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ABSTRACT

Recent advances toward foundation models for routing problems have shown great
potential of a unified deep model for various VRP variants. However, they over-
look the complex real-world customer distributions. In this work, we advance the
Multi-Task VRP (MTVRP) setting to the more realistic yet challenging Multi-
Task Multi-Distribution VRP (MTMDVRP) setting, and introduce SHIELD, a
novel model that leverages both sparsity and hierarchy principles. Building on
a deeper decoder architecture, we first incorporate the Mixture-of-Depths (MoD)
technique to enforce sparsity. This improves both efficiency and generalization by
allowing the model to dynamically choose whether to use or skip each decoder
layer, providing the needed capacity to adaptively allocate computation for learn-
ing the task/distribution specific and shared representations. We also develop a
context-based clustering layer that exploits the presence of hierarchical structures
in the problems to produce better local representations. These two designs in-
ductively bias the network to identify key features that are common across tasks
and distributions, leading to significantly improved generalization on unseen ones.
Our empirical results demonstrate the superiority of our approach over existing
methods on 9 real-world maps with 16 VRP variants each.

1 INTRODUCTION

Combinatorial optimization problems (COPs) appear in many real-world applications, such as lo-
gistics (Cattaruzza et al., [2017) and DNA sequencing (Caserta & Vof}, 2014), and have historically
attracted significant attention (Bengio et al.,|2021). A key example of COPs is the Vehicle Routing
Problem (VRP), which asks: Given a set of customers, what is the optimal set of routes for a fleet
of vehicles to minimize overall costs while satisfying all constraints? Traditionally, they are solved
with exact or approximate solvers. However, these solvers are either inefficient for large instances or
rely heavily on expert-designed heuristic rules. Recently, the emerging Neural Combinatorial Opti-
mization (NCO) community has been increasingly focused on developing novel neural solvers for
VRPs based on deep (reinforcement) learning (Kool et al.l [2018; [Kwon et al., |2020; |Bogyrbayeva
et al., 2024). These solvers learn to construct solutions autoregressively, improving efficiency and
reducing the need for domain knowledge, showing significant promise over traditional solvers.

Motivated by the recent breakthroughs in foundation models (Floridi & Chiriatti, 2020; [Touvron
et al., 2023} |Achiam et al., [2023)), a notable trend in the NCO community is the push towards
developing a unified neural solver for handling multiple VRP variants, known as the Multi-Task VRP
(MTVRP) setting (Liu et al., 2024; Zhou et al., 2024; Berto et al., | 2024)). These solvers are trained
on multiple VRP variants and show impressive zero-shot generalization to new tasks. Compared
to single-task solvers, unified solvers offer a key advantage: there is no longer a need to construct
different solvers or heuristics for each specific problem variant. However, despite the importance
of the MTVRP setup, it does not fully capture real-world industrial applications, as the underlying
distributions are assumed to be uniform, lacking the structural properties of real-world data.

In this work, we extend the MTVRP framework to real-world scenarios by incorporating realistic
distributions (Goh et al.||2024). Consider, for example, a logistics company operating across multi-
ple cities/countries, with each region having a fixed set of M locations, governed by its geographical
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layout. When a subset of V' orders arises, the problem is reduced to serving only those customers.
To model this, we generate realistic distributions by selecting smaller subsets of V' from the fixed
set of M locations, ensuring that V' retains the geographical distribution characteristics of M. A
unified model with strong performance across tasks and distributions allows for flexible, efficient
deployment. This transforms MTVRP into the Multi-Task Multi-Distribution VRP (MTMDVRP), a
novel and challenging setting that, to our knowledge, has not been explored in the literature.

Nevertheless, MTMDVRP poses unique challenges for learning unified neural VRP models. First,
beyond managing the diverse constraints of MTVRP, the model must further learn to handle ar-
bitrary, distribution-specific layouts. Unfortunately, task-related contexts often interdepend with
distribution-related contexts during decision-making (e.g., selecting the next node), adding fur-
ther complexity. Moreover, balancing shared and task/distribution-specific representations becomes
more difficult, as the model needs to generalize across a broader representation space to serve as
a more foundational NCO model. Consequently, this calls for learning unified deep models that
balances the expressiveness required for complex decision-making with the simplicity needed for
efficient generalization — an issue we explore in depth in this paper.

To this end, we introduce Sparsity & Hierarchy in Efficiently Layered Decoder (SHIELD) to address
the above challenges with two key innovations. First, SHIELD leverages sparsity by incorporating a
customized Mixture-of-Depths (MoD) approach (Raposo et al., 2024) to the NCO decoders. While
adding more decoder layers can improve predictive power, the autoregressive nature of neural VRP
solver significantly hampers efficiency. In contrast, our MoD is designed to dynamically adjust
the proper computational depth (number of decoder layers) based on the decision context. This
allows adaptively allocated computation for learning the task/distribution specific and shared repre-
sentations, while acting as a regularization mechanism to prevent overfitting by possibly reducing
redundant computations. Secondly, we employ a clustering mechanism that considers hierarchy dur-
ing node selection by forcing the learning of a small set of key representations of unvisited nodes,
enabling compact modeling of the complex decision-making information. Together, these two de-
signs encourage the model to learn some compact, simple, generalizable representations with limited
computational budgets, enhancing generalization across tasks and distributions, which is also in line
with the Information Bottleneck perspective. This paper highlights the following contributions:

* We propose Multi-Task Multi-Distribution VRP (MTMDVRP), a novel, more realistic yet
challenging setting that better represents real-world industry scenarios.

* We present SHIELD, a neural solver that leverages sparsity through a customized NCO
decoder with MoD layers and hierarchy through context-based cluster representation, ad-
vancing towards a more generalizable foundation model for neural VRP solvers.

* We demonstrate the impressive in-distribution and generalization benefits of SHIELD via
extensive experiments across 9 real-world maps and 16 VRP variants, achieving state-of-
the-art performance compared to existing unified neural VRP solvers.

2 RELATED WORK

Multi-task VRP Solver. Recent work in (Liu et al, |2024)) explored training of a Multi-Task VRP
solver across a range of VRP variants which share a set of common features indicating the presence
or absence of specific constraints. |Zhou et al. (2024)) enhanced the model architecture by introduc-
ing a Mixture-of-Experts within the transformer layers, allowing the model to effectively capture
representations tailored to different tasks. These studies focus on zero-shot generalization, where
models are trained on a subset of tasks and evaluated on unseen tasks that are combinations of com-
mon features. Additionally, other studies (Wang & Yu, |2023} Drakulic et al.| [2024) investigate this
promising direction, but with different problem settings. Alternatively, Berto et al.[(2024)) improved
convergence robustness by training on all possible tasks within a batch using a mixed environment.
In this work, we mainly build on the setting presented by [Liu et al.|(2024)); Zhou et al.| (2024)).

Generalization Study. Joshi et al.| (2021) highlighted the generalization challenge faced by neural
combinatorial solvers, where their performance drops significantly on out-of-distribution (OOD)
instances. Numerous studies have sought to improve generalization performance in cross-size (Bdeir
et al., [2022; [Son et al.l [2023), cross-distribution (Wang et al., [2021}; Jiang et al., [2022} [Bi et al.,
2022; [Zhang et al.| 2022; Zhou et al., [2023)), and cross-task (Lin et al.,|2024; [Liu et al., 2024; Zhou
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et al.| 2024; Berto et al.| [2024) settings. However, their methods are tailored to specific settings and
cannot handle our MTMDVRP setup, which considers crossing both tasks and realistic customer
distributions. While a recent work|Goh et al.|(2024)) explores more realistic TSPs, their approach still
struggles with complex cross-problem scenarios. In this paper, we take a step further by exploring
generalization across both different problems and real-world distributions in VRPs. We refer the
reader to Appendix [A.T]for details regarding single-task VRP solvers.

