 067

1. We propose Textonomy, a TnT-LLM-based 068

algorithm for interpretable and scalable topic 069

modeling. 070

2. We empirically evaluate Textonomy against 071

strong baselines (LDA, BERTopic, TopicGPT) 072

on the WikiText-103 dataset. 073

3. We demonstrate that Textonomy achieves 074

competitive topical alignment and stability 075

while drastically reducing computational costs 076

compared to purely LLM-based methods. 077

Our findings suggest that Textonomy offers a 078

promising approach for automated text content 079
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analysis, combining the interpretability of LLM-080

driven topic discovery with the efficiency needed081

for large corpora.082

2 Related Work083

Topic model evaluation has long been debated,084

with a push towards use-case-dependent metrics085

and human judgment alignment (Hoyle et al.,086

2021; Chang et al., 2009). Coherence measures087

like CNPMI (Bouma, 2009; Aletras and Stevenson,088

2013) and CV (Röder et al., 2015) aim to proxy hu-089

man interpretability, but their applicability to Neu-090

ral Topic Models (NTMs) is debated and a substan-091

tial standardization gap was revealed in the topic092

modeling literature (Hoyle et al., 2021; Doogan and093

Buntine, 2021). Hoyle et al. (2022) advocate eval-094

uating topic models based on criteria for "good"095

content analysis: reproducibility (alignment with096

human coding) and stability (intra-model consis-097

tency), reflecting inter-rater reliability and intra-098

rater reliability in traditional manual content analy-099

sis (Stemler, 2000).100

Traditional topic models include Latent Dirichlet101

Allocation (LDA) (Blei et al., 2003), a foundational102

Bayesian probabilistic model which is a classic103

baseline in topic modeling. Among a wide range104

of different topic modeling methods (Abdelrazek105

et al., 2023) BERTopic (Grootendorst, 2022) stands106

out as a popular implementation of a Neural Topic107

Modeling by Clustering Embeddings (NTM-CE)108

that boasts good scalability combined with high109

topic coherence scores (Grootendorst, 2022).110

Recent advances involve LLMs. TopicGPT111

(Pham et al., 2024) uses iterative LLM prompt-112

ing for topic generation and assignment, yielding113

interpretable topics but at high computational cost.114

Li et al. (2025) compared several LLM-based meth-115

ods, confirming high costs for models such as Top-116

icGPT and LLooM (Lam et al., 2024). GoalEx117

(Wang et al., 2023) also uses LLMs but its individ-118

ual topic assignment scales poorly. Query-driven119

models like Fang et al. (2021) allow topic speci-120

ficity but lack general goal-orientation for the entire121

codeset.122

The TnT-LLM framework (Wan et al., 2024),123

upon which Textonomy is built, was initially tested124

to generate user intent taxonomies from chat data,125

not directly for topic modeling or compared against126

topic models. Textonomy is, to our knowledge,127

the first application and evaluation of a TnT-LLM-128

based method for general-purpose topic model-129

ing, focusing on balancing interpretability with 130

scalability. Our work differentiates from Li et al. 131

(2025) by focusing on the TnT-LLM’s two-stage 132

approach (LLM for taxonomy, lightweight clas- 133

sifier for scale) rather than a human-in-the-loop 134

LLM-based system. 135

3 Textonomy: A TnT-LLM Approach 136

Textonomy implements the TnT-LLM framework 137

(Wan et al., 2024) for scalable topic modeling or, 138

more generally, automated content analysis. It con- 139

sists of two main phases: Taxonomy Generation 140

and LLM-Augmented Text Classification, with an 141

overview given in Figure 1 and Figure 2, respec- 142

tively. For its LLM components, Textonomy is 143

designed for both capability and efficiency. 144

3.1 Phase 1: Taxonomy Generation 145

This phase creates a topic taxonomy tailored to the 146

input data and a user-specified use case. By default, 147

a 5% random sample of the input documents (min. 148

100) is used. 149

Stage 1: Summarization. Each document in the 150

taxonomy sample is individually summarized by 151

an LLM (default: GPT-4o-mini). The prompt re- 152

quests a concise summary (e.g., 20 words) and a 153

brief explanation (e.g., 30 words) for the summary, 154

considering the use case input by the user. This 155

step acts as a feature extraction process, distilling 156

salient information relevant to the task. 157

Stage 2: Taxonomy Initialization, Updates, and 158

