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Abstract

Automating text content analysis, particularly
topic modeling, faces challenges in topic in-
terpretability, evaluation, and scalability. This
paper introduces Textonomy, a novel method
based on the TnT-LLM framework, designed
to address these challenges. Textonomy op-
erates in two phases: first, it iteratively gen-
erates and refines a taxonomy using Large
Language Models (LLMs) on batches of sum-
maries, guided by a user-defined use case. Sec-
ond, it pseudo-labels a subset of texts with this
taxonomy via LLM-based zero-shot classifi-
cation and trains a lightweight classifier for
large-scale inference. We evaluate Texton-
omy against traditional (LDA, BERTopic) and
recent LLM-based (TopicGPT) topic models
on the WikiText-103 dataset. Results show
Textonomy achieves competitive or superior
performance in aligning with human-annotated
ground-truth clusters (e.g., average ARI of 0.68
vs. 0.58 for TopicGPT) and demonstrates high
stability. Specifically, Textonomy reduces the
computational cost and time by approximately
99.4% and 98.5%, respectively, compared to
TopicGPT. These findings highlight Texton-
omy’s potential for robust, interpretable, and
efficient topic modeling on large corpora.

1 Introduction

The proliferation of digital text necessitates auto-
mated methods for content analysis. Topic model-
ing, a key technique for uncovering latent semantic
structures in text corpora (Blei et al., 2003; Ab-
delrazek et al., 2023), is predominantly used for
content analysis (Hoyle et al., 2022).

A critical challenge in topic modeling is align-
ing model outputs with human needs and interpre-
tations (Hoyle et al., 2021; Chang et al., 2009).
Users often have specific research questions or
goals, which require topic models to produce not
just coherent clusters of words, but meaningful,
interpretable, and task-relevant categories (Stamm-
bach et al., 2023; Wang et al., 2023; Doogan and

Buntine, 2021; Hoyle et al., 2022). Recent meth-
ods like TopicGPT (Pham et al., 2024) leverage
LLMs for interpretable topic generation and assign-
ment, but suffer from high costs. Li et al. (2025)
also highlight the expense of similar LLM-heavy
approaches.

To bridge the gap between interpretability and
scalability, we propose Textonomy, an implementa-
tion of the TnT-LLM framework (Taxonomy gener-
ation and Text classification with Large Language
Models) by Wan et al. (2024). Textonomy aims to
automate a form of emergent, goal-driven content
analysis (Stemler, 2000).

It operates in two main phases:

1. Taxonomy Generation: An LLM iteratively
creates and refines a taxonomy based on
user-provided use cases and batches of LLM-
generated summaries from a data sample.

2. LLM-Augmented Text Classification: A
subset of texts is pseudo-labeled by an LLM
using the generated taxonomy, and this data
is used to train a lightweight, efficient text
classifier for large-scale inference.

This paper makes the following contributions:

1. We propose Textonomy, a TnT-LLM-based
algorithm for interpretable and scalable topic
modeling.

2. We empirically evaluate Textonomy against
strong baselines (LDA, BERTopic, TopicGPT)
on the WikiText-103 dataset.

3. We demonstrate that Textonomy achieves
competitive topical alignment and stability
while drastically reducing computational costs
compared to purely LLM-based methods.

Our findings suggest that Textonomy offers a
promising approach for automated text content



analysis, combining the interpretability of LLM-
driven topic discovery with the efficiency needed
for large corpora.

2 Related Work

Topic model evaluation has long been debated,
with a push towards use-case-dependent metrics
and human judgment alignment (Hoyle et al.,
2021; Chang et al., 2009). Coherence measures
like Cnpymr (Bouma, 2009; Aletras and Stevenson,
2013) and C'y (Roder et al., 2015) aim to proxy hu-
man interpretability, but their applicability to Neu-
ral Topic Models (NTMs) is debated and a substan-
tial standardization gap was revealed in the topic
modeling literature (Hoyle et al., 2021; Doogan and
Buntine, 2021). Hoyle et al. (2022) advocate eval-
uating topic models based on criteria for "good"
content analysis: reproducibility (alignment with
human coding) and stability (intra-model consis-
tency), reflecting inter-rater reliability and intra-
rater reliability in traditional manual content analy-
sis (Stemler, 2000).

