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Abstract

In this paper, we study the effect of a novel regularization scheme on contrastive language-
image pre-trained (CLIP) models. Our approach is based on the observation that, in many
domains, text tokens should only describe a small number of image regions and, likewise,
each image region should correspond to only a few text tokens. In CLIP-style models, this
implies that text-token embeddings should have high similarity to only a small number of
image-patch embeddings for a given image-text pair. We formalize this observation using
a novel regularization scheme that penalizes the entropy of the text-token to image-patch
similarity scores. We qualitatively and quantitatively demonstrate that the proposed regu-
larization scheme shrinks most of the pairwise text-token and image-patch similarity scores
towards zero, thus achieving the desired effect. We demonstrate the promise of our approach
in an important medical context, chest x-rays, where this underlying sparsity hypothesis
naturally arises. Using our proposed approach, we achieve state of the art (SOTA) average
zero-shot performance on the CheXpert and Padchest chest x-ray datasets, outperforming
an unregularized version of the model and several recently published self-supervised models.

1 Introduction

Self-supervised vision models that leverage paired text data such as the contrastive language-image pre-
trained (CLIP) model (Radford et al., 2021; Zhang et al., 2020) have demonstrated very impressive zero-shot
classification performance in a variety of domains (Radford et al., 2021; Tiu et al., 2022; Boecking et al.,
2022; Palepu & Beam, 2022). Specifically, users can leverage the unified text and image embedding space
for zero-shot classification by providing relevant text queries and assessing image embedding similarities
(Radford et al., 2021; Tiu et al., 2022; Kumar et al., 2022).

The CLIP architecture consists of a vision encoder, typically a CNN (He et al., 2016) or vision transformer
(Dosovitskiy et al., 2020), and a text encoder, typically a text transformer (Vaswani et al., 2017). Each
encoder produces a single embedding in the joint embedding space that aims to summarize all of the relevant
information in their respective modality. A recent CLIP-style architecture from Boecking et al. (2022), which
was built on chest x-ray (CXR) data, allows for a more fine-grained representation of images by projecting
the final ResNet block’s output to the joint embedding space prior to doing a global average pooling. As a
result, this model produces a set of local or patch embeddings which can be indicative of not just if a text
and image align, but also roughly where they align. As an example, in a CXR positive for cardiomegaly (an
enlarged heart), the patch embeddings near the heart would likely have a higher cosine similarity to the text
embedding of "an enlarged heart" than other regions would.

In certain domains such as CXRs, it is clear that important visual features tend to be confined to a relatively
small portion of the image. For example, cardiomegaly is primarily identified in the lower left portion of the
chest, but a CXR captures many anatomical regions beyond this area. At the same time, complex image
captions could describe multiple diverse clinical findings which are unlikely to all correspond to the exact same
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CXR regions. In this work, we propose a method to encode these observations into any CLIP-style model that
can produce individual image-patch embeddings and text-token embeddings. To do so, we introduce text-
image entropy regularization (TIER), which encourages text-token embeddings and image-patch embeddings
to be less ‘promiscuous’ by regularizing the entropy of a softmaxed distribution of similarity scores. This
regularization can be modulated by adjusting two hyperparameters, and because it is based on entropy, it
is robust to positional shifts in both the text and the images.

We implement our TIER method leveraging the pre-trained architecture from Boecking et al. (2022), and
demonstrate both qualitatively and quantitatively that our regularization method shrinks the text-token
and image-patch similarity scores towards zero. We evaluate the resulting model by comparing it to an
equivalent unregularized baseline, a fully-supervised baseline, and several state-of-the-art, CLIP-style CXR
benchmarks (Tiu et al., 2022; Wang et al., 2022b). We demonstrate that our method results in zero-shot
accuracy improvement across a wide range of clinical findings, setting a new state of the art in many instances.

In summary, we make the following contributions:

• A novel regularization scheme applicable to any CLIP-style model that produces local image and
text embeddings. The regularization term shrinks the text-token and image-patch similarity scores
to encourage sparser image-text similarities.

• We establish a new state of the art (SOTA) zero-shot classification AUC on the CheXpert test
set, surpassing recently introduced self-supervised models and several previously published fully
supervised ones.

• We also establish a new SOTA for average zero-shot classification AUC on the Padchest dataset,
which measures classification performance across many diverse clinical findings.

2 Related Works

Many groups have made efforts to promote more fine-grained alignment of images and text in CLIP-style
models (Yao et al., 2021; Li et al., 2022a; Zhong et al., 2022; Wang et al., 2022a; Huang et al., 2021; Li et al.,
2022b). Several of these approaches require a separate region proposal/object detection network (Zhong
et al., 2022; Li et al., 2022b;a); while typically effective for natural images, these objection detection models
have not been equivalently validated in medical domains like CXRs.

Other approaches (Wang et al., 2022a; Huang et al., 2021) aim to modify the contrastive loss in order to
better align local representations, but unlike our approach, do not directly aim to induce sparsity. For
example, while Huang et al. (2021) and Wang et al. (2022a) both include a local contrastive loss, their
approaches potentially allow tokens to be similar to all of the cross-modal tokens. Furthermore, Huang et al.
(2021) was shown to have poor zero-shot performance when evaluated by Tiu et al. (2022), while Wang et al.
(2022a) is not yet publicly available for evaluation.

Unlike the previously described approaches, and like our TIER method, the approach in Yao et al. (2021)
does induce sparsity at the token and patch level. However, their approach more aggressively forces sparsity
by only considering the maximum similarity text token for each image token and vice versa. Conversely, our
approach allows us to flexibly modulate the level of sparsity using two tune-able hyperparameters (which
could allow us to mimic the effect of Yao et al. (2021) if set extremely high).

3 Methods

3.1 Data

We utilized the MIMIC-CXR-JPG (Johnson et al., 2019) dataset to train our models and the CheXpert
(Irvin et al., 2019) and Padchest (Bustos et al., 2020) datasets to evaluate them.

The MIMIC-CXR dataset (Johnson et al., 2019) consists of 377,095 CXR samples from 65,379 different
patients. Many patients have multiple radiological studies within the dataset, with a single study often
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Figure 1: An overview of TIER, our regularized training method.

containing both a frontal and lateral CXR view. These CXRs were evaluated by radiologists, who wrote
detailed reports on the clinical findings they observed as well as a sentence or two describing their overall
impression of the imaging. We extracted these impression sections from the radiology reports to use as the
paired text for our image input. We dropped any samples that were missing this impression section, leaving
us with a total of 319,446 CXR-impression pairs. We split these MIMIC-CXR image-text pairs into training
and validation subsets (with approximately 90% training data) and ensured that no patient was represented
in both subsets.

