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ABSTRACT

This paper introduces 360-InpaintR, the first reference-based 360° inpainting
method for 3D Gaussian Splatting (3DGS) scenes, particularly designed for un-
bounded environments. Our method leverages multi-view information and intro-
duces an improved unseen mask generation technique to address the challenges
of view consistency and geometric plausibility in 360° scenes. We effectively in-
tegrate reference-guided 3D inpainting with diffusion priors to ensure consistent
results across diverse viewpoints. To facilitate research in this area, we present
a new 360° inpainting dataset and capture protocol, enabling high-quality novel
view synthesis and quantitative evaluations of modified scenes. Experimental re-
sults demonstrate that 360-InpaintR performs favorably against existing methods
in both quantitative metrics and qualitative assessments, particularly in complex
scenes with large view variations.

1 INTRODUCTION

Three-dimensional scene reconstruction and manipulation, revolutionized by Neural Radiance
Fields (NeRFs) and their extensions, are crucial for various applications like VR/AR, robotics, and
autonomous driving. A key challenge is removing objects from 3D scenes while realistically filling
the resulting holes, which is valuable for real estate visualization, augmented reality, and com-
puter vision preprocessing. However, reference-based inpainting in 3D Gaussian Splatting (3DGS)
scenes, especially in 360° unbounded environments, remains challenging. This task requires exploit-
ing multi-view information, filling never-observed areas, and maintaining consistency and geometric
plausibility across views.

Figure 1 illustrates our pipeline for reference-based 360° unbounded scene inpainting. Given input
images with camera parameters, object masks, and a reference image, we generate a 3D Gaussian
Splatting (3DGS) representation for novel view rendering. Our method exploits multi-view informa-
tion and leverages generative processes to fill unseen areas, ensuring inpainted regions are coherent,
plausible, and consistent across views. By combining 3DGS’s multi-view consistency with 2D in-

Reference-based 
360 unbounded 
scene inpainting

Reference image

Input images
+ camera parameters

Object masks Novel views360-InpaintRObject-masked 3D Gaussian splatting

Figure 1: Overview of our reference-based 360° unbounded scene inpainting method. Given
input images with camera parameters, object masks, and a reference image, our 360-InpaintR ap-
proach generates an object-masked 3D Gaussian Splatting representation. This representation can
then render novel views of the inpainted scene, effectively removing the masked objects while main-
taining consistency with the reference image.
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Figure 2: Comparison of different inpainting approaches for 3D scenes. (a) Per-frame inpainting
with object masks leads to multi-view inconsistencies. (b) Reference-guided inpainting with object
masks improves consistency but results in poor quality for views distant from the reference. (c) Our
approach using reference-guided inpainting with unseen masks respects the reference view while
maintaining multi-view consistency, addressing the limitations of previous methods.

painting models’ generative power, we address challenges in view consistency and 3D geometry,
especially for significant view changes.

Figure 2 illustrates key challenges in 3D scene inpainting. Per-frame approaches (a) lead to multi-
view inconsistencies, while reference-guided methods (b) struggle with distant views due to hal-
lucinations from inpainting models like Stable Diffusion. Our approach (c) uses unseen masks to
maintain consistency across views while respecting the reference. Existing methods face significant
limitations. InNeRF360 (Wang et al., 2023b) underutilizes multi-view information, missing valuable
contextual cues. Gaussian Grouping (Ye et al., 2024), while effective at object removal, struggles
with 3D consistency and risks over-inpainting due to tracking errors. SPIn-NeRF (Mirzaei et al.,
2023b) and LaMa-based (Suvorov et al., 2022) methods face challenges with view consistency, es-
pecially in complex scenes or large view variations. These shortcomings underscore the need for a
more robust approach to 3D scene inpainting that maintains consistency, preserves geometric accu-
racy, and adapts to the challenges of 360° unbounded environments.

Our goal is to develop a comprehensive 3D scene inpainting method that respects the reference view,
maintains 3D consistency, and leverages multi-view background information. Given posed RGB im-
ages and a reference image, we generate an inpainted 3D Gaussian Splatting (3DGS) representation
with view consistency. Figure 2 illustrates our approach’s advantages. We address limitations of
per-frame inpainting (a) and reference-guided inpainting (b) by using unseen masks (c), effectively
leveraging multi-view information. Our method handles 360° unbounded environments with dra-
matic view changes and high scene complexity. By integrating advanced inpainting with 3DGS,
we produce geometrically accurate, visually plausible results that blend seamlessly with the original
scene, enabling high-quality novel view synthesis even in challenging scenarios.

The key contributions of our work include:

• The first reference-based 360° inpainting method for 3DGS scenes, leveraging multi-view
information with improved unseen mask generation.

