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ABSTRACT

Concept-selective regions within the human cerebral cortex exhibit significant
activation in response to specific visual stimuli associated with particular con-
cepts. Precisely localizing these regions stands as a crucial long-term goal in
neuroscience to grasp essential brain functions and mechanisms. Conventional
experiment-driven approaches hinge on manually constructed visual stimulus col-
lections and corresponding brain activity recordings, constraining the support and
coverage of concept localization. Additionally, these stimuli often consist of con-
cept objects in unnatural contexts and are potentially biased by subjective pref-
erences, thus prompting concerns about the validity and generalizability of the
identified regions. To address these limitations, we propose a data-driven ex-
ploration approach. By synthesizing extensive brain activity recordings, we sta-
tistically localize various concept-selective regions. Our proposed MindSimula-
tor leverages advanced generative technologies to learn the probability distribu-
tion of brain activity conditioned on concept-oriented visual stimuli. This en-
ables the creation of simulated brain recordings that reflect real neural response
patterns. Using the synthetic recordings, we successfully localize several well-
studied concept-selective regions and validate them against empirical findings,
achieving promising prediction accuracy. The feasibility opens avenues for ex-
ploring novel concept-selective regions and provides prior hypotheses for future
neuroscience research.

1 INTRODUCTION

The human brain’s visual cortex is decisive in processing and perceiving visual information. Neu-
roscience researchers have long dedicated themselves to unraveling the brain’s visual mechanisms,
making impressive strides such as in brain visual encoding (Mitchell et al., 2008), decoding (Gong
et al., 2024b), and visual perception (Chen et al., 2020). However, the process of forming visual
cognition remains to be explored. Notably, localizing the various functional organizations and ac-
tivation patterns of the visual cortex that correspond to human conceptual cognition is considered
pivotal yet remains a challenging frontier (Huth et al., 2016; Henderson et al., 2023; Luo et al.,
2024). Numerous neuroscience studies have illustrated that specific regions of the visual cortex ex-
hibit concept selectivity. When individuals receive visual stimuli related to particular concepts (such
as places, bodies, faces, words, colors, and foods), the respective cortical regions exhibit significant
activation (Epstein & Kanwisher, 1998; Sergent et al., 1992; Jain et al., 2023; Pennock et al., 2023;
Kanwisher et al., 1997; Allen et al., 2022). These regions are termed visual concept-selective regions
and play a vital role in advancing the understanding of brain visual cognition.

Typically, identifying concept-selective regions relies on the functional localizer (fLoc) experi-
ments (Stigliani et al., 2015; Allen et al., 2022). To this end, neuroscience researchers need to
purposefully and manually construct visual stimulus sets associated with specific visual concepts.
These stimuli are subsequently presented to subjects for costly functional magnetic resonance imag-
ing (fMRI) scans, aiming to localize these regions by statistically analyzing the fMRI data related
to visual stimuli. However, this experiment-driven exploration encounters three major limitations:
1) Real fMRI-image data are scarce, resulting in concept-selective region localization being limited
to a few concept categories. 2) The collection of visual stimuli accompanied by an artificial selec-
tion is biased. 3) Existing manual-constructed visual stimuli sets often consist of isolated objects
in unnatural scenes. These limitations naturally prompt concerns about the generalizability of vi-
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sual concepts of concept localization. To overcome these issues, we intend to leverage a flexible
data-driven approach to break through the limitations of manual-constructed stimuli and expensive
experimental fMRI collection to locate more generalized and precise concept-selective regions.

In this paper, we propose MindSimulator, a novel generative fMRI encoding model for flexibly syn-
thesizing individual fMRI corresponding to concept-oriented visual stimuli. MindSimulator operates
through a reverse process in conjunction with fMRI decoding (Naselaris et al., 2011). Building on
the significant advancements in fMRI visual decoding (Scotti et al., 2024a;b; Gong et al., 2024a;
Shen et al., 2024), we are motivated to develop powerful fMRI encoding models by leveraging ex-
isting fMRI datasets (Allen et al., 2022) and advanced generative deep learning techniques (Ho et al.,
2020; Rombach et al., 2022). Specifically, MindSimulator first constructs an fMRI autoencoder and
aligns fMRI latent space with well-trained visual stimuli (i.e., image) representation space. Sub-
sequently, a diffusion model is integrated to learn fMRI’s conditional probability distribution for a
given concept-oriented visual stimuli on the fMRI-image joint representation space. Once Mind-
Simulator is trained effectively, it serves as an individual’s brain capable of generating fMRI data
corresponding to diverse concept-related visual stimuli ideally.

In addition, we evaluate the fidelity of synthetic fMRI at the voxel level and semantic level, ensuring
that MindSimulator can maximally restore recognizable neural response patterns, i.e., visual seman-
tic contained in fMRI. More importantly, MindSimulator experimentally shows excellent generaliza-
tion capability, even for out-of-distribution visual stimuli, thereby enabling synthesizing extensive
fMRI of various concepts and achieving an expansion for scarce fMRI data.

On this basis, we use synthetic fMRI to localize concept-selective regions. Statistically, the data-
driven localization enables us to explore concept-selective regions across various categories, facili-
tating more finer-grained region discovery, instead of being limited to the categories present in the
fLoc experiment’s stimuli categories. We conduct concept-selective region localization experiments
using fMRI synthesized by MindSimulator and verify its feasibility by predicting the existing re-
gions empirically delineated by the fLoc experiments.

2 RELATED WORKS

FMRI Encoding. The fMRI encoding research has been explored over a long period (Mitchell et al.,
2008; Huth et al., 2016; Gu et al., 2022; Tang et al., 2023). Existing approaches used regression
models to map image features to voxel space. Some researchers focused on selecting better image
features (Han et al., 2019; Wang et al., 2023) or better visual stimuli (Luo et al., 2024), and simple
linear regression was used for better interpretability. The others were concerned with developing
better regression models (Gifford et al., 2023; Yang et al., 2023a; Adeli et al., 2023; Ma et al., 2024;
Liang et al., 2024; Beliy et al., 2024). We are the first to develop a generative encoding model.

Generative Models. Generative models can sample from noise to generate data with clear se-
mantics. Mainstream generative architectures include variational autoencoders (Kingma, 2013; Van
Den Oord et al., 2017), generative adversarial networks (Goodfellow et al., 2014), and diffusion
models (Sohl-Dickstein et al., 2015; Song et al., 2020b; Ho et al., 2020; Song et al., 2020a). Gener-
ative models conditional on images can output text (Li et al., 2022; 2023), images (Xu et al., 2023;
Zhang et al., 2023), or videos (Blattmann et al., 2023; Shi et al., 2024).