3 PRELIMINARIES

CVRP and its Variants. The CVRP is defined as an instance of N nodes in a graph G = {V, £},
where the depot node is denoted as vy, customer nodes are denoted as {v;}}¥.; € V), and edges
are defined as e(v;,v;) € & between nodes v; and v; such that ¢ # j. Every customer node has
a demand §;, and every vehicle has a maximum capacity limit (). For a given problem, the final
solution (tour) can be presented as a sequence of nodes with multiple sub-tours. Each sub-tour
represents a vehicle’s path, starting and ending at the depot. As a vehicle visits a customer node,
the demand is fulfilled and subtracted from the vehicle’s capacity. A solution is considered feasible
if each customer node is visited exactly once, and the total demand in a sub-tour does not exceed
the capacity limit of the vehicle. In this paper, we consider the nodes defined in Euclidean space
within a unit square [0, 1], and the overall cost of a solution, ¢(-), is calculated via the total Euclidean
distance of all sub-tours. The objective is to find the optimal tour 7* such that the cost is minimized,
given by 7% = argmin,cgc(7|G) where ® defines the set of all possible solutions.

We define the following practical constraints that are integrated with CVRP: (1) Open route (O):
The vehicle is no longer required to return to the depot after visiting the customers; (2) Backhaul
(B): Demand 4¢; is a positive value, indicating that goods are unloaded at a customer node. Instead,
demand on some nodes can be negative, meaning that these nodes will load goods into the vehicle.
Practically, this mimics the pick-up and drop-off scenarios in logistics. We label nodes with positive
demand §; > 0 as linehauls, and nodes with negative demand §; < 0 as backhauls. Note that routes
can have a mixed sequence of linehauls and backhauls without strict precedence; (3) Duration Limit
(L): Each sub-tour is upper bounded by a threshold limit on the total length; (4) Time Window (TW):
Each node v; is defined with a time window [w?, w¢], signifying the opening and close times of the
window, and s; the service time at a node. Essentially, a customer can only be served if the vehicle
arrives within the time window, and the total time taken at the node is the service time. If a vehicle
arrives earlier, it has to wait until w{. All vehicles have to return to the depot before wg.

Neural Constructive Solvers. Neural constructive solvers are typically parameterized by a neural
network, where a policy, 7y, is trained by reinforcement learning to construct a solution sequentially
(Kool et al.| [2018; [Kwon et al.l [2020). The attention-based mechanism (Vaswani, [2017) is popu-
larly used, with attention scores guiding the decision-making process in an autoregressive fashion.
The feasibility of a solution can be managed through masking, where invalid moves are excluded
during the construction process. Generally, neural constructive solvers employ an encoder-decoder
architecture and are trained as sequence-to-sequence models (Sutskever, [2014). The probability of

a sequence can be factorized using the chain-rule of probability, pe(7|G) = Hthl po(T|G, T1:t—1).
The encoder typically stacks multiple transformer layers to extract node embeddings, while the de-
coder generates solutions autoregessively using a contextual embedding h ). We leave additional
details about the architecture to Appendix The contextual embedding can be represented as
h) = hE o +hE%, .. Then, the attention mechanism is used to produce the attention scores. Con-
cretely, the context vectors h(.) serves as query vectors, while the keys and values are the set of N
node embeddings. This is mathematically represented as
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where U is a clipping function and DIM the dimension of the latent vector. These attention scores
are then normalized using a softmax function to generate the probability distribution. Finally, given
a baseline function b(-), the policy is trained with the REINFORCE algorithm (Williams, [1992) and
gradient ascent, with the expected return J and the reward of each solution R (i.e., the negative

length of the solution tour): VyJ(6) ~ E [(R(Tl) —b'(s))Vglogpe(Ti|s)|.
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Mixture-of-Experts and Mixture-of-Depths. Previous work (Liu et al., 2024) demonstrated the
ability of state-of-the-art transformers such as POMO (Kwon et al., [2020) to generalize across
MTVREP instances. More recently, (Zhou et al.l |2024)) improved upon the transformer architec-
ture with the introduction of the Mixture-of-Experts. Formally, a MoE layer consists of m experts
{E1, Es, ..., E,, }, whereby each expert is a feed-forward MLP. A gating network G produces a
scalar score based on an input & which is then responsible for deciding how the inputs are distributed
to the experts. A MoE layer’s output can be defined as MOE(z) = Z;”:l G(z);E;(x). The gating
network operates such that only the top-k experts are activated, so as to prevent computation from
exploding. For MVMOoE, [Zhou et al.| (2024)) introduces MoE layers at each transformer block at
the token-level, meaning that every token uses at most k experts. Additionally, a hierarchical gate
is introduced in the decoder at the problem level, whereby depending on the problem instance, the
network learns to decide whether or not to use experts at each decoding step.

Apart from MoE, MoD is introduced in an effort to improve computational efficiency in large lan-
guage models (LLMs) (Raposo et al.| 2024). Effectively, the authors replace alternate transformer
layers in the LLM’s encoder, making learning embeddings more computationally efficient. Now,
instead of gating network G(z) routing to various experts, it routes tokens through the transformer
layer or bypasses it. The capacity of G(x) defines the total number of tokens allowed for a layer.
Empirical evidence showed improvement in training loss by intertwining these sparser layers.

4 METHODOLOGY

4.1 MTVRP AND MTMDVRP SETUP

Formally, the optimization objective of a MTVRP instance is given by

> d(piapi+1)‘| 2)

SES pi€Es

nin(C(X)) = Exx

where /C the set of all tasks, S the set of all sub-tours in an instance, p; the i-th node in the sequence
of s, and d(-, -) the Euclidean distance function. For the MTMDVRP in this paper, we expand on
the MTVRP scenarios in (Liu et al., 2024} [Zhou et al., [2024). The x; and y; coordinates for the
instances are now sampled from a known underlying distribution of points, as opposed from the
uniform distribution. This enables the sample problems to mimic most of the structural distributions
and patterns available in the problem. The optimization objective can be summarized as follows

Er~x [Z > d(pi»piﬂ)H 3)
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min(C(X)) = Egng

where Q is the set of all distributions. The following practical scenario can visualize our MTMD-
VRP: assume a logistics company X deploys a deep learning model to solve multiple known variants
for its current business. In an ideal world, it would have access to all forms of logistics problems
generated across all possible structured distributions in the world, whereby a country map ¢ € Q.
Realistically, company X only has historical data in some tasks and presence in a handful of coun-
tries, such that ¢’ € Q’, whereby Q' C Q, meaning that it only has data drawn from a subset of
distributions in Q. Likewise, it has only faced a subset of tasks such that £ € X', K’ C K. Based
on this historical data, company X can train a single model using Q" and K’. Now, if company X
wishes to expand its presence to other parts of the world, it would see new data samples from new
distributions and meet new tasks that were not present in the training set. Thus, it would be highly
beneficial for company X to be able to apply its model readily. To do so, the model has to be robust
to the task and distribution deviation simultaneously, suggesting strong generalization properties
across these two aspects.

Challenges of MTMDVRP. While adding distributions may seem straightforward, it introduces
significant complexity. First, the model must learn representations that capture both constraint and
distribution context when selecting the next node to visit. However, in MTMDVREP, task and dis-
tribution contexts often interdepend, complicating decision-making. For example, in a skewed map
such as Egypt (EG7146) in Figure 5] in Appendix [A.T3] the task complexity is closely tied to the
geographic layout. The depot’s position significantly impacts the solution; a depot near clustered
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Figure 1: Overall proposed approach for MTMDVRP. First, in-distribution maps are sampled uni-
formly and a set of points is sampled. After which, the in-task is sampled uniformly. Based on
these, a batch of problem instances is formed and passed through SHIELD. SHIELD encompasses
an MoE encoder, followed by a context-based clustering layer, and finally the MoD decoder. The
decoder is applied autoregressively to in-task/out-task out-distribution instances and the optimality
gap is calculated using known solvers.

customer nodes is less complex to solve than one located in a sparse region with distant customer
nodes. Additionally, balancing shared and task/distribution-specific representations is more difficult,
as the model must generalize across a broader space to serve as a foundational NCO model. Thus,
strong generalization across both tasks and distributions is essential for a robust foundation model.

For our setup, we adopt the following feature set. At each epoch, we are faced with a problem
instance ¢ such that S; = {z;, y;, 0;, w?, wf}, where x; and y; are the respective coordinates, ¢; the
demand, w{ and w{ the respective opening and closing times of the time window. This is passed
through the encoder resulting in a set H of d-dimensional embeddings. At the ¢-th decoding step,
the decoder receives this set of embeddings H, the clustering embeddings C, and a set of dynamic
features D; = {z¢, 14, tt, 0¢ }, where z; denotes the remaining capacity of the vehicle, I; the length of

the current partial route, ¢, the current time step, and o, indicates if the route is an open route or not.