• An effective integration of reference-guided 3D inpainting and diffusion priors for consis-
tent results across diverse viewpoints.

• A comprehensive framework including a new 360° inpainting dataset and capture protocol,
enabling high-quality novel view synthesis and quantitative evaluations of modified scenes.
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2 RELATED WORK

2.1 RADIANCE FIELDS FOR NOVEL VIEW SYNTHESIS

NeRF. Neural Radiance Fields (NeRF) (Mildenhall et al., 2020) have revolutionized novel view
synthesis, combining differentiable volume rendering (Tulsiani et al., 2017; Henzler et al., 2019) and
positional encoding (Vaswani et al., 2017; Gehring et al., 2017) to implicitly represent 3D scenes.
Subsequent works have improved efficiency (Liu et al., 2020; Garbin et al., 2021; Yu et al., 2021a),
quality (Barron et al., 2021b; Zhang et al., 2020), and data requirements (Yu et al., 2021b; Wang
et al., 2021). While NeRF excels in view synthesis, editing and manipulating NeRF scenes, espe-
cially for tasks like object removal and inpainting, remains challenging. Recent works have explored
object editing (Yang et al., 2021; Yuan et al., 2022), stylization (Wang et al., 2023a), and limited
inpainting (Liu et al., 2022; Mirzaei et al., 2023b), but consistent, high-quality 3D inpainting in
complex NeRF scenes remains an open problem.

3D Gaussian splatting. 3D Gaussian Splatting (Kerbl et al., 2023) offers an efficient alternative
to NeRF (Mildenhall et al., 2020), representing scenes as explicit 3D Gaussians. This approach
enables faster rendering and training (Mildenhall et al., 2020), handles multi-scale representations
(Barron et al., 2021a), and facilitates easier scene editing (Liu et al., 2021). Recent extensions
include dynamic scene modeling (Yang et al., 2024b), semantic incorporation (Chen et al., 2024),
and combinations with diffusion models (Wynn & Turmukhambetov, 2023), advancing novel view
synthesis and scene manipulation.

2.2 2D IMAGE INPAINTING

Traditional methods. Image inpainting has evolved from early PDE-based techniques (Bertalmio,
2000) to exemplar-based methods (Criminisi et al., 2004). Texture synthesis (Efros & Leung, 1999)
and patch-based approaches like PatchMatch (Barnes et al., 2009) further advanced the field. Despite
limitations with large missing regions and complex textures (Jam et al., 2021; Liu et al., 2018), these
methods established principles now incorporated into learning-based approaches (Liu et al., 2018;
Yu et al., 2019). Their computational efficiency remains valuable in resource-constrained scenarios
(Jam et al., 2021).

Deep learning-based methods. Deep learning has revolutionized image inpainting, with CNNs
like Context Encoders (Pathak et al., 2016) pioneering the field. GANs (Goodfellow et al., 2014) and
models like DeepFillv2 (Yu et al., 2019) further improved results. Large Mask Inpainting (LaMa)
(Suvorov et al., 2022) addressed large missing regions effectively. Recently, diffusion models (Ho
et al., 2020), particularly Stable Diffusion (Rombach et al., 2022), have shown remarkable capa-
bilities, leveraging complex data distributions (Dhariwal & Nichol, 2021). While these methods
have significantly improved inpainting quality, challenges remain (Li et al., 2023). This success
has inspired 3D inpainting research (Liu et al., 2022; Prabhu et al., 2023), though extending 2D
approaches to 3D presents unique challenges (Mirzaei et al., 2023a).

Reference-based methods. Reference-based inpainting methods (Zhao et al., 2022) address limi-
tations of general inpainting approaches by utilizing additional visual information. LeftRefill (Tang
et al., 2023) exemplifies this approach, using a two-stage architecture with feature matching and re-
finement networks. These methods offer greater user control and diverse outputs (Zhao et al., 2022),
showing promise in various applications (Jam et al., 2021). However, challenges remain in seam-
less integration and reference selection (Li et al., 2023). The success of these methods has inspired
extensions to 3D inpainting tasks (Liu et al., 2022; Prabhu et al., 2023), although adapting to 3D
presents unique challenges (Mirzaei et al., 2023a).