FMRI Visual Semantic Decoding. Advanced brain decoding studies have been able to decipher
clear visual semantics from brain activity fMRI recordings and restore seen visual scenes (Lin et al.,
2022; Chen et al., 2023; Scotti et al., 2024a;b; Wang et al., 2024; Quan et al., 2024; Gong et al.,
2024a;b; Shen et al., 2024; Bao et al., 2024; Xia et al., 2024; Chen et al., 2024), demonstrating their
strong capability for recognizing global neural response patterns. In our study, these pre-trained
visual decoding models are components of our semantic-level evaluation pipeline.

3 METHOD

Our MindSimulator aims to map arbitrary visual stimuli into individual brain activity using paired
natural image stimuli and fMRI recordings. We begin by articulating our motivation for adopting
the generative architecture and provide a general overview of the proposed method. We then de-
scribe each key component of MindSimulator. Finally, we describe how resting-state fMRI can be
translated into cortical activity fMRI recordings conditioned on given visual stimuli.
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Figure 1: Overview of the proposed MindSimulator. It comprises a fMRI autoencoder, a Diffusion Estimator,
and a Inference Sampler. The fMRI autoencoder enables mutual transformation between voxels and fMRI
representations. The diffusion estimator generates fMRI from noise conditioned on images. The inference
sampler achieves high-precision fMRI synthesis. Please refer to Sections 3.2 to 3.4 for more details.

3.1 MOTIVATION AND OVERVIEW

At least two types of approaches can be used for mapping visual stimuli or their representations to
corresponding fMRI recordings. The regression models directly map visual stimuli to target fMRI
recordings through a deep network; whereas the generative models use visual stimuli as conditional
guidance to generate the target fMRI recordings from Gaussian noise. However, observations show
that there are noticeable differences in brain activity fMRI recordings even when receiving the same
visual stimuli (Horikawa & Kamitani, 2017; Allen et al., 2022), suggesting that visual stimuli and
fMRI recordings essentially exhibit a one-to-many correspondence. Regression models fail to cap-
ture this phenomenon because the mapped fMRI recording of a given visual stimuli is unique; on
the contrary, generative models treat differential fMRI recordings as outcomes of random sampling
from a conditional probability distribution based on given visual stimuli. Therefore, the mechanism
of generative models aligns more closely with the behavioral performance of the human brain.

The proposed MindSimulator adopts a generative architecture. As illustrated in Figure 1, it con-
sists of three components: 1) a fMRI Autoencoder, which facilitates the interconversion between
fMRI voxel and its high-dimensional representation; 2) a Diffusion Estimator, which learns the
conditional distribution of fMRI based on given visual stimuli; and 3) a Inference Sampler, which
generates accurate synthetic fMRI using correlated noise and multi-trial enhancement.

3.2 FMRI AUTOENCODER

The low signal-to-noise fMRI involves complex brain activity, bringing difficulty to estimating its
data distribution. Thus, we project raw fMRI into high-dimensional latent representation via the
fMRI autoencoder and estimate its conditional distribution in the latent space instead. Specifically,
sampling a paired training data (x, y) from subject-individual fMRI dataset S, where x ∈ Rl de-
notes preprocessed fMRI blood oxygenation level-dependent (BOLD) voxels and y denotes the cor-
responding visual stimuli. The autoencoder consists of a voxel encoder E(·) and a voxel decoder
D(·). The voxel encoder embeds x to a high-dimensional fMRI representation X = E(x) ∈ Rm×d,
resulting in m d-dimensional tokens. The voxel decoder works just the opposite, decoding the high-
dimensional voxel representation X back to fMRI voxels, i.e. x̂ = D(X ) ∈ Rl. Finally, we train this
autoencoder using a strong voxel-wise supervision objective: Lmse = Ex∼S ||x− x̂||22. To simplify,
we omit the notation related to the mini-batch sampling.

Inspired by existing text-to-image generative models (Rombach et al., 2022; Saharia et al., 2022),
we further construct cross-modal joint latent spaces to facilitate stable convergence of generative
models. Therefore, we align the fMRI representation space with a pre-train image representation
space. Specifically, we use trained CLIP ViT (Radford et al., 2021) as the image extractor V(·)
for visual stimuli. Note that the previous study has shown that image representations obtained by
contrastive learning are more suitable for fMRI encoding task (Wang et al., 2023). The image repre-
sentation Y = V(y) ∈ Rm×d has consistent dimension with fMRI representation X . Subsequently,
we use SoftCLIP loss (Gao et al., 2024) with a cosine-scheduled temperature factor τ to supervise
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the cross-modal alignment process:

Lsoftclip = − 1

|S|

|S|∑
i=1

|S|∑
j=1

[
exp(Xi · Xj/τ)∑|S|
k=1 exp(Xi · Xk/τ)

· log

(
exp(Yi · Xj/τ)∑|S|
k=1 exp(Yi · Xk/τ)

)]

− 1

|S|

|S|∑
i=1

|S|∑
j=1

[
exp(Yi · Yj/τ)∑|S|
k=1 exp(Yi · Yk/τ)

· log

(
exp(Xi · Yj/τ)∑|S|
k=1 exp(Xi · Yk/τ)

)]
.

(1)

We fix the pre-trained visual extractor and train the fMRI autoencoder end-to-end with a joint loss:

Lautoencoder = Lmse + Lsoftclip . (2)

3.3 DIFFUSION ESTIMATOR

Contrastive learning facilitates disjointed cross-modal representations (Ramesh et al., 2022). Ac-
cordingly, the fMRI representation X output by the voxel encoder is parallel with the corresponding
image representation Y while keeping a certain distance. On this basis, we train a generative model
to learn the conditional probability distribution of fMRI representation on a given image represen-
tation. Previous study (Oko et al., 2023) has shown that diffusion models are suitable to achieve the
goal. Accordingly, we construct the diffusion estimator P(·) with T timesteps. In the estimator, by
applying the reparameterization trick, the noised fMRI representation ZX

t can be formalized as:

ZX
t =

√
ᾱt · X +

√
1− ᾱt · ϵ, ᾱt =

t∏
m=1

αm, t ∼ [ 1, 2, · · · , T ] , (3)

where αm denotes the noise schedule hyperparameter and ϵ ∼ N (0, 1) is Gaussian noise. Unlike
common diffusion models that predict noise (Ho et al., 2020), we aim to learn the conditional dis-
tribution such that our diffusion estimator directly predicts target fMRI representations. Using Tt to
denote learnable time embedding of timestep t, its learning objective can be formalized as:

Ldiffusion = Eϵ,t,(x,y)∼S [ ||P(ZX
t ,Y, Tt)−X||22 ] . (4)

Here, we adopt a Transformer architecture (Vaswani et al., 2017; Peebles & Xie, 2023) for diffusion
estimator P(·), integrating image representations as conditions through cross-attention modules.