4.2 INFORMATION BOTTLENECK AND GENERALIZATION

In the context of MTVRP, the MoE model was proposed as an effective learning framework for
multi-task settings (Zhou et al., 2024). However, it is not immediately clear why simply improving
predictive power with a mixture model would be particularly beneficial in this context. We examine
this from the perspective of the Information Bottleneck principle (Tishby et al.l 2000; Tishby & Za-
slavskyl 2015} |Saxe et al.,[2019), which suggests that representations that are highly predictive but
have minimal complexity are better suited for generalization. In Multi-Task and Multi-Distribution
VREP, there is invariably shared information across tasks or distributions that can be leveraged, while
representations must also retain task or distribution specific information to improve predictive per-
formance. Federici et al.| (2020) studied the multi-view case wherein different views share common
label and showed that maximizing joint information between views with the shared labels is helpful.
Contrapositively, this implies that in scenarios where labels or distributions differ, such as in the
MTMDVREP setting, balancing shared and task-specific information is essential for generalization.
However, MoE lacks an inductive bias to enforce this balance.

We propose that an adaptive learning approach, which regulates the balance between learning shared
and task-specific representations, is more appropriate. The customized MoD approach addresses this
by enforcing sparsity through possibly reduced network depths and lighter computation, forcing the
model to learn generalizable representations across tasks/distributions. The clustering mechanism
forces the network to condense information into a handful of representations. In a multi-task sce-
nario, we posit that these encourage the network to efficiently generalize by balancing the computa-
tional budget for task-specific information while leaving common information to be learned across
other tasks or distributions, encouraging efficient generalization across tasks and distributions.
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4.3 GOING DEEPER BUT SPARSER

Our proposed architecture is shown in Figure [I] In
order to increase the predictive power of the MV-

MOoE, one can easily hypothesize that increasing the B , B e BN
number of parameters would necessitate that. How- =
ever, due to the nature of the autoregressive decod-

ing, we find that this quickly becomes extremely
complex. Instead, we propose the integration of the
Mixture-of-Depths (MoD) (Raposo et al., [2024) ap- et 1ee Mo
proach into the decoder. Given a dense transformer =

layer and N tokens, MoD selects the top S-th per-

centile of tokens to pass through the transformer

layer. In contrast, the remaining unselected tokens Figure 2: Token is routed differently for each
are routed around the layer with a residual connec- agent depending on the router.

tion around the layers, avoiding the need to compute

all NV attentional scores. Formally, the layer can be represented as follows

hl_+1 _ {rifl<Hl) +h€ 1f7",lL > P,B(rl) 4)
¢ h! if rl < Pg(r')

where r; = W; h! is router score given for token i at layer [, Wj is learnable parameters in the
router that converts a d-dimensional embedding into a scalar score, r! the set of all router scores at
layer [, P5(r!) the B-th percentile of router scores, and H the subset of tokens in the 3-th percentile.
In this work, we utilize token-level routing, whereby each token is passed through the router, and
the top 3 percentile tokens are selected. By controlling /3, we control the sparsity of the architecture
by determining how many tokens are passed into the layer for processing. For each layer, we apply
this routing mechanism to h,), the contextual vectors. Each transformer layer still receives all N
node embeddings together with a mask that determines whether a previous node has been visited.
Effectively, we limit the total number of query tokens to the transformer layer in the decoder. As
each query token is the contextual vector hy.y, this means that the network learns to identify which
current locations are more important to be processed. This effect naturally introduces sparsity in the
architecture: not all tokens are processed multiple times equally as it is passed through the decoder.

4.4 CONTEXTUAL CLUSTERING

Apart from sparsity in compute, we introduce hierarchy in the form of representation. |Goh et al.
(2024) first showed that for structured TSPs, one can apply a form of soft-clustering to summarize
the set of unvisited cities into a handful of representations. This is then used to guide agents, pro-
viding crucial information about the groups of nodes left in the problem, which is highly useful for
structured distributions.

In addition to structured distributions, the MTMDVRP has underlying commonalities among its
tasks. As such, we hypothesize that nodes and it’s associated task features can be grouped together.
While spatial structure can typically be measured in Euclidean space, it is not so straightforward
for tasks and its features. Thus, an EM-inspired soft clustering algorithm in latent space provides a
sensible approach to this problem. We first define a set of C € R™V<*? representations, such that N,
of these denote the number of cluster centers. The soft clustering algorithm poses the forward pass
of the attention layer as an estimation of the E-step, and the re-estimation of C using the weighted
sum of the learnt attention weights as the M-step. Repeated passes through this layer simulate a
roll-out of a pseudo-EM algorithm. Effectively, the network learns the initial cluster centers and the
parameters required to transform these centers to the final centroids based on the input embeddings.

In this work, we modify the soft clustering algorithm and introduce context prompts to capture
the task dependencies. For the same spatial graph, if the task at hand is different, the clustering
mechanism should be sufficiently flexible to accommodate the various intricacies of the task. To
handle this, we model this contextual prompt as a latent representation o, = W(,T i where and Wy
is a set of learnable parameters that transforms the constraints to latent representations, and - is a
one-hot encoded vector of constraints for task k, such that each feature corresponds to a constraint.
In this work, we have v, = [vi,7Z, 73, V2], where 4 denotes open, vi denotes time-window,
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denotes route length, and ’yiﬁ denotes backhaul constraints. Since the model learns to convert these
to latent vectors, we hypothesize that it learns to effectively stitch the various constraints together to
form unique representations for all 16 variants. We then pass this vector onto the clustering layer:
- R h,¢; "
h; = Wyh;, ¢; = Welej, adl, i j = SOFTMAX(M)’ Cj = Zwi,jhi (5)
i

whereby W and W are weight matrices, [] denotes the concatenation operation, ¥ the set of
all mixing coefficients 1); ;, ¢; the learnable initial cluster center representation, h; the input node
embeddings, and c; the final cluster representation as a weighted sum of input embeddings after
multiple passes. Essentially, Equation [5]is repeated B-times. The overall process can be viewed in
Algorithm [T]in Appendix[A.4] The output of these cluster centroids is fed to the decoder and serves
as additional information for the decoding process. At each step, we update clusters by taking a
weighted subtraction of visited nodes, given by

h(c) = WCOMBINE[ths'pChCQa ceey CNC] + h]ﬁks'pc; =Cj — (wi,j * hz),v] S Nc (6)

5 EXPERIMENTS

We mainly conform to a similar problem setup in (Liu et al., 2024} [Zhou et al., |2024)), using a total
of 16 VRP variants with five constraints, as described in section E} All experiments are run on a
NVIDIA DGX Workstation with A100-80Gb GPUs.

Datasets. We utilize the following 9 country mapﬂ (1) USA13509: USA containing 13,509
cities; (2) JA9847: Japan containing 9,847 cities; (3) BM33708: Burma containing 33,708 cities;
(4) KZ9976: Kazakhstan containing 9,976; (5) SW24978: Sweden containing 24,978 cities; (6)
VM22775: Vietnam containing 22,775 cities; (7) EG7146: Egypt containing 7,146 cities; (8)
FI10639: Finland containing 10,639 cities; (9) GR9882: Greece containing 9,882 cities.

Task Setups. For the MTMDVRP, we define the following: (1) in-task refers to tasks that the models
are trained on; (2) out-task refers to tasks that the models are not trained on; (3) in-distribution refers
to distributions that the models observe during training; (4) out-distribution refers to distributions
that the models do not observe during training. For the 16 VRP variants, we denote the following
6 as in-task: CVRP, OVRP, VRPB, VRPL, VRPTW, OVRPTW, and the remaining 10 as out-task:
OVRPB, OVRPL, VRPBL, VRPBTW, VRPLTW, OVRPBL, OVRPBTW, OVRPLTW, VRPBLTW,
OVRPBLTW. For the distributions, the following 3 countries are defined as in-dist: USA135009,
JA9847, BM33708, and the remaining 6 countries are denoted as out-dist: KZ9976, SW24978,
VM22775, EG7146, F110639, GR9882. We present all 9 full country maps to show their unique
shapes in Appendix We also detail the constraint generation and feature set in Appendix

Traditional Solvers. We use HGS (Vidall [2022) for CVRP and VRPTW instances, and Google’s
OR-tools routing solver (Furnon & Perron). For HGS, we use the default hyperparameters, while
for OR-tools, we apply parallel cheapest insertion as the initial solution strategy and guided local
search as the local search strategy. The timelimit is set to 20s and 40s for soving a single instance of
size N = 50, 100, respectively. We utilize 256 CPU cores in parallel for these traditional solvers.

