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Abstract— Recognizing various types of clothing is crucial
for robotic clothing manipulation tasks. Existing classification
models primarily focus on clothing color and texture while
overlooking structural features, limiting their ability to dis-
tinguish between deformable clothing categories with similar
color and texture. Moreover, these models heavily rely on
manually annotated labels, making it difficult to accurately
recognize unseen clothing items with new colors or textures.
To address these challenges, we propose a novel topological
structure representation and optimization strategy for category-
level clothing structural feature learning. Then, we introduce a
fabric-specific grasping position estimation method and develop
a corresponding robotic grasping system capable of selecting
and grasping specified clothing items based on user instructions.
Extensive real-world robotic experiments demonstrate the ef-
fectiveness of our system.

I. INTRODUCTION

Accurate recognition of various deformable clothing is
crucial for embodied intelligent application scenarios such
as clothing arrangement and robot-assisted dressing [1]–[4].
Some recent research has attempted to enhance recognition
performance by leveraging point cloud feature or temporal
information from video frames [5]–[7]. However, in real-
world robotic clothing manipulation scenarios, garments are
often in deformed states, which significantly limits the ef-
fectiveness of conventional classification models [5], [7].

Specifically, existing classification models often overlook
structural features, making it difficult for the model to
accurately distinguish between different types of deformed
clothing that share similar color and texture characteristics.
As a result, these models are also constrained to the specific
datasets they are trained on and struggle to generalize to
unseen clothing items with new colors or textures. As illus-
trated in Figure 1, the baseline model fails to differentiate
between top and shorts with the same color and texture.
Additionally, it is unable to correctly identify the category
of unseen clothing items with novel colors or textures.

In this paper, we address the aforementioned challenges
by compelling the model to learn category-level topological
structural features of deformable clothing rather than relying
on color or texture. To achieve this, we first introduce a
novel clothing topological structural feature representation
and optimization strategy. Based on this, we train a clothing
classification model that operates independently of color and
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Fig. 1: Our classification method not only distinguishes different
categories of clothing with the same color and texture, but also
accurately generalizes to unseen targets.

texture features. Furthermore, we design a multi-clothing
classification framework that leverages the Segment Any-
thing Model (SAM) [8]. Our framework can effectively
differentiate between clothing items with identical colors and
textures while also generalizing to unseen garments with
novel colors or textures.

Building on the multi-clothing classification framework,
we developed a robotic system for verification and testing.
This system enables the robot to grasp any clothing item
on the table based on user instructions while demonstrating
strong generalization to unseen targets. To evaluate the
performance of our approach, we conducted extensive user-
specified real-world clothing grasping experiments. The com-
prehensive experimental results demonstrate the effectiveness
and superiority of our proposed approach.

II. METHODS

A. Topological Structure Representation and Optimization

Figure 2 shows the overview of our strategy. The model
training process of the method is divided into two stages:
Topological Feature Representation and Aggregation; Uni-
fied Topological Feature Learning.

1) Topological Feature Representation and Aggregation.
Topological Feature Representation. At this stage, we

first defined the topological structures of different categories
of clothing according to their morphological characteristics.
These topological structures include two attributes: points
and edges. For example, for Short-sleeved Top (S-top), we
define the point set and edge set as {PK

0 , PK
1 , PK

2 , PK
3 , PK

4 }
and {(PK

0 , PK
1 ), (PK

1 , PK
2 ), (PK

1 , PK
3 ), (PK

3 , PK
4 )} respec-

tively, where K represents the category label. In addition,
we set constraints to avoid generating unusable topological
structure images, that is, the length of the edge is a fixed
range W = [ws, we], where ws and we are pixel values, and
there cannot be intersections between edges. For an image
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Fig. 2: Topological Structure Representation and Optimization.