For evaluation, we utilized the separate CheXpert (Irvin et al., 2019) dataset with pre-defined validation and
test splits which consisted of 234 and 668 CXRs respectively. These subsets of CheXpert have 14 different
clinical labels, determined by consensus of 3 and 5 radiologists respectively. We benchmarked our models’
thresholded predictions using labels from an additional 3 radiologists available in the CheXpert test set. For
the purposes of our evaluation, we only considered the following 5 clinical labels: Cardiomegaly, Edema,
Consolidation, Atelectasis, and Pleural Effusion. These labels were the five competition tasks from the
CheXpert competition and the most commonly attempted tasks in the literature, making them a natural set
for comparison. We also extracted these labels from the MIMIC-CXR dataset, but we only used them when
training our fully supervised CNN baseline; our contrastive models did not have any access to these labels.

We additionally evaluated our models with the Padchest dataset (Bustos et al., 2020), of which we only
considered the subset of 39,053 CXRs that were labeled by radiologists. There were over a hundred different
labels present in these CXRs, but we focused on the set of 57 labels that were present with frequency of at
least 50 in our selected subset, as was done by Tiu et al. (2022).

All images were resized to 224 × 224 pixels with 3 RGB channels. At train time, we performed random
data augmentations including random resizing, cropping, affine transformation, and color jitter, while at
test time, we simply resized images to 256 × 256 before center cropping to 224 × 224.
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3.2 Model Architecture

We based our model on the BioViL architecture (Boecking et al., 2022), which consists of a pre-trained
ResNet-50 architecture as the vision encoder and "CXR-BERT-specialized", a transformer, as the text en-
coder. This model differed from the original CLIP architecture in that it consisted of a radiology-specific
text encoder (CXR-BERT-specialized) and was trained with an additional MLM loss, among several other
changes (Boecking et al., 2022). This model was also trained using MIMIC-CXR and importantly did not
have access to the CheXpert or Padchest datasets, which we used for evaluation.

For our purposes, the most critical feature of the BioViL model is that the final ResNet-50 block provides
embeddings that correspond to local, connected regions of the input image (see the green path on the top
of Figure 1). Thus, in addition to the single global image embedding, for an input image of size 224 × 224
this model also produces a set of 49 embeddings in a 7 × 7 grid, which all share the same joint feature space
as the global image embedding. The number of embeddings is a function of the original input size (a larger
image input would yield more embeddings) as well as the choice to use the final ResNet block output (using
an earlier output would lead to more fine-grained local embeddings). A single multi-layer perceptron with
one hidden layer was used to project each local embedding to the joint feature space. We call the output of
the ResNet block the patch embeddings as they correspond to regional patches of the image.

The text transformer naturally produces a text token embedding for each input token to the model. We
use a single multi-layer perceptron with one hidden layer to project these text token embeddings to the
joint feature space. The projected embedding from the first text token, [CLS], is contrasted with the global
image embedding as is done with typical contrastive language-image pre-trained models (Radford et al.,
2021; Palepu & Beam, 2022; Zhang et al., 2020). For a training batch of image-text pairs (xI , xT ), we use
the standard CLIP loss as described in Radford et al. (2021). We add additional penalty terms, described
in the following section, to regularize our model beyond this standard CLIP loss. The pseudocode for our
method is described in the appendix Fig. 6

3.3 TIER: Text-Image Entropy Regularization of Image-Patch and Text-Token Similarity Scores

TIER works by first computing a matrix of image-patch and text-token similarities. Specifically, consider
an example image-text pair that has I = {I1, . . . , IP } image-patch embeddings (in our case, P = 49),
and has T = {T1, . . . , TT } text-token embeddings (T can vary for each sample as captions can be different
lengths). We compute the image patch-text token similarity matrix S by computing a T ×P matrix of cosine
similarities between each image-patch embedding and text-token embedding. The embeddings for each input
modality are the outputs of an encoder model that is specific to that input, e.g. a CNN or vision transformer
for images and a BERT-style transformer for text. Importantly, we select encoders that provide embeddings
at the token level, i.e., image-patch embeddings and text-token embeddings. Row i of S indicates the cosine
similarity between a text-token Ti and each image patch in I. The columns of S likewise indicate the cosine
similarity between a given image patch Ij and each text token in T .

Recall, the goal of our approach is to shrink the elements of S such that each text token is similar to a
relatively small number of image patches. To do this, we introduced an entropy-based penalty term that
induces shrinkage on the elements of S. First, we perform a row-wise softmax of S and measure the entropy
between a text token Ti and all of the image patches in I, shown below:

H(Ti, I) =
|P |∑
j=1

−pj ∗ log(pj) (1)

where pj is the probability produced by the softmax of the row of S corresponding to Ti. This term will be
maximized when each pj is 1

P , implying that all of the image patch embeddings have equal similarity to Ti.

Next, we apply the same procedure to the columns of S, applying a column-wise softmax over the text-token
similarities to produce probabilities p1 to pT for each image patch Ii and calculating the entropy of these
probabilities as follows:

4



H(T, Ij) =
|T |∑
i=1

−pi ∗ log(pi) (2)

We average the N ×T image-patch entropies H(Ti, I) and the N ×P text-token entropies H(T, Ij) to produce
an image-patch penalty and text-token penalty for the batch. We control the effects of these penalties on
training by weighting them with hyperparameters λt and λp respectively, adding the weighted penalties to
the CLIP loss to compute the total loss.

A grid search over the range [0, 0.25] was used to set the hyperparameters (λp = 0.2, λt = 0.1) for our
regularized model. Specifically, we trained our contrastive models for just a single epoch on MIMIC-CXR
with pairs of λp and λt, and chose the pair that maximized zero-shot AUC on the validation set. These
results are available in the appendix Appendix A.3. Both the training procedure and zero-shot classification
method are described in later sections.