Neural Constructive Solvers. We compare the following unified solvers: (1) POMO-MTVRP
which applies POMO to the MTVRP setting [Liu et al.| (2024); (2) MVMOoE that extends POMO
to include MoE layers [Zhou et al.| (2024); (3) MVMoE-Light, a variant of MVMoE whereby an
additional hierarchical gate in the decoder makes inference and training faster Zhou et al.| (2024);
(4) MVMOoE-Deeper whereby we increase the depth of MVMOE to have the same number of layers
in the decoder as SHIELD so that both models have similar capacity; (5) SHIELD-MoD where we
train our model only with MoD layers and without the clustering; (6) SHIELD, our proposed model.

Hyperparameters. We use the ADAM optimizer to train the neural solvers with a learning rate
of 1e~* and batch size of 128. All models are trained from scratch on 20, 000 instances per epoch
for 1,000 epochs. All models plateau at this epoch, and the relative rankings do not change with
further training. At each training epoch, we uniformly sample a country from the in-distribution
set, followed by a subset of points from the distribution and a problem from the in-task set. For

'https://www.math.uwaterloo.ca/tsp/world/countries.html
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Table 1: Overall performance of models trained on 50 node and 100 node problems. Bold scores
indicate best performing models in their respective groups. The scores and optimality gaps presented
are averaged across their respective groups.

MTMDVRP50 MTMDVRP100
Model In-dist Out-dist In-dist Out-dist
Obj Gap Time Obj Gap Time Obj Gap Time Obj Gap Time
POMO-MTVRP | 6.0778 3.5079% 2.65s 6.4261 3.9911% 2.76s | 9.4123 4.0824%  8.13s  10.1147 5.0253%  8.20s
MVMOoE 6.0557 3.1479% 3.65s 6.3924 3.5071% 3.67s | 9.3722 3.5969% 10.97s 10.0827 4.6855% 11.30s

MVMOoE-Light | 6.0666 3.3595% 3.41s 6.4045 3.6860% 3.43s | 9.3987 3.9088% 10.04s 10.1027 4.8979% 10.46s

In-task MVMOoE-Deeper | 6.0337 2.7343% 9.03s 6.3677 3.1333% 9.03s | OOM OOM OOM OOM OOM OOM
SHIELD-MoD | 6.0220 2.5041% 5.40s 62933 2.9517% 5.38s | 9.3453 2.5443% 17.59s 9.9800  3.5255% 17.66s

SHIELD 6.0136 2.3747% 6.13s  6.2784 2.7376% 6.11s | 9.2743 2.4397% 19.93s  9.9501 3.1638% 20.25s
POMO-MTVRP | 58611 7.6284% 2.83s 6.2556 8.0311% 2.70s | 9.4304 8.1068%  8.39s 10.2056 8.8907%  8.46s

MVMoE 5.8328 7.1553% 3.81s 62196 7.5174% 3.73s | 9.3811 7.4092% 11.13s 10.1665 8.5140% 11.44s

Out-task MVMOoE-Light | 5.8466 7.4996% 3.46s 6.2346 7.8236% 3.50s | 9.4173 7.9110% 10.27s 10.1945 8.8620% 10.75s

MVMoE-Deeper | 5.8207 6.7924% 9.40s 6.2136  7.2962% 9.45s | OOM OOM OOM OOM OOM OOM
SHIELD-MoD | 5.7902 6.2672% 5.47s 52238 6.6155% 5.48s | 9.2740 6.0296% 17.75s 10.0349  6.9029% 17.79s
SHIELD 57779 6.0810% 6.20s 6.1570 6.3520% 6.20s | 9.2400 5.6104% 19.92s 9.9867 6.2727%  20.18s

Table 2: Performance of SHIELD with varying levels of sparsity on MTMDVRP50.

In-dist Out-dist

Model Obj Gap Obj Gap
SHIELD (10%) 6.0136  2.3747% | 6.2784  2.7376%
SHIELD (20%) 6.0055 2.2268% | 6.3578 2.8442%
In-task SHIELD (30%) 6.0033  2.1948% | 6.3656 2.9608%
SHIELD (40%) 6.0131 2.3450% | 6.3718 3.0507%
MVMOoE-Deeper (100%) | 6.0337 2.7343% | 6.3677 3.1333%
SHIELD (10%) 57779  6.0810% | 6.1570  6.3520%
SHIELD (20%) 57772 6.0327% | 6.1671 6.4654%
Out-task SHIELD (30%) 57991 6.4241% | 6.1732  6.5603%
SHIELD (40%) 5.8068 6.5770% | 6.1862  6.7831%
MVMOoE-Deeper (100%) | 5.8206 6.7924% | 6.2136  7.2962%

SHIELD, we use 3 MoD layers in the decoder and only allow 10% of tokens per layer. The number
of clusters is set to N, = 5, with B = 5 iterations of soft clustering. The encoder consists of 6 MoE
layers. We provide full details of the hyperparameters in Appendix [A.8]

Performance Metrics. We sample 1,000 test examples per problem for each country map and solve
them using traditional solvers. Each sample is augmented 8 times following Kwon et al.|(2020), and
we report the tour length and optimality gap of the best solution found across these augmentations.
The optimality gap is calculated as the percentage difference of tour length between the neural
solver and the traditional solver, with smaller values indicating better performance. We provide the
mathematical details of augmentation and optimality gap calculation in Appendix

5.1 EMPIRICAL RESULTS

Table [T] presents the average tour length (Obj) and optimality gap (Gap) across the respective tasks
(in-task/out-task) and distributions (in-dist/out-dist). In summary, SHIELD clearly demonstrates sig-
nificantly stronger predictive capabilities compared to other neural solvers in all scenarios. Notably,
SHIELD outperforms all other neural solvers across all tasks and distributions, as evidenced by Ta-
bles[I3]through21] Essentially, we can view MVMOoE-Deeper as a model that processes each token
heavily with multiple layers, and MVMOoE as a model that processes each token only once. SHIELD
is thus a middle point between these two models that learns how to adapt the processing according to
the token and problem state. Consequently, this suggests that overprocessing (MVMOoE-Deeper) and
underprocessing (MVMOoE) nodes can serve as a problem in building an efficient foundation model.
As shown, increasing the depth of the decoder to MVMOoE-Deeper improves its overall performance,
especially in the in-task in-distribution case. However, the autoregressive nature quickly renders the
model untrainable on MTMDVRP100. Instead, if we replace these dense layers with sparse ones
(as in SHIELD), we see significant improves in both task and distribution generalization.

Table [T] further highlights the positive effect of contextual clustering, especially in larger problems
with 100 nodes. The benefits of clustering are most evident in the model’s generalization across
both tasks and distributions. It is clear that being able to summarize the larger set of points into a
concise one helps the model identify keypoints in route construction.
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Table 3: Ablation study for the number of clus- Table 4: Experimental study for the impacts of
ters in SHIELD on MTMDVRP50. Keeping using MoD layers in the encoder on MTMD-
the number of clusters low, and thus having a VRP50. Even by increasing the number of layers,

sparser approach, is beneficial to the model. the model’s performance is unsatisfactory.
In-dist Out-dist In-dist Out-dist

Model Obj Gap Obj Gap Model Obj Gap Obj Gap
SHIELD 6.0136 2.3747% | 62784  2.7376% SHIELD 6.0136 2.3747% | 62784  2.7376%
In-task  SHIELD (N, = 10) | 6.0100 2.3166% | 6.3400  3.7522% In-task  SHIELD (MoDEnc-6) | 6.2271  6.2578% | 6.6213  7.6650%
SHIELD (N, = 20) | 6.0124  2.3272% | 6.3437 3.8127% SHIELD (MoDEnc-12) | 6.1838  5.4944% | 6.5817  7.1229%
SHIELD 57779 6.0810% | 6.1570  6.3520% SHIELD 57779 6.0810% | 6.1570  6.3520%
Out-task  SHIELD (N, = 10) | 5.8019  6.9521% | 6.1740  7.0129% Out-task  SHIELD (MoDEnc-6) | 6.0432 11.5021% | 6.4894  12.9905%
SHIELD (N, = 20) | 5.9824 11.3453% | 6.3369 10.8044% SHIELD (MoDEnc-12) | 5.9846  10.3009% | 6.4322  12.0432%

5.2 ABLATION AND ANALYSES

We discuss key ablation studies here and provide more extensive ones in Appendices[A.9]to[A.12]

Effect of Sparsity. To examine the effect of sparsity, we train additional models with the capacity
of the MoD layer increased to 20%, 30%, and 40%, respectively, on MTMDVRP50. The results
are shown in Table 2} Specifically, as the sparsity moves from 10% to 20%, the model’s bias im-
proves—the in-task in-distribution optimality gap reduces, while the out-task in-distribution perfor-
mance remains relatively stable. However, we observe that for both task types, the out-distribution
performance starts to degrade. Increasing the number of tokens to 30% also improves the in-task in-
distribution optimality gaps, but we see the decline in performance for out-task and out-distribution
settings. This degradation continues with the 40% model, where overall performance deteriorates.
The results clearly indicate that sparsity is crucial in generalization across both task and distribution.

