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Abstract

Intent detection is one of most critical tasks in
prevalent task-oriented dialog systems. How-
ever, most systems could only identify a fixed
set of intents, without covering a ubiquitous
space of real-world semantics. Inducing new
dialog intents or excluding out-of-scope (OOS)
queries are crucial particularly in complex do-
mains like customer support. We present a sim-
ple yet effective intent induction schema via
pre-training and contrastive learning. In partic-
ular, we first transform pretrained LMs into con-
versational encoders with in-domain dialogs.
Then we conduct context-aware contrastive
learning to reveal latent intent semantics via
coherence from dialog contexts. By composing
a fine-grained intent subspace from in-scope do-
main data, we demonstrate the effectiveness of
our approach to induce intents with simple clus-
tering algorithms and detect outliers with prob-
abilistic linear discriminant analysis (pLDA).
The experimental results validate the robust-
ness and versatility of our framework, which
also achieves superior performances over com-
petitive baselines without label supervision.

1 Introduction

Recent advances of task-oriented agents such as
Apple Siri, Amazon Alexa or Google DialogFlow
have prompted the success of improving more nat-
ural customer service automation (Zhang et al.,
2020b). They have been widely adapted in sev-
eral domains like booking flights, restaurants, and
customer support. Usually, the very first step of es-
tablishing such systems is to determine appropriate
ontologies that constrain the dialog intent and state
space for a specific task (Weld et al., 2021).
However, most works with such assumptions
usually categorize utterances into few simple in-
tents; yet exclude further pragmatic intent discov-
ery in the real world (Hendrycks and Gimpel, 2018).
Dialogs with different levels of stylized interac-
tions may experience disparate variations of intent
fluidity, where the scope of intents varies. In com-
plex domains like customer support and healthcare,

why wasn't earlier flight offered (1)
when | tried to rebook? =/ e :
time of your scheduled change.
Change-to-earlier-flight

Could | change the flight before .
9:00 am? My schedule has (2)
changed.

Change-to-earlier-flight
Can someone tell me what flights

should | take to get to the nearest [IREH)
NBA game?

Out-of-scope

Figure 1: Example of dialogs in TWACS dataset. First
two examples have different narration but expressed
the same intents. The last example has two different
responses after identifying the query as in-scope (IS) or
out-of-scope (OOS).

users may not be fully cognizant of the system capa-
bilities, where ‘out-of-scope’ (OOS) queries would
reasonably emerge during dialogs that fall out of
bounds of system-supported intent scopes (Larson
et al., 2019). Systems which can barely enumerate
a complete view of user intents will easily fail to
recognize an emerging intent during shifts between
domains or chit-chats, as shown in Figure 1.

Second, unlike (written) texts, spoken utterances
do not come with clear sentential segmentation
by topographic means (Jonathan Ginzburg, 2010).
This poses a more challenging understanding task
for recent systems. Perkins and Yang (2020) in-
troduced the dialog induction task to cluster user
query utterances. It aims to learn a good discrim-
inative classifier that predicts the same intents for
utterances and their corresponding contexts. How-
ever, the performance may be degraded if repre-
sentations of encoders trained from misleading ob-
jectives are hard to separate with accurate deci-
sion boundaries (Vuli€ et al., 2021). We argue that
discovering fine-grained representations may be
a more critical aspect of retrieving their latent in-
tents that could be easily differentiated with simple
clustering. In addition, OOS queries may still be



allocated in one of intent clusters in their method.

Recently, contrastive learning based on pre-
trained Language Models (LM) such as BERT (De-
vlin et al., 2019) or RoOBERTa (Liu et al., 2019), of-
fers striking state-of-the-art (SOTA) performances
across multiple natural language processing tasks
(NLP) (Casanueva et al., 2020). They aim to en-
hance discrimination abilities of models by relying
on semantic similarity between utterances, which
exactly aligns with the clustering objectives based
on the distance metrics. Hence, instead of em-
phasizing on algorithms that seek decision bound-
aries between data, is it possible to directly learn a
good intent space where projected samples are dis-
tributed densely in clusters and easily segregated?
Second, how could we quickly adapt pretrained
LMs into a task-specific operator that generate such
representations and discriminate OOS samples?