Review The generated summaries are divided 159

into equal-sized mini-batches. An LLM (default: 160

o3-mini, selected for strong reasoning on such 161

tasks) then performs a multi-stage reasoning pro- 162

cess: 163

1. Initialization: The first batch of summaries 164

is used to generate an initial taxonomy. 165

2. Iterative Updates: For subsequent batches, 166

the LLM reviews the current taxonomy, rates 167

its quality against predefined criteria (e.g., 168

clarity, no overlap, relevance to use case), ex- 169

plains its rating, suggests edits based on the 170

new batch of summaries, and provides an up- 171

dated taxonomy. 172

3. Final Review: After processing all batches, 173

the LLM performs a final review of the tax- 174

onomy without new data to ensure coherence 175

and quality. 176
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Figure 1: Conceptual overview of Phase 1 in Textonomy: Summaries from a data sample are batched for iterative
taxonomy generation by an LLM. (2) The final taxonomy is used by an LLM to pseudo-label a training subset, upon
which a lightweight classifier is trained for scalable inference. Figure adapted from Wan et al. (2024).

The prompts ensure the LLM adheres to format177

requirements (e.g., label structure with name and178

description, maximum number of categories) and179

quality criteria (e.g., mutual exclusivity, concise-180

ness, accuracy). Users can adjust hyperparameters181

like category name/description length.182

3.2 Phase 2: LLM-Augmented Text183

Classification184

This phase scales up the classification using the185

generated taxonomy. A subset of the full dataset186

(default: 10%, min. 300 documents) is sampled for187

pseudo-labeling. An LLM (default: GPT-4o-mini)188

classifies these documents based on the final taxon-189

omy from Phase 1. The prompt includes the docu-190

ment text and the full taxonomy (category names191

and descriptions).192

This LLM-pseudo-labeled dataset is then used193

to train a lightweight text classifier. We use194

logistic regression by default, trained on sen-195

tence embeddings (default: all-MiniLM-L6-v2196

via sentence-transformers (Reimers and197

Gurevych, 2019; noa, 2024)). The resulting198

classifier can then efficiently categorize the entire199

corpus or new, unseen documents.200

4 Experiments201

4.1 Dataset and Preprocessing202

We use a subset of the WikiText-103 dataset (Wiki)203

(Merity et al., 2017), specifically the version pre-204

pared by Pham et al. (2024), comprising 22,314205

Wikipedia articles with 15 human-annotated high-206

level topic labels (our ground truth). The dataset207

is split into a training set (14,290 articles) and a208

test set (8,024 articles). The dataset also includes a209

preprocessed version of the texts, featuring SpaCy210

tokenization, no lemmatization or stemming, and211

frequency-based filtering. We use a random 5,100-212

document subsample from the official training set 213

as our training data for model development and hy- 214

perparameter choices (e.g., for Textonomy’s sam- 215

pling). 216

4.2 Baselines 217

We compare Textonomy against: 218

• LDA (Blei et al., 2003): Implemented via 219

Gensim (Řehůřek and Sojka, 2010). 220

• BERTopic (Grootendorst, 2022): Using de- 221

fault settings with all-MiniLM-L6-v2 em- 222

beddings. 223

• TopicGPT (Pham et al., 2024): As results 224

are expensive to reproduce, we report scores 225

from their paper for the Wiki dataset where 226

applicable and use their setup as a reference 227

for our Textonomy experiments. 228

For LDA and BERTopic, hyperparameters were 229

largely kept to their respective libraries’ defaults, 230

with the exception of the number of topics (k), 231

which was guided by Textonomy’s output range 232

for a fair comparison. 233

4.3 Evaluation Metrics 234

Definitions of all used evaluation metrics are de- 235

tailed in Appendix A. 236

Topical Alignment (Interpretability): We mea- 237

sure alignment with the 15 ground-truth Wikipedia 238

categories using: 239

• P1: Harmonic mean of Purity and Inverse 240

Purity (Zhao, 2005; Amigó et al., 2009). 241

• ARI: Adjusted Rand Index (Hubert and Ara- 242

bie, 1985). 243
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Figure 2: Conceptual overview of Phase 2 in Textonomy: The final taxonomy from Phase 1 is used by an LLM to
pseudo-label a training subset, upon which a lightweight classifier is trained for scalable inference. Figure adapted
from Wan et al. (2024).