Effect of Clustering. In the latent space, the soft clustering mechanism facilitates information
exchange among dynamic clusters, enabling the model to capture high-level, generalizable features
from neighboring hidden representations. This improves the model’s understanding of the node
selection process and enhances decision-making. Limiting the number of clusters also promotes
abstraction, encouraging the model to focus on broadly applicable patterns rather than overfitting to
task-specific details. However, too many clusters dilute this effect, leading to over-segmentation and
reduced generalization as the model prioritizes more complex patterns over shared structures. Table
[3] supports this, whereby we vary the number of cluster centers in the model. Thus, maintaining
sparsity in this aspect is crucial as well.

Sparse Encoder. Given the studies so far, a natural question arises: Since sparsity is helpful for the
decoder, does it have the same impact on the encoder? Table[d]presents our findings on this question.
While preserving the same number of encoder layers and keeping a fixed capacity of 10% each layer,
we find that the model’s performance degrades significantly. Even after doubling the number of
layers, the model fails to reach the original levels of performance. This suggests that in the encoder,
it is essential for all tokens to be processed. The original MoE encoder plays a crucial role in the
architecture—MOE efficiently scales and enables the model to leverage a variety of experts to capture
a broad range of representations for various tasks. In contrast, the MoD introduces greater flexibility
in the decoder, giving the model the ability to dynamically select layers for decision-making, which
helps it adapt effectively to varying outputs.

Patterns of Layer Selection. We investigate how SHIELD behaves for a given problem compared
to MVMOoE. Figure 3|shows the final output of SHIELD and MVMOoE for OVRPBTW on VM22775.
The starred points indicate that SHIELD routes them more frequently during the problem-solving
process. Consider route RS for SHIELD and route R8 for MVMoE. SHIELD can recognize that such
points are far away and that it is more advantageous to visit other points en route, whereas MVMOoE
merely visited one node first. Likewise, for route R4 in SHIELD and route R6 in MVMoE, SHIELD
identifies the 2 starred points to be better served as connecting points, as opposed to making an
entire loop, which results in back-tracking to a similar area. Since the problem is an open problem,
we can see that SHIELD favors ending routes at faraway locations, whereas MVMOoE tends to loop
back and forth in many occurrences.
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Figure 3: Left two panels: Plot of routes for OVRPBTW task between SHIELD (left) and MVMoE
(middle). Points denoted with a star are the top few points that SHIELD identified and passed these
embeddings through more layers. Note that the initial routes from the depot are masked away for a
better view. Right panel: Average number of layers used as the demand is being met for CVRP.
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Figure 4: Plot of layer usage for CVRP samples across three maps, with the z-axis as node IDs,
y-axis as layer numbers, and values as average usage frequency during decoding.

‘We conduct further analysis on the simpler CVRP to examine how the model generalizes across tasks
and distributions. Figure[d]presents a heat map where we average the number of times a layer is used
when the agent is positioned on a node. Note that the x-axis denotes the node ID, while the y-axis
denotes the layer number, with the value indicating the average number of times that combination is
called. For this analysis, we sort the nodes in anticlockwise order based on their = and y coordinates
to impose a spatial ordering. We observe that for maps with similar top density and curved shapes,
such as BM33708 and VM22775, the MoD layers tend to exhibit a similar pattern in layer usage,
whereas a map like SW24978 has a much different sort of distribution.

Furthermore, the right panel of Figure [3]illustrates how the use of layers is distributed as the agent
starts to address the demands of the problem. The z-axis represents the percentage of the sub-tour
solved, while the y-axis denotes the average number of MoD layers being used by the agent. Thus,
the plot indicates how the network is being used as the route is formed. As shown, when the sequence
is still fairly early, the model uses some processing power to find a good set of initial nodes. In the
middle, fewer layers are being used, and finally, as the problem comes to a close, more layers are
activated to finalize the selection of appropriate ending points.

6 CONCLUSION

The push toward unified generic solvers is an important step in building foundation models for neural
combinatorial optimization. In this paper, we propose to extend such solvers to the Multi-Task
Multi-Distribution VRP, a significantly more practical representation of industrial problems. With
this problem setting, we further propose SHIELD, a neural architecture that is designed to handle
generalization across both task and distribution dimensions, making it a powerful solver for practical
problems. Extensive experiments and thorough analysis of the empirical results demonstrate that
sparsity and hierarchy, two key techniques in SHIELD, substantially influence the generalization
ability of the model. We believe that this forms a stepping stone towards other forms of foundation
models, such as generalizing across various sizes.

10
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A APPENDIX

A.1 ADDITIONAL RELATED WORK

Single-task VRP Solver. Most research focuses on developing single-task VRP solvers, which
primarily follows two key paradigms: constructive solvers and improvement solvers. Constructive
solvers learn policies that generate solutions from scratch in an end-to-end fashion. Early works pro-
posed Pointer Networks (Vinyals et all, 2013)) to approximate optimal solutions for the TSP
and CVRP (Nazari et al., 2018)) in an autoregressive (AR) way. A major breakthrough in
AR-based methods came with the Attention Model (AM) [2018), which became a foun-
dational approach for solving VRPs. The policy optimization with multiple optima (POMO)
improved upon AM by considering the symmetry property of VRP solutions. More
recently, a wave of studies has focused on further boosting either the performance (Kim et al., 2022}
Drakulic et al.| 2023} [Chalumeau et al.,[2023} |Grinsztajn et al.,[2023} [Luo et al.} 2023; [Hottung et al.
2024) or versatility (Kwon et al.l 2021f Berto et al.| [2023) of these solvers to handle more complex
and varied problem instances. We refer the reader to Appendix[A.T]for details on non-autoregressive
(NAR) constructive solvers and improvement solvers in the single-task VRP. Beyond AR methods,

non-autoregressive (NAR) constructive approaches (Joshi et al., 2019; 2021}, [Kool et al}
2022; [Qiu et all, [2022; [Sun & Yang| 2023} [Min et al.| 2023} |Ye et al.| 2023} Kim et al., 2024}

et al., [2024) construct matrices, such as heatmaps representing the probability of each edge being
part of the optimal solution, to solve VRPs through complex post-hoc search. In contrast, improve-
ment solvers (Chen & Tian| 2019} [Lu et al| 2020; [Hottung & Tierneyl, 2020} |Costa et al.| 2020}
let all 2021} Ma et al., [2021} Xin et al, 2021 [Hudson et al.| 2022} [Ma et al.| [2023) typically learn
more efficient and effective search components, often within the framework of classic heuristics or
meta-heuristics, to iteratively refine an initial feasible solution. While constructive solvers can effi-
ciently achieve desirable performance, improvement solvers have the potential to find near-optimal
solutions given a longer time budget. There are also studies that focus on the scalability
[2021} [Hou et al.l 2023}, [Ye et al.l[2024) and robustness (Geisler et al.l 2022} [Lu et al.,[2023)) of neural
VRP solvers, which are less directly related to our work. For those interested, we refer readers to
[Bogyrbayeva et al.| (2024).

A.2 GENERATION OF VRP VARIANTS

As mentioned in Section [3] we consider four additional constraints on top of the CVRP, resulting
in 16 different variants in total. Note that unlike (Liu et al.l 2024} [Zhou et al [2024), we do not
generate node coordinates from a uniform distribution. Instead, we sample a set of fixed points from
a given map. Here, we detail the generation of the five total constraints.