3.4 Training Details

We begin with the pretrained BioViL architecture and model weights, "CXR-BERT-specialized" (Boecking
et al., 2022), which has already been trained with contrastive learning on the MIMIC-CXR dataset. In this
original training, only frontal images were used, and they used a masked language model (MLM) loss in
addition to the CLIP loss. Starting with this pretrained model, we train two separate CLIP-style models:
A regularized model in which λp = 0.2 and λt = 0.1, as well as an unregularized baseline model, in which
λp = λt = 0. Despite only minor changes (further training on MIMIC-CXR, inclusion of lateral CXRs,
omission of the MLM loss, freezing of early text encoder layers), our unregularized baseline significantly
outperformed the publicly available pretrained model from Boecking et al. (2022) as seen in Appendix A.6.

All aspects of model training are identical between our regularized and unregularized models, other than the
additional penalty terms. For both models, we freeze the first 8 layers of the BERT encoder, while leaving
the rest of the text encoder and vision encoder unfrozen. Each model is trained for 30 epochs using the loss
described in the previous section with a learning rate of 0.0001 and batch size of 32.

We also train a fully supervised CNN baseline, which utilizes the same vision encoder as the contrastive
models but has a multilayer perceptron with one hidden layer and five outputs. This supervised baseline
still uses MIMIC-CXR for training, but instead of text, it is trained with labels using binary-cross entropy
loss with a learning rate of 0.0001 and batch size of 32.

3.5 Zero-shot classification

We employ a zero-shot classification procedure that leverages our text and image encoders to identify labels
of interest in the images. Our method begins with the user selecting Kp positive and Kn negative queries
for the label of interest, Q. Positive queries {Qp1, ..., QpKp

} are text descriptions indicative of the presence
of that label, while negative queries {Qn1, ..., QnKn} are text descriptions indicative of the absence of that
label; examples which we used for the five CheXpert labels are detailed in Tab. 8 in the appendix. We pass
each positive query through the text encoder, project their [CLS] token embeddings to the joint embedding
space, and then average these projected embeddings and re-normalize to a unit norm. We do the same for
the negative queries so that we have a single positive Qp and negative Qn query embedding associated with
each label that we wish to classify:

Qp =
∑Kp

j=1 Qpj/Kp

||
∑Kp

j=1 Qpj/Kp||
Qn =

∑Kn

j=1 Qnj/Kn

||
∑Kn

i=1 Qnj/Kn||
(3)

For any input image we wish to classify, we use the image encoder to compute its projected global image
embedding Eimg (normalized to unit norm) and take the dot product of this global image embedding with
both the positive and negative query embeddings Qp and Qn for every label we wish to predict. We subtract
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these positive and negative cosine similarity scores to get a zero-shot classification score, ZQ, for our label
of interest.

ZQ = (Eimg · Qp) − (Eimg · Qn) (4)

Importantly, our zero-shot classification output cannot be interpreted as a probability as its range is actu-
ally between [−2, 2]. We are primarily interested in assessing discriminative performance of our zero-shot
classifiers, so interpretation as a probability is not necessary; however, if one desired a probability output,
they could simply apply a softmax to the positive and negative similarity scores as was done by Tiu et al.
(2022) instead of subtracting these scores.

4 Results

4.1 Visualization of the effect of regularization

Qualitatively, our regularization method is able to achieve the desired shrinkage between image patches and
text tokens. Fig. 2 and Fig. 3 show patch-level zero-shot classification scores (i.e., the score between each
image patch and the global [CLS] text token) overlaid on top of two CXRs, one with cardiomegaly and one
without. In these heatmaps, red is indicative of a higher zero-shot score, blue is a lower score, while gray is
a more neutral score.

Important differences between the regularized and unregularized models are apparent when we examine the
distribution of blue and red regions of the heatmaps in Fig. 2 and Fig. 3. For the cardiomegaly-positive image
(Fig. 2), the regularized model has high score primarily on the lower left side of the patient’s chest (which
corresponds to lower right side of the image), where their heart is located. Likewise, the regularized model
shows low similarity (blue) on the other of their lower chest where one could expect to see some changes in
more extreme cases of cardiomegaly. These similarity scores seem rational and are clinically justifiable. On
the other hand, while the unregularized model also displays some signal in the clinically relevant regions,
it has significantly more extreme similarity scores scattered throughout the image well beyond the heart-
adjacent regions. We see similar results on an example for pleural effusion detection (Fig. 3), as well as in
additional examples presented in the appendix (Fig. 7, Fig. 8, Fig. 9).

4.2 Distribution of image-patch similarity scores to global [CLS] text token

To further explore the effect of our regularization method on the image-patch similarities, we utilize a set of
160 positive image-text pairs from MIMIC-CXR. In Fig. 4, we plot the similarity of the projected [CLS] token
embeddings to the 49 image-patch embeddings from the corresponding image. In this figure, the image-patch
similarities were ranked in descending order before being plotted, with error bars indicating the standard
deviation across the 160 samples. We can see that the regularized model on average has significantly lower
similarities to the patch embeddings than the unregularized model. To better visualize these differences, we
produced Fig. 5, which displays the same information as Fig. 4 except each patch similarity was normalized
by dividing the similarity by the sum of all patch similarities in the entire image. In this plot, we can
clearly see that the regularized model tends to have a few patches with relatively higher similarities to the
[CLS] token embedding, and many with relatively lower similarities; this supports our hypothesis that our
regularization scheme shrinks token-level similarity in the model, thus achieving a lower entropy.

4.3 Zero-shot classification

Next, we evaluated our zero-shot classification method for both the regularized and unregularized models on
the held-out CheXpert test set. Our primary benchmark for these models is the ‘CheXzero’ model (Tiu et al.,
2022), which recently achieved SOTA zero-shot AUC on this task. We use weights from the checkpoint that
achieved the highest AUC on the CheXpert validation set. We also evaluate another recent self-supervised
model, MedCLIP (Wang et al., 2022b), with the caveat that this model is not strictly zero-shot because
the authors utilized clinical labels during their training process. Additionally, we evaluate a fully supervised
CNN that uses our vision encoder with an additional classification head. We bootstrap 1000 times, randomly
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Figure 2: The penalty term induces shrinkage in the image patch-text token similarity scores.
A CXR positive for cardiomegaly, overlaid with heatmaps displaying zero-shot cardiomegaly score for the
unregularized (center) and regularized (right) models. Gray corresponds to a neutral (close to zero) zero-shot
score, while red is a higher score and blue is a lower score. As can be seen by comparing the middle and
right figures, the regularized model focuses more on the relevant regions and less on the periphery. Note: In
this instance cardiomegaly is located in the lower right portion of the image.