2.3 3D SCENE INPAINTING

Methods without multi-view background knowledge. Early 3D inpainting approaches extended
2D concepts to 3D without extensive multi-view knowledge. These include direct 3D shape comple-
tion methods like PCN (Yuan et al., 2018), 2.5D representations (Shih et al., 2020), and generative
models like 3D-GAN (Wu et al., 2016). In neural rendering, EditNeRF (Liu et al., 2021) and NeRF-
In (Liu et al., 2022) pioneered NeRF editing and inpainting. These methods often struggle with view
consistency (Mirzaei et al., 2023b) and global context (Wang et al., 2023b). Despite limitations, they
laid groundwork for more advanced, multi-view aware techniques (Mirzaei et al., 2023a).
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Figure 3: Overview of our method. Our approach takes multi-view RGB images and corresponding
object masks as input and outputs a 3D Gaussian Splatting (3DGS) representation with the masked
objects removed. The pipeline consists of three main stages: (a) Unseen Masks Generation using
depth warping to detect truly occluded areas, (b) Depth-Aware 3DGS Initialization to fill disoc-
clusion regions after object removal, and (c) Reference-Guided Inpainting and 3DGS Finetuning,
which iteratively refine the 3DGS representation using a reference-based 2D diffusion inpainting
model and ensure multi-view consistency.

Methods leveraging multi-view information. Multi-view 3D inpainting methods address limi-
tations of single-view approaches. SPIn-NeRF (Mirzaei et al., 2023b) combines NeRF with multi-
view image inpainting. Philip & Drettakis (2018) use multi-view stereo for object removal in image-
based rendering. Inpaint3D (Prabhu et al., 2023) leverages learned 3D priors. InpaintNeRF360
(Wang et al., 2023b) extends to 360-degree scenes, while Gaussian Grouping (Ye et al., 2024) uses
3D Gaussian Splatting. These methods maintain consistency across viewpoints (Mirzaei et al.,
2023a) but face challenges with large-scale occlusions (Weder et al., 2023), computational costs
(Barron et al., 2023), and view inconsistencies (Yin et al., 2023). Despite challenges, they advance
scene editing and completion, potentially leading to new applications (Bommasani et al., 2021).

3 METHOD

Our method takes multi-view RGB images {In} and object masks {Mn} as input, where n ∈ [1..N ].
It outputs a 3D Gaussian Splatting (3DGS) representation with masked objects removed. As shown
in Figure 3, our approach has three stages: (1) Unseen Masks Generation using depth warping, (2)
Depth-Aware 3DGS Initialization leveraging monocular and incomplete depth, and (3) Reference-
Guided Inpainting and 3DGS Finetuning using a 2D diffusion model. This process effectively propa-
gates textures across views in unbounded scenes, resulting in high-quality, consistent 3D inpainting.

3.1 UNSEEN MASKS GENERATION

Accurately identifying regions requiring inpainting is crucial for maintaining scene consistency and
maximizing the use of available background information. Our unseen mask generation approach ad-
dresses two main scenarios: identifying areas without Gaussians after removal and detecting regions
where inappropriate Gaussians become visible.

Identifying regions using the seen attribute. We introduce a seen attribute vi for each Gaussian
i in the scene. During training, we optimize this attribute using the following loss:

Lseen =
∑
n

∑
p

|Rv(p, n)− 1| , (1)

where Rv(p, n) is the rendered seen attribute at pixel p in view n, and the target value is 1 for all
pixels. After removing Gaussians with the mask attribute, we generate an initial unseen mask Uinit
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Figure 4: Unseen mask generation process using depth warping. The rendered depth Dn and
object mask Mn from view n are warped to view i using camera poses. The warped mask Mn→i is
compared with the object mask Mi in view i. Through backward traversal and aggregation across
multiple views, we obtain the unseen mask U for view n. The refined unseen mask Urefine is gener-
ated by applying average and threshold operations to the aggregated mask.

for each view n:

Uinit(p, n) =

{
1 if Rv(p, n) < τinit,

0 otherwise,
(2)

where τinit is a threshold value, typically set to a small positive number (e.g., 0.1).

Depth warping for detecting inappropriate Gaussians. To refine the unseen mask, we employ a
depth warping technique. Figure 4 illustrates the process of generating the unseen mask using depth
warping. For each view n, we compute:

Urefine(p, n) =

{
1 if ( 1

K−1

∑
i ̸=n Mi(W(p,Dn, Tn→i)) ∩Mn(p)) > τrefine,

0 otherwise,
(3)

where K is the number of views, Mi is the object mask for view i, Dn is the depth map for view n
after object removal, Tn→i is the transformation from view n to view i, andW(p,D, T ) is a warping
function that projects pixel p using depth D and transformation T , and τrefine is a threshold value.

Combining the approaches. Our final unseen mask effectively captures both areas without Gaus-
sians and regions with inappropriate Gaussians:

Ufinal(p, n) = max(Uinit(p, n), Urefined(p, n)). (4)

This mask Ufinal is then used in subsequent stages of our pipeline to guide the inpainting process,
ensuring that we focus on areas truly requiring reconstruction while preserving as much original
scene information as possible. We provide complete steps of the unseen masks generation algorithm
in the supplementary materials.