Capacity (C): We adopt the settings from (Kool et al.| 2018)), whereby each node’s demand §; is
randomly sampled from a discrete distribtution set, {1, 2, ...,9}. For N = 50, the vehicle capacity

Q is set to 40, and for V = 100, the vehicle capacity is set to 50. All demands are first normalized
to their vehicle capacities, so that §; = 6;/Q.

Open route (O): For open routes, we set 0o; = 1 in the dynamic feature set received by the decoder.
Apart from this, we remove the constraint that the vehicle has to return to the depot when it has
completed the route or is unable to proceed further due to other constraints. Suppose the problem
has both open routes (O) and duration limit (L), then we mask all nodes v; such that [; + d;; > L,
whereby d;; is the distance between node v; and the potentially masked node v;, and L is the
duration limit constraint. For problems with both open routes (O) and time windows (TW), we
mask all nodes v; such that ¢; + d;; > w]C, where t; is the current time after servicing the current
node. Finally, suppose a route has both open routes (O) and backhauls (B), no special masking
considerations are required as the vehicle does not return to the origin.

Backhaul (B): We adopt the approach from by randomly selecting 20% of cus-
tomer nodes to be backhauls, thus changing their demand to be negative instead. We also follow the
same setup as 2024) whereby routes can have a mix of linehauls and backhauls without
any strict precedence. To ensure feasible solutions, we ensure that all starting points are linehauls
only unless all remaining nodes are backhauls.

Duration limit (L): The duration limit is fixed such that the maximum length of the vehicle, L = 3,
which ensures that a feasible route can be found as all points are normalized to a unit square.
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Time window (TW): For time windows, we follow the methodology in (L1 et al. 2021). The
depot node vy has a time window of [0, 3] with no service time. As for other nodes, each node
has a service time of s; = 0.2, and the time windows are obtained as following: (1) first we
sample a time window center given by v; U(w§ + do;, w§ — dio — s;), whereby do; = dio
is the distance or travel time between depot vy and node v;, (2) then we sample a time win-
dow half-width h; uniformly from [s;/2,w§/3] = [0.1,1], (3) then we set the time window as
[w?, w§] = [MAX(w?,y; — h;), MIN(wS, y; + hy)]-

A.3 NEURAL COMBINATORIAL OPTIMIZATION MODEL DETAILS

Neural constructive solvers are typically parameterized by a neural network, whereby a policy, 7y,
is trained by reinforcement learning so as to construct a solution sequentially (Kool et al.l 2018;
Kwon et al.| [2020). The attention-based mechanism (Vaswani, [2017) is popularly used, whereby
attention scores govern the decision-making process in an autoregressive fashion. The overall feasi-
bility of solution can be managed by the use of masking, whereby invalid moves are masked away
during the construction process. Classically, neural constructive solvers employ an encoder-decoder
architecture and are trained as sequence-to-sequence models (Sutskever, [2014). The probability of
a sequence can be factorized using the chain-rule of probability, such that

T
po(7|G) = [ [ po(7elG. m1:0-1) (7)

t=1

The encoder tends employ a typical transformer layer, whereby
h=LN'(h!~' + MHA!(h!™!, .. high)) (8)

h! = LN!(h; + FF(h;)) 9)

where h! is the embedding of the i-th node at the I-th layer, MHA is the multi-headed attention
layer, LN the layer normalization function, and FF a feed-forward multi-layer perceptron (MLP).
All embeddings are passed through L layers before reaching the decoder.

The decoder produces the solutions autoregressively, whereby a contextual embedding combines the
embeddings from the starting and current location as follows

() = hf\gr + hiuer (10)

Then, the attention mechanism is used to produce the attention scores. Notably, the context vectors
h) are denoted as query vectors, while keys and values are the set of N node embeddings. This is
mathematically represented as

v/ DIM
—00 otherwise

. QK'y %
aj:{U TANH( ) JFE T,V <t (1

whereby U is a clipping function and DIM the dimension of the latent vector. These attention scores
are then normalized using a softmax function to generate the following selection probability

e

pi = po(Te = 1|8, T1:4—1) = W (12)
J

Finally, given a baseline function b(-), the policy is trained with the REINFORCE algorithm
(Williams, |1992)) and gradient ascent, with the expected return J

Vo (6) = E|(R(r') — () Vo log po(7']5) (13)
The reward of each solution R is the length of the solution tour.
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A.4 SOFT-CLUSTERING ALGORITHM DETAILS

Algorithm 1 Psuedo code of soft clustering algorithm

1: procedure CLUSTER (encoder embeddings H, constraints vector v, number of centers N,

number of iterations B, initial embeddings C, embedding size d)

2: g = Wg’yk

3: for b < 1to B do

4: H «+ WH (H)

5: C + Wc([c,ad])

6: 1) = SOFTMAX( H\/C; ) > Compute attention scores
7: c=> s Wil > Update the centers with data
8: Coor =C+C > Residual connection
9: C = NorM(Coyr) > Layer normalization
10: end for
11: return C'

12: end procedure

A.5 MODEL SIZES AND AVERAGE RUNTIMES

Table 5: Overall number of parameters and average runtimes for all models.

Model Num. Parameters | Runtime on MTMDVRP50 Runtime on MTMDVRP100
POMO-MTVRP 1.25M 2.74s 8.30s
MVMoE 3.68M 3.72s 11.21s
MVMOoE-Light 3.70M 3.45s 10.38s
MVMOoE-Deeper 4.46M 9.23s OOM
SHIELD-MoD 4.37M 5.43s 17.70s
SHIELD 4.59M 6.16s 20.07s
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A.6 MATHEMATICAL NOTATIONS

S;
D,
t

T
Yk
O
B
Ne
Yij

A problem instance %

Set of dynamic features at decoding time-step ¢
Decoding time-step

z-coordinate of problem instance %

y-coordinate of problem instance ¢

Demand of node ¢

Opening timing of time-window for node ¢
Closing timing of time-window for node ¢
Capacity of vehicle at decoding time-step ¢
Current time-step

Presence of open route at time-step ¢

Current length of partial route at time-step ¢

Set of all possible VRP tasks

Set of all possible distributions

The percentage of tokens allowed through a MoD layer
Router score for node ¢

One-hot encoded vector of constraints for task &
Presence of open route at time-step ¢

Number of iterations of clustering

Number of cluster centers

Mixing coefficient between node ¢ and cluster j

A.7 METRIC DETAILS

We utilize 8x augmentations on the (z, y)-coordinates for the test set as proposed by (Kwon et al.,
2020). The following table details the various transformations applied.

Table 6: List of augmentations suggested by [ Kwon et al.| (2020)

f(z,y)

(z,y) (y, x)
(z,1—y) (y,1—=x)
(1—z,y) (1-y,z)

1-z,1-y) (1-y1-x)

The optimality gap is measured as the percentage gap between the neural solver’s tour length and
the traditional solver. This is defined as

L3N R

0=
¥4 Li

— 1) %100 (14)

where L; is the tour length of test instance ¢+ computed by the traditional solver, HGS or OR-Tools.
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A.8 DETAILED HYPERPARAMETER AND TRAINING SETTINGS

* Number of MoE encoder layers: 6

 Total number of experts: 4

* Number of experts used per layer: 2

* Number of MoD decoder layers: 3

 Capacity of MoD layer (number of tokens allowed): 10%
* Number of single-headed attention decision-making layer: 1
 Latent dimension size: 128

* Number of heads per transformer layer: 8

* Feedforward MLP size: 512

* Logit clipping U: 10

* Learning rate: le-4

* Number of clustering layers: 1

* Number of iterations for clustering: 5

* Number of learnable cluster embeddings: 5

* Number of episodes per epoch: 20,000

e Number of epochs: 1,000

* Batch size: 128
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A.9 ADDITIONAL EXPERIMENTS - GENERALIZATION TO CVRPLIB

Table 7: Performance on CVRPLib data Set-X-1. Instances vary from 101 to 251 nodes.
Set-X-1 POMO-MTL MVMoE MVMOoE-Light SHIELD-MoD SHIELD SHIELD-Ep400