3.4 INFERENCE SAMPLER

Our inference sampler seeks to acquire more accurate synthetic brain activity fMRI. To this end, we
introduce the following three strategies to improve synthesis performance.

Resting-State Brain Activity fMRI as Input. The human brain exhibits a specific activity pattern
when not receiving visual stimuli (Allen et al., 2022), which is called resting-state fMRI and denoted
as xr. Our iterative denoising sampling starts with a noised resting-state fMRI representation ZX

r =√
ᾱT · E(xr) +

√
1− ᾱT · ϵ. This design allows MindSimulator to simulate the brain’s activity

transitioning from resting states to activated states. Recent research (Yang et al., 2023b) in fMRI
encoding has shown that considering a subject’s prior fMRI can enhance the accuracy of encoding
current fMRI data. Consequently, we attempt to leverage prior fMRI representations (resting states),
alongside image embeddings, as conditions to guide the synthesis of fMRI data. Subsequently, the
trained diffusion estimator progressively predicts target fMRI representation X̂ conditional on the
given image representation, formalized as:

ẐX
t−1 = P(ẐX

t ,Y, Tt), ẐX
T = ZX

r , X̂ = ẐX
0 . (5)

Multi-Trial Enhancement. In neuroscience, intra-subject voxel-wise reproducibility is crucial for
experimental exploration. Specifically, it involves correlating fMRI data across multiple trials of
the same visual stimuli to ensure the precision of neural responses. Inspired by this treatment, we
consider the reproducibility of multiple generated fMRI. We generate N fMRI from N different
Gaussian noise, simulating the viewing of an image N times. These synthetic fMRI correspond to
the same visual stimuli. Finally, we average synthetic fMRI to achieve a more accurate generation.
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Correlated Gaussian Noise. We target synthetic fMRI to exhibit a high correlation in neural re-
sponse patterns across the N trials, as lower variance typically leads to increased fMRI synthesis
performance. It is well known that the uncertainty in the generated results arises from the random-
ness of the Gaussian noise; thus, we propose to use correlated Gaussian noise as the input for N -trial
generation. To create N correlated Gaussian noise, we first randomly sample two independent noise
ϵ1 ∼ N (0, 1) and ϵ2 ∼ N (0, 1). Then, we apply weights and thereby obtain N new noise ϵn:

ϵn =
√

βn · ϵ1 +
√
1− βn · ϵ2, n ∈ [1, 2, · · · , N ] (6)

By setting different weights βn, we can obtain a series of correlated standard Gaussian noises, which
are located on the curve between ϵ1 and ϵ2 in the high-dimensional space and have high similarity.

4 EXPERIMENTS SETUP

4.1 DATASETS

We use the Natural Scenes Dataset (NSD) (Allen et al., 2022), which is an extensive whole-brain
fMRI dataset gathered from 8 subjects viewing images from MSCOCO (Lin et al., 2014). In NSD
experiments, participants were required to view 10,000 images for 3 trials, thereby acquiring 30,000
fMRI scans. Our evaluation focuses on Subj01, Subj02, Subj05, and Subj07 because these subjects
completed all experiment sessions. The ∼9,000 unique images for each subject are used for training
and the remaining ∼1,000 shared images are used for evaluation. During the training phase, all
three fMRI of the same image are used individually; while for testing, three repeats are averaged.
We use beta-activations computed using GLMSingle (Prince et al., 2022) and normalize each voxel
to µ = 0, θ = 1 on a per-session basis. We average multi-trail voxels for the testing set and the
individual resting-state set. Since we are focusing on the visual cortex regions, we apply the official
nsdgeneral region-of-interest (ROI) mask, which spans visual regions ranging from the early visual
cortex to higher visual areas. We flatten the fMRI selected by ROI and then obtain one-dimensional
voxel sequences for encoding.

4.2 IMPLEMENTATION DETAILS

For the image extractor, we used pre-trained CLIP ViT-L/14. It encodes image representation with
the dimension of 257×768. Our voxel encoder consists sequentially of MLPs and residual networks
while the voxel decoder is just the opposite. We trained the fMRI autoencoder end-to-end for 300
epochs, using AdamW (Loshchilov, 2017) with a cycle learning rate schedule starting from 3e-4.
For the diffusion estimator, we set the timesteps T to 100, adopting a cosine noise schedule and 0.2
conditions drop. The diffusion network contained 6 Transformer blocks. Each block computes at-
tention using 257 image tokens, 257 noised fMRI tokens, and 1 time embedding. We train it for 150
epochs using gradient clipping, with the same learning rate as our autoencoder. For hyperparameter
β, we randomly sample from U(0, 1). All components of our MindSimulator can be trained using
a single NVIDIA Tesla V100 GPU. For a single subject, the training is about 12 GPU hours for
the fMRI autoencoder and 20 GPU hours for the diffusion estimator. During the inference phase,
it takes only 3̃00ms to synthesize an fMRI. Please refer to Appendix A.1 for more implementation
details.

4.3 EVALUATION METRICS

Figure 2: Analogical explanation for lim-
itation of voxel-level metrics. The better
low-level performance does not indicate a
more accurate synthesis.

How do we evaluate the performance of fMRI encoding
models? Previous studies (Gu et al., 2022; Wang et al.,
2023; Luo et al., 2024) used voxel-level metrics, such as
Pearson correlation, voxel-wise mean square error (MSE),
and R-squared. However, local-focused voxel-level met-
rics are limited because they overlook global accuracy.
Specifically, these metrics fail to evaluate whether syn-
thetic fMRI accurately preserves the original neural re-
sponse patterns, which are the root of human visual phe-
nomena. We utilize images for an analogous explanation.
As shown in Figure 2, we generate two predictions for a
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ground truth image. It can be seen that Prediction 1 has better pixel-level accuracy (pixel-wise
MSE) but lacks recognizable global pixel patterns (image semantics), whereas Prediction 2 shows
the opposite. Consequently, we might conclude that Prediction 2 is superior. Similarly, the same
issues would arise with fMRI synthesis, highlighting the need to introduce semantic-level metrics.

Thanks to advanced research on fMRI visual decoding tasks (Scotti et al., 2024a;b), we can incorpo-
rate semantic-level evaluation for synthetic fMRI. The trained fMRI decoding model can interpret
individual neural response patterns and reconstruct original visual stimuli. Thus, when the synthetic
fMRI aligns with the generalization capacity of the trained visual decoding model, if it retains the
neural response pattern, it can be recognized by fMRI decoding models and the reconstructed visual
stimuli should be similar to the seen visual stimuli. Based on the above reflections, we propose the
semantic-level evaluation pipeline for synthetic fMRI, as shown in Figure 3. We utilize a decoding
model to reconstruct visual stimuli based on synthetic fMRI and then compare it with ground truth
stimuli using image reconstruction metrics. Among these metrics, PixCorr, SSIM, Alex(2), and
Alex(5) are used to evaluate whether the synthetic fMRI retains perceptual-relevant neural patterns,
while Incep, CLIP, Eff, and SwAV are used to evaluate concept-relevant neural patterns. As for the
decoding model, we use the trained MindEye2 high-level model (Scotti et al., 2024b). More details
on semantic-level metrics can be found in Appendix A.2.