3.2 DEPTH-AWARE 3DGS INITIALIZATION

After completing object removal and unseen mask generation, we proceed to initialize the 3D Gaus-
sian Splatting (3DGS) in the disocclusion regions. This process is crucial for ensuring a coherent
and realistic reconstruction of the inpainted areas.

Using monocular depth and rendered incomplete depth. We begin by selecting a reference
view. For this view, we can render incomplete RGB image I inc

ref and incomplete depth map Dinc
ref .

Our initialization process consists of the following steps. First, We apply an RGB inpainting
method to I inc

ref to obtain a complete RGB image Icomp
ref . Next, using the inpainted RGB image,

we estimate a monocular depth map using Depth Anything V2 (Yang et al., 2024a): Dmono
ref =

5
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DepthAnythingV2(Icomp
ref ). Then, to ensure consistency between the estimated monocular depth and

the incomplete rendered depth, we perform depth alignment using Poisson image editing (Pérez
et al., 2023): Daligned

ref = PoissonImageEdit(Dmono
ref , Dinc

ref ). This aligned depth map combines the
completeness of the monocular depth estimation with the accuracy of the rendered incomplete depth
in the known regions.

Initializing 3DGS in disocclusion regions. With the aligned depth map Daligned
ref , we proceed to

initialize new Gaussians in the disocclusion regions. First, we unproject the aligned depth map to 3D
space, focusing on the disocclusion regions identified by the unseen mask. This unprojection takes
into account the camera’s intrinsic parameters. For each pixel (u, v) in the unseen region where
Ufinal(u, v) = 1, we compute the 3D point P = (X,Y, Z) as follows:

Z = Daligned
ref (u, v), X = (u− cx) · Z/fx, Y = (v − cy) · Z/fy, (5)

where (fx, fy) are the focal lengths in pixels and (cx, cy) are the principal point offsets. This process
gives us a set of initial 3D points P . Next, We use these unprojected points P as initial positions
for new Gaussians in the disocclusion regions. Finally, the existing Gaussians from the background
(i.e., those not removed in the object removal step) are kept fixed during this initialization and the
following optimization process. This initialization strategy, incorporating accurate camera intrin-
sics, provides a geometrically correct starting point for the subsequent fine-tuning of the 3DGS
representation. It ensures that the newly added Gaussians in the disocclusion regions are consistent
with both the inpainted RGB content and the surrounding geometry while respecting the proper 3D
spatial relationships defined by the camera model.

3.3 REFERENCE-GUIDED INPAINTING AND 3DGS FINETUNING

After initializing the trainable 3D Gaussian Splatting (3DGS), we need to finetune it using in-
painted RGB images. We leverage the multi-view consistency capability of reference-guided
3D inpainting models by using the selected reference view’s RGB image as the input reference,
which then inpaints all other training views. These inpainted views serve as our ground truth
for finetuning the 3DGS. We employ LeftRefill (Cao et al., 2024), a reference-guided diffusion
model, as our 2D inpainting model. LeftRefill reformulates reference-based synthesis as a con-
textual inpainting process. It stitches reference and target views as I ′ = [Iref; Îtar] ∈ RH×2W ,

where Iref is the reference image, Îtar is the masked target image, and H and W are the height
and width of the images. LeftRefill employs task and view-specific prompt tuning optimized by:
pt, pv

∗ = argminpt,pv
E[|ε − εθ([zt; ẑ0;M ], cϕ(pt, pv), t)|2], where pt and pv are task and view

prompt embeddings, εθ(·) is the estimated noise by the Latent Diffusion Model (Rombach et al.,
2022), cϕ(·) is the frozen CLIP-H (Radford et al., 2021), zt is a noisy latent feature, ẑ0 are masked
latent features, and M is the mask.

Once we have generated inpainted RGB images for all training views, we use these as supervision
to finetune our 3DGS. During the finetuning process, we only update the Gaussians that were un-
projected in the depth-aware initialization step. The other Gaussians that were retained during the
object removal stage remain fixed. To finetune our 3DGS, we use a combination of L1 loss and
LPIPS (Learned Perceptual Image Patch Similarity) (Zhang et al., 2018) loss. The total loss for
finetuning is formulated as:

L = L1 + λLPIPSLLPIPS. (6)