• NMI: Normalized Mutual Information (Strehl244

and Ghosh, 2003).245

We selected P1, ARI, and NMI as our primary ex-246

ternal cluster metrics to measure topical alignment247

due to their complementary strengths and to create248

comparability to TopicGPT (Pham et al., 2024). P1249

balances the purity of topics (are documents in a250

topic from one class?) and the completeness of251

classes (are documents from a class in one topic?).252

The ARI assesses the similarity between two clus-253

terings while accounting for agreements that could254

occur by chance. It is particularly sensitive to dif-255

ferences in the underlying structure of the cluster-256

ings because it performs pairwise checks to see257

if items are grouped together consistently. NMI,258

an information-theoretic measure, quantifies the259

mutual dependence between the model’s cluster-260

ing and true classes, handling differing numbers261

of clusters well and offering insights into shared262

information.263

Internal Quality Metrics:264

• Coherence: CNPMI (Aletras and Stevenson,265

2013) and CV (Röder et al., 2015), calcu-266

lated on the keyword representation produced267

by LDA and c-TF-IDF based keywords for268

BERTopic and Textonomy.269

• Diversity: Pairwise Jaccard Distance (DPJD)270

(Tran et al., 2013) and Proportion of Unique271

Words (DPUW ) (Dieng et al., 2020).272

• Validity: Outlier Ratio (UOR) and an LLM-273

based usefulness score (ULLM ) assessing rel-274

evance, clarity, comprehensiveness, and distri- 275

bution against the user-defined purpose. 276

Stability: We assess stability by comparing topic 277

assignments from different runs of Textonomy 278

(with variations in data, prompts, or LLM settings) 279

using P1, ARI, and NMI against a default Texton- 280

omy run. LDA stability (average over 10 runs) 281

serves as a baseline. 282

4.4 Textonomy Configuration 283

For Textonomy, the user-defined use case was: “A 284

taxonomy to organize these articles into main cate- 285

gories. Aim at around 10-20 categories. Examples: 286

’Music’, ’Social sciences and society’...”. Phase 1 287

involved sampling 500 documents for taxonomy 288

generation. In Phase 2, 1,340 documents were sam- 289

pled for LLM-augmented classifier training (3/4 290

train, 1/4 test for internal classifier metrics). Ope- 291

nAI’s o3-mini was selected for taxonomy genera- 292

tion due to its strong performance on generating 293

taxonomies fitting the summaries batch. In contrast, 294

non-reasoning models like GPT-4o show tendency 295

to create more generic taxonomies. For the less 296

reasoning-intensive tasks of document summariza- 297

tion and pseudo-labeling, GPT-4o-mini was chosen 298

for its balance of good performance and signifi- 299

cantly lower operational cost compared to larger 300

flagship models. 301

5 Results and Discussion 302

We present results for interpretability (topical align- 303

ment), internal quality, stability, and computational 304

complexity. For Textonomy, LDA, and BERTopic, 305
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we report the average over three runs on the test306