Figure 3: The proposed semantic-level evaluation pipeline for synthetic fMRI. We use trained visual decoding
models to extract the semantics contained in the synthetic fMRI and compare them with the ground truth.

5 RESULTS

5.1 EVALUATION FOR SYNTHETIC FMRI

Generating accurate fMRI is crucial for localizing concept-selective regions. We evaluate the encod-
ing accuracy of synthesized fMRI using the voxel-level and semantic-level metrics. For comparison,
we select two representative encoding models as baselines: the linear regression model, known for
its strong interpretability with wide applications in neuroscience research (Huth et al., 2016; Wang
et al., 2023; Tang et al., 2023; Luo et al., 2024), and the Transformer encoding model (Adeli et al.,
2023), which has performed exceptionally well in a fMRI encoding challenge (Gifford et al., 2023)
and is increasingly used in recent studies (Liang et al., 2024; Beliy et al., 2024). Details on the
implementation and training for the baseline encoding models can be found in Appendix A.3. We
also compare the semantic-level metrics calculated using ground truth fMRI, serving as an upper
bound of the encoding performance. The quantitative evaluation results are shown in Table 1.

Overall, our MindSimulator outperforms baselines in encoding accuracy. Additionally, its perfor-
mance approaches the upper bound, suggesting minor differences in voxel-wise similarity and global
neural response patterns between synthetic fMRI and ground truth fMRI. We further validated the
above conclusion through visualization results. As shown in Figure 4, the fMRI synthesized by
MindSimulator is significantly better than that of the linear regression model, indicating it contains
more accurate neural response patterns, and thereby can be recognized by trained fMRI decoding
models. Moreover, compared with seen visual stimuli, the differences in semantics are almost neg-
ligible. Such results are encouraging because they are sufficiently accurate and thereby allow us to
explore neuroscience findings using synthetic fMRI instead of scarce ground truth fMRI.

In addition, two facts need to be further discussed. One is the decoded results from the synthe-
sized fMRI have noise, which we attribute to minor voxel-wise differences. Since the decoding
model is trained using ground truth fMRI, they struggle to accurately decode the mildly distorted
synthetic fMRI. The other is that when we apply the multi-trial enhancement strategy, both MSE
and semantic-level metrics improve simultaneously. This is out of our expectation, as increased
voxel-wise reproducibility typically dilutes the accuracy of global neural response patterns. We at-
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tribute the observed fact to our correlated noise, which reduces variance in the neural pattern across
multiple fMRI encoding trials, allowing multi-trial averaging to enhance semantic-level metrics.

Method Voxel-Level Semantic-Level
Pearson↑ MSE↓ PixCorr↑ SSIM↑ Alex(2)↑ Alex(5)↑ Incep↑ CLIP↑ Eff↓ SwAV↓

GT fMRI (upper bound) - - 0.278 0.328 95.2% 99.0% 96.4% 94.5% 0.622 0.343

Linear Regressive 0.334 0.394 0.174 0.266 85.4% 94.2% 90.1% 87.2% 0.728 0.432
Transformer Encoding 0.337 0.387 0.166 0.286 83.5% 93.0% 89.8% 85.5% 0.759 0.440

MindSimulator (Trials=1) 0.346 0.403 0.197 0.297 88.9% 96.5% 92.1% 90.4% 0.701 0.396
MindSimulator (Trials=5) 0.357 0.385 0.202 0.298 89.7% 97.0% 93.1% 91.2% 0.689 0.391

Table 1: Evaluation Results of fMRI synthesis accuracy. We report the average values for the 4 subjects. Our
MindSimulator achieves optimal performance in both voxel-level metrics and semantic-level metrics.

Figure 4: Visualization comparison between linear regression encoding and our MindStimulator. GT = seen
visual stimuli. Linear = reconstruction from linear encoded fMRI. Ours = reconstruction from our encoding.
The fMRI synthesized by our method has more accurate concepts, colors, backgrounds, and number of objects.
We show the results of Subj01 and more results can be found in Appendix B. Zoom in for better viewing.

5.2 OUT-OF-DISTRIBUTION GENERALIZATION

Further evaluation of the generalization performance of MindStimulator is essential. Although it has
shown promising encoding performance on MSCOCO, neuroscience researchers may require its ap-
plication on other image datasets. Thus, its ability to encode images from different datasets is equally
important. To evaluate this, we utilized CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009), which
have distinct image distributions compared to MSCOCO. We select all 10,000 images from their
test sets for encoding. Due to the lack of ground truth fMRI, we only compute the semantic-level
metrics. The quantitative results are presented in Table 2, while qualitative visualizations are shown
in Figure 5. We can see that encoding with CIFAR-10/100 images demonstrates only a minimal
decrease in most metrics, and in some metrics, even shows improvement compared to MSCOCO.
Additionally, the visualization results also indicate that the synthetic fMRI still retains accurate vi-
sual semantics. The results demonstrate that MindStimulator has out-of-distribution generalization
capability, suggesting we can use a wider range of image data for neuroscience exploration.

Datasets Semantic-Level
PixCorr↑ SSIM↑ Alex(2)↑ Alex(5)↑ Incep↑ CLIP↑ Eff↓ SwAV↓

MSCOCO 0.201 0.302 89.5% 96.8% 91.5% 88.7% 0.724 0.409
CIFAR-10 0.269 0.406 88.5% 94.3% 84.3% 90.5% 0.898 0.645

CIFAR-100 0.260 0.420 86.6% 93.0% 82.8% 86.3% 0.916 0.659

Table 2: Evaluation of out-of-distribution generalization. We report the results of Subj01. Our MindSimulator
demonstrates excellent fMRI synthesis performance on out-of-distribution datasets.

5.3 ABLATION

We conduct ablation experiments to investigate the necessity of each design in MindSimulator. First,
we ablate the Voxel Decoder, aligning outputs of the Voxel Encoder with the image latent space
under the supervision of SoftCLIP, while the diffusion estimator directly predicts the voxels instead
of fMRI representations. Second, we ablate the fMRI-stimuli joint latent space, training the entire
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Figure 5: Comparison between CIFAR-10/100 images (Stimuli) and corresponding reconstructing results from
MindSimulator’s synthetic fMRI (Ours). The original stimuli are upsampling to 224×224.

fMRI Autoencoder solely using the MSE loss. Furthermore, we ablated the high-dimensional fMRI
representation space by removing the fMRI Autoencoder, which means that the diffusion estimator
is trained only in the original voxel space. Finally, we also ablate the fixed voxel encoder during
the training stage of the diffusion estimator. The experimental results are displayed in Table 3. As
we can see, each component of our MindSimulator plays a role in improving the fMRI encoding
performance. In addition, they also contribute to the stable convergence of our diffusion estimator.