3.4 IMPLEMENTATION DETAILS

In implementation, we utilize an L1 loss to optimize both masked attributes and the seen attribute.
The learning rate is set to 0.1 for both. When training masked attributes, we follow GaussianGroup-
ing Ye et al. (2024), which enforces a constraint that adjacent GS-masked attributes should exhibit
a smaller loss. This ensures that masked attributes are effectively removed. For the threshold value
τinit and τrefine, we set it to 0.5 and 0.35. For the inapinting stage, we employed the masked LPIPS
loss derived from the SPIN-NeRF framework to mitigate the proliferation of floaters. We empirically
set λLPIPS to 0.5 and fine-tune 3DGS for 10,000 iterations in our experiments.
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Training views

(a) Capturing training views

Tripod

(b) Capturing the reference view (with object)

Novel views

(c) Capturing novel views

Figure 5: Illustration of the data capture process for the 360-USID dataset. (a) Capturing train-
ing views: Multiple images are taken around the object in the scene. (b) Capturing the reference
view: A camera is mounted on a tripod to capture a fixed reference view (with an object). (c) Cap-
turing novel views: After removing the object, additional images are taken from various viewpoints,
including one from the same tripod position as the reference image.

4 360◦ UNBOUNDED SCENES INPAINTING DATASET (360-USID)

To address the lack of publicly available reference-based 360° inpainting datasets for evaluation, we
introduce the 360° Unbounded Scenes Inpainting Dataset (360-USID), comprising seven scenes.

4.1 DATASET COLLECTION PROTOCOL

We developed a protocol using a standard camera to create this dataset, as simultaneously captur-
ing multi-view photos with and without objects is challenging and typically requires specialized
equipment. Our protocol, illustrated in Figure 5, consists of:

1. Placing an object (e.g., a vase) on a textured surface in a 360° unbounded scene and cap-
turing 200-300 photos around it as input training images.

2. Mounting the camera on a tripod and capturing one final training view with a fixed position
and angle.

3. Removing the object and capturing novel view photos from the same tripod position for
ground truth evaluation. Other novel view positions differ from training views.

To ensure high-quality captures, we select surfaces with rich textural details, stabilize the tripod,
and disable white balance. We record video and extract the sharpest frames using the variance of
the Laplacian method to minimize motion blur. Each scene comprises 200-300 training images and
around 30 testing images for quantitative evaluations. Consistent lighting is maintained to minimize
the impact of object shadows on reference and testing images.

4.2 SCENE DESCRIPTIONS

Our 360-USID dataset, shown in Figure 6, features seven diverse scenes: four outdoor (Box, Cone,
Lawn, Plant) and three indoor (Cookie, Sunflower, Dustpan). These scenes present various chal-
lenges for 3D inpainting tasks, representing a range of real-world environments. Each scene has
171-347 training views and 31-33 ground truth novel views. Most scenes are captured at 960×540
resolution, with Plant and Dustpan at 960×720. This diversity in content, view counts, and resolu-
tions makes 360-USID a robust tool for evaluating 3D inpainting algorithms in complex scenarios.

4.3 DATA PREPROCESSING AND CAMERA POSE ESTIMATION

For data preprocessing and camera pose estimation, we employ the following steps:

1. We use COLMAP (Schönberger & Frahm, 2016; Schönberger et al., 2016) or a sim-
ilar Structure-from-Motion (SfM) pipeline such as hloc (Sarlin et al., 2019; 2020) or
GLOMAP (Pan et al., 2024) to compute a shared 3D coordinate space for both training
and novel views.

7
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Outdoor
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Statistics of the 360-USID dataset.

Figure 6: Overview of the 360-USID dataset. Sample images from each scene, including four
outdoor scenes (Box, Cone, Lawn, Plant) and three indoor scenes (Cookie, Sunflower, Dustpan).
(Bottom right) The table shows statistics for each scene, including the number of training views and
ground truth (GT) novel views. The dataset provides a diverse range of environments for evaluating
3D inpainting methods in both indoor and outdoor settings.

2. As the object is removed in novel views, we generate object masks using SAM 2 (Segment
Anything in Images and Videos) (Ravi et al., 2024) and input these into COLMAP to ignore
object reconstruction.

3. After obtaining camera poses for training and novel views from COLMAP, we can input
the training images into any NeRF/3DGS inpainting method to remove the object.

4. We then use these methods’ resulting radiance fields or 3D representations to render novel
view photos, which we compare against our captured ground truth novel view images for
quantitative evaluation.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate our method on two types of 360° unbounded environment datasets:

• 360-USID (Ours): We introduce a new dataset specifically for evaluating 360° unbounded
scene inpainting. It comprises 7 scenes (3 indoor, 4 outdoor), each with 200-300 training
views containing the object to be removed and about 30 test views without the object.
This dataset provides ground truth for quantitative evaluation of 360° inpainting tasks. We
maintain the width at 960 pixels when evaluating 360-USID to preserve high-fidelity details
crucial for 360° scene representation.