Traditional topic models include Latent Dirichlet
Allocation (LDA) (Blei et al., 2003), a foundational
Bayesian probabilistic model which is a classic
baseline in topic modeling. Among a wide range
of different topic modeling methods (Abdelrazek
et al., 2023) BERTopic (Grootendorst, 2022) stands
out as a popular implementation of a Neural Topic
Modeling by Clustering Embeddings (NTM-CE)
that boasts good scalability combined with high
topic coherence scores (Grootendorst, 2022).

Recent advances involve LLMs. TopicGPT
(Pham et al., 2024) uses iterative LLM prompt-
ing for topic generation and assignment, yielding
interpretable topics but at high computational cost.
Li et al. (2025) compared several LLM-based meth-
ods, confirming high costs for models such as Top-
icGPT and LLooM (Lam et al., 2024). GoalEx
(Wang et al., 2023) also uses LLMs but its individ-
ual topic assignment scales poorly. Query-driven
models like Fang et al. (2021) allow topic speci-
ficity but lack general goal-orientation for the entire
codeset.

The TnT-LLM framework (Wan et al., 2024),
upon which Textonomy is built, was initially tested
to generate user intent taxonomies from chat data,
not directly for topic modeling or compared against
topic models. Textonomy is, to our knowledge,
the first application and evaluation of a TnT-LLM-
based method for general-purpose topic model-

ing, focusing on balancing interpretability with
scalability. Our work differentiates from Li et al.
(2025) by focusing on the TnT-LLM’s two-stage
approach (LLM for taxonomy, lightweight clas-
sifier for scale) rather than a human-in-the-loop
LLM-based system.

3 Textonomy: A TnT-LLM Approach

Textonomy implements the TnT-LLLM framework
(Wan et al., 2024) for scalable topic modeling or,
more generally, automated content analysis. It con-
sists of two main phases: Taxonomy Generation
and LLM-Augmented Text Classification, with an
overview given in Figure 1 and Figure 2, respec-
tively. For its LLM components, Textonomy is
designed for both capability and efficiency.

3.1 Phase 1: Taxonomy Generation

This phase creates a topic taxonomy tailored to the
input data and a user-specified use case. By default,
a 5% random sample of the input documents (min.
100) is used.

Stage 1: Summarization. Each document in the
taxonomy sample is individually summarized by
an LLM (default: GPT-40-mini). The prompt re-
quests a concise summary (e.g., 20 words) and a
brief explanation (e.g., 30 words) for the summary,
considering the use case input by the user. This
step acts as a feature extraction process, distilling
salient information relevant to the task.

Stage 2: Taxonomy Initialization, Updates, and
Review The generated summaries are divided
into equal-sized mini-batches. An LLM (default:
03-mini, selected for strong reasoning on such
tasks) then performs a multi-stage reasoning pro-
cess:

1. Initialization: The first batch of summaries
is used to generate an initial taxonomy.

2. Iterative Updates: For subsequent batches,
the LLM reviews the current taxonomy, rates
its quality against predefined criteria (e.g.,
clarity, no overlap, relevance to use case), ex-
plains its rating, suggests edits based on the
new batch of summaries, and provides an up-
dated taxonomy.

3. Final Review: After processing all batches,
the LLM performs a final review of the tax-
onomy without new data to ensure coherence
and quality.
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Figure 1: Conceptual overview of Phase 1 in Textonomy: Summaries from a data sample are batched for iterative
taxonomy generation by an LLM. (2) The final taxonomy is used by an LLM to pseudo-label a training subset, upon
which a lightweight classifier is trained for scalable inference. Figure adapted from Wan et al. (2024).

The prompts ensure the LLM adheres to format
requirements (e.g., label structure with name and
description, maximum number of categories) and
quality criteria (e.g., mutual exclusivity, concise-
ness, accuracy). Users can adjust hyperparameters
like category name/description length.

3.2 Phase 2: LLM-Augmented Text
Classification

This phase scales up the classification using the
generated taxonomy. A subset of the full dataset
(default: 10%, min. 300 documents) is sampled for
pseudo-labeling. An LLM (default: GPT-40-mini)
classifies these documents based on the final taxon-
omy from Phase 1. The prompt includes the docu-
ment text and the full taxonomy (category names
and descriptions).