Figure 3: A CXR with pleural effusion, overlayed with heatmaps displaying zero-shot pleural effusion score
for the unregularized (center) and regularized (right) models.

Figure 4: The similarities of each patch to the
CLS embedding for a set of 160 MIMIC-CXR
images, sorted in descending order.

Figure 5: The same plot as Fig. 4 in which each
similarity is divided by the sum of the total sim-
ilarity across all patches for that image.
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Label Regularized TIER Unregularized Basemodel CheXzero MedCLIP Fully Supervised CNN

Average 0.9033360.9033360.903336 0.89721 0.89349 0.87708 0.88877
Cardiomegaly 0.917140.917140.91714 0.89239 0.88340 0.83911 0.86400

Edema 0.924230.924230.92423 0.90729 0.89424 0.91242 0.92236
Consolidation 0.89712 0.91213 0.913180.913180.91318 0.88653 0.86003

Atelectasis 0.865310.865310.86531 0.85741 0.84299 0.79423 0.85869
Pleural Effusion 0.91290 0.91681 0.933680.933680.93368 0.95313 0.93876

Table 1: Average AUCs for various models on 1000 bootstraps of CheXpert Test. The highest zero-shot AUC
is bolded (the three on the left are performing zero-shot classification, in which they have never previously
seen any labels in the training set). As seen in the appendix (Tab. 4, Tab. 5, and Tab. 6), all differences
between zero-shot models are statistically significant except for Unregularized vs CheXzero for Consolidation.
Though MedCLIP is trained with contrastive learning, it also utilizes labels during training so we do not
consider it to be fully zero-shot.

sampling the test set with replacement and evaluating the mean AUC performance of each model over
these 1000 bootstraps. These results can be seen in Tab. 1, which demonstrates that our regularized model
achieves SOTA zero-shot AUC; regularization offers a modest bump in average AUC performance. Excluding
"Unregularized vs CheXzero for Consolidation", all pairwise AUC differences between the zero-shot models
are statistically significant according to a two sample t-test for the difference of means. These zero-shot
models are also competitive against three reference radiologists according to their Matthews’s correlation
coefficient (MCC) and F1 scores, as seen in the appendix (Fig. 10).

We use the Padchest dataset to evaluate a broader set of findings, specifically looking at the 57 findings
with n ≥ 50 from the radiologist-labeled subset of Padchest. We constructed positive label queries using
the phrase "X is present.", while we constructed negative label queries with the phrase "No X.", replacing X
with the label of interest. The notable exception was when we classified "normal" images; in this instance,
we used "Abnormal findings." as the negative query. Tab. 2 details the Padchest results for the regularized,
unregularized, and CheXzero models. As seen in the appendix (Tab. 9, Tab. 10), our regularized TIER model
achieves statistically significant boosts in performance on average as well as for the majority of Padchest
findings when compared head-to-head with CheXzero and our unregularized baseline model.

4.4 Zero-shot COVID-19 diagnosis

We also evaluate our model COVID-19 detection, which is a diagnosis not present in any of our training
data. As a result, our models cannot rely on the actual label itself (i.e., the word cardiomegaly in a text
query), and therefore the diagnostic capability of our models on this task can be fully attributed to its
ability to recognize the descriptive attributes being queried. Furthermore, discriminating COVID-19 and
non-COVID-19 pneumonia from chest imaging is a non-trivial task, with one study reporting just a 74%
average accuracy for three radiologists using chest CT for this task (Bai et al., 2020).

We created queries to discriminate COVID-19 and non-COVID-19 pneumonia based on differences mentioned
in the literature (Bai et al., 2020; Borghesi & Maroldi, 2020). For the positive COVID-19 query, we used
the query "Ground glass opacities and consolidation with peripheral distribution with fine reticular opacity
and vascular thickening.", and for the negative COVID-19 query, we used "Pleural effusion present with
lymphadenopathy and consolidation with central distribution." (which were described by Bai et al. (2020)
as findings more specific to non-COVID-19 pneumonia). We achieved zero-shot AUCs of 0.759, 0.753, and
0.752 with the regularized, unregularized, and CheXzero models respectively on discriminating COVID-19
from non-COVID pneumonia within the COVID-QU-Ex Dataset (Tahir et al., 2021; 2022).

This performance indicates that we can leverage our model for difficult multi-class classification tasks by
simply providing English descriptions of the class-discriminating features. Furthermore, this procedure can
easily extend to other labels, meaning self-supervised vision-language architectures such as these could be
leveraged to diagnose novel diseases if their presentation on imaging can be described.
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Label Count Regularized AUC Unregularized AUC CheXzero AUC
Average AUC 39053 0.755420 0.742534 0.726306
Number of Evaluations Won (Percent) 57 20 (35.1%) 18 (31.6%) 18 (31.6%)
endotracheal tube 284 0.979606 0.956634 0.98295
pleural effusion 1748 0.942045 0.930292 0.950519
pulmonary edema 87 0.941289 0.945415 0.95646
heart insufficiency 546 0.926097 0.927177 0.917819
pulmonary fibrosis 166 0.951654 0.944147 0.921793
cardiomegaly 3746 0.883692 0.883339 0.890467
vascular redistribution 129 0.877236 0.872019 0.750592
consolidation 364 0.878342 0.849872 0.865175
hilar congestion 601 0.855435 0.850243 0.825707
pulmonary mass 247 0.844107 0.872299 0.842056
cavitation 122 0.857639 0.794295 0.853367
alveolar pattern 1353 0.87631 0.816974 0.763811
calcified pleural thickening 102 0.859651 0.84287 0.850707
lung metastasis 89 0.877375 0.860837 0.827675
emphysema 376 0.717841 0.718377 0.830578
interstitial pattern 1907 0.835144 0.840368 0.816432
costophrenic angle blunting 1683 0.769921 0.808131 0.69029
COPD signs 4823 0.650859 0.652912 0.751217
tuberculosis 59 0.838961 0.843741 0.7978
atelectasis 676 0.781707 0.791507 0.809232
reticular interstitial pattern 72 0.844479 0.867637 0.822429
pneumonia 1780 0.813796 0.796614 0.773941
lobar atelectasis 168 0.808411 0.815725 0.775147
normal 12694 0.776328 0.790588 0.753171
pleural thickening 213 0.784428 0.754608 0.752537
reticulonodular interstitial pattern 51 0.862346 0.838374 0.841414
infiltrates 1456 0.742854 0.735399 0.747836
hypoexpansion 166 0.853423 0.871452 0.794564
hypoexpansion basal 119 0.889652 0.874477 0.8018
humeral fracture 81 0.742305 0.672935 0.749084
pneumothorax 98 0.730643 0.728547 0.777442
multiple nodules 102 0.790815 0.852951 0.716911
hyperinflated lung 197 0.700879 0.667704 0.713202
bronchiectasis 667 0.734643 0.743998 0.690117
adenopathy 136 0.678726 0.73105 0.703924
mediastinal enlargement 106 0.72538 0.666796 0.759299
laminar atelectasis 1378 0.67343 0.687839 0.679276
vertebral compression 126 0.723955 0.734413 0.646448
rib fracture 140 0.689835 0.668069 0.691037
tuberculosis sequelae 185 0.796895 0.773832 0.584302
hilar enlargement 447 0.721779 0.714687 0.678564
tracheal shift 180 0.615827 0.500734 0.634359
mediastinal mass 74 0.709825 0.409473 0.647695
central vascular redistribution 63 0.728932 0.567387 0.354491
vertebral fracture 104 0.791375 0.86009 0.499654
superior mediastinal enlargement 153 0.551017 0.637878 0.596948
vascular hilar enlargement 1428 0.625607 0.60417 0.623934
nodule 736 0.446317 0.507929 0.546737
air trapping 1952 0.580408 0.631534 0.580882
bullas 192 0.744606 0.584846 0.486494
ground glass pattern 123 0.671321 0.661248 0.602802
calcified adenopathy 124 0.673757 0.624151 0.583562
minor fissure thickening 127 0.600411 0.558331 0.77315
unchanged 4036 0.618171 0.633874 0.395541
clavicle fracture 74 0.596974 0.596031 0.607514
pseudonodule 795 0.476977 0.472281 0.557981
end on vessel 63 0.397635 0.485072 0.560626