To solve the above two concerns and mitigate
the data scarcity issue, we propose an entirely un-
supervised approach without labeled instances to
induce new dialog intents and exclude OOS queries
from a large non-annotated corpus. Intuitively, we
first deploy two-phase pre-training on LMs to learn
a good representation that both inherits the coher-
ence characteristics within dialogs and is easily
discriminated semantically. Then we introduce a
cluster operator to assign each query representa-
tion with their intents and exclude OOS ones with
Probabilistic Linear Discriminant Analysis (pLDA)
(Ioffe, 2006). We show that our pipeline is highly
versatile to incorporate different LMs, pretraining
strategies and cluster algorithms to tailor in each
domain. The threshold in pLDA could be flexible
chosen to trade off between accuracies of detecting
IS/O0S queries.

Our contributions are summarized as follows:
1) We make the first attempt of introducing con-
trastive learning in the dialog induction task with-
out any label supervision.
2) We introduce a flexible algorithm with a tunable
threshold to detect OOS queries by forming clus-
ters with only in-domain queries.
3) Experimental results verify the SOTA perfor-
mance of our approach on two intent induction
datasets and demonstrate the effectiveness of de-
tecting OOS queries with self-supervised learning.

2 Problem Formulation

In this section, we first follow Perkins and Yang
(2020) to formulate the dialog induction task as
the clustering task. Suppose we have a training
corpus of unannotated dialogs X € X where each

sample has the following format: x; = (w;,c;),
u; is the first query utterance and c; with N — 1
length is the following contexts. We hope to find
an optimal operator f : X — ), Y C R¥ to
assign a new query U an one-hot vector y rep-
resenting its cluster id k. We introduce a function
¢y : X — Z that maps an input into a hidden
space Z € RY, where we restrict ¢y in a lan-
guage model function class ®. We will finally try
to find a good set of parameters # and best f s.t.
y;fkest = arg minqﬁe@,f,y J(¢9(utest)a f) over some
clustering objective function J. We are also inter-
ested in detecting an OOS signal ,,s € R? for
U5t Whether a query is in domain, i.e. Yiest € V.

3 Methodology
3.1 P1: Self-supervised Pre-training (SSP)

We first deploy three language learning strategies
to adapt pretrained LMs into conversational tasks:
Mask Language Modeling (MLM), Mask Context
Modeling (MCM) and Next Context Prediction
(NCP). We first concatenate each utterance u; and
their contexts c; with ‘[SEP]’ as x;. Then, we will
retrieve the feature representation h; for the entire
dialog x; with each token as x! with a pretrained
LM, ¢y () that implicitly learns sentential and con-
versational structures. We use two different projec-
tion matrices W, € RE*IVI and W, € R”*2 to
transform h; into one-hot vectors y;, where H is
BERT hidden size and |V| is vocabulary size. We
then update the parameters § and W, or W, to
minimize the cross entropy losses as follows:
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1) MLM: Similarly in BERT, we perform masking
on 15% of input tokens x; with 80% of the time a
special token ‘[MASKT’, 10 % of the time random
word tokens from vocabulary and others remaining
the same; and update LM with loss in Eq 1.

2) MCM: MLM does not take any account of se-
quential relations between utterances and their con-
texts. Instead, we only mask tokens in the contexts
c; to explicitly condition on utterances for token
prediction and update LM with loss in Eq 1.

3) NCP: We directly predict whether the entire di-
alog is reasonable based on u; and the given c;.
And update LM with the loss in Eq 2. For each u;,
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Figure 2: Illustration of the proposed framework for dialog intent induction and out-of-scope detection. There are
four phases including pretraining and detection. u#; means it is randomly masked. Conv is short for Conversational.

we also randomly sample a negative context c;\; to
construct a negative pair (x;, Cj\i)-

3.2 P2: Context-aware contrastive Learning
(CACL)

To better align with the downstream metric-based
clustering, inspired by the recent success of con-
trastive learning in few-shot setting (Vuli¢ et al.,
2021; Zhang et al., 2021b), we found it is rather
appropriate to introduce similarity-based pretrain-
ing for retrieving distant-sensitive! representations
for clustering, instead of pseudo labeling samples
directly. As shown in Lee et al. (2021) of con-
trastive learning setting, if we have the input vari-
able X and its target random variable X5 for the
pretext task, given the knowledge of their latent
label Y, one can possibly predict X5 without know-
ing much about X;. At this case, X5 is approxi-
mately independent of X; conditional on the label
Y (X7 L X5]Y). In other words, if we try to learn
a good representation ¢(x1) close to ¢* in Eq 3
by semantically minimizing distances between X
and Xo, we implicitly force LMs to first predict
Y'; and predict X5 from Y. And we could possibly
linearly separate such learned representations ¢*
with small representation errors.