This LLM-pseudo-labeled dataset is then used
to train a lightweight text classifier. We use
logistic regression by default, trained on sen-
tence embeddings (default: all-MinilM-L6-v2
via sentence-transformers (Reimers and
Gurevych, 2019; noa, 2024)). The resulting
classifier can then efficiently categorize the entire
corpus or new, unseen documents.

4 Experiments

4.1 Dataset and Preprocessing

We use a subset of the WikiText-103 dataset (Wiki)
(Merity et al., 2017), specifically the version pre-
pared by Pham et al. (2024), comprising 22,314
Wikipedia articles with 15 human-annotated high-
level topic labels (our ground truth). The dataset
is split into a training set (14,290 articles) and a
test set (8,024 articles). The dataset also includes a
preprocessed version of the texts, featuring SpaCy
tokenization, no lemmatization or stemming, and
frequency-based filtering. We use a random 5,100-

document subsample from the official training set
as our training data for model development and hy-
perparameter choices (e.g., for Textonomy’s sam-

pling).
4.2 Baselines

We compare Textonomy against:

* LDA (Blei et al., 2003): Implemented via
Gensim (Rehtiek and Sojka, 2010).

* BERTopic (Grootendorst, 2022): Using de-
fault settings with all-MiniLM-L6-v2 em-
beddings.

* TopicGPT (Pham et al., 2024): As results
are expensive to reproduce, we report scores
from their paper for the Wiki dataset where
applicable and use their setup as a reference
for our Textonomy experiments.

For LDA and BERTopic, hyperparameters were
largely kept to their respective libraries’ defaults,
with the exception of the number of topics (k),
which was guided by Textonomy’s output range
for a fair comparison.

4.3 Evaluation Metrics
Definitions of all used evaluation metrics are de-

tailed in Appendix A.

Topical Alignment (Interpretability): We mea-
sure alignment with the 15 ground-truth Wikipedia
categories using:

* P;: Harmonic mean of Purity and Inverse
Purity (Zhao, 2005; Amigé et al., 2009).

* ARI: Adjusted Rand Index (Hubert and Ara-
bie, 1985).
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Figure 2: Conceptual overview of Phase 2 in Textonomy: The final taxonomy from Phase 1 is used by an LLM to
pseudo-label a training subset, upon which a lightweight classifier is trained for scalable inference. Figure adapted

from Wan et al. (2024).

¢ NMI: Normalized Mutual Information (Strehl
and Ghosh, 2003).

We selected P;, ARI, and NMI as our primary ex-
ternal cluster metrics to measure topical alignment
due to their complementary strengths and to create
comparability to TopicGPT (Pham et al., 2024). P;
balances the purity of topics (are documents in a
topic from one class?) and the completeness of
classes (are documents from a class in one topic?).
The ARI assesses the similarity between two clus-
terings while accounting for agreements that could
occur by chance. It is particularly sensitive to dif-
ferences in the underlying structure of the cluster-
ings because it performs pairwise checks to see
if items are grouped together consistently. NMI,
an information-theoretic measure, quantifies the
mutual dependence between the model’s cluster-
ing and true classes, handling differing numbers
of clusters well and offering insights into shared
information.

Internal Quality Metrics:

¢ Coherence: Cnpmi (Aletras and Stevenson,
2013) and Cy (Roder et al., 2015), calcu-
lated on the keyword representation produced
by LDA and c-TF-IDF based keywords for
BERTopic and Textonomy.

* Diversity: Pairwise Jaccard Distance (Dpjp)
(Tran et al., 2013) and Proportion of Unique
Words (D pyw) (Dieng et al., 2020).

e Validity: Outlier Ratio (Upg) and an LLM-
based usefulness score (Urr,s) assessing rel-

evance, clarity, comprehensiveness, and distri-
bution against the user-defined purpose.

Stability: We assess stability by comparing topic
assignments from different runs of Textonomy
(with variations in data, prompts, or LLM settings)
using P, ARI, and NMI against a default Texton-
omy run. LDA stability (average over 10 runs)
serves as a baseline.