Table 2: On average over 1000 bootstraps, the regularized model outperforms the unregularized
and CheXzero models in fine-grained finding prediction. Zero-shot AUCs for 57 padchest findings.
The best AUC for each finding across the three tested models is shown in bold. As shown in Tab. 9 and
Tab. 10, all winners are statistically significant except for CheXzero for the rib fracture finding.
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5 Discussion & Limitations

In this work, we introduce a regularization method for contrastive language-image pre-trained models which
encourages shrinkage of the image-patch and text-token similarities. We demonstrate how our regularization
method can benefit zero-shot performance of these models by training a model that achieves SOTA zero-shot
classification performance on a broad set of CXR findings. The improvements were robust across a wide
range of tasks relative to many strong benchmarks, though in some instances the improvements were modest.
Though our work was confined to a medical context, we believe it should be broadly applicable to many other
areas where CLIP-style models are used, though these applications were beyond the scope of the present
work. We believe our work contributes to a growing literature (Kumar et al., 2022; Mu et al., 2022; Meier
et al., 2021) seeking to augment and improve CLIP-style models with inductive biases and domain-specific
observations.
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A Appendix

A.1 Regularization pseudocode

def regularized_loss(Ims, Txts, lambda_patch , lambda_token):
# image_encoder − ResNet −50 , t ex t _encoder − CXR−BERT− s p e c i a l i z e d
# Ims [ n , h , w, c ] , Tx ts [ n , l ] − minibatch o f a l i gned images & t e x t s
# W_i [ d_ i , d_e ] − l earned p r o j e c t i o n s o f image patches to embed
# W_t [ d_t , d_e ] − l earned p r o j e c t i o n s o f t e x t tokens to embed
# P − number o f image patches , T − number o f t e x t tokens

# Setup ; compute patch and token r ep r e s en t a t i o n s
patch_f = image_encoder(Ims) #[ n , d_ i , P ]
token_f = text_encoder(Txts) #[ n , d_t , T ]
# p r o j e c t to j o i n t embedding space [ d_e ] and normal i ze
patch_e = l2_normalize(dot(patch_f, W_i), axis=1) #[ n , d_e , P ]
token_e = l2_normalize(dot(token_f, W_t), axis=1) #[ n , d_e , T ]

# CLIP Loss ; Compute g l oba l embeddings
image_e = l2_normalize(mean(patch_e, dim=2), axis=1) #[ n , d_e ]
text_e = token_e[:, :, 0] #[ n , d_e ]
# Compute sca l ed pa i rw i se cos ine s i m i l a r i t y matr ix
clip_logits = dot(image_e, text_e.T) ∗ exp(t) #[ n , n ]
# Eva luate symmetric CLIP l o s s f un c t i o n
labels = np.arange(n)
loss_i = cross_entropy_loss(clip_logits , labels, axis=0)
loss_t = cross_entropy_loss(clip_logits , labels, axis=1)
clip_loss = (loss_i + loss_t)/2

# Regu l a r i z a t i o n ; Compute patch−token s i m i l a r i t y matr ix
sim_matrix = batch_multiply(token_e, patch_e) #[ n , T , P ]
# Compute patch and token p en a l t i e s
patch_entropies = entropy(softmax(sim_matrix , axis = 2)) #[ n , T ]
patch_penalty = lambda_patch ∗ mean(patch_entropies)
token_entropies = entropy(softmax(sim_matrix , axis = 1)) #[ n , P ]
token_penalty = lambda_token ∗ mean(token_entropies)

regularized_loss = clip_loss + patch_penalty + token_penalty
return regularized_loss

Figure 6: Pseudocode for our TIER regularization method. lambda_patch and lambda_token are hyperpa-
rameters that can be tuned depending on the desired level of patch/text-token sparsity.
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A.2 Additional heatmap examples

Figure 7: A CXR negative for cardiomegaly, overlaid with heatmaps displaying zero-shot cardiomegaly
score for the unregularized (center) and regularized (right) models. Gray corresponds to a neutral (close to
zero) zero-shot score, while red is a higher score and blue is a lower score.

Figure 8: A CXR with atelectasis, overlayed with heatmaps displaying zero-shot atelectasis score for the
unregularized (center) and regularized (right) models.

Figure 9: A lateral view of the previous atelectasis-positive CXR in Fig. 8, with zero-shot scores overlayed
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A.3 Hyperparameter Sweep

Here, we present the results of the hyperparameter sweep we used to select our lambda hyperparameters.
Models were trained for a single epoch on MIMIC-CXR, and evaluated on the validation set of Chexpert. We
use lambda values which maximized zero-shot AUC on the Chexpert validation set to train our regularized
TIER model.