— ¢(X2)?

P = arggleigEl\qb(Xn 3)

In our case, X; and X are the given utterance
queries and their corresponding contexts. Intu-
itively, successful dialogs should preserve coher-
ence where X; and X5 should be driven by the
same underlying intent Y, regardless of being
causes or effects of the intent. It elucidates that with
a good representation ¢*, we shall easily cluster X
based on similarity by inducing their underlying

"Here we mean the mapped representations preserve the
topological information within a latent intent space.

intents Y. Therefore, we leverage the dual-encoder
architectures to model the relevance between an
utterance and their context pair (u, c). We will use
the pretrained encoder ¢(-) from section 3.1 to ob-
tain (h,, h.). And we take the final encoding from
the ‘[CLS] token via a pooling operation.
Context Filtering Before sending data pairs into
the encoder, some redundant sentences c; in the
dialog contexts ¢ = {c;} may cause frictions to
obfuscate user intents. Therefore, instead of en-
coding all dialog contexts, we first obtain the hid-
den representations for each sentence in a dialog
(hy,,hl, ..., hZ=1) where L is the dialog length.
Then we calculate the distance (cosine similarity)
between each dialog context representation and
the utterance. Eventually, we take the closest con-
text as the final sentence pair (h,, hé’) , where
i' = arg min,ey 1—q] cos(hy, h?).

For a given pair (h,,h"), we then introduce
three strategies to finetune our encoder ¢.
1) Context Ranking: We leverage the standard
multiple negatives ranking loss (MNEG) (Hender-
son et al., 2017) to rank the correct context c;
for the utterance wu; over other negative contexts
c'j\w ¢ {ci} in a single batch. MNEG loss for a
single batch (u1,¢1), ..., (ung, cNp) is calculated
as the following:

Np
LVyNEG = — ZS - cos(ug, ¢;)
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where S is a scaling factor. It will try to maximize
correct match score and abate negative scores.

2) Online Contrastive Learning (OCL): We se-
lect only hard positive and negative pairs to update
the contrastive loss (Robinson et al., 2021), where



d(us, ¢j) = 1 — cos(us, ¢j) and y is the margin:

r o d(u“ Cj)2 lf] =1
O TV (ReLU (v — d(us, ¢))))? ifj # 1’

&)

3) Triplet Loss (TL): Finally we also try to com-
pare positive and negative pairs at once by mini-
mizing the following triplet loss:

Ly, = max(y + cos(ui, ;) — cos(u;, ¢jzir), 0)

(6)

It will prompt the minimization of the distance
from the anchor example and approximate that of
the negative example to the margin +y.

3.3 Clustering

After two-phase context learning, our main goal
is to induce the intents from a collection of new
user queries. We follow Perkins and Yang (2020)
to formulate it as an unsupervised clustering task
that involves two popular clustering algorithms
k-means and spectral clustering as an operator
f:x — k(z) = m"® where k(z) is the clus-
ter id associated with its mean m*®). k-means
only requires the query-view vectors from our pre-
trained encoder ¢ while multi-view spectral clus-
tering (MVSC) will solicit both query-view and
content-view representations for matching.

3.4 Out-of-scope (OOS) Detection

After forming the query clusters, we are further
interested whether such in-domain gaussian-like
distributions could help us exclude the future out-
of-scope queries. Here we propose to use the idea
of Probabilistic Linear Discriminant Analysis
(pLDA) (Ioffe, 2006) with predicted labels gener-
ated from our kmeans operator f(-). The goal of
pLDA is to further project query samples onto a
latent space such that samples from the same class
remain in the same distribution. It can generate
class center using continuous non-linear functions
even from single example of unseen class. By first
obtaining the predicted labels y; from clustering,
we could model both the distribution of utterances
x ~ N(z|y, ¢) and class labels y ~ N (y|m, D),
where m is the parameter, ®,, and ®; are the
within/between-class covariance matrices. Latent
variables u, v will represent the example of class
and class variable in the projected space. For each
class yi, we compute the mean latent representa-
tions g from utterances belonging to class y;. Fi-
nally, for a new test query x¢.s¢, we could calculate

Dataset # Samp # Intent | # Domain
TwACS (Perkins and Yang, 2020) 28,857 14 1 (Airline)
AskUbuntu (Perkins and Yang, 2020) | 69,927 20 1 (Ubuntu)
CLINC (Larson et al., 2019) 23,700 150 10
BANKING (Casanueva et al., 2020) 13,083 77 1 (Banking)

Table 1: Statistics for Intent Datasets.

the likelihood ratio R with each class’s :

P(utestaﬁk)
P(utest)P(ﬂk)

If all of R(uyest, uy) are below a threshold 7', we
could conclude the query is out-of-scope that does
not belong to any of the in-domain clusters.