set, alongside the best run. For TopicGPT, we refer307

to published results (Pham et al., 2024).308

5.1 Interpretability and Topic Quality309

Table 1 shows the topical alignment and internal310

quality metrics.311

Textonomy consistently performs well in topi-312

cal alignment. Its average P1 score (0.73) matches313

TopicGPT’s best run at default settings (0.73) and314

is close to its refined version (0.74). Textonomy315

significantly outperforms TopicGPT on ARI (av-316

erage 0.68 vs. TopicGPT’s 0.58-0.60), indicating317

better structural agreement with ground-truth clus-318

ters. This ARI score approaches levels indicative319

of good inter-rater reliability (e.g., in comparison320

to the suggested level for Cohen’s Kappa ≈ 0.8321

by Stemler (2000)). On NMI, Textonomy (0.66)322

is comparable to LDA (0.66) but slightly below323

TopicGPT (0.70-0.71), potentially due to the clas-324

sifier’s handling of imbalanced or smaller classes325

from the taxonomy. Both LLM-based methods326

(Textonomy and TopicGPT) generally surpass LDA327

and substantially outperform BERTopic on align-328

ment metrics. BERTopic’s low alignment scores,329

despite reasonable coherence, highlight the known330

gap between some automated metrics and human-331

like clustering for NTMs (Hoyle et al., 2022).332

For internal metrics, Textonomy achieves coher-333

ence (CNPMI, CV ) and diversity (DPJD, DPUW )334

scores competitive with LDA and BERTopic. Its335

outlier ratio (UOR) is 0, ideal for this dataset where336

all articles are labeled. Textonomy also scores high-337

est on LLM-evaluated usefulness (ULLM ), likely338

benefiting from its generation of descriptive cate-339

gory names and descriptions compared to keyword340

lists from LDA/BERTopic.341

5.2 Stability342

Table 2 presents Textonomy’s stability under vari-343

ous perturbations, compared to an LDA baseline.344

Textonomy demonstrates high stability, gener-345

ally meeting or exceeding the LDA baseline. Mi-346

nor changes like data shuffling or using a generic347

prompt have a minor impact, with ARI scores348

around 0.76-0.79. This suggests robust "intra-349

coder reliability". More substantial changes, like350

using completely different training data or a dif-351

ferent LLM for pseudo-labeling (GPT-4o instead352

of GPT-4o-mini), result in slightly larger devi-353

ations but maintain reasonably high agreement.354

This indicates that Textonomy’s two-phase pro-355

Figure 3: Estimated cost for Textonomy, TopicGPT and
TopicGPT with the OpenAI models used in Textonomy,
assuming an average document length like in the Wiki
dataset of 2500 words.

cess effectively dampens variance from LLM non- 356

determinism and training data choice. 357

5.3 Computational Complexity 358

A key advantage of Textonomy is its efficiency. 359

On the Wiki dataset (8,024 test documents, with 360

preceding training/taxonomy generation steps), 361

Textonomy took, averaged over 3 runs, approxi- 362

mately 6.8 minutes per run. In contrast, TopicGPT 363

is estimated to take around 7.5 hours (450 min- 364

utes) for a similar task (Li et al., 2025; Pham et al., 365

2024). This represents a ∼66x speed-up or a 98.5% 366

reduction in time. 367

Monetarily, for the experimental setup described, 368

a single Textonomy run cost approximately $0.93 369

using OpenAI API calls (GPT-4o-mini for summa- 370

rization/classification, o3-mini for taxonomy). Top- 371

icGPT, as reported by Pham et al. (2024), cost $155 372

for the Wiki dataset (though prices and models 373

may have changed, our re-estimation with current 374

models like GPT-4/GPT-3.5-turbo suggests costs 375

around $150, or $10.1 with Textonomy’s cheaper 376

LLMs). Textonomy’s default configuration thus 377

achieves a cost reduction of over 99.4% compared 378

to the original TopicGPT, and remains at least 11x 379

cheaper even if TopicGPT were to use the same 380

more economical LLMs as Textonomy. LDA and 381

BERTopic are significantly cheaper, running locally 382

without API costs, with BERTopic being the fastest 383

(avg. 2.3 min) and LDA comparable to Textonomy 384

in time (avg. 7.1 min). 385

The substantial cost and time savings are due to 386

Textonomy’s design: LLMs are used sparingly on 387

smaller data samples for taxonomy creation and 388
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Model Run Type Alignment Coherence Diversity Usefulness
k

P1 ↑ ARI ↑ NMI ↑ CNPMI ↑ CV ↑ DPJD ↑ DPUW ↑ UOR ↓ ULLM ↑

Ground Truth Avg 1.00 1.00 1.00 0.12 0.67 0.99 0.87 0.00 0.85 15

Textonomy
Best 0.74 0.70 0.67 0.11 0.64 0.98 0.84 0.00 0.90 16
Avg 0.73 0.68 0.66 0.11 0.64 0.98 0.82 0.00 0.88 14.7

TopicGPT
Default 0.73 0.58 0.71 - - - - - - 31
Refined 0.74 0.60 0.70 - - - - - - 22

LDA
Best 0.68 0.59 0.66 0.10 0.61 0.98 0.85 0.00 0.60 13
Avg 0.66 0.53 0.66 0.10 0.62 0.98 0.81 0.00 0.69 14.7

BERTopic
Best 0.49 0.15 0.40 0.11 0.62 0.98 0.79 0.39 0.70 16
Avg 0.46 0.12 0.37 0.10 0.63 0.98 0.80 0.43 0.73 14.7

Table 1: Interpretability and internal quality results on the Wiki test dataset. Alignment scores compare model
clusters to 15 human-annotated ground-truth categories. Higher is better for all metrics except UOR. Best scores per
metric and run type are bolded. TopicGPT results from Pham et al. (2024). k is number of topics.