Instance Opt. Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap
X-n101-k25 27591 29875 8.2781% 29189 5.7917% 29445 6.7196% 28967 4.9871% 28678  3.9397% | 29346 6.3608%
X-n106-k14 26362 27158 3.0195% 27061 2.6515% 27356 3.7706% 26909 2.0750% 27076  2.7084% | 27192 3.1485%
X-n110-k13 14971 15420 2.9991% 15379 2.7253% 15387 2.7787% 15450 3.1995% 15316 2.3045% | 15312 2.2777%
X-nl15-k10 12747 13680 7.3194% 13368 4.8717% 13536 6.1897% 13245 3.9068% 13290  4.2598% | 13472 5.6876%
X-n120-k6 13332 13939 4.5530% 14082 5.6256% 13980  4.8605% 13901 4.2679% 13724 2.9403% | 13971 4.7930%
X-n125-k30 55539 58929 6.1038% 58443 5.2288% 59056  6.3325% 58648 5.5979% 57426  3.3976% | 58277  4.9299%
X-n129-k18 28940 30114 4.0567% 29905 3.3345% 29970 3.5591% 20802  2.9786% 29540  2.0733% | 29695 2.6088%
X-n134-k13 10916 11637 6.6050% 11658  6.7974% 11612 6.3760% 11519 5.5240% 11274 32796% | 11447  4.8644%
X-n139-k10 13590 14295 5.1876% 14155 4.1575% 14121 3.9073% 13988 2.9286% 14004  3.0464% | 14152  4.1354%
X-n143-k7 15700 17091 8.8599% 16710  6.4331% 16744  6.6497% 16621 5.8662% 16548  5.4013% | 16792 6.9554%
X-n148-k46 43448 | 47317 8.9049% 45621 5.0014% 45794 5.3996% 45728 5.24771% | 44739  2.9714% | 45082 3.7608%
X-n153-k22 21220 23689  11.6352% | 23267  9.6466% 23510  10.7917% | 23541 10.9378% | 23252  9.5759% | 23392 10.2356%
X-n157-k13 16876 17730 5.0604% 17698  4.8708% 17713 4.9597% 17386 3.0220% 17366 2.9035% | 17583  4.1894%
X-n162-k11 14138 14845 5.0007% 14884 5.2766% 14746 4.3005% 14703 3.9963% 14767  4.4490% | 14804  4.7107%
X-n167-k10 20557 21863 6.3531% 21898  6.5233% 21827  6.1779% 21644 5.2877% 21326  3.7408% | 21566  4.9083%
X-n172-k51 45607 | 50381 10.4677% | 48863 7.1393% 48686  6.7512% 48434  6.1986% | 48091  5.4465% | 48613 6.5911%
X-n176-k26 47812 | 53848  12.6244% | 52302  9.3909% 51433 7.5734% 52313 9.4140% 51811  8.3640% | 50887 6.4314%
X-n181-k23 25569 26480  3.5629% 26661 4.2708% 26490 3.6020% 26156  2.2957% 26237  2.6125% | 26333 2.9880%
X-n186-k15 24145 25900  7.2686% 25695 6.4195% 25613 6.0799% 25409  5.2350% 25503 5.6244% | 25372 5.0818%
X-n190-k8 16980 17826  4.9823% 18121 6.7197% 18125 6.7432% 17417 2.5736% 17802  4.8410% | 17846  5.1001%
X-n195-k51 44225 49703 12.3867% | 47834 8.1605% 47704  7.8666% 47608 7.6495% | 46509  5.1645% | 47731 7.9276%
X-n200-k36 58578 | 61857 5.5977% 62039 5.9084% 61871 5.6216% 61384  4.7902% 61375  4.7748% | 61729 5.3792%
X-n209-k16 30656 32754 6.8437% 32725 6.7491% 32605 6.3576% 32157 4.8963% 32244 5.1801% | 32083  4.6549%
X-n219-k73 117595 | 120795  2.7212% | 119924  1.9805% | 121201  3.0665% | 119679  1.7722% | 119847 1.9150% | 119560  1.6710%
X-n228-k23 25742 30042 16.7042% | 28629  11.2151% | 28754 11.7007% | 28206  9.5719% 28118  9.2301% | 28119 9.2339%
X-n237-k14 27042 29217 8.0430% 29252 8.1725% 29003 7.2517% 28560  5.6135% 28743 6.2902% | 28880  6.7968%
X-n247-k50 37274 | 43111 15.6597% | 40868  9.6421% 41735 11.9681% | 41556 11.4879% | 40676  9.1270% | 41266  10.7099%
X-n251-k28 38684 | 41321 6.8168% 40874  5.6613% 40854  5.6096% 40316  4.2188% | 40410 4.4618% | 40602  4.9581%
Averages 31280 33601 7.4148% 33111 6.0845% 33174  6.1773% 32902  5.1979% 32703  4.6437% | 32897 5.3961%

Table 8: Performance on CVRPLib data Set-X-2. Instances vary from 502 to 1001 nodes.
Set-X-2 POMO-MTL MVMoE MVMoE-Light SHIELD-MoD SHIELD SHIELD-Ep400

Instance Opt. Obj. Gap Obyj. Gap Obj. Gap Obyj. Gap Ob;. Gap Obyj. Gap
X-n502-k39 69226 | 73599  6.3170% | 75113 8.5040% | 75679  9.3216% | 73184  5.7175% | 73062  5.5413% 73445  6.0945%
X-n513-k21 24201 27955 15.5118% | 29444  21.6644% | 28483  17.6935% | 27478 13.5408% | 27217 12.4623% | 27373  13.1069%
X-n524-k153 154593 | 175923  13.7975% | 174409 12.8182% | 170334 10.1822% | 167380 8.2714% | 169715 9.7818% | 166660  7.8057%
X-n536-k96 94846 | 104866 10.5645% | 105896 11.6505% | 104408 10.0816% | 102157  7.7083% | 102237  7.7926% | 103042  8.6414%
X-n548-k50 86700 | 94290  8.7543% | 93623  7.9850% | 92798  7.0334% 91483  5.5167% | 91726  5.7970% | 92055  6.1765%
X-n561-k42 42717 | 48781 14.1958% | 49953  16.9394% | 48678  13.9546% | 47328 10.7943% | 47639  11.5223% | 47485 11.1618%
X-n573-k30 50673 | 57151 12.7839% | 55796 10.1099% | 55870 10.2560% | 54664  7.8760% | 53936  6.4393% | 55204  8.9416%
X-n586-k159 190316 | 208217  9.4059% | 209038  9.8373% | 208510  9.5599% | 205408  7.9300% | 205487 7.9715% | 208175  9.3839%
X-n599-k92 108451 | 118994  9.7214% | 119879 10.5375% | 118864  9.6016% | 117615  8.4499% | 116950  7.8367% 118514  9.2788%
X-n613-k62 59535 | 68882  15.7000% | 72992  22.6035% | 69091 16.0511% | 66657 11.9627% | 66715 12.0601% | 66419  11.5629%
X-n627-k43 62164 | 69756  12.2129% | 69197 11.3136% | 68302  9.8739% | 67125  7.9805% | 67494 8.5741% 67059  7.8743%
X-n641-k35 63682 72638  14.0636% | 72348  13.6082% | 71041 11.5559% | 69425 9.0182% 69156 8.5958% 69617 9.3197%
X-n655-k131 106780 | 115083  7.7758% | 113186 5.9993% | 113610 6.3963% | 111711  4.6179% | 110508 3.4913% | 111542  4.4596%
X-n670-k130 146332 | 177344 21.1929% | 173046 18.2557% | 170328 16.3983% | 164820 12.6343% | 166737 13.9443% | 164140 12.1696%
X-n685-k75 68205 | 79362  16.3580% | 84485  23.8692% | 79502 16.5633% | 76224  11.7572% | 76676  12.4199% | 76195 11.7147%
X-n701-k44 81923 | 90163  10.0582% | 92522  12.9378% | 89812  9.6298% | 88608 8.1601% 87959  7.3679% 88603 8.1540%
X-n716-k35 43373 50636  16.7454% | 51003  17.5916% | 49429 13.9626% | 47821 10.2552% | 47996  10.6587% | 47586 9.7134%
X-n733-k159 136187 | 158694 16.5265% | 156545 14.9486% | 156747 15.0969% | 148203  8.8232% | 149217 9.5677% | 153664 12.8331%
X-n749-k98 77269 | 88333 14.3188% | 91569  18.5068% | 88438  14.4547% | 84651 9.5536% 85367 10.4803% | 85824 11.0717%
X-n766-k71 114417 | 135772 18.6642% | 133725 16.8751% | 129996 13.6160% | 128128 11.9834% | 128052 11.9169% | 127179 11.1539%
X-n783-k48 72386 | 84162  16.2683% | 85094  17.5559% | 82690  14.2348% | 80855 11.6998% | 80521 11.2384% | 80358 11.0132%
X-n801-k40 73305 85008  15.9648% | 84025 14.6238% | 83210 13.5120% | 81070  10.5927% | 80637  10.0020% | 81015 10.5177%
X-n819-k171 158121 | 177282 12.1179% | 178589 12.9445% | 175340 10.8898% | 171630  8.5435% | 172020 8.7901% | 175820 11.1933%
X-n837-k142 193737 | 213908 10.4115% | 214165 10.5442% | 211521  9.1795% | 208552  7.6470% | 209350  8.0589% | 210464  8.6339%
X-n856-k95 88965 99911 12.3037% | 102485 15.1970% | 98990  11.2685% | 99014  11.2955% | 96889 8.9069% 97602 9.7083%
X-n876-k59 99299 | 110191 10.9689% | 111857 12.6467% | 111044 11.8279% | 106826 7.5801% | 106180 6.9296% | 107710  8.4704%
X-n895-k37 53860 | 65277 21.1975% | 66353  23.1953% | 64716  20.1560% | 62114  15.3249% | 62101 15.3008% | 61552  14.2815%
X-n916-k207 329179 | 360052 9.3788% | 362596 10.1516% | 359444  9.1941% | 354793  7.7812% | 353567 7.4087% | 355423  7.9726%
X-n936-k151 132715 | 173297 30.5783% | 167723 26.3783% | 163193 22.9650% | 158308 19.2842% | 159965 20.5327% | 156897 18.2210%
X-n957-k87 85465 98132 14.8213% | 99442 16.3541% | 97109  13.6243% | 94209 10.2311% | 93672 9.6028% 94118  10.1246%
X-n979-k58 118976 | 132128 11.0543% | 132449 11.3241% | 131752 10.7383% | 128765  8.2277% | 129968  9.2388% | 127952  7.5444%
X-n1001-k43 72355 87428  20.8320% | 87802  21.3489% | 86285 19.2523% | 82866 14.5270% | 82407 13.8926% | 82253 13.6798%