• MipNeRF-360 (Barron et al., 2022) and NeRFStudio (Tancik et al., 2023): We use
these established 360° datasets to demonstrate our method’s performance on additional un-
bounded scenes. We evaluate at 1/4 resolution to balance computational efficiency with
performance. While lacking ground truth for inpainting evaluation, these datasets are valu-
able for qualitative assessments and demonstrating our method’s generalization to various
complex, unbounded environments.

Metrics. To evaluate our 360◦ inpainting method, we employ two primary metrics that focus on
the perceptual quality and realism of the inpainted scenes:

• LPIPS (Learned Perceptual Image Patch Similarity) (Zhang et al., 2018): This per-
ceptual metric measures the similarity between the inpainted renderings and ground-truth
images. Lower values indicate better perceptual similarity.
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Table 1: Quantitative comparison of 360° inpainting methods on the 360-USID dataset.
LPIPS ↓ / FID ↓ Box Cone Lawn Plant Cookie Sunflower Dustpan Average

Gaussian Grouping 0.447 / 109.991 0.380 / 129.666 0.578 / 295.259 0.378 / 66.919 0.638 / 429.472 0.415 / 205.217 0.225 / 117.099 0.437 / 193.375
LeftRefill 0.508 / 97.989 0.369 / 114.716 0.621 / 188.048 0.677 / 160.690 0.676 / 232.896 0.501 / 108.186 0.344 / 100.718 0.528 / 143.321
3DGS + LaMa 0.470 / 99.414 0.395 / 107.241 0.545 / 213.319 0.553 / 119.828 0.559 / 251.464 0.518 / 62.026 0.263 / 104.697 0.472 / 136.855
3DGS + LeftRefill 0.535 / 102.535 0.317 / 117.106 0.603 / 210.115 0.593 / 264.670 0.577 / 461.026 0.407 / 98.044 0.210 / 140.723 0.463 / 199.174
Ours 0.344 / 88.937 0.340 / 122.200 0.453 / 178.767 0.333 / 56.710 0.568 / 243.332 0.337 / 84.864 0.315 / 165.075 0.384 / 134.270

Gaussian GroupingGround Truth LeftRefill 3DGS + LaMa 3DGS + LeftRefill Ours

Figure 7: Qualitative comparison of 360° inpainting methods on the 360-USID dataset.

• FID (Fréchet Inception Distance) (Heusel et al., 2017): This metric assesses the statisti-
cal similarity between the distribution of features from inpainted and ground-truth images.
Lower FID scores indicate higher fidelity and realism of the inpainted regions.

For both LPIPS and FID, we compute the metrics only within the inpainted regions. This approach,
similar to that used in SPIn-NeRF (Mirzaei et al., 2023b), allows us to focus specifically on the
quality of the inpainting rather than the overall scene reconstruction. For the 360-USID dataset,
where we have ground-truth images without the removed objects, we compute both LPIPS and FID.
For MipNeRF-360 and NeRFStudio datasets, which lack ground truth for inpainting, we rely on
qualitative assessments. We provide additional evaluation results using PSNR and SSIM (Wang
et al., 2004) in the supplementary materials for a more comprehensive analysis.

5.2 COMPARISONS WITH STATE-OF-THE-ART METHODS

Quantitative comparisons. We evaluate 360-InpaintR against state-of-the-art approaches on the
360-USID dataset. Table 1 shows LPIPS and FID scores across different scenes. Our method
consistently outperforms existing approaches. Gaussian Grouping (Ye et al., 2024) struggles with
360° consistency, while LeftRefill (Cao et al., 2024) improves but falls short in 360° environments.
3DGS + LaMa (Suvorov et al., 2022) and 3DGS + LeftRefill show better results than 2D methods
but face view consistency challenges. 360-InpaintR achieves the lowest average LPIPS and FID
scores, indicating superior perceptual quality and similarity to ground truth. The performance gap
is particularly notable in scenes with complex geometry or large removed objects, highlighting our
method’s ability to leverage multi-view information and maintain 360° consistency.