Method Setting Variation P1 ↑ ARI ↑ NMI ↓

LDA Default (k = 15, avg. 10 runs) 0.75 0.66 0.76

Textonomy

Default settings (k = 15) 0.80 0.78 0.73
Shuffled training data (k = 16) 0.82 0.79 0.75
Different training data (k = 15) 0.77 0.75 0.71
Generic use case prompt (k = 12) 0.81 0.76 0.74
Assign w. GPT-4o (k = 18) 0.72 0.71 0.70

Table 2: Stability of topic assignments for Textonomy
and LDA on the Wiki dataset. Metrics compare assign-
ments from varied settings against a default Textonomy
run. Higher scores indicate greater stability.

pseudo-labeling, while large-scale inference relies389

on an efficient lightweight classifier.390

The dramatic reductions in time and cost391

achieved by Textonomy are not merely incremental392

improvements but fundamentally alter the feasibil-393

ity of using advanced LLM capabilities for topic394

modeling at scale (see Figure 3). This efficiency395

opens doors for analyzing much larger datasets,396

conducting more extensive hyperparameter explo-397

ration, or deploying topic modeling in resource-398

constrained environments where methods like Top-399

icGPT would be prohibitive. It allows researchers400

to iterate faster and apply sophisticated analysis to401

corpora that were previously intractable with such402

methods.403

5.4 Text Classifier Performance404

The lightweight logistic regression classifier in405

Textonomy achieved an average F1 score of 83%406

when evaluated on its ability to reproduce the407

LLM’s pseudo-labels on a held-out test set from408

the 1,340 sampled documents. While this indi-409

cates strong mimicry of the LLM’s decisions, any410

errors made by the LLM during pseudo-labeling411

could propagate. However, given that LLM errors412

in zero-shot classification often result in assign- 413

ment to semantically related (though not identical) 414

categories, the impact on overall topic coherence 415

and interpretability might be less severe than ran- 416

dom errors. The high topical alignment scores (Ta- 417

ble 1) despite this two-step process (LLM pseudo- 418

labeling then classifier training) suggest the overall 419

approach is effective. Future work could explore 420

more advanced distillation or prompting techniques 421

to further enhance classifier accuracy. 422

5.5 Insights from Qualitative Comparison to 423

Ground Truth 424

Qualitative analysis of Textonomy’s generated tax- 425

onomy against the 15 Wikipedia Supercategories 426

revealed that Textonomy produced topics that are 427

largely in agreement with ground-truth labels, 428

while making some reasonable adjustments ade- 429

quate given the training data (see Figure 5). Many 430

generated topics showed strong semantic overlap 431

with ground-truth categories (e.g., "Video Games," 432

"Music & Pop" for "Music," "Military History" for 433

"Warfare"). Some differences arose where Texton- 434

omy created more granular topics based on data 435

prevalence. For example, the majority of docu- 436

ments from the ground-truth class "Engineering 437

and technology" are about highways, airports, etc., 438

which is more of a problem with the training/test 439

dataset than with Textonomy, which created a clus- 440

ter for these documents called "Transport & Ur- 441

ban" (see Figure 4 for the contingency matrix used 442

for comparison). Differences arose also where the 443

taxonomy generation sample had sparse represen- 444

tation of certain ground-truth categories, impact- 445

ing NMI scores for those underrepresented classes 446

in the final classification. This highlights the im- 447
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Figure 4: The contingency matrix of the ground-truth clustering and the best run of Textonomy.