Supervised Fine-tuning To further validate the
pLDA-based OOS detection performance from
trained representations, we also perform similarity-
based contrastive learning on datasets with K la-
bels available. We generate a sets of n positive
pairs (x;,x;) for each intent y;, and obtain totally
K x n samples. Then, we use LM encoder ¢(-)
to generate representations ¢(x;), ¢(x;). Then we
adopt MNEG loss mentioned above to conduct the
ranking task. Finally, we use the pairs (¢(x;), y;)
to train pLDA model and perform OOS detection.

(N

R(utesta ﬂk) =

4 Experimental Setup

4.1 Datasets

We collect four datasets with two of them (TwACS,
AskUbuntu) having smaller amount of annotated
user intents (Perkins and Yang, 2020) and two of
them (CLINC, BANKING) (Larson et al., 2019)
with much larger intent annotated corpus. Table 1
shows the data statistics. For pretraining and con-
trastive learning purposes, we only use unlabeled
corpus for training. For supervised contrastive
learning, we use labeled training corpus from
CLINC and BANKING. For evaluation datasets,
there are three experimental settings:

1) Clustering: we use all annotated dialogs in
TwACS and AskUbuntu to verify our model’s per-
formance on the dialog intent induction task.

2) Unsupervised OOS: we first generate pseudo
training set by first sampling n = 6000 dialogs
X; € X as X; then obtain their representations
¢(x;) and their assigned clusters §; = f(¢(x;))
via k-means as data pairs (¢(x;), 9;). We use these
training datasets to assess necessary parameters
from pLDA. For evaluation, we randomly select
1000 samples from OOS test sets from CLINC and
BANKING as OOS samples and select 1000 sam-
ples from IS training sets X; € X (X N X5 = 0).
3) Supervised OOS: we directly use the training
data (¢(x;), yi) where y; is the true label for pLDA



Dataset TwACS AskUbuntu

Pretraining Method | Clustering P [ R | FI [ ACC P [ R | FI [ ACC
Autoencoder (Perkins and Yang, 2020) | k-means 27.1 | 18.7 | 222 159 | 279 | 19.3 | 22.8 14.4
Autoencoder (Perkins and Yang, 2020) | MVSC 2903 | 21.2 | 24.6 189 | 28.6 | 13.0 | 179 | 11.2
Autoencoder (Perkins and Yang, 2020) | Avkmeans 46.0 | 33.6 | 389 | 31.6 | 50.2 | 43.8 | 46.8 | 36.2
QT (Logeswaran and Lee, 2018) Avkmeans 51.1 | 38.1 | 43.7 | 359 | 56.6 | 55.1 | 55.8 | 43.2

" DialoGPT (Zhang et al., 2020a) =~ | k-means || 282 ] 162 | 20.6 | 15.1 [ 20.1 | 154 [ 175 | 13.3 ~
BERT (Devlin et al., 2019) k-means 263 | 19.5 | 224 | 158 | 22.7 | 156 | 185 | 13.8
TOD-BERT (Wu et al., 2020) k-means 28.7 | 22.8 | 254 | 164 | 36.8 | 30.5 | 333 | 28.6
SBERT (Reimers and Gurevych, 2019) | k-means 37.6 | 28.0 | 32.1 | 26.7 | 53.3 | 44.8 | 48.7 | 41.5

" BERT* (Devlinetal.,, 2019) | k-means || 354 ] 23.8 | 285 | 22.8 | 58.1 | 456 | 51.1 | 45.1 ~
TOD-BERT™* (Wu et al., 2020) k-means 337 | 214 | 262 | 20.6 | 55.0 | 47.7 | 51.1 | 45.6
BERT (NCP + CACL) (ours) k-means 55.1 | 46.8 | 50.6 | 424 | 68.3 | 52.6 | 59.5 | 47.8
BERT (MLM + CACL) (ours) k-means 53.8 | 455 | 493 | 44.0 | 72.2 | 635 | 67.6 | 62.2
BERT (MCM + CACL) (ours) k-means 475 | 37.0 | 41.6 | 346 | 76.8 | 63.0 | 69.2 | 61.2

