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Abstract

Intent detection is one of most critical tasks in001
prevalent task-oriented dialog systems. How-002
ever, most systems could only identify a fixed003
set of intents, without covering a ubiquitous004
space of real-world semantics. Inducing new005
dialog intents or excluding out-of-scope (OOS)006
queries are crucial particularly in complex do-007
mains like customer support. We present a sim-008
ple yet effective intent induction schema via009
pre-training and contrastive learning. In partic-010
ular, we first transform pretrained LMs into con-011
versational encoders with in-domain dialogs.012
Then we conduct context-aware contrastive013
learning to reveal latent intent semantics via014
coherence from dialog contexts. By composing015
a fine-grained intent subspace from in-scope do-016
main data, we demonstrate the effectiveness of017
our approach to induce intents with simple clus-018
tering algorithms and detect outliers with prob-019
abilistic linear discriminant analysis (pLDA).020
The experimental results validate the robust-021
ness and versatility of our framework, which022
also achieves superior performances over com-023
petitive baselines without label supervision.024

1 Introduction025

Recent advances of task-oriented agents such as026

Apple Siri, Amazon Alexa or Google DialogFlow027

have prompted the success of improving more nat-028

ural customer service automation (Zhang et al.,029

2020b). They have been widely adapted in sev-030

eral domains like booking flights, restaurants, and031

customer support. Usually, the very first step of es-032

tablishing such systems is to determine appropriate033

ontologies that constrain the dialog intent and state034

space for a specific task (Weld et al., 2021).035

However, most works with such assumptions036

usually categorize utterances into few simple in-037

tents; yet exclude further pragmatic intent discov-038

ery in the real world (Hendrycks and Gimpel, 2018).039

Dialogs with different levels of stylized interac-040

tions may experience disparate variations of intent041

fluidity, where the scope of intents varies. In com-042

plex domains like customer support and healthcare,043

Figure 1: Example of dialogs in TwACS dataset. First
two examples have different narration but expressed
the same intents. The last example has two different
responses after identifying the query as in-scope (IS) or
out-of-scope (OOS).

users may not be fully cognizant of the system capa- 044

bilities, where ‘out-of-scope’ (OOS) queries would 045

reasonably emerge during dialogs that fall out of 046

bounds of system-supported intent scopes (Larson 047

et al., 2019). Systems which can barely enumerate 048

a complete view of user intents will easily fail to 049

recognize an emerging intent during shifts between 050

domains or chit-chats, as shown in Figure 1. 051

Second, unlike (written) texts, spoken utterances 052

do not come with clear sentential segmentation 053

by topographic means (Jonathan Ginzburg, 2010). 054

This poses a more challenging understanding task 055

for recent systems. Perkins and Yang (2020) in- 056

troduced the dialog induction task to cluster user 057

query utterances. It aims to learn a good discrim- 058

inative classifier that predicts the same intents for 059

utterances and their corresponding contexts. How- 060

ever, the performance may be degraded if repre- 061

sentations of encoders trained from misleading ob- 062

jectives are hard to separate with accurate deci- 063

sion boundaries (Vulić et al., 2021). We argue that 064

discovering fine-grained representations may be 065

a more critical aspect of retrieving their latent in- 066

tents that could be easily differentiated with simple 067

clustering. In addition, OOS queries may still be 068
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allocated in one of intent clusters in their method.069

Recently, contrastive learning based on pre-070

trained Language Models (LM) such as BERT (De-071

vlin et al., 2019) or RoBERTa (Liu et al., 2019), of-072

fers striking state-of-the-art (SOTA) performances073

across multiple natural language processing tasks074

(NLP) (Casanueva et al., 2020). They aim to en-075

hance discrimination abilities of models by relying076

on semantic similarity between utterances, which077

exactly aligns with the clustering objectives based078

on the distance metrics. Hence, instead of