portance of the taxonomy sampling step. Such448

data-driven distinctions can be beneficial for ex-449

ploratory analysis but also highlight the influence450

of the taxonomy generation sample. If this sample451

under represents certain ground-truth categories or452

presents a skewed view, the resulting taxonomy453

will reflect that, potentially impacting metrics like454

NMI if the test set has a different distribution.455

6 Conclusion456

This paper introduced Textonomy, a TnT-LLM-457

based method for topic modeling that prioritizes458

scalability, interpretability, and cost-efficiency. Our459

experiments on the WikiText-103 dataset demon-460

strate that Textonomy achieves topical alignment461

and stability competitive with or exceeding state-462

of-the-art baselines, including the LLM-based Top-463

icGPT. Notably, Textonomy achieves these results464

while reducing computational costs by over 99%465

and runtime by over 98% compared to TopicGPT.466

Textonomy’s two-phase approach—LLM-driven467

iterative taxonomy generation on summaries, fol-468

lowed by training a lightweight classifier on LLM469

pseudo-labels—effectively balances the nuanced470

reasoning capabilities of LLMs with the need for471

efficient large-scale processing. This makes it a vi-472

able solution for practical, automated text content473

analysis in large corpora. 474

Future work could explore Textonomy’s applica- 475

tion to diverse domains and languages, investigate 476

adaptive hyperparameter tuning, further refine the 477

LLM-augmented classification stage, and explore 478

the generation of hierarchical taxonomies. Texton- 479

omy offers a significant step towards making ad- 480

vanced, LLM-enhanced topic modeling more ac- 481

cessible and practical for a wider range of research 482

and application scenarios. 483

All codes and data are made publicly available at 484

[link omitted for review] to facilitate reproducibil- 485

ity and further research [upon acceptance of the 486

publication]. 487

Limitations 488

The findings of this study are subject to several 489

limitations: 490

• Dataset Specificity: Results on Wikipedia 491

(WikiText-103) may not generalize to all do- 492

mains, especially those with highly special- 493

ized jargon, short texts (e.g., social media), 494

or data not well-represented in LLM pre- 495

training corpora. The potential for data mem- 496

orization by LLMs on a well-known dataset 497

like Wikipedia is a concern, although Texton- 498

omy’s batch-based reasoning for taxonomy 499
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Figure 5: A comparison of the set of ground-truth labels with the taxonomy produced by the best run of Textonomy.
The color coding represents supposed agreement or at least a partial overlap between the two sets of labels. Text
without clear agreement is colored black.

and use of a separate classifier may mitigate500

direct memorization effects compared to per-501

document LLM prompting.502

• Evaluation Metrics: While we use estab-503

lished metrics, topic model evaluation remains504

complex. Ground-truth alignment is valuable505

but does not capture all aspects of "good"506

content analysis. Internal metrics may not507

always correlate with human judgment for508

LLM-generated topics.509

• LLM Dependencies: Performance relies on510

proprietary LLMs (OpenAI). This involves511

costs, potential API changes, and lack of full512

transparency into model architecture and train-513

ing data, which can perpetuate biases (Bender514

et al., 2021). While Textonomy aims for inter-515

pretability in its outputs, the internal workings516

of the used LLMs remain a black box. Fur-517

thermore, this work does not conduct a formal518

analysis of biases (e.g., as defined by Blodgett519

et al. (2020)) within the LLMs or Textonomy’s520

final outputs, but acknowledges the risk of521

bias propagation from the pre-trained LLMs522

used in summarization, taxonomy genera-523

tion, and pseudo-labeling. Performance with524

open-source LLMs was not explored in this525

work, although tests by (Pham et al., 2024)526

indicated that open models struggled with527

topic/taxonomy generation. A core assump- 528

tion is that the two-phase process—taxonomy 529

generation from summaries and subsequent 530

classification—effectively captures the cor- 531

pus’s essential thematic structure without criti- 532

cal information loss compared to methods that 533

might use full documents for every LLM inter- 534

action. Violations of this, e.g., if summaries 535

miss crucial nuances for specific topics, could 536

impact taxonomy quality. 537

• Language: Evaluation was limited to En- 538

glish. 539

• Hyperparameter Sensitivity: While Texton- 540

omy shows stability, optimal performance for 541

the taxonomy generation phase (e.g., sample 542

size, batching strategy) might require some 543

tuning depending on dataset characteristics 544

and desired granularity, which was not ex- 545

haustively explored. 546
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A Evaluation Metrics 718