λp | λt λt = 0.00 λt = 0.05 λt = 0.10 λt = 0.15 λt = 0.20 λt = 0.25
λp = 0.00 0.84708 0.84514 0.84624 0.84272 0.84870 0.83311
λp = 0.05 0.85137 0.84661 0.84353 0.84542 0.84459 0.84712
λp = 0.10 0.83971 0.85457 0.85059 0.84736 0.84464 0.83879
λp = 0.15 0.83774 0.85367 0.85107 0.84174 0.83895 0.84242
λp = 0.20 0.84399 0.85387 0.85469 0.84488 0.84747 0.83234
λp = 0.25 0.84901 0.83306 0.84802 0.83939 0.83307 0.85160

Table 3: Zero-shot AUCs on the validation set after training a model with the given hyperparameters for 1
epoch on MIMIC-CXR. (λp = 0.20, λt = 0.10) were chosen to train our regularized TIER model.

A.4 P-values for Chexpert evaluation

Here we present the p-values obtained from two-sample t-tests for differences in mean AUCs between TIER
(Ours), CheXzero, and the unregularized baseline (Ours) for the chexpert evaluations.

Label CheXzero Mean CheXzero Std TIER (Ours) Mean TIER Std T statistic P value

Average AUC 0.893494 0.00696 0.903336 0.007213 31.05041349 4.5448E-173
Cardiomegaly 0.883397 0.013806 0.917135 0.010944 60.5584468 0
Edema 0.894235 0.015879 0.924225 0.01217 47.40345097 0
Consolidation 0.913176 0.014555 0.897116 0.023315 -18.47763326 1.67297E-70
Atelectasis 0.842985 0.015325 0.865306 0.014135 33.85648614 5.547E-199
Pleural Effusion 0.933676 0.010558 0.912898 0.012155 -40.81063492 2.4219E-265

Table 4: Two sample t-test for the difference of means between TIER (Ours) and CheXzero for n = 1000
bootstraps of the chexpert evaluation. All results are significant at the p=0.0001 level.

Label Unreg. (Ours) Mean Unreg. Std TIER (Ours) Mean TIER Std T statistic P value

Average AUC 0.897206 0.007486 0.903336 0.007213 18.64716405 1.13364E-71
Cardiomegaly 0.892394 0.012546 0.917135 0.010944 46.99391106 0
Edema 0.907286 0.013561 0.924225 0.01217 29.39763772 3.6269E-158
Consolidation 0.912127 0.024044 0.897116 0.023315 -14.17328934 1.60039E-43
Atelectasis 0.857408 0.014522 0.865306 0.014135 12.32428706 1.08563E-33
Pleural Effusion 0.916813 0.011588 0.912898 0.012155 -7.372034693 2.44822E-13

Table 5: Two sample t-test for the difference of means between TIER (ours) and the unregularized baseline
(ours) for n = 1000 bootstraps of chexpert evaluation. All results are significant at the p=0.0001 level.

Label CheXzero Mean CheXzero Std Unreg. (Ours) Mean Unreg. Std T statistic P value

Average AUC 0.893494 0.00696 0.897206 0.007486 11.48385375 1.32063E-29
Cardio 0.883397 0.013806 0.892394 0.012546 15.25117349 9.17475E-50
Edema 0.894235 0.015879 0.907286 0.013561 19.7641868 1.47602E-79
Consolidation 0.913176 0.014555 0.912127 0.024044 -1.180245623 0.238043032
Atelectasis 0.842985 0.015325 0.857408 0.014522 21.60293691 3.44293E-93
Pleural Effusion 0.933676 0.010558 0.916813 0.011588 -34.01616352 1.7778E-200

Table 6: Two sample t-test for the difference of means between unregularized (ours) and CheXzero for n =
1000 bootstraps of chexpert evaluation. All results but consolidation are significant at the p=0.0001 level.
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A.5 Additional chexpert baselines

Here we display some additional baselines compared to our regularized TIER and unregularized baseline. In
particular, we present the pretrained model we are using (Boecking et al., 2022) and CLIP (Radford et al.,
2021).

Label TIER (Ours) Unregularized (Ours) BioViL CLIP

Average 0.9033360.9033360.903336 0.89721 0.63631 0.54056
Cardiomegaly 0.917140.917140.91714 0.89239 0.63300 0.56232

Edema 0.924230.924230.92423 0.90729 0.58706 0.5028
Consolidation 0.89712 0.912130.912130.91213 0.705898 0.6541

Atelectasis 0.865310.865310.86531 0.85741 0.58698 0.51719
Pleural Effusion 0.91290 0.916810.916810.91681 0.66864 0.46638

Table 7: The highest zero-shot AUC of the listed models is bolded. All models are performing zero-shot
classification, meaning they have never explicitly been trained with any labels.

A.6 Chexpert Queries

Class Label Caption

Cardiomegaly
Cardiomegaly is present.
The heart shadow is enlarged.
The cardiac silhouette is enlarged.

Pleural Effusion

Pleural Effusion is present.
Blunting of the costophrenic angles represents pleural effusions.
The pleural space is filled with fluid.
Layering pleural effusions are present.

Edema Edema is present.
Increased fluid in the alveolar wall indicates pulmonary edema.

Consolidation Consolidation is present.
Dense white area of right lung indicative of consolidation.

Atelectasis Atelectasis is present.
Basilar opacity and volume loss is likely due to atelectasis.

No Finding

The lungs are clear.
No abnormalities are present.
The chest is normal.
No clinically significant radiographic abnormalities.
No radiographically visible abnormalities in the chest.

Table 8: Query captions used for zero-shot classification. No Finding captions are used as the negative
queries for classification on CheXpert, while the rest are used as positive queries for their respective labels.
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A.7 Chexpert Radiologist benchmarking

Here, we compare binary predictions from these zero-shot models against the predictions of 3 radiologists
using MCC and F1 metrics. We selected optimal thresholds for MCC and F1 using their performance on
the CheXpert validation set.