" BERT (NCP + CACL) (ours) | MVSC ~ || 530435 | 478 | 420 | 7427|612 [ 671 | 580 ~
BERT (MLM + CACL) (ours) MVSC 53.6 | 40.3 | 46.0 | 39.0 | 75.8 | 63.6 | 69.2 | 61.9
BERT (MCM + CACL) (ours) MVSC 51.6 | 40.7 | 455 | 38.1 | 76.1 | 64.3 | 69.7 | 63.2

Table 2: Evaluation results (%) on TWACS and AskUbuntu datasets for different pretrain and cluster strategies. QT
is short for Quick Thoughts. * indicates the model has been finetuned with in-domain corpus. NCP, MLM, MCM
denote the different pretraining methods, followed by contrastive learning (CACL). The best results are in bold.

training. For evaluation, we combine the in-domain
test set and OOS test set as the final testing set.

4.2 Model Variants and Baselines

We experiment with competitive baselines from
some popular transformer-based LMs and cluster-
ing approaches. The pretraining methods include:
1) Autoencoders (Perkins and Yang, 2020) which
are finetuned on TWACS and AskUbuntu datasets.
2) Quick thoughts (QT) (Logeswaran and Lee,
2018) which is a strong representation learning
baseline that is adopted in BERT.

3) DialoGPT (Zhang et al., 2020a) which is
generative model trained with dialog corpus.

4) BERT (Devlin et al., 2019) which is a contextu-
alized representation model based on transformers.
5) TOD-BERT (Wu et al.,, 2020) which is
finetuned on conversational data based on BERT.
6) Sentence-BERT (SBERT) (Reimers and
Gurevych, 2019) which deploys dual-encoder
structure for similarity training.

We also experiment with a range of model
variants enabled by our framework, and compare
their performances against an array of cutting-
edge conversational sentence encoders. The en-
tire pipeline is specified as LM+P1+P2-LOSS,
where we adopt a LM structure and pretrain it with
Phase-1 (P1) pretraining and Phase-2 (P2) learn-
ing with specific loss (LOSS). For LMs, we use 1)
BERT, 2) RoBERTa (ROB) as an improved vari-
ant of BERT, LM-pretrained with more data and
3) DistilRoBERTa (DROB), a distilled version of
RoBERTa, trained with around 4 times fewer data
than the teacher ROBERTa model. All of models
contain 768-dimensional transformer layers with

12 (BERT, ROB) or 6 (DROB) attention layers. For
P1, we have pretraining methods: MLM, MCM,
NCP. And we use MNEG, TL, OCL for P2-LOSS.

For OOS detection, we use binary classification
with pretrained LMs as our baselines. BERT-all
indicates that we train all in-scope data and 250
out-of-scope queries. To avert class imbalancing,
we further subsample only 1000 in-scope data for
BERT, ROB and DROB model. We also pretrained
BERT with in-scope data beforehand as BERT™.
Eventually we train different LMs as specified in §
3.4 and detect OOS queries with pLDA.

4.3 Experimental Setting

We use Sentence-Transformers package (Reimers
and Gurevych, 2019) to implement our framework.
We first pretrain the LMs with P1-SSP. We train
for 4 epochs in batches of 16. We also set the
max length as 200 and mask probability of 0.15.
For P2-CACL, we train each model with 2 epochs
in batches of 8. And for supervised contrastive
learning, we randomly sample n = 500 positive
query pairs for each class and train models with
10 epochs in batches of 10. Margin v is set to be
5. We set the threshold 7" in pLDA as -1.7 for
CLINC and 0 for BANKING empirically. We use
the AdamW optimizer and 2e — 5 learning rate and
weight decay rate is 0.01. We run each experiment
5 times and report the average. We follow the met-
rics used in Perkins and Yang (2020) for clustering
precision/recall, f1 score and accuracy.