This appendix details the external and internal clustering metrics used to evaluate the topic models in this 719

paper. 720

A.1 Common Notation 721

The following notation is used: 722

• Let D = {d1, d2, . . . , dN} be our dataset containing N documents. 723

• Let T = {T1, T2, . . . , TK} be the set of K topic clusters obtained from the topic model, where each 724

document dj ∈ D is assigned to exactly one topic cluster T (dj) ∈ T . 725

• Let W = {W1,W2, . . . ,WK} be the set of K topic keyword representations obtained from the topic 726

model or a separate class-based TF-IDF procedure, where: 727

– each keyword representation Wk belongs to topic Tk of the same index k, 728

– Wk = {w1, w2, . . . , wQ} is the set of Q keywords chosen to represent topic Tk, and 729

– Q is a hyperparameter that is set to 10 by default as in most works (Röder et al., 2015; Doogan 730

and Buntine, 2021). 731

• Let C = {C1, C2, . . . , CI} be the set of I human-annotated ground-truth classes, where each 732

document dj ∈ D belongs to exactly one class C(dj) ∈ C. 733

• Let M be the contingency matrix where: 734

– Mi,k is the number of documents assigned to both ground-truth class Ci and topic cluster Tk, 735

i.e. 736

Mi,k = |{dj ∈ D | C(dj) = Ci, T (dj) = Tk}| , (1) 737

– the row sums represent the total documents in each ground-truth class, i.e. 738

|Ci| =
K∑
k=1

Mi,k, (2) 739

– and the column sums represent the total documents in each topic cluster, i.e. 740

|Tk| =
I∑

i=1

Mi,k. (3) 741

A.2 External Cluster Metrics 742

These metrics assess the agreement between model-generated topic clusters T and ground-truth classes C. 743

We used implementations from scikit-learn where available. 744

P1: Harmonic Mean of Purity and Inverse Purity Purity measures the extent to which each topic Tk 745

contains documents from primarily one class Ci. Inverse Purity measures the extent to which each class 746

Ci is represented by a single topic Tk (Zhao, 2005). 747

Purity(T , C) = 1

N

K∑
k=1

max
i

Mi,k (4) 748

Purity−1(T , C) = 1

N

I∑
i=1

max
k

Mi,k. (5) 749

P1 is their harmonic mean, balancing both aspects (Amigó et al., 2009): 750

P1(T , C) = 2× Purity(T , C)× Purity−1(T , C)
Purity(T , C) + Purity−1(T , C)

. (6) 751

A P1 score of 1 indicates perfect alignment. 752
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ARI: Adjusted Rand Index The Rand Index (RI) (Rand, 1971) measures similarity between clusterings.753

The Adjusted Rand Index (ARI) (Hubert and Arabie, 1985) corrects RI for chance. The general form is:754

ARI(T , C) = RI − E[RI]
max(RI)− E[RI]

. (7)755

Using the contingency matrix M, ARI is calculated as:756

ARI(T , C) =

∑I
i=1

∑K
k=1

(Mi,k

2

)
−

[∑I
i=1 (

|Ci|
2 )

][∑K
k=1 (

|Tk|
2 )

]
(N2 )

1
2

[∑I
i=1

(|Ci|
2

)
+
∑K

k=1

(|Tk|
2

)]
−

[∑I
i=1 (

|Ci|
2 )

][∑K
k=1 (

|Tk|
2 )

]
(N2 )

. (8)757

Substituting these into the general ARI formula gives the specific calculation used. ARI ranges from -1 to758

1, where 1 is perfect agreement, 0 is random agreement.759

NMI: Normalized Mutual Information NMI is an information-theoretic measure quantifying the760

mutual dependence between the topic clustering T and ground-truth classes C (Strehl and Ghosh, 2003).761

It normalizes Mutual Information (MI) by the average of their entropies.762

The joint and marginal probabilities are defined as:763

P (Ci, Tk) =
Mi,k

N
, (9)764

P (Ci) =
|Ci|
N

, (10)765

P (Tk) =
|Tk|
N

. (11)766

MI is defined as (Shannon, 1948):767

I(T ; C) =
I∑

i=1

K∑
k=1

P (Ci, Tk) log
P (Ci, Tk)