Methods Voxel-Level Semantic-Level
Pearson↑ MSE↓ PixCorr↑ SSIM↑ Alex(2)↑ Alex(5)↑ Incep↑ CLIP↑ Eff↓ SwAV↓

MindSimulator 0.326 0.417 0.207 0.305 90.6% 97.1% 92.8% 89.8% 0.714 0.402
-w/o Voxel Decoder 0.287 0.457 0.196 0.289 89.8% 95.8% 87.7% 86.6% 0.755 0.428
-w/o Joint Latent Space 0.215 0.524 0.181 0.293 87.3% 93.5% 85.3% 82.5% 0.791 0.456
-w/o fMRI Autoencoder 0.203 0.843 0.152 0.295 82.8% 89.4% 78.2% 75.2% 0.855 0.506
-w/o Fixed Encoder 0.283 0.472 0.198 0.289 88.1% 94.9% 87.1% 85.4% 0.768 0.434

Table 3: Ablation experiments on each component of MindSimulator. We report the results of Subj01. Each
component of our method is crucial for improving fMRI encoding performance.

6 LOCALIZING CONCEPT-SELECTIVE REGIONS

Our evaluations have demonstrated that synthetic fMRI exhibits neural response patterns that resem-
ble ground truth fMRI. This allows us to synthesize massive fMRI data for neuroscience research,
especially in the localization of concept-selective regions. Our localization exploration involves two
steps. First, we select concept-oriented visual stimuli and synthesize the corresponding fMRI. We
then apply the same statistical analyses as fLoc (Stigliani et al., 2015) to identify concept-selective
regions, validating these results against established empirical findings. In the second step, we predict
novel concept-selective regions and confirm these predictions through voxel ablation experiments.

6.1 PREDICT EMPIRICAL REGIONS

Figure 6: The empirical findings of
faces-, bodies-, places-, and words-
selective regions in NSD fLoc.

The NSD dataset localized places-, bodies-, faces-, and words-
selective regions through functional localizer (fLoc) experi-
ments. As illustrated in Figure 6, simple observation can re-
veal great overlap in the regions associated with fLoc words-
selective and fLoc faces-selective, while fLoc place-selective
and fLoc bodies-selective do not. Consequently, we intend to
predict places- and bodies-selective regions using fMRI synthe-
sized by our MindSimulator, and evaluate the predictions using
empirical findings from the existing NSD fLoc experiments.

The first step in localization involves selecting concept-oriented visual stimuli. To achieve this, we
utilize the pre-trained CLIP model for zero-shot classification, which compulsory assigns MSCOCO
images to the target concept categories. After these, we select the top-k images with the highest clas-
sification probability as visual stimuli used for further exploration. In the NSD fLoc experiments,
hundreds of visual stimuli are used, so we similarly select between 100 and 1000 top-ranking im-
ages. Figure 7 presents a subset of the top 100 selected images and compares them with stimuli used
in fLoc experiments. Significant distribution differences exist.
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Figure 7: Comparison between visual stimuli used in NSD fLoc experiments and images we use for localiz-
ing concept-selective regions. The fLoc experiments use visual stimuli that place targets in unnatural scenes,
whereas we use the target concept in real scenes. They exhibit huge image distribution differences.

# Images places- places-Acc↑ places-F1↑ bodies- bodies-Acc↑ bodies-F1↑
Specificity Linear Ours Linear Ours Specificity Linear Ours Linear Ours

Top 100 0.9608 36.0% 64.4% 0.498 0.517 0.9988 51.1% 96.2% 0.577 0.493
Top 200 0.9391 33.0% 56.2% 0.470 0.570 0.9977 45.9% 92.3% 0.562 0.628
Top 300 0.9189 31.5% 51.3% 0.458 0.581 0.9968 43.8% 90.4% 0.556 0.683
Top 500 0.8834 30.4% 46.3% 0.449 0.570 0.9953 41.6% 87.1% 0.545 0.728
Top 1000 0.8084 29.1% 39.7% 0.437 0.531 0.9918 40.0% 78.9% 0.535 0.737

Table 4: Localization evaluation of places- and bodies-selective regions. We report the results of Subj01. The
results are average values obtained with 3 different random seeds.

We encode the selected images into fMRI voxels using both MindSimulator and the commonly
adopted linear regression as encoding models. Following this, we compute voxel-wise statistical
significance by performing a one-sample t-test on the synthetic fMRI data. This allows us to iden-
tify concept-selective regions by setting a significance threshold. We set the same strict threshold
for both encoding models. To evaluate the accuracy of our data-driven region localization, we use
Accuracy and F1-score as metrics, comparing the predicted regions with empirical findings. Addi-
tionally, we compute the semantic specificity of the images used for encoding, which reflects the
strength of relevance between the selected images and the target concept. This specificity is cal-
culated by averaging the classification probabilities of all images. More implementation details on
localization can be found in Appendix A.4, and the evaluation results are presented in Table 4.

The results show that the localization accuracy using fMRI synthesized by MindSimulator is sat-
isfactory, particularly for bodies-selective regions, despite notable image distribution differences
between the NSD fLoc experiments and our selected images. This highlights the feasibility of our
data-driven approach for localizing concept-selective regions. Moreover, our localization for places-
and bodies-selective regions outperforms the linear regression encoding model in both Accuracy and
F1 metrics, which we attribute to MindSimulator can synthesize higher-quality fMRI. We also ob-
serve that as the number of selected images increases, semantic specificity tends to decrease. In
addition, there is a positive correlation between localization accuracy and semantic specificity, indi-
cating that enhancing accuracy requires a focus on encoding images with higher semantic specificity.

6.2 EXPLORING NOVEL REGIONS

After confirming that the synthetic fMRI can effectively localize concept-selective regions, we ex-
plore the localization of novel regions. Statistically, we can pinpoint any region associated with a
given concept if we select hundreds of images with high semantic specificity from image datasets
like MSCOCO or CIFAR-10/100. As a pioneering exploration, we focus on several concepts of
interest, including surfer-, plane-, food-, and bed-selective regions. We employ CLIP zero-shot
classification to identify the top 200 images with the highest semantic specificity from MSCOCO
and CIFAR-10/100 and then synthesize fMRI. Subsequently, we perform statistical tests to eval-
uate voxel-wise activation significance and conduct region localization using the same thresholds.
Figure 8 illustrates part of the selected images and their corresponding localization results.
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Figure 8: Localized concept-selective regions according to synthetic fMRI. The red represents the selected
regions and darker colors reflect higher confidence. We show the results for Subj01. The results of other
subjects and inter-subject comparisons can be found in Appendix B. Zoom in for better viewing.