Qualitative visual comparisons. Figure 7 compares our 360-InpaintR method against state-of-
the-art approaches on challenging scenes from 360-USID, Mip-NeRF360, and NeRFStudio datasets.
Our method excels in maintaining view consistency and preserving fine details in 360° unbounded
environments. While Gaussian Grouping and LeftRefill show strengths in object removal and 2D
inpainting, respectively, they struggle with 360° scene consistency. 3DGS + LaMa and 3DGS +
LeftRefill improve upon 2D methods but face challenges with complex geometries and large in-
painted regions. 360-InpaintR consistently produces sharper, more detailed, and view-consistent
results across all scenes, effectively handling challenging cases like periodic textures and complex
organic structures. It preserves fine details, overall scene structure, and view-dependent effects cru-
cial for 360° scene realism, particularly in varying lighting conditions or reflective surfaces. We
provide additional video results in our supplementary materials.
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Table 2: Ablation study of our 360-InpaintR method.
Unseen mask Depth initialization 2D inpainter LPIPS ↓ FID ↓

- ✓ LeftRefill 0.022 181.177
✓ - LeftRefill 0.020 139.511
✓ ✓ LaMa 0.020 179.912
✓ ✓ LeftRefill 0.019 134.268

Ground truth with without with without with LaMa with LeftRefill

Unseen mask Depth initialization 2D inpainter

Figure 8: Qualitative comparisons of ablation studies.

5.3 ABLATION STUDIES

To evaluate the effectiveness of each component in our 360-InpaintR method, we conduct a series
of ablation studies. Table 2 presents the quantitative results of these studies, and Figure 8 shows
qualitative comparisons.

Unseen mask generation. We compare our unseen mask generation technique with directly using
object masks. Our approach significantly improves inpainting quality, particularly in areas occluded
from multiple views. The unseen masks help to identify truly occluded regions, leading to more
accurate and consistent inpainting results. This is especially noticeable in scenes with complex
geometries, where object masks alone may not capture all the necessary information for effective
inpainting.

Effect of depth-aware 3DGS initialization. The depth-aware 3DGS initialization proves crucial
for maintaining geometric consistency in the inpainted regions. Compared to random initialization,
our method produces more structurally coherent results, especially in areas with significant depth
variations. This is particularly evident in scenes where the inpainted geometry needs to blend seam-
lessly with the existing scene structure.

Inpainting method comparison. We evaluate the performance of two inpainting methods:
LaMa (Suvorov et al., 2022) for per-image inpainting and LeftRefill (Cao et al., 2024) for reference-
guided inpainting. While both methods show improvements over baseline approaches, LeftRefill
consistently outperforms LaMa in our 360° setting. This is due to LeftRefill’s ability to leverage
information from the reference view, leading to more consistent results across different viewpoints.
However, combining either method with our full pipeline still outperforms their standalone usage.

6 CONCLUSION

We presented 360-InpaintR, a novel reference-based 360° inpainting method for 3D Gaussian Splat-
ting scenes in unbounded environments. Our approach effectively addresses the challenges of object
removal and hole filling in complex 3D scenes. Key contributions include leveraging multi-view
information through improved unseen mask generation, integrating reference-guided 3D inpainting
with diffusion priors, and introducing the 360-USID dataset for comprehensive evaluation. Experi-
mental results demonstrate 360-InpaintR’s superior performance over existing methods, particularly
in complex geometries and large view variations. While this work represents a significant advance-
ment in 3D scene editing, future directions include improving computational efficiency, handling
dynamic scenes, and integrating more advanced language models for intuitive editing.
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3d inpainting on unbounded neural radiance fields. arXiv preprint arXiv:2305.15094, 2023b.

Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul Srinivasan, Howard Zhou, Jonathan T. Bar-
ron, Ricardo Martin-Brualla, Noah Snavely, and Thomas Funkhouser. IBRNet: Learning multi-
view image-based rendering. In CVPR, 2021.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–
612, 2004.

Silvan Weder, Guillermo Garcia-Hernando, Aron Monszpart, Marc Pollefeys, Gabriel Brostow,
Michael Firman, and Sara Vicente. Removing objects from neural radiance fields. CVPR, pp.
16528–16538, June 2023.

Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenenbaum. Learning a proba-
bilistic latent space of object shapes via 3d generative-adversarial modeling. In NeurIPS, 2016.

Jamie Wynn and Daniyar Turmukhambetov. Diffusionerf: Regularizing neural radiance fields with
denoising diffusion models. In CVPR, 2023.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Bangbang Yang, Yinda Zhang, Yinghao Xu, Yijin Li, Han Zhou, Hujun Bao, Guofeng Zhang, and
Zhaopeng Cui. Learning object-compositional neural radiance field for editable scene rendering.
In ICCV, pp. 13779–13788, 2021.

Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiaogang Xu, Jiashi Feng, and Hengshuang
Zhao. Depth anything v2. arXiv:2406.09414, 2024a.

Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, and Xiaogang Jin. Deformable 3d
gaussians for high-fidelity monocular dynamic scene reconstruction. In CVPR, 2024b.

Mingqiao Ye, Martin Danelljan, Fisher Yu, and Lei Ke. Gaussian grouping: Segment and edit
anything in 3d scenes. In ECCV, 2024.