4.4 Textonomy Configuration

For Textonomy, the user-defined use case was: “A
taxonomy to organize these articles into main cate-
gories. Aim at around 10-20 categories. Examples:
"Music’, *Social sciences and society’...”. Phase 1
involved sampling 500 documents for taxonomy
generation. In Phase 2, 1,340 documents were sam-
pled for LLM-augmented classifier training (3/4
train, 1/4 test for internal classifier metrics). Ope-
nAI’s 03-mini was selected for taxonomy genera-
tion due to its strong performance on generating
taxonomies fitting the summaries batch. In contrast,
non-reasoning models like GPT-40 show tendency
to create more generic taxonomies. For the less
reasoning-intensive tasks of document summariza-
tion and pseudo-labeling, GPT-40-mini was chosen
for its balance of good performance and signifi-
cantly lower operational cost compared to larger
flagship models.

5 Results and Discussion

We present results for interpretability (topical align-
ment), internal quality, stability, and computational
complexity. For Textonomy, LDA, and BERTopic,



we report the average over three runs on the test
set, alongside the best run. For TopicGPT, we refer
to published results (Pham et al., 2024).

5.1 Interpretability and Topic Quality

Table 1 shows the topical alignment and internal
quality metrics.

Textonomy consistently performs well in topi-
cal alignment. Its average P; score (0.73) matches
TopicGPT’s best run at default settings (0.73) and
is close to its refined version (0.74). Textonomy
significantly outperforms TopicGPT on ARI (av-
erage 0.68 vs. TopicGPT’s 0.58-0.60), indicating
better structural agreement with ground-truth clus-
ters. This ARI score approaches levels indicative
of good inter-rater reliability (e.g., in comparison
to the suggested level for Cohen’s Kappa ~ 0.8
by Stemler (2000)). On NMI, Textonomy (0.66)
is comparable to LDA (0.66) but slightly below
TopicGPT (0.70-0.71), potentially due to the clas-
sifier’s handling of imbalanced or smaller classes
from the taxonomy. Both LLM-based methods
(Textonomy and TopicGPT) generally surpass LDA
and substantially outperform BERTopic on align-
ment metrics. BERTopic’s low alignment scores,
despite reasonable coherence, highlight the known
gap between some automated metrics and human-
like clustering for NTMs (Hoyle et al., 2022).

For internal metrics, Textonomy achieves coher-
ence (Cnpmr, Cv) and diversity (Dpyp, Dpyw)
scores competitive with LDA and BERTopic. Its
outlier ratio (UpRr) is 0, ideal for this dataset where
all articles are labeled. Textonomy also scores high-
est on LLM-evaluated usefulness (Urrnr), likely
benefiting from its generation of descriptive cate-
gory names and descriptions compared to keyword
lists from LDA/BERTopic.

5.2 Stability

Table 2 presents Textonomy’s stability under vari-
ous perturbations, compared to an LDA baseline.
Textonomy demonstrates high stability, gener-
ally meeting or exceeding the LDA baseline. Mi-
nor changes like data shuffling or using a generic
prompt have a minor impact, with ARI scores
around 0.76-0.79. This suggests robust "intra-
coder reliability". More substantial changes, like
using completely different training data or a dif-
ferent LLM for pseudo-labeling (GPT-40 instead
of GPT-40-mini), result in slightly larger devi-
ations but maintain reasonably high agreement.
This indicates that Textonomy’s two-phase pro-

—— Textonomy (TnT-LLM)
TopicGPT (Default settings)
—— TopicGPT (with Textonomy's OpenAl models)
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Figure 3: Estimated cost for Textonomy, TopicGPT and
TopicGPT with the OpenAl models used in Textonomy,
assuming an average document length like in the Wiki
dataset of 2500 words.

cess effectively dampens variance from LLM non-
determinism and training data choice.

5.3 Computational Complexity

A key advantage of Textonomy is its efficiency.
On the Wiki dataset (8,024 test documents, with
preceding training/taxonomy generation steps),
Textonomy took, averaged over 3 runs, approxi-
mately 6.8 minutes per run. In contrast, TopicGPT
is estimated to take around 7.5 hours (450 min-
utes) for a similar task (Li et al., 2025; Pham et al.,
2024). This represents a ~66x speed-up or a 98.5%
reduction in time.