5 Results and Discussion

5.1

The main results are summarized in Table 2. First
we observe that by directly deploying general

Main Clustering Results



Dataset TwACS AskUbuntu

Pretraining LM | Loss P [ R | FI [ACC P [ R | FI [ ACC

MNEG || 53.8 | 422 | 473 | 394 | 73.8 | 61.6 | 67.2 | 579

DROB (Sanh et al., 2020) TL 514 | 425 | 46,5 | 40.0 | 71.5 | 59.7 | 65.1 56.8

OCL 479 | 346 | 40.2 | 32.8 | 66.3 | 54.8 | 60.0 | 52.4
777777777777777 MNEG || 51.4 [ 40.7 | 45.4 | 387 | 7397 624 [ 677 ] 59.2 ~

ROB (Liu et al., 2019) TL 55.1 | 429 | 483 | 409 | 729 | 62.8 | 67.5 | 60.1

OCL 435 | 383 | 40.8 | 359 | 69.5 | 56.8 | 62.5 | 534
777777777777777 MNEG || 53.8 [ 45.5 | 493 | 44.0 | 72271 63.5 [ 676 | 62.2 ~

BERT (Devlin et al., 2019) | TL 549 | 41.6 | 473 | 39.0 | 744 | 634 | 68.4 | 62.0

OCL 48.8 | 359 | 414 | 330 | 72.0 | 59.6 | 652 | 57.5

Table 3: Clustering Performance (%) of our proposed approach with different pretraining LMs and losses. The best
results are in bold. We use MLM pretraining for all BERT-based structures.

BERT or DialoGPT, universal representations do
not reveal clear boundaries for intent separation,
causing relatively low performances. Training with
conversational data like TOD-BERT offers better
disentanglement of intent features for each sample.
We then observe even competitive performance
when we apply SBERT dual-encoder structure. The
results suggest that the pretraining objectives and
corpus may substantially influence the downstream
clustering task. This prompts us to finetune pre-
trained LMs like BERT and TOD-BERT with P1-
SSP. The results unanimously suggest the improved
performance even over the baselines by using pre-
vious SOTA Avkmeans algorithm in AskUbuntu.

The power of contrastive learning By introduc-
ing the P2-CACL, the proposed approaches achieve
the best performance across two datasets, partic-
ularly at NCP+CACL+k-means in TwACS and
MCM+CACL+MVSC in AskUbuntu. They suc-
cessfully establish an intent subspace where utter-
ances are close to their contexts, which congruently
approximates the process of disclosing their under-
lying latent intents. Such cross-instance similari-
ties are especially useful when we compare these
representations based on distance metrics, rather
than simply learning a MLP-based mapping from
each sentence to its class. In addition, we also
see that NCP by differentiating correct utterance-
context pair has slight improvement in TwWACS over
MLM, while we see MCM surpasses MLM more
in AskUbuntu setting with MVSC approach. The
context-aware pretraining (MCM, NCP) seem to
be more beneficial in MVSC where contexts are
considered, than single-view k-means approach.

Impacts of input LMs and losses Table 3 dis-
plays the results by adopting different pretrained
LMs and losses from § 3.1 during P2-CACL. It
verifies the versatility and wide applicability of
our proposed method. But the model variants may
still naturally impact the absolute clustering perfor-
mance. Surprisingly, we see a better performance
of BERT-based structure over RoOBERTa, which de-

(a) TwACS

x1/64 x1/16 x1/4 x1/2
Number of training data
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x1/256 x1

(b) AskUbuntu

x1/64 x1/16 x1/4 x1/2 x1
Number of training data

EmFl
mACC

x1/256

No CACL

Figure 3: Varying the amount of the training data for
Phase-2 CACL; x 1 refers to the training size used in all
experiments, while other data sizes are relative to this
corpus size (e.g. x1/64 denotes we only use 1/64 of
all data for training.)

duces the pretraining objectives may play crucial
roles of dominating how clusters are formed. The
comparison between DROB and BERT reveals that
loss regime influences more than the parameter ca-
pacity in TwACS; reversely in AskUbuntu. Overall,
both MNEG and TL yield similar strong results,
while OCL is poor by using only hard examples.
Amount of training examples We also analyze
what amount of in-domain corpus is adequate to
fairly discriminate utterances’ intents, i.e. to be
decently separable upon projection onto the latent
intent space. We reduce the amount of data through
subsampling The scores are provided in Figure
3. As expected, more training data yield better
performance on average while the absolute scores
reach the bottleneck after increasing up to 1/4 of
total training data. It implies that even few samples
may fairly discriminate the utterance and surpass
the models skipping Phase-2.