Figure 9: Results of voxel ablation experiments. We mask the surfer-selective region. More precisely, we set
the corresponding 1017 voxels (around 6.5%) to negative values. Original = Reconstruction from synthetic
fMRI. Ablated = Reconstruction from masked synthetic fMRI. It can be observed that when the concept region
is masked, the two concepts of ”surfer man” and ”sea” are dissolved separately.

The localized concept-selective regions are predominantly located in the higher visual cortex, as
delineated by NSD. This aligns with prior neuroscience knowledge, which indicates that the lower
visual cortex shows selectivity for colors and shapes, while the higher visual cortex is selective for
specific concepts. In addition, it can be seen that the regions localized by different concepts are
scattered across the cortex with minimal overlap. This suggests that our approach could be extended
to create a concept atlas of the human brain. We also find that our localization often consists of
several disconnected regions, which we attribute to the coupling of related concepts. For example,
the concept of “surfer” is often coupled with the concepts of “sea” and “human”.

To verify the accuracy of the localized novel concept regions, we conduct voxel ablation. We
mask the synthetic fMRI based on the localized concept-selective regions and then decode it us-
ing trained decoding models. To provide a more comprehensive presentation of ablation results, we
take ”surfer” for illustration. As shown in Figure 9, when the regions are masked, the reconstructed
images lose corresponding concept objects, providing partial validation for our localization.

7 CONCLUSION

In this paper, we introduce MindSimulator, a generative fMRI encoding model that utilizes a diffu-
sion model to learn the fMRI distribution conditional on given visual stimuli in a high-dimensional
fMRI-stimuli joint latent space. By employing multi-trial enhancement for sampling, we synthesize
massive fMRI data. Our experiments demonstrate that MindSimulator’s synthetic fMRI outperforms
existing regressive encoding models across both voxel-level and semantic-level metrics, with strong
generalization on common image datasets. Leveraging synthetic fMRI, we conduct data-driven
neuroscience explorations, localizing wide-studied concept-selective regions and validating these
results against empirical findings. We believe that our approach of utilizing synthetic data to enlarge
scarce fMRI datasets and then conduct neuroscience research offers an alternative complement to
traditional approaches and provides novel hypothetical priors for future exploration.
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A ADDITIONAL IMPLEMENTATION DETAILS

A.1 ADDITIONAL IMPLEMENTATION DETAILS ON MINDSIMULATOR

fMRI Autoencoder. The autoencoder consists of a voxel encoder and a voxel decoder. The voxel
encoder first maps fMRI (12682-15724 voxels, varies across subjects) into a 256-dimensional la-
tent space using ridge regression. It then further processes the embedding in the latent space using
2 blocks, each containing multiple Linear layers, LayernNorm layers, activation layers, and resid-
ual connections. Finally, a linear projector projects the 256-dimensional latent embedding to the
high-dimensional fMRI representation of 257 × 768. And the voxel decoder arranges the three com-
ponents exactly in reverse. The fMRI autoencoder is trained end-to-end under the supervision of
MSE loss and SoftCLIP loss, with both losses weighted equally at 1.

We also conduct an ablation study on the fMRI autoencoder, investigating the effects of latent space
dimensions, the number of residual blocks, and whether end-to-end training is performed (if not
end-to-end, we first use SoftCLIP supervision to learn the joint latent space and then train the voxel
decoder). The ablation results are shown in Table 5, where we evaluate the MSE between ground
truth voxel and encoding-then-decoding voxel (voxel input) as well as the MSE between ground
truth voxel and voxel decoded form image representations (image input). We find that increasing the
latent space dimensions and the number of residual blocks does not necessarily lead to performance
improvements, so we ultimately opt for a smaller configuration to reduce memory overhead. Addi-
tionally, we discover that end-to-end training results in a lower MSE of voxel input. Furthermore,
the extreme MSE metrics of image input indicate that fMRI representation and image representation
are disjointed, underscoring the necessity of introducing a diffusion estimator.

Hidden dim # blocks End-to-End MSE↓
voxel input image input

256 2 ✓ 0.227 7.470
256 4 ✓ 0.240 8.305
512 2 ✓ 0.252 5.295
256 2 × 0.401 1.687
256 4 × 0.411 2.405
512 2 × 0.343 8.124

Table 5: Ablation Results for fMRI Autoencoder.

Diffusion Estimator. The diffusion estimator contains 6 Transformer blocks. The inputs are 257
image tokens, 257 noised fMRI tokens, and 1 time embedding. Its output is 257 denoised fMRI
tokens. We add absolute positional embeddings to the noised fMRI tokens and do not use learnable
query tokens, because this significantly saves on memory. As for attention, we simply use bidirec-
tional attention instead of causal attention. We conduct ablation experiments to explore the effect of
timesteps and sampling steps in the diffusion estimator, and the results are shown in Table 6.

Timesteps Sampling Voxel-Level Semantic-Level
Pearson↑ MSE↓ PixCorr↑ SSIM↑ Alex(2)↑ Alex(5)↑ Incep↑ CLIP↑ Eff↓ SwAV↓

100 10 0.324 0.406 0.212 0.301 90.6% 97.2% 93.0% 89.6% 0.716 0.402
100 20 0.323 0.408 0.209 0.303 90.3% 96.9% 93.4% 89.5% 0.720 0.404
100 30 0.327 0.411 0.207 0.307 90.8% 97.0% 92.9% 89.4% 0.715 0.402
100 50 0.328 0.415 0.206 0.308 90.1% 96.7% 92.5% 89.7% 0.715 0.399
100 100 0.326 0.417 0.207 0.305 90.6% 97.1% 92.8% 89.8% 0.714 0.402
10 3 0.314 0.411 0.211 0.303 90.1% 97.0% 93.1% 89.3% 0.713 0.401
10 5 0.310 0.414 0.209 0.301 89.8% 96.7% 92.1% 88.6% 0.719 0.405
10 7 0.313 0.412 0.209 0.299 90.4% 97.3% 93.4% 89.1% 0.713 0.402
10 10 0.311 0.414 0.206 0.303 89.7% 96.6% 92.6% 88.9% 0.718 0.405

Table 6: Additional ablation experiments for timesteps and sampling steps of Subj01.