Averages 101874 | 115725 14.0802% | 116136 14.9631% | 114225 12.7539% | 111534  9.8527% | 111598 9.8164% | 111905 10.0618%

Tables [7) and [8] showcase various models applied to data from the CVRPLib Set-X-1 and Set-X-2.
These instances have varying sizes from 101 to 1001 nodes. Additionally, we include SHIELD-
Ep400, the 400th epoch of training SHIELD, which has similar in-task in-dist performance com-
pared to MVMOoE. Evidently, SHIELD is a significantly superior model in terms of size generaliza-
tion.
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A.10 ADDITIONAL EXPERIMENTS - GENERALIZATION OF SHIELD

Table 9: Performance of SHIELD-Ep400, the 400th epoch of SHIELD, to MVMoE. Both models
have similar in-task in-dist performance and can be viewed as equivalents.

MTMDVRP50 MTMDVRP100
Model In-dist Out-dist In-dist Out-dist
Obj Gap Obj Gap Obj Gap Obj Gap
In-task MVMOoE 6.0557  3.1479% 6.3924 3.5071% | 9.3722 3.5969% 10.0827 4.6855%

SHIELD-400Ep | 6.0597 3.1495% 6.3830 3.2730% | 9.3785 3.5993% 10.0559 4.3562%
Out-task MVMoE 5.8328 7.1553% 6.2196 7.5174% | 9.3811 7.4092% 10.1665 8.5140%
SHIELD-400Ep | 5.8290 7.1064% 6.2085 7.2927% | 9.3499 6.9578% 10.1202 7.8332%

Table 10: Performance of SHIELD-Ep600, the 600th epoch of SHIELD, to MVMoE-Deeper. Both
models have similar in-task in-dist performance and can be viewed as equivalents.

MTMDVRP50 MTMDVRP100
Model In-dist Out-dist In-dist Out-dist
Obj Gap Obj Gap Obj Gap Obj Gap
In-task  MVMOoE-Deeper | 6.0337 2.7343% 6.3677 3.1333% | OOM OOM OOM OOM
SHIELD-600Ep | 6.0333 2.7089% 6.3653 2.9993% | 9.3194 2.9498% 10.0113194 3.8262%
Out-task MVMOoE-Deeper | 5.8206 6.7924% 6.2136 7.2962% | OOM OOM OOM OOM
SHIELD-600Ep | 5.8039 6.6539% 6.1823 6.8736% | 9.3105 6.4308% 10.0764533 7.2549%

Table 9] and [I0] showcase SHIELD at the 400-th and 600-th epoch. These models have similar in-
task and in-dist performance compared to MVMoE and MVMoE-Deeper, respectively, and can be
viewed as equivalent models. Comparatively, SHIELD has better generalization across tasks and
distribution, suggesting that the architecture is superior.

A.11 ADDITIONAL EXPERIMENTS - IMPORTANCE OF VARIED DISTRIBUTIONS

Table 11: Performance of all models when trained on only Uniform data. We retain a similar layout
to Table [T but all distributions are considered out-of-distribution in this case.

MTMDVRP50
Model In-dist Out-dist
Obj Gap Obj Gap
POMO-MTVRP (Uniform) | 6.0932 3.8834% 6.4104 4.0007%
MVMOoE (Uniform) 6.0779 3.6000% 6.3930 3.6710%
In-task MVMOoE-Light (Uniform) | 6.0926 3.8418% 6.4061 3.8254%
MVMoE-Deeper (Uniform) | 6.0580 3.1964% 6.3822 3.5062%
SHIELD-MoD (Uniform) | 6.0482 3.0379% 6.3666 3.2037%
SHIELD (Uniform) 6.0414 2.9223% 6.3596 3.0832%
POMO-MTVRP (Uniform) | 5.8762 8.1526% 6.2457 8.3681%
MVMOoE (Uniform) 5.8602 7.7505% 6.2251 7.8788%
Out-task MVMoE-Light (Uniform) | 5.8802 8.1328% 6.2414 8.0983%

MVMOoE-Deeper (Uniform) | 5.8292  7.0524% 6.2034 7.4642%
SHIELD-MoD (Uniform) | 5.8103 6.7257% 6.1769  6.9455%
SHIELD (Uniform) 5.8035 6.6394% 6.1712 6.8616%

Table [I] displays the performance of all models when trained purely on uniform data. Note
that while we retain the same table layout as Table [T} all distributions are considered as out-of-
distribution in such a case as the model does not see them at all. Evidently, all models degrade in
their predictive performance, even though SHIELD still retains its overall superior performance.
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A.12 ADDITIONAL EXPERIMENTS - SINGLE-TASK MULTI-DISTRIBUTION

Table 12: Performance of various models trained on the CVRP task with multiple distributions.

CVRP50
Model In-dist Out-dist
Obj Gap Obj Gap
POMO-MTVRP | 6.6511 1.2260% 6.9763 1.4689%
MVMOoE 6.6454 1.1401% 6.9709 1.3858%

MVMoE-Light | 6.6482 1.1814% 6.9723 1.4112%
MVMOoE-Deeper | 6.6313 0.9207% 6.9628 1.2731%
SHIELD-MoD | 6.6284 0.8798% 6.9552 1.1623%
SHIELD 6.6269 0.8570% 6.9474 1.0338%

Table[I2]displays the performance of various models when trained in a single-task multi-distribution
setting. Here, we choose CVRP to be the task at hand. SHIELD remains the best-performing
model in such a scenario, suggesting that its architecture is not catered purely to a multi-task multi-

distribution problem only.
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A.13 DETAILED EXPERIMENTAL RESULTS

Map of all points for USA13509 Map of all points for JA9847

Map of all points for BM33708

Map of all points for VM22775

Figure 5: Plot of all 9 World Maps and their points
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Performance of models on USA13509

Table 13
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Performance of models on JA9847

Table 14
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Performance of models on BM33708
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Performance of models on SW24978
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