5.2 Ablation Study

A more careful ablation comparison is conducted in
Table 4 to investigate the effects of different stages
of pretraining and filtering method. Experimental



Dataset TwACS AskUbuntu

SSP | CACL ] Filtered | Clustering P | R [ FI [ACC P R [ F1I [ ACC

MLM | v v k-means 538 | 455 | 493 | 44.0 | 722 | 63.5 67.6 | 62.2
"MIM | vV T v T MVSC ~ |[ 02| 52| -33 1 -5 | +43.6 | +01 | +1.6 | -03

MLM | v k-means +1.1 -1.3 -0.3 =33 -0.8 -3.4 2.3 -3.8

v v k-means -0.2 2.4 -1.5 -4.2 -3.1 -3.0 -3.0 -5.1

v k-means +3.3 | +0.0 | +1.4 -2.9 -3.7 -5.8 -5.0 -6.6

MLM k-means -184 | -21.7 | -20.8 | -21.2 | -14.1 | -17.9 | -16.5 | -17.1

NCP k-means -16.2 | -17.5 | -17.2 | -18.8 | -22.8 | -20.1 | -21.4 | -22.6

MCM k-means -17.9 | -19.7 | -19.3 | -20.2 | -19.8 | -21.1 | -20.7 | -22.5
77777 T |77 7 7 T kmeans || -27.57| -26.0 | -26.9 | 282 | -49.5 | -47.9 | -49.1 | 484

Table 4: Ablation study (%) of our proposed approach with different component combination. SSP is the Phase-1
pretraining. CACL is the Phase-2 contrastive learning. Filtered is whether to use whole context or only filtered
one. Clustering denotes the cluster method. Data points are specified as difference compared with the first row

comprehensive model.

results indicate that all of components are necessary
to achieve the peak performance in both datasets.
Around 3-4 % performance drop is observed when
we do not perform context filtering where redun-
dant noises may disturb. Forfeiting P1-SSP will
result in further drops where we believe it will
benefit the model discrimination ability of seman-
tically similar utterances. In addition, we found
large performance drops by only adopting P1-SSP
in all three pretraining methods, which indicates
the necessity of contrastive learning in differenti-
ating samples with aid of their contexts. We also
found that NCP is more beneficial in TwACS and
MLM in AskUbuntu than P2-only models.

5.3 Out-of-scope Detection

Unsupervised detection Figure 4 shows the ROC
curves of our unsupervised outlier detectors in both
datasets. We could observe with varying thresh-
old T, the specificity (True negative rate) will be
inversely proportional to recall where our classi-
fier predicts more outliers correctly and incorrectly.
But surprisingly, without any label supervision,
pLDA could still achieve around average 0.7 AUC
score. We observe models pretrained with MLM
perform better in TWACS and MCM in AskUbuntu.
It alludes that models rely more on contexts in
AskUbuntu with more turns than TwACS. In ad-
dition, we care more about the recall than the pre-
cision since precision errors will prompt fallback
responses to make users reiterate. Hence, we could
sacrifice little on in-scope accuracy and achieve
higher recall by tuning 7T'.

Supervised detection Table 5 indicates the results
of supervised OOS detection. We could observe
that binary classification with LMs may give a
high in-domain accuracy and low recall since the
model tends to overfit, significantly depending on
the amount of OOS data during training (extreme
low recall by leveraging all in-scope data). In-

Dataset CLINC BANKING
Classifier | Detector | TN | R TN [ R
BERT-all | binary 99.5 | 16.4 | 98.8 | 3.70

"BERT | binary || 94.4 | 4657 933 | 32.6
BERT* binary 989 | 439 | 95.0 | 189
ROB binary 97.3 | 52.5 | 94.6 | 36.8
DROB binary 97.5 | 51.8 | 93,5 | 43.6

"S-BERT | pLDA = || 94.3 | 5227 925 | 51.6
S-ROB pLDA 96.4 | 55.6 | 93.5 | 67.0
S-DROB pLDA 944 | 532 | 91.8 | 62.0
S-BERT* | pLDA 934 | 555 | 93.7 | 559

Table 5: Experimental results (%) of OOS detection
using different supervised pretraining strategies. * indi-
cates that the model is finetuned with in-domain corpus.
TN refers to the true negative rate and R refers to Recall.

stead, even not relying on OOS train data, our
method could still achieve competitive true neg-
ative rates while maintaining superior recall espe-
cially in BANKING. In this case, Phase-1 pretrain-
ing seems to be less conducive to assist in out-of-
scope detection. Models with RoOBERTa backbone
perform much better than the other model variants.
Figure 4 also shows the PR curve for OOS detec-
tion. By specifying the same range of available
thresholds, we observe that models with RoBERTa
backbone have both higher precision and recall.
Even models with DistilRoBERTa backbone may
have competitive results with BERT-based model.