We find that comparable results are obtained for different timesteps and sampling steps, suggesting
that we can use fewer sampling steps to save inference overhead. However, to be consistent with
common practice, we still set timesteps to 100 and sampling 100 times.
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A.2 ADDITIONAL DETAILS ON EVALUATION METRICS

Decoding Model. We use the trained MindEye2 (Scotti et al., 2024b) as our decoding model for rec-
ognizing the visual semantics contained in synthetic fMRI. At this stage, all decoding models have
adopted a similar approach. They first utilize contrastive learning to align fMRI voxels with the im-
age latent space, then transform the fMRI representation into the image representation. Finally, the
transformed fMRI representation is used as the text condition input for trained T2I models (Rom-
bach et al., 2022; Xu et al., 2023) to reconstruct the image. Obviously, due to encoding as the reverse
process of decoding, our MindSimulator has been greatly inspired by those decoding models.

Image Reconstruction Metrics. PixCorr denotes the pixel-wise correlation between ground truth
image and reconstruction results. SSIM denotes Structural similarity index metric (Wang et al.,
2004) between ground truth and reconstructions. Alex(2), Alex(5), Incep, and CLIP are metrics
that refer to two-way identification (chance = 50%) using different models. Alex(2) denotes two-
way comparisons are performed with the second layer of AlexNet (Krizhevsky et al., 2012), Alex(5)
denotes comparisons with the fifth layer of AlexNet, Incep denotes comparisons with the last pooling
layer of InceptionV3 (Szegedy et al., 2016), and CLIP denotes comparisons with the final layer
of CLIP ViT-L/14 (Radford et al., 2021). Two-way identification refers to percent correct across
comparisons gauging if the original image embedding is more similar to its paired voxel embedding
or a randomly selected voxel embedding. Eff and SwAV refer to the average correlation distance
with EfficientNet-B1 (Tan & Quoc) and SwAV-ResNet50 (Caron et al., 2020). The average time
cost for evaluating a single fMRI is within 1-2 seconds.

A.3 ADDITIONAL DETAILS ON BASELINES

Linear Regression Encoding. The linear regression encoding model consists of two linear layers,
the first of which projects the 257 × 768 image representation directly into the 2048 latent space,
and the second of which projects the latent into the voxel dimension (such as 15724). We train this
linear model for 150 epochs using AdamW, and the learning rate decreases linearly from 3e-4. For
inference, we use the checkpoint with the smallest MSE metric in the validation set.

Transformer Encoding. The Transformer Encoding model uses 10 ROI queries. Each ROI query
is a learnable token, corresponding to a ROI. We consider a total of 10 ROIs, including lh-faces, lh-
bodies, lh-places, lh-words, lh-remains, rh-faces, rh-bodies, rh-places, rh-words, and rh-remains.
The 10 ROI queries and image tokens are input to a single-layer Transformer with one cross-
attention and one self-attention operation. Each output ROI query is then mapped using a single
linear layer to fMRI voxel. The predicted voxel is then multiplied by a mask that is zero everywhere
except for the vertices belonging to that ROI, ensuring that the gradient feeding back from the loss
will only train linear mappings to the voxel of the queried ROI. During inference, the predicted voxel
from different ROI readouts will then be combined using the same masks to generate the synthetic
fMRI. We train this encoding model for 150 epochs using AdamW, and the learning rate decreases
linearly from 3e-4. Finally, the checkpoint with the smallest MSE metric is used.

A.4 ADDITIONAL DETAILS ON LOCALIZATION

Images. We used the MSCOCO images adopted in the NSD experiment (a total of 73,000 images,
including 9,000 images unique to each subject and 1,000 images shared among subjects). Note that
each subject had fMRI data corresponding to only 10,000 images.

Prompts. In the NSD fLoc experiments, researchers select visual stimuli from fixed categories.
Specifically, places-stimuli contain ”house” and ”hallway”, bodies-stimuli contain human ”body”
and ”limb”, faces-stimuli contain real ”adult face” and ”children face”, and words-stimuli con-
tain ”characters” and ”numbers”. Therefore, to validate our localization with places-, bodies,
faces- and words-selective regions, we utilize the following prompts for zero-shot classifica-
tion: [”houses or corridors”, ”human bodies or human limbs”, ”real human
faces”, ”words or numbers”]. As for the exploration of novel concept-selective regions,
we use the most common prompts, [”a photo of surfer”, ”a photo of plane”, ”a
photo of food”, ”a photo of bed”].

Significance Thresholds. In the NSD fLoc experiments, the significance threshold is set to 0, which
is very generous. In this setting, the range of concept-selective regions is very large, for example,

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Subj06’s bodies-selective region even contains 4887 voxels. Following the suggestion of Luo et al.
(2024), We set the threshold to a stricter 2. In this setting, the selected region usually contains voxels
ranging from hundreds to a few thousand.

B ADDITIONAL RESULTS

B.1 ADDITIONAL RESULTS ON EVALUATION FOR SYNTHETIC FMRI

In Tabel 7, we present detailed metrics for each subject. We find that the synthetic fMRI for Subj07
performs the best, while Subj01 ranks among the lowest. We suggest that this performance is linked
to the number of voxels in the target fMRI. As the number of voxels to be synthesized increases, the
complexity of the synthesis also rises, leading to a decrease in the quality of the synthetic fMRI.

We include additional metrics, specifically R-squared R2, which is commonly used in neuroscience
studies. The results are presented in Figure 10. In addition, we further provide the reconstructed
image from the synthetic fMRI for 4 subjects, as shown in Figure 11 to Figure 14.

Subjects Voxel-Level Semantic-Level
Pearson↑ MSE↓ PixCorr↑ SSIM↑ Alex(2)↑ Alex(5)↑ Incep↑ CLIP↑ Eff↓ SwAV↓

Subj01 0.326 0.417 0.207 0.305 90.6% 97.1% 92.8% 89.8% 0.714 0.402
Subj02 0.386 0.375 0.198 0.289 89.6% 97.0% 92.2% 90.7% 0.694 0.393
Subj05 0.415 0.376 0.190 0.296 89.1% 97.2% 93.9% 92.7% 0.669 0.382
Subj07 0.303 0.373 0.214 0.300 89.6% 96.6% 93.5% 91.6% 0.679 0.387

Table 7: Evaluation Results of synthetic fMRI for each subject.

Figure 10: The R2 metric of synthetic fMRI for each subject.
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Figure 11: Additional visualization of reconstructed images from Subj01 synthetic fMRI. GT = seen
visual stimuli. Synthetic = reconstructed images from synthetic fMRI. Randomly selected.

Figure 12: Additional visualization of reconstructed images from Subj02 synthetic fMRI. GT = seen
visual stimuli. Synthetic = reconstructed images from synthetic fMRI. Randomly selected.