P (Ci)P (Tk)
. (12)768

This can also be written using counts from the contingency matrix M:769

I(T ; C) =
I∑

i=1

K∑
k=1

Mi,k

N
log

Mi,kN

|Ci||Tk|
. (13)770

The entropies of the topic clusters T and ground-truth classes C are:771

H(T ) = −
K∑
k=1

P (Tk) logP (Tk) = −
K∑
k=1

|Tk|
N

log
|Tk|
N

, (14)772

H(C) = −
I∑

i=1

P (Ci) logP (Ci) = −
I∑

i=1

|Ci|
N

log
|Ci|
N

. (15)773

NMI is then:774

NMI(T , C) = 2 · I(T ; C)
H(T ) +H(C)

. (16)775

NMI ranges from 0 (no mutual information) to 1 (perfect correlation).776

A.3 Internal Cluster Metrics777

These metrics assess topic quality based on the generated topics themselves, without reference to ground-778

truth labels.779
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A.3.1 Topic Coherence 780

Measures semantic similarity among high-scoring words within a topic. 781

CNPMI: Normalized Pointwise Mutual Information Coherence NPMI measures the co-occurrence of 782

two words wi, wj normalized by their joint probability, resulting in a score between -1 and 1 (Bouma, 783

2009). 784

NPMI(wi, wj) =
log

P (wi,wj)
P (wi)P (wj)

− logP (wi, wj)
(17) 785

P (wi, wj) is the probability of wi and wj co-occurring (e.g., in a sliding window within a reference 786

corpus), and P (wi), P (wj) are their individual probabilities. The topic coherence CNPMI is the average 787

NPMI score over the top Q words for each topic, then averaged over all topics (Aletras and Stevenson, 788

2013). Higher values indicate more coherent topics. 789

CV : Coherence Metric CV combines NPMI with cosine similarity (Röder et al., 2015). For each topic 790

Wk = {w1, . . . , wQ}, it computes a vector vNPMI(wi) = {NPMI(wi, wj)}j=1,...,Q for each word wi. It 791

then averages the cosine similarity between each word’s NPMI vector and a context vector representing 792

the aggregated NPMI scores for all words in the topic. Specifically: 793

CV (Wk) =
1

Q

Q∑
i=1

sim(vNPMI(wi),
∑
j ̸=i

vNPMI(wj)) (18) 794

where 795

vNPMI(wi) = {NPMI(wi, wj)}j=1,...,Q, (19) 796
797

vNPMI({w1, w2, . . . , wQ}) =
{ Q∑

i=1

NPMI(wi, wj)
}
j=1,...,Q

. (20) 798

(Wu et al., 2024), and cos is defined as the cosine between two vectors u,v ∈ RN as 799

cos(θ) =
u · v

∥u∥ ∥v∥
(21) 800

where u · v denotes the dot product of the vectors, and ∥u∥, ∥v∥ are their Euclidean norms. The overall 801

CV is the average over all topics. Higher values are better. 802

A.3.2 Topic Diversity 803

Measures distinctiveness between different topics. 804

DPJD: Pairwise Jaccard Distance Computes the average Jaccard distance between all pairs of topic 805

keyword sets Wi,Wj (Tran et al., 2013). 806

J(Wi,Wj) = 1− |Wi ∩Wj |
|Wi ∪Wj |

. (22) 807

DPJD is the average of J(Wi,Wj) over all unique pairs of topics. A score closer to 1 indicates higher 808

diversity (less overlap). 809

DPUW : Proportion of Unique Words Measures the percentage of unique words across all top-Q 810

words of all K topics (Dieng et al., 2019). 811

DPUW =

∣∣∣⋃K
k=1Wk

∣∣∣
K ·Q

. (23) 812

A score of 1 means all keywords across all topics are unique. 813
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A.3.3 Topic Validity814

Assesses the practical usefulness of the topics.815

ULLM : LLM-based Usefulness Evaluation An LLM is prompted to evaluate the generated topics816

based on a user-defined purpose (provided to Textonomy). The LLM assesses the topic set on criteria817

including: Relevance, Clarity, Comprehensiveness, and Distribution. Each criterion is scored [0,1], and818

ULLM is the average score, aiming to capture alignment with user goals (Hoyle et al., 2022).819

UOR: Outlier Ratio Measures the proportion of documents not assigned to any topic (outliers).820

UOR =
|Dout|
N

(24)821

where Dout = {dj ∈ D | T (dj) = ∅ or is an outlier topic}. A lower UOR is generally preferred for tasks822

requiring comprehensive categorization.823
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