Figure 10: Benchmarking thresholded scores against radiologists. MCC (Matthews correlation coefficient)
scores and F1 scores for the three zero-shot models and three radiologists are shown. These zero-shot models
are competitive with radiologists for most labels. While TIER often outperform both the unregularized
baseline at CheXzero on both metrics, it is equivalent or worse in several cases.
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A.8 P-values for padchest evaluation

Here we present the p-values obtained from two-sample t-tests for differences in mean AUCs for n = 1000
bootstraps between the various models for the Padchest evaluations.
Comparing CheXzero to TIER (Ours) on Padchest head-to-head:

Label CheXzero Mean CheXzero Std TIER (Ours) Mean TIER Std T statistic P value

Average AUC 0.726306 0.002558 0.75542 0.002347 265.2017626 0
Number won 21 33
endotracheal tube 0.98295 0.002315 0.979606 0.005919 -16.63830145 2.56865E-58
pleural effusion 0.950519 0.002734 0.942045 0.002976 -66.3097905 0
pulmonary edema 0.95646 0.008905 0.941289 0.008719 -38.49466433 5.1755E-243
heart insufficiency 0.917819 0.004761 0.926097 0.005453 36.16180694 1.015E-220
pulmonary fibrosis 0.921793 0.008352 0.951654 0.0054 94.94482215 0
cardiomegaly 0.890467 0.002511 0.883692 0.002718 -57.89827507 0
vascular redistribution 0.750592 0.018104 0.877236 0.013662 176.5761336 0
consolidation 0.865175 0.009475 0.878342 0.009453 31.10977089 1.3088E-173
hilar congestion 0.825707 0.007219 0.855435 0.008915 81.95062909 0
pulmonary mass 0.842056 0.01203 0.844107 0.012986 3.663919249 0.000254856
cavitation 0.853367 0.01575 0.857639 0.015601 6.093824451 1.31926E-09
alveolar pattern 0.763811 0.006956 0.87631 0.005049 413.89493 0
calcified pleural thickening 0.850707 0.019816 0.859651 0.020362 9.95447536 8.11361E-23
lung metastasis 0.827675 0.024452 0.877375 0.015578 54.20861509 0
emphysema 0.830578 0.009475 0.717841 0.013142 -220.0452111 0
interstitial pattern 0.816432 0.005126 0.835144 0.005382 79.61342323 0
costophrenic angle blunting 0.69029 0.006777 0.769921 0.006022 277.7581639 0
tuberculosis 0.7978 0.027473 0.838961 0.020022 38.28895091 4.8878E-241
atelectasis 0.809232 0.009106 0.781707 0.008707 -69.08700011 0
reticular interstitial pattern 0.822429 0.021108 0.844479 0.022699 22.49540647 4.4633E-100
pneumonia 0.773941 0.005566 0.813796 0.004699 173.0195883 0
lobar atelectasis 0.775147 0.017958 0.808411 0.014991 44.96696255 1.1767E-305
normal 0.753171 0.002546 0.776328 0.003632 165.0977062 0
pleural thickening 0.752537 0.016871 0.784428 0.014559 45.25503582 0
reticulonodular interstitial pattern 0.841414 0.027064 0.862346 0.024737 18.05301834 1.31327E-67
infiltrates 0.747836 0.006206 0.742854 0.006681 -17.27714913 1.9175E-62
hypoexpansion 0.794564 0.014337 0.853423 0.011148 102.4871616 0
hypoexpansion basal 0.8018 0.015611 0.889652 0.013677 133.8542388 0
humeral fracture 0.749084 0.023222 0.742305 0.026582 -6.07337803 1.49532E-09
pneumothorax 0.777442 0.018202 0.730643 0.026112 -46.49431338 0
multiple nodules 0.716911 0.028257 0.790815 0.021245 66.10682237 0
hyperinflated lung 0.713202 0.018784 0.700879 0.018276 -14.8691189 1.64612E-47
bronchiectasis 0.690117 0.01037 0.734643 0.009854 98.42837415 0
adenopathy 0.703924 0.02035 0.678726 0.016664 -30.29508782 3.2002E-166
mediastinal enlargement 0.759299 0.022403 0.72538 0.026617 -30.83087996 4.5077E-171
laminar atelectasis 0.679276 0.006312 0.67343 0.006914 -19.74676158 1.97007E-79
vertebral compression 0.646448 0.025325 0.723955 0.018277 78.47811851 0
rib fracture 0.691037 0.020514 0.689835 0.022485 -1.248835772 0.211871446
tuberculosis sequelae 0.584302 0.019415 0.796895 0.013529 284.0954171 0
hilar enlargement 0.678564 0.012333 0.721779 0.011469 81.14282586 0
tracheal shift 0.634359 0.019985 0.615827 0.019305 -21.0906627 2.58516E-89
mediastinal mass 0.647695 0.034419 0.709825 0.031109 42.3483101 3.0928E-280
central vascular redistribution 0.354491 0.034431 0.728932 0.031302 254.4623065 0
vertebral fracture 0.499654 0.02921 0.791375 0.015662 278.3320678 0
superior mediastinal enlargement 0.596948 0.024252 0.551017 0.025206 -41.52441949 2.9881E-272
vascular hilar enlargement 0.623934 0.007406 0.625607 0.007007 5.189078029 2.32751E-07
nodule 0.546737 0.010556 0.446317 0.010124 -217.1150565 0
air trapping 0.580882 0.006245 0.580408 0.005897 -1.745118047 0.081118057
bullas 0.486494 0.020169 0.744606 0.018356 299.2954863 0
ground glass pattern 0.602802 0.027608 0.671321 0.020656 62.84105487 0
calcified adenopathy 0.583562 0.02315 0.673757 0.019228 94.77745188 0
minor fissure thickening 0.77315 0.018481 0.600411 0.025956 -171.4357871 0
unchanged 0.395541 0.004386 0.618171 0.004502 1120.102208 0
clavicle fracture 0.607514 0.036746 0.596974 0.037946 -6.309943613 3.42827E-10
pseudonodule 0.557981 0.009991 0.476977 0.011371 -169.2291715 0
end on vessel 0.560626 0.035794 0.397635 0.041243 -94.38338959 0
COPD signs 0.751217 0.003745 0.650859 0.004075 -573.421393 0

Table 9: Two sample t-test for the difference of means for our padchest evaluation. In this table, we compare
the previous SOTA, CheXzero, with our regularized model, TIER. Each model had AUC evaluated on n =
1000 bootstraps of the radiologists-labeled subset of padchest. All but the air trapping, rib fracture, and
pulmonary mass results are significant at the p=0.0001 level.
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Comparing Unregularized baseline (Ours) to TIER (Ours) on Padchest head-to-head:

Label Unreg. (Ours) Mean Unreg. Std TIER (Ours) Mean TIER Std T statistic P value