of 128*128 pixels, we set ws and we to 30 and 50 respec-
tively. In our work, for each clothing category, we randomly
generated 1200 images to enable the model to fully learn
the representation and aggregation of topological structural
features. We define the generated topological structure image
set as TK

N , where K represents the category identifier and
N ∈ [1, 1200], represents the image sequence number. We
define the encoder as fP (·) and the extracted features as FK

P ,
then the forward inference process is expressed as follows:

fP (T
K
N ) =⇒ FK

P (1)

Topological Feature Aggregation. We constructed an opti-
mization strategy based on unsupervised contrastive learning.
The input data comes from random sampling of image pairs
from the image set TK

N . We set the image pair from the same
category as a positive example, defined as (TK

n , TK
m ), and the

image pair from different categories as a negative example,
defined as (TK

i , TK
j ), where n, m, i and j represent the ran-

domly sampled image indexes respectively. Our optimization
goal is to minimize the feature distance between positive
pairs and maximize the feature distance between negative
pairs. We first define the feature relevance of positive and
negative pairs based on cosine similarity calculation:

Spositive =
FK
n · FK

m

∥FK
n ∥∥FK

m ∥
, Snegative =

FK
i · FK

j

∥FK
i ∥∥FK

j ∥
(2)

FK
n , FK

m , FK
i , and FK

j represent the features of topological
structure images TK

n , TK
m , TK

i , and TK
j decoded by model

fP (·), respectively. The loss function and optimization pro-
cess we constructed are expressed as follows:

L = − log(Spositive) + log(1 + exp(Snegative)), (3)

min
θ
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(4)

where B represents the batch size of training and θ represents
the parameters of encoder fP (·). Finally, the encoder we
built learned the representation of the topological structural
features of different categories. The visualization aggregation
of the feature space is shown in Figure 2.

2) Unified Topological Feature Learning.
In the Topological Feature Representation and Aggrega-

tion stage, we finally obtain a trained encoder fP (·). The
encoder can already extract different topological features for
different categories of clothing. At this stage, our goal is to
obtain a classification model that can extract color-texture-
independent topological structural features from the input
clothing images and map them to corresponding categories.
To achieve this goal, we first construct an encoder with
the same structure as fP (·), defined as fC(·), and addition-
ally build a classification head based on a fully connected
network, defined as H(·). Then we design the following
training strategy: for the same category, the topological
structure image features obtained by the encoder fP (·) and
the clothing image features obtained by the encoder fC(·)
should be brought closer; on the other hand, the classification
head H(·) should learn how to map the features to categories.
Based on the above training strategy, encoder fC(·) can
learn the unified topological structural features of different
categories of clothing. The features decoded by encoders
fP (·) and fC(·) are defined as FK

P and FK
C respectively.

The classification result and category label are defined as R
and L respectively. For the optimization of encoder fC(·),
we calculate the distance between two output features based
on the MSE (Mean Square Error) loss function. The loss
function optimization process is expressed as follows:

min
θC

LMSE =

Kmax∑
K=1

∥FK
P − FK

C ∥22 (5)

For the optimization of the classification head H(·), we
calculate the distance between the category output and the
label based on the CE (Cross Entropy) loss function. The
loss function optimization process is expressed as follows:

min
θH

LCE = − 1

B

B∑
i=1

Kmax∑
j=1

Li,j logRi,j (6)

θC and θH are defined as the parameters of encoders fC(·)
and H(·), respectively. B is defined as the sample batch
size, i and j are defined as the sample index and class
index, respectively. Li,j is defined as the ground-truth of
the i-th sample, and Ri,j is defined as the probability that
the classification head predicts the i-th sample as the j-th
class. We eventually implemented the training of deformation



Fig. 3: Robotic Clothing Grasping System.

clothing classification model based on topological structure
representation and optimization.