Monetarily, for the experimental setup described,
a single Textonomy run cost approximately $0.93
using OpenAl API calls (GPT-40-mini for summa-
rization/classification, 03-mini for taxonomy). Top-
icGPT, as reported by Pham et al. (2024), cost $155
for the Wiki dataset (though prices and models
may have changed, our re-estimation with current
models like GPT-4/GPT-3.5-turbo suggests costs
around $150, or $10.1 with Textonomy’s cheaper
LLMs). Textonomy’s default configuration thus
achieves a cost reduction of over 99.4% compared
to the original TopicGPT, and remains at least 11x
cheaper even if TopicGPT were to use the same
more economical LLMs as Textonomy. LDA and
BERTopic are significantly cheaper, running locally
without API costs, with BERTopic being the fastest
(avg. 2.3 min) and LDA comparable to Textonomy
in time (avg. 7.1 min).

The substantial cost and time savings are due to
Textonomy’s design: LLMs are used sparingly on
smaller data samples for taxonomy creation and



Alignment

Coherence

Diversity

Usefulness

Model Run Type k
P; 1t ARI?T NMIt Cnpmi?T Cv?1 Dpjp?t Dpuw? Uor! Urim T

Ground Truth Avg 1.00 1.00 1.00 0.12 0.67 0.99 0.87 0.00 0.85 15
Textonom Best 0.74 0.70 0.67 0.11 0.64 0.98 0.84 0.00 0.90 16
y Avg 0.73 0.68 0.66 0.11 0.64 0.98 0.82 0.00 0.88 14.7

. Default 0.73 0.58 0.71 - - - - - - 31
TopicGPT Refined 074 060 070 . . . . . . 2
LDA Best 0.68 0.59 0.66 0.10 0.61 0.98 0.85 0.00 0.60 13
Avg 0.66 0.53 0.66 0.10 0.62 0.98 0.81 0.00 0.69 14.7

BERTopic Best 0.49 0.15 0.40 0.11 0.62 0.98 0.79 0.39 0.70 16
P Avg 0.46 0.12 0.37 0.10 0.63 0.98 0.80 0.43 0.73 14.7

Table 1: Interpretability and internal quality results on the Wiki test dataset. Alignment scores compare model
clusters to 15 human-annotated ground-truth categories. Higher is better for all metrics except Upr. Best scores per
metric and run type are bolded. TopicGPT results from Pham et al. (2024). k is number of topics.

Method Setting Variation P11 ARIT NMI|

LDA Default (k = 15, avg. 10 runs) 0.75 0.66 0.76
Default settings (k = 15) 0.80 0.78 0.73
Shuffled training data (k = 16) 0.82 0.79 0.75

Textonomy Different training data (k = 15) 0.77 0.75 0.71

Generic use case prompt (k = 12)  0.81 0.76 0.74
Assign w. GPT-4o (k = 18) 0.72 0.71 0.70

Table 2: Stability of topic assignments for Textonomy
and LDA on the Wiki dataset. Metrics compare assign-
ments from varied settings against a default Textonomy
run. Higher scores indicate greater stability.

pseudo-labeling, while large-scale inference relies
on an efficient lightweight classifier.

The dramatic reductions in time and cost
achieved by Textonomy are not merely incremental
improvements but fundamentally alter the feasibil-
ity of using advanced LLM capabilities for topic
modeling at scale (see Figure 3). This efficiency
opens doors for analyzing much larger datasets,
conducting more extensive hyperparameter explo-
ration, or deploying topic modeling in resource-
constrained environments where methods like Top-
icGPT would be prohibitive. It allows researchers
to iterate faster and apply sophisticated analysis to
corpora that were previously intractable with such
methods.

5.4 Text Classifier Performance

The lightweight logistic regression classifier in
Textonomy achieved an average F1 score of 83%
when evaluated on its ability to reproduce the
LLM'’s pseudo-labels on a held-out test set from
the 1,340 sampled documents. While this indi-
cates strong mimicry of the LLM’s decisions, any
errors made by the LLM during pseudo-labeling
could propagate. However, given that LLM errors

in zero-shot classification often result in assign-
ment to semantically related (though not identical)
categories, the impact on overall topic coherence
and interpretability might be less severe than ran-
dom errors. The high topical alignment scores (Ta-
ble 1) despite this two-step process (LLM pseudo-
labeling then classifier training) suggest the overall
approach is effective. Future work could explore
more advanced distillation or prompting techniques
to further enhance classifier accuracy.