5.4 t-SNE visualization

To understand how well the latent space is formu-
lated where encoded utterances are mapped onto,
we perform t-SNE visualization in Figure 5 on three
types of representations generated with disparate
pretrained encoders. First, we could see without
any finetuning, utterances with distinct intents are
entangled into a single mixed cluster. After Phase-1
of transforming LMs into conversational encoders,
we start to see some clusters with intents apart.
Eventually, Phase-2 further specializes the sentence
encoder to learn meaningful task-related semantic
clusters even without any label supervision.



(a) ROC Curve in Unsupervised Out-of-scope Detection
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(b) PR Curve in Supervised Out-of-scope detection
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Figure 4: (a) ROC curves for proposed unsupervised OOS approach. The score behind the model name in each legend indicates
the Area-Under-Curve (AUC) score. (b) PR curves for proposed supervised OOS approach.

(a) BERT (no fine-tuning)

(b) BERT (Phase 1: MCM)

(c) BERT (Phase 1: MCM + Phase 2: CACL)

Figure 5: t-SNE plots of encoded utterances from AskUbuntu. The representations are created by BERT-based
encoder ¢ (a) without any finetuning (b) after Phase 1 MCM pretraining and (c) after Phase 1 and phase 2 contrastive

learning. The colors are true labels.

6 Related Work

User intent clustering Clustering user utterances
to discover new intents is a critical task that disam-
biguates utterances. Early works focused on feature
engineering for query traits to perform high-quality
clustering (Kathuria et al., 2010; Cheung and Li,
2012; Padmanabhan, 2016). Haponchyk et al.
(2018) further leveraged supervised signals to de-
tect duplicate questions. Samir Kanaan-Izquierdo
and Perera-Lluna (2018) also proposed multi-view
spectral clustering to consider consistent cluster as-
signments across different views. Deep clustering
was proposed to better represent data features (Xie
etal., 2016; Zhang et al., 2021a; Chang et al., 2017,
Nguyen et al., 2021). Perkins and Yang (2020) fur-
ther finetuned pretrained representations for multi-
view kmeans clustering.

Out-of-scope detection Until recently, the idea
of OOS data is considered to address possibility
of queries that fall out of intended output classes
(Hendrycks and Gimpel, 2018). Usually the prob-
lem is formed as a binary classification task where
Larson et al. (2019) provided a large-scale evalua-
tion dataset with some benchmark classifier results.
Data augmentation (Zhan et al., 2021; Chen and Yu,
2021) and outlier detection (Lin and Xu, 2019; Yil-
maz and Toraman, 2020; Cavalin et al., 2020) are
two main streams to tackle such problem. Here we
introduce new concepts of detecting OOS queries

from probabilistic formed intent clusters.
Contrastive learning Models trained with con-
trastive learning have rendered striking perfor-
mances in many NLP tasks (Casanueva et al., 2020;
Gunel et al., 2021; Zhang et al., 2021b). In partic-
ular, Gunel et al. (2021) proposed supervised con-
trastive learning for pretrained models on several
benchmark tasks. Wu et al. (2019) trained models
to learn dialog orders. Zhang et al. (2021b) and
Vuli€ et al. (2021) proposed to transform pretrained
LMs by masking tokens and response reanking;
leveraging similarity-based learning for few-shot
intent detection. Our work differs from them that
we specifically tackle the intent clustering task with
entirely unsupervised fashion.

7 Conclusion

In this work, we present a simple yet effective two-
phase self-supervised pipeline to induce dialog in-
tents with clustering and detect OOS queries ac-
cordingly. We propose to transform LMs into con-
versational encoders and retrain them with context-
aware similarity-based learning. We demonstrate
that by extracting such intent-aware representa-
tions, it is possible to separate dialogs based on
their underlying intents. Without any supervision,
we could flexibly obtain decent recall on precluding
queries that do not belong in task-specific domains.
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