In the model inference and testing phase, we only use the
encoder fC(·) and the classification head H(·). The input of
the model is an image IKRGB containing only a single target
clothing item, and the output is the classification result R.
The process is expressed as follows:

fC(I
K
RGB) =⇒ FK

C , H(FK
C ) =⇒ R (7)

B. Robotic Clothing Grasping System

The overview of our robotic clothing grasping system
is shown in Figure 3. Considering the situation where the
robot grasps clothing according to user instructions, the
input of our entire system consists of the following parts:
text data indicated by the user; RGB images for multi-
clothing classification; depth information provided by the
depth camera for grasping position estimation. The multi-
clothing classification framework perceives the RGB im-
age and outputs regional category information. According
to the category hints output by the LLM, we filter out
the specified category region, and then further obtain the
depth information within the category region to achieve a
preliminary graspable range. Based on our proposed method
for estimating the grasp position on the fabric surface, the
grasp position information is finally sent to the real-world
robot to achieve user-specified clothing grasping.

Grasping Position Estimation. The core of our method
is to search for suitable wrinkles on the clothing surface.
As shown in Figure 3, we first normalize the depth image
for more convenient calculation. We define the normalized
depth information image as DN . For DN , we only consider
the areas in the top 10% of the pixel value distribution of
the entire image to filter out relatively protruding areas. We
define the protruding area information as DT . For the filtered
protrusion areas, we further search for parts with wrinkle
characteristics that are easy to grasp. We first consider the
mapping of gripper width to depth image area in the real
world to search for candidate grasping positions in DT that
match the gripper width, and the search result is defined as
DC . For these candidate grasping positions DC , our goal is
to search for parts that are continuous and conform to the
characteristics of vertical wrinkles relative to the grippers.
To achieve the above effect, we adopt a maximum square
search strategy. Specifically, we search for the largest square
in the area DC composed of candidate grasping positions.
Such a square shape ensures the continuity and wrinkle
characteristics of the area near the finally selected grasping

TABLE I: Experimental results against MobileNetV2.

Methods Classification Grasping
Seen↑ Unseen↑ Seen↑ Unseen↑

MobileNetV2 [9] 97.11% 53.48% 90.72% 53.57%
Ours 94.84% 84.01% 89.29% 79.29%

TABLE II: Experimental results against other methods.

Methods Seen↑ Unseen↑

GarFusion [7] 76.67% 65.00%
Shehawy et al. [10] 76.67% 74.52%

Chen et al. [2] 53.81% 52.86%
Ours 89.29% 79.29%

position. We define the largest square to be searched as SQ,
and select the geometric center of SQ as the final grasping
position defined as DP .

III. EXPERIMENTS

We set 7 different clothing categories: Hat, Scarf, Top-
short (Short-sleeved tops), Top-long (Long-sleeved tops),
Shorts, Trousers, Towel. The total size of our dataset is
1140, which means there are 38 different clothing in total,
and 30 samples are collected for each piece of clothing.
We divide the dataset into training and test sets, and we
stipulate that clothing that appear in the training set will
not appear in the test set to verify the generalization of our
method. We also construct a baseline classification method
that only retains the MobileNetV2 [9] and the classification
head. As shown in Table I, our method not only maintained
high performance on seen clothing, but also achieved 84.01%
classification and 79.29% grasping performance on unseen
clothing, respectively, confirming the high accuracy and
generalization of our proposed method.

We performed comparative evaluations as shown in Table
II. GarFusion [7] is an advanced method for classifying
clothing using continuous video frames. It needs to perform
grasping and then classification in the scene. Although
GarFusion has achieved improved performance for unseen
clothing, the overall performance is still low and requires
additional long-term video inference and grasping attempts
one by one. [10] was impossible to generate the optimal
position when selecting the grasping position based on
the specific wrinkle quantization threshold. Therefore, [10]
achieved lower performance, and our method based on can-
didate position screening can find a relatively optimal result.
For [2], it is designed for collar grasping and is suitable for
tops with visible collars or similar structures such as hat
edges, so its performance is limited in our scenario.
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