5.5 Insights from Qualitative Comparison to
Ground Truth

Qualitative analysis of Textonomy’s generated tax-
onomy against the 15 Wikipedia Supercategories
revealed that Textonomy produced topics that are
largely in agreement with ground-truth labels,
while making some reasonable adjustments ade-
quate given the training data (see Figure 5). Many
generated topics showed strong semantic overlap
with ground-truth categories (e.g., "Video Games,"
"Music & Pop" for "Music," "Military History" for
"Warfare"). Some differences arose where Texton-
omy created more granular topics based on data
prevalence. For example, the majority of docu-
ments from the ground-truth class "Engineering
and technology" are about highways, airports, etc.,
which is more of a problem with the training/test
dataset than with Textonomy, which created a clus-
ter for these documents called "Transport & Ur-
ban" (see Figure 4 for the contingency matrix used
for comparison). Differences arose also where the
taxonomy generation sample had sparse represen-
tation of certain ground-truth categories, impact-
ing NMI scores for those underrepresented classes
in the final classification. This highlights the im-
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Figure 4: The contingency matrix of the ground-truth clustering and the best run of Textonomy.

portance of the taxonomy sampling step. Such
data-driven distinctions can be beneficial for ex-
ploratory analysis but also highlight the influence
of the taxonomy generation sample. If this sample
under represents certain ground-truth categories or
presents a skewed view, the resulting taxonomy
will reflect that, potentially impacting metrics like
NMI if the test set has a different distribution.

6 Conclusion

This paper introduced Textonomy, a TnT-LLM-
based method for topic modeling that prioritizes
scalability, interpretability, and cost-efficiency. Our
experiments on the WikiText-103 dataset demon-
strate that Textonomy achieves topical alignment
and stability competitive with or exceeding state-
of-the-art baselines, including the LLM-based Top-
icGPT. Notably, Textonomy achieves these results
while reducing computational costs by over 99%
and runtime by over 98% compared to TopicGPT.

Textonomy’s two-phase approach—LLM-driven
iterative taxonomy generation on summaries, fol-
lowed by training a lightweight classifier on LLM
pseudo-labels—effectively balances the nuanced
reasoning capabilities of LLMs with the need for
efficient large-scale processing. This makes it a vi-
able solution for practical, automated text content

analysis in large corpora.

Future work could explore Textonomy’s applica-
tion to diverse domains and languages, investigate
adaptive hyperparameter tuning, further refine the
LLM-augmented classification stage, and explore
the generation of hierarchical taxonomies. Texton-
omy offers a significant step towards making ad-
vanced, LLM-enhanced topic modeling more ac-
cessible and practical for a wider range of research
and application scenarios.

All codes and data are made publicly available at
[link omitted for review] to facilitate reproducibil-
ity and further research [upon acceptance of the
publication].

Limitations

The findings of this study are subject to several
limitations:

» Dataset Specificity: Results on Wikipedia
(WikiText-103) may not generalize to all do-
mains, especially those with highly special-
ized jargon, short texts (e.g., social media),
or data not well-represented in LLM pre-
training corpora. The potential for data mem-
orization by LLMs on a well-known dataset
like Wikipedia is a concern, although Texton-
omy’s batch-based reasoning for taxonomy
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Figure 5: A comparison of the set of ground-truth labels with the taxonomy produced by the best run of Textonomy.
The color coding represents supposed agreement or at least a partial overlap between the two sets of labels. Text

without clear agreement is colored black.

and use of a separate classifier may mitigate
direct memorization effects compared to per-
document LLM prompting.

Evaluation Metrics: While we use estab-
lished metrics, topic model evaluation remains
complex. Ground-truth alignment is valuable
but does not capture all aspects of "good"
content analysis. Internal metrics may not
always correlate with human judgment for
LLM-generated topics.