Figure 13: Additional visualization of reconstructed images from Subj05 synthetic fMRI. GT = seen
visual stimuli. Synthetic = reconstructed images from synthetic fMRI. Randomly selected.
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Figure 14: Additional visualization of reconstructed images from Subj07 synthetic fMRI. GT = seen
visual stimuli. Synthetic = reconstructed images from synthetic fMRI. Randomly selected.

B.2 ADDITIONAL METRICS FOR SYNTHETIC FMRI

We evaluated the fMRIs with additional metrics covering the similarity of the synthesized fMRIs in
terms of functional connectivity, spatial structure similarity, and semantics. The evaluation metrics
are described as follows. All results are reported in Table 8.

Similarity of Functional Connectivity Graphs. The functional connectivity graph measures the
strength of the correlation between individual ROIs. First, we separately computed the functional
connectivity maps for both the synthetic and real fMRI data. Specifically, we used the ROIs (words,
faces, bodies, places, others) provided by NSD. Dimensionality reduction was performed on the
voxels within each ROI using principal component analysis to ensure they had the same length.
Subsequently, Pearson correlation was calculated among the different regions to generate the func-
tional connectivity maps. The similarity between the functional connectivity maps of the synthetic
and real fMRI data was then evaluated using the mean absolute error.

Spatial Gradients. We compute the spatial gradients of each sample in the test set across all di-
rections and then calculate the absolute difference between the ground-truth fMRI and the synthetic
fMRI. The average results of each voxel are reported.

Similarity of fMRI Representations. we compute the two-way classification accuracy of fMRI
representations.

Methods Connectivity Graphs↓ Spatial Gradients↓ fMRI Rep. Similarity↑
Linear Encoding Model 0.127466 0.536810 99.27%

Transformer Encoding Model 0.123541 0.543872 99.43%
MindSimulator 0.122895 0.538561 99.77%

Table 8: Additional metrics for synthetic fMRI.

B.3 DECODING FROM NOISE

To further validate our claim that ”if synthetic fMRI retains neural response pattern, it can be recog-
nized by fMRI decoding models and the reconstructed visual stimuli should be similar to the seen
visual stimuli”, we use noise fMRI decoding for a counterexample. As shown in Figure 15, no clear
visual semantics can be reconstructed from noise, which supports our claim.

Figure 15: Reconstructed results from noise. No clear visual semantics are contained in the recon-
structed images. Please zoom in for better viewing.
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B.4 ADDITIONAL VALIDATION ON LOCALIZATION

In Tables 9 to Table 11, we provide the prediction validation results for Subj02, Subj05, and Subj07,
which further show that our synthetic fMRI can predict concept-selective regions more accurately.

# Images places- places-Acc↑ places-F1↑ bodies- bodies-Acc↑ bodies-F1↑
Specificity Linear Ours Linear Ours Specificity Linear Ours Linear Ours

Top 100 0.9608 36.2% 66.1% 0.500 0.592 0.9988 48.6% 90.8% 0.510 0.393
Top 200 0.9391 33.5% 57.2% 0.478 0.612 0.9977 45.0% 87.4% 0.563 0.514
Top 300 0.9189 32.3% 52.2% 0.467 0.603 0.9968 43.2% 82.6% 0.508 0.607
Top 500 0.8834 31.0% 48.1% 0.456 0.593 0.9953 41.6% 79.4% 0.505 0.668
Top 1000 0.8084 29.6% 42.4% 0.452 0.559 0.9918 40.7% 73.2% 0.502 0.697

Table 9: Prediction evaluation for places- and bodies-selective regions of Subj02.

# Images places- places-Acc↑ places-F1↑ bodies- bodies-Acc↑ bodies-F1↑
Specificity Linear Ours Linear Ours Specificity Linear Ours Linear Ours

Top 100 0.9608 42.6% 68.8% 0.560 0.694 0.9988 55.0% 93.5% 0.487 0.543
Top 200 0.9391 38.5% 61.0% 0.528 0.687 0.9977 51.9% 86.6% 0.564 0.611
Top 300 0.9189 36.8% 56.4% 0.515 0.667 0.9968 50.8% 85.4% 0.569 0.659
Top 500 0.8834 35.3% 51.7% 0.501 0.643 0.9953 49.0% 81.6% 0.567 0.695
Top 1000 0.8084 33.8% 42.4% 0.488 0.609 0.9918 47.5% 74.4% 0.564 0.682

Table 10: Prediction evaluation for places- and bodies-selective regions of Subj05.

# Images places- places-Acc↑ places-F1↑ bodies- bodies-Acc↑ bodies-F1↑
Specificity Linear Ours Linear Ours Specificity Linear Ours Linear Ours

Top 100 0.9608 31.4% 78.0% 0.421 0.532 0.9988 56.5% 97.7% 0.434 0.582
Top 200 0.9391 33.1% 67.4% 0.433 0.613 0.9977 51.3% 94.8% 0.621 0.580
Top 300 0.9189 28.3% 58.7% 0.417 0.609 0.9968 47.7% 93.0% 0.563 0.660
Top 500 0.8834 27.1% 51.8% 0.398 0.602 0.9953 48.9% 87.9% 0.551 0.716
Top 1000 0.8084 26.4% 43.0% 0.401 0.589 0.9918 42.0% 79.3% 0.474 0.708

Table 11: Prediction evaluation for places- and bodies-selective regions of Subj07.

B.5 ADDITIONAL RESULTS ON EXPLORING NOVEL REGIONS

We display the cortical selective regions of the same concepts among different subjects. As illus-
trated in Figure 17 to Figure 19, despite subtle differences, the activation of the same concepts in
different subjects revealed similar patterns, with the strongest areas of activation typically occurring
in the same locations. This indicates a high degree of similarity among individual brains.

ETHIC STATEMENT

Our research adheres to the ICLR Code of Ethics. All experiments in this paper are conducted using
open-source datasets, and no potential ethical concerns are associated with this work.

REPRODUCIBILITY STATEMENT

This study employs generative encoding models to synthesize fMRI data, facilitating the localization
of concept-selective regions. All preprocessed data, code, and model parameters used in our research
will be made publicly available upon publication. Detailed protocols for data preprocessing, model
training, and evaluation have been provided in our manuscript, enabling independent reproduction.

FUTURE WORK

In our future work, we will validate the effectiveness of data-driven concept-selective region local-
ization through neuroscience experiments. We also aim to use synthetic fMRI for more fine-grained
explorations of concept-selective regions, develop a concept atlas of the human brain, and investigate
individual differences. Additionally, we are exploring the potential of feedback from the encoding
models, improving cross-subject decoding performance using synthetic fMRI.
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Figure 16: Surfer-selective regions of each subject.

Figure 17: Plane-selective regions of each subject.
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Figure 18: Food-selective regions of each subject.

Figure 19: Bed-selective regions of each subject.
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