Average AUC 0.742534 0.002567 0.75542 0.002347 117.1556311 0
Number won 23 30
endotracheal tube 0.956634 0.008621 0.979606 0.005919 69.46676879 0
pleural effusion 0.930292 0.003377 0.942045 0.002976 82.56984314 0
pulmonary edema 0.945415 0.008526 0.941289 0.008719 -10.69926209 5.11898E-26
heart insufficiency 0.927177 0.005282 0.926097 0.005453 -4.498643855 7.23167E-06
pulmonary fibrosis 0.944147 0.006584 0.951654 0.0054 27.87855697 9.3138E-145
cardiomegaly 0.883339 0.002701 0.883692 0.002718 2.913187348 0.00361733
vascular redistribution 0.872019 0.013502 0.877236 0.013662 8.588841321 1.73859E-17
consolidation 0.849872 0.011331 0.878342 0.009453 61.01092612 0
hilar congestion 0.850243 0.008691 0.855435 0.008915 13.18723777 3.87838E-38
pulmonary mass 0.872299 0.012346 0.844107 0.012986 -49.75455492 0
cavitation 0.794295 0.017229 0.857639 0.015601 86.18194266 0
alveolar pattern 0.816974 0.006339 0.87631 0.005049 231.535272 0
calcified pleural thickening 0.84287 0.019733 0.859651 0.020362 18.71497205 3.84423E-72
lung metastasis 0.860837 0.017219 0.877375 0.015578 22.52272401 2.7303E-100
emphysema 0.718377 0.013149 0.717841 0.013142 -0.911743481 0.362013758
interstitial pattern 0.840368 0.005014 0.835144 0.005382 -22.45845998 8.6714E-100
costophrenic angle blunting 0.808131 0.00461 0.769921 0.006022 -159.323741 0
tuberculosis 0.843741 0.024721 0.838961 0.020022 -4.751556022 2.1624E-06
atelectasis 0.791507 0.0086 0.781707 0.008707 -25.32275656 6.2416E-123
reticular interstitial pattern 0.867637 0.019332 0.844479 0.022699 -24.56163626 1.2365E-116
pneumonia 0.796614 0.005068 0.813796 0.004699 78.6172414 0
lobar atelectasis 0.815725 0.013775 0.808411 0.014991 -11.36063996 4.99873E-29
normal 0.790588 0.003023 0.776328 0.003632 -95.42795587 0
pleural thickening 0.754608 0.016022 0.784428 0.014559 43.55866303 5.5682E-292
reticulonodular interstitial pattern 0.838374 0.026992 0.862346 0.024737 20.70489002 1.95964E-86
infiltrates 0.735399 0.006646 0.742854 0.006681 25.01662683 2.1878E-120
hypoexpansion 0.871452 0.010845 0.853423 0.011148 -36.65734018 1.9617E-225
hypoexpansion basal 0.874477 0.014044 0.889652 0.013677 24.47917337 5.8658E-116
humeral fracture 0.672935 0.028067 0.742305 0.026582 56.74716788 0
pneumothorax 0.728547 0.021418 0.730643 0.026112 1.962595625 0.049831759
multiple nodules 0.852951 0.020427 0.790815 0.021245 -66.66997483 0
hyperinflated lung 0.667704 0.017846 0.700879 0.018276 41.06987413 7.5179E-268
bronchiectasis 0.743998 0.009203 0.734643 0.009854 -21.94072646 8.91339E-96
adenopathy 0.73105 0.017982 0.678726 0.016664 -67.49145771 0
mediastinal enlargement 0.666796 0.028092 0.72538 0.026617 47.87154657 0
laminar atelectasis 0.687839 0.006426 0.67343 0.006914 -48.27281362 0
vertebral compression 0.734413 0.019904 0.723955 0.018277 -12.2383364 2.91558E-33
rib fracture 0.668069 0.023081 0.689835 0.022485 21.36070437 2.38093E-91
tuberculosis sequelae 0.773832 0.014015 0.796895 0.013529 37.44003048 6.6415E-233
hilar enlargement 0.714687 0.011757 0.721779 0.011469 13.65450364 1.19318E-40
tracheal shift 0.500734 0.02327 0.615827 0.019305 120.3743682 0
mediastinal mass 0.409473 0.031929 0.709825 0.031109 213.0621769 0
central vascular redistribution 0.567387 0.046306 0.728932 0.031302 91.39738689 0
vertebral fracture 0.86009 0.013028 0.791375 0.015662 -106.6628934 0
superior mediastinal enlargement 0.637878 0.021595 0.551017 0.025206 -82.75530027 0
vascular hilar enlargement 0.60417 0.007237 0.625607 0.007007 67.29618289 0
nodule 0.507929 0.011538 0.446317 0.010124 -126.9283034 0
air trapping 0.631534 0.005968 0.580408 0.005897 -192.699814 0
bullas 0.584846 0.023316 0.744606 0.018356 170.2487729 0
ground glass pattern 0.661248 0.021925 0.671321 0.020656 10.57463045 1.81468E-25
calcified adenopathy 0.624151 0.023153 0.673757 0.019228 52.12228786 0
minor fissure thickening 0.558331 0.022571 0.600411 0.025956 38.68594962 7.5149E-245
unchanged 0.633874 0.004591 0.618171 0.004502 -77.22708382 0
clavicle fracture 0.596031 0.041522 0.596974 0.037946 0.530145578 0.596069909
pseudonodule 0.472281 0.010954 0.476977 0.011371 9.405369698 1.37144E-20
end on vessel 0.485072 0.037602 0.397635 0.041243 -49.54199726 0
COPD signs 0.652912 0.00394 0.650859 0.004075 -11.45351594 1.83491E-29

Table 10: Two sample t-test for the difference of means for our padchest evaluation. In this table, we compare
the previous SOTA, CheXzero, with our regularized model, TIER. Each model had AUC evaluated on n
= 1000 bootstraps of the radiologists-labeled subset of padchest. All but the cardiomegaly, emphysema,
pneumothorax, and clavicle fracture findings are significant at the p=0.0001 level.
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A.9 Code/model availability

Code is available at https://github.com/apalepu13/TIER_Regularized_CLIP. For model checkpoints for
the regularized/unregularized/fully supervised models, contact the authors. The BioViL model is available
at https://huggingface.co/microsoft/BiomedVLP-CXR-BERT-specialized.
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