LLM Dependencies: Performance relies on
proprietary LLMs (OpenAl). This involves
costs, potential API changes, and lack of full
transparency into model architecture and train-
ing data, which can perpetuate biases (Bender
et al., 2021). While Textonomy aims for inter-
pretability in its outputs, the internal workings
of the used LLMs remain a black box. Fur-
thermore, this work does not conduct a formal
analysis of biases (e.g., as defined by Blodgett
et al. (2020)) within the LLMs or Textonomy’s
final outputs, but acknowledges the risk of
bias propagation from the pre-trained LLMs
used in summarization, taxonomy genera-
tion, and pseudo-labeling. Performance with
open-source LLLMs was not explored in this
work, although tests by (Pham et al., 2024)
indicated that open models struggled with

topic/taxonomy generation. A core assump-
tion is that the two-phase process—taxonomy
generation from summaries and subsequent
classification—effectively captures the cor-
pus’s essential thematic structure without criti-
cal information loss compared to methods that
might use full documents for every LLM inter-
action. Violations of this, e.g., if summaries
miss crucial nuances for specific topics, could
impact taxonomy quality.

* Language: Evaluation was limited to En-
glish.

* Hyperparameter Sensitivity: While Texton-
omy shows stability, optimal performance for
the taxonomy generation phase (e.g., sample
size, batching strategy) might require some
tuning depending on dataset characteristics
and desired granularity, which was not ex-
haustively explored.
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A Evaluation Metrics

This appendix details the external and internal clustering metrics used to evaluate the topic models in this

paper.
A.1 Common Notation
The following notation is used:

e Let D = {dj,dy,...,dn} be our dataset containing N documents.

e Let 7 ={T1,T5,..., Tk} be the set of K topic clusters obtained from the topic model, where each

document d; € D is assigned to exactly one topic cluster 7'(d;) € T.

o Let W = {Wy, W, ..., Wk} be the set of K topic keyword representations obtained from the topic

model or a separate class-based TF-IDF procedure, where:

— each keyword representation W}, belongs to topic T}, of the same

index k,

- Wi = {wi,we, ..., wq} is the set of () keywords chosen to represent topic 7}, and
— Q is a hyperparameter that is set to 10 by default as in most works (Rdder et al., 2015; Doogan

and Buntine, 2021).

e Let C = {C1,Cy,...,C} be the set of I human-annotated ground-truth classes, where each

document d; € D belongs to exactly one class C'(d;) € C.

e Let M be the contingency matrix where:

— M, j, is the number of documents assigned to both ground-truth class C; and topic cluster T},

1.€.
M, = {d; € D | C(d;) = C;, T(d;)

=T}l ey

— the row sums represent the total documents in each ground-truth class, i.e.

K
|Ci| = Z M,
k=1

2

— and the column sums represent the total documents in each topic cluster, i.e.

I
el = Mg
=1

A.2 External Cluster Metrics

3

These metrics assess the agreement between model-generated topic clusters 7 and ground-truth classes C.

We used implementations from scikit-learn where available.

P;: Harmonic Mean of Purity and Inverse Purity Purity measures the extent to which each topic T}
contains documents from primarily one class C;. Inverse Purity measures the extent to which each class

C; is represented by a single topic T} (Zhao, 2005).

Purity(7,C) Z max M;

1
Purity }(7,C) = N Z max M; k.

P is their harmonic mean, balancing both aspects (Amigo et al., 2009):

. o
PU(T.C) = Purity(7",C) x Purity (7, C)

“)

®

A P; score of 1 indicates perfect alignment.
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ARI: Adjusted Rand Index The Rand Index (RI) (Rand, 1971) measures similarity between clusterings.
The Adjusted Rand Index (ARI) (Hubert and Arabie, 1985) corrects RI for chance. The general form is:

~ RI-E[RI]
ARI(T.,C) = max(RI) — E[RI]’ ™
Using the contingency matrix M, ARI is calculated as:
L () - Ee (R )
ARI(T,C) = = . 8
(7.0) = ()] [ (3] ®

1 I (|G K (T

2 [Zi:l (G0 + i ( 2“)} - ©))

Substituting these into the general ARI formula gives the specific calculation used. ARI ranges from -1 to
1, where 1 is perfect agreement, 0 is random agreement.

NMI: Normalized Mutual Information NMI is an information-theoretic measure quantifying the
mutual dependence between the topic clustering 7 and ground-truth classes C (Strehl and Ghosh, 2003).
It normalizes Mutual Information (MI) by the average of their entropies.

The joint and marginal probabilities are defined as:

M;
P(C;, T},) = N”“, ©9)
|Cil
P(C;) = , 10
(@) =" (10)
| Tk |
P(I) = —. 11
(Th) =~ (11)
Ml is defined as (Shannon, 1948):
I K
P(C;, Ty)
I(T;C) = P(C;,T) lo (12)
This can also be written using counts from the contingency matrix M:
I K
Mg, M N
I(T;C) = ~lo — (13)
(T:0 =22~y e i,
The entropies of the topic clusters 7 and ground-truth classes C are:
s o~ Tl 1T
- - _ 2k oe KD
H(T) == P(Ti)log P(Ty) = = > - log (14)
k=1 k=1
s ~1Cil, I
H(C) = — ;P(Ci) log P(C) = — ; N log - (15)
NMI is then: 2 I(T-0)
NMI(T,C) = ———~ "2/ 16
79 =T + 710 (10

NMI ranges from 0 (no mutual information) to 1 (perfect correlation).

A.3 Internal Cluster Metrics

These metrics assess topic quality based on the generated topics themselves, without reference to ground-
truth labels.

12



A.3.1 Topic Coherence

Measures semantic similarity among high-scoring words within a topic.

Cnpmr: Normalized Pointwise Mutual Information Coherence NPMI measures the co-occurrence of
two words w;, w; normalized by their joint probability, resulting in a score between -1 and 1 (Bouma,

2009).
P(w;,w;
log prutpiay

NPMI(w;, w;) = W

(17)
P(w;,w;) is the probability of w; and w; co-occurring (e.g., in a sliding window within a reference
corpus), and P(w;), P(w;) are their individual probabilities. The topic coherence Cnpwy is the average
NPMI score over the top () words for each topic, then averaged over all topics (Aletras and Stevenson,
2013). Higher values indicate more coherent topics.

Cy: Coherence Metric 'y, combines NPMI with cosine similarity (Roder et al., 2015). For each topic
Wi = {w1,...,wq}, it computes a vector vpmi(w;) = {NPMI(w;, w;)}j=1,.. ¢ for each word w;. It
then averages the cosine similarity between each word’s NPMI vector and a context vector representing
the aggregated NPMI scores for all words in the topic. Specifically:

Q
1
Cy(Wy) = 0 Z sim(vpmr (w; ), Z vemi(w;)) (18)
i—1 i
where
vemr(wi) = {NPMI(w;, w;)}j=1,..0, (19)
Q
VNPMI({wla w2, .. . ,ZUQ}) = { Z NPMI(wi, wj)}j—l Q' (20)
i=1 o

(Wu et al., 2024), and cos is defined as the cosine between two vectors u, v € RV as

u-v

cos(f) = 21

[l [[v]]

where u - v denotes the dot product of the vectors, and ||u||, ||v|| are their Euclidean norms. The overall
CY is the average over all topics. Higher values are better.

A.3.2 Topic Diversity

Measures distinctiveness between different topics.

Dpjp: Pairwise Jaccard Distance Computes the average Jaccard distance between all pairs of topic
keyword sets W;, W; (Tran et al., 2013).

|WiﬂWj|

JWi, W) =1 — g0

(22)
Dpyp is the average of J(W;, W;) over all unique pairs of topics. A score closer to 1 indicates higher
diversity (less overlap).

Dpyw: Proportion of Unique Words Measures the percentage of unique words across all top-@)
words of all K topics (Dieng et al., 2019).

’U§:1 Wk‘

KO (23)

Dpyw =
A score of 1 means all keywords across all topics are unique.
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A.3.3 Topic Validity

Assesses the practical usefulness of the topics.

Urrar: LLM-based Usefulness Evaluation An LLM is prompted to evaluate the generated topics
based on a user-defined purpose (provided to Textonomy). The LLM assesses the topic set on criteria

including: Relevance, Clarity, Comprehensiveness, and Distribution. Each criterion is scored [0,1], and
Ur s is the average score, aiming to capture alignment with user goals (Hoyle et al., 2022).

Uor: Outlier Ratio Measures the proportion of documents not assigned to any topic (outliers).

|D0ut|
N

Uor = (24)

where Doy = {d;j € D | T(d;) = 0 or is an outlier topic}. A lower Upp is generally preferred for tasks
requiring comprehensive categorization.
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