Youtan Yin, Zhoujie Fu, Fan Yang, and Guosheng Lin. Or-nerf: Object removing from 3d scenes
guided by multiview segmentation with neural radiance fields. arXiv preprint arXiv:2305.10503,
2023.

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. PlenOctrees for
real-time rendering of neural radiance fields. In ICCV, pp. 5752–5761, 2021a.

Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. pixelNeRF: Neural radiance fields
from one or few images. In CVPR, 2021b.

Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S Huang. Free-form image
inpainting with gated convolution. In ICCV, 2019.

Wentao Yuan, Tejas Khot, David Held, Christoph Mertz, and Martial Hebert. Pcn: Point completion
network. 2018.

Yu-Jie Yuan, Yang-Tian Sun, Yu-Kun Lai, Yuewen Ma, Rongfei Jia, and Lin Gao. NeRF-editing:
geometry editing of neural radiance fields. In CVPR, 2022.

Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen Koltun. Nerf++: Analyzing and improving
neural radiance fields. arXiv preprint arXiv:2010.07492, 2020.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586–595, 2018.

Yunhan Zhao, Connelly Barnes, Yuqian Zhou, Eli Shechtman, Sohrab Amirghodsi, and Charless
Fowlkes. Geofill: Reference-based image inpainting of scenes with complex geometry. In arXiv,
2022.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

A APPENDIX

A.1 UNSEEN MASKS GENERATION ALGORITHM

We provide detailed steps of the unseen masks generation algorithm in Algorithm A.1.

Algorithm 1 Unseen Masks Generation
Input: Set of views V = v1, ..., vK , object masks M = M1, ...,MK , removal depths D =

D1, ..., DK , transformations T = Ti→j |i, j ∈ [1,K], i ̸= j
Output: Final unseen masks Ufinal = Ufinal1, ..., UfinalK
1: // Train seen attribute
2: for each training iteration do
3: Render seen attribute Rv(p, n) for all pixels p and views n
4: Compute Lseen =

∑
n
∑

p |Rv(p, n)− 1|
5: Update seen attribute based on Lseen
6: end for
7: // Generate unseen masks
8: for n = 1 to K do
9: // Initialize mask using seen attribute

10: for each pixel p do

11: Uinit(p, n)←
{
1 if Rv(p, n) < τinit

0 otherwise
12: end for
13: // Refine mask using depth warping
14: Urefined(p, n)← 0 for all pixels p
15: for i = 1 to K, i ̸= n do
16: Mn→i ←W(Mn, Dn, Tn→i)
17: for each pixel p do
18: if p ∈Mn→i ∩Mi then
19: Urefined(p, n)← Urefined(p, n) + 1
20: end if
21: end for
22: end for
23: Urefined(p, n)← Urefined(p, n)/(K − 1) for all pixels p

24: Urefined(p, n)←
{
1 if Urefined(p, n) > τrefine

0 otherwise
25: // Combine approaches
26: for each pixel p do
27: Ufinal(p, n)← max(Uinit(p, n), Urefined(p, n))
28: end for
29: end for
30: return Ufinal

A.2 ADDITIONAL QUANTITATIVE EVALUATIONS

We provide additional quantitative evaluations using PSNR and SSIM in Table 3 and Table 4.
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Table 3: PSNR comparison of 360° inpainting methods on the 360-USID dataset.
PSNR ↑ Box Cone Lawn Plant Cookie Sunflower Dustpan Average

Gaussian Grouping 15.485 13.010 13.537 16.139 11.984 19.267 22.150 15.939
LeftRefill 15.867 13.996 14.667 12.815 9.102 14.437 21.644 14.647
3DGS + LaMa 15.230 13.305 15.515 12.919 10.215 12.183 22.308 14.525
3DGS + LeftRefill 15.013 14.083 14.712 13.702 9.990 18.138 22.411 15.436
Ours 15.851 13.922 16.109 17.358 10.063 19.304 22.815 16.489

Table 4: SSIM comparison of 360° inpainting methods on the 360-USID dataset.
SSIM ↑ Box Cone Lawn Plant Cookie Sunflower Dustpan Average

Gaussian Grouping 0.967 0.977 0.992 0.909 0.980 0.989 0.993 0.972
LeftRefill 0.948 0.961 0.979 0.822 0.948 0.967 0.986 0.944
3DGS + LaMa 0.967 0.980 0.992 0.879 0.976 0.987 0.994 0.968
3DGS + LeftRefill 0.968 0.979 0.992 0.873 0.971 0.982 0.992 0.965
Ours 0.971 0.980 0.993 0.919 0.976 0.919 0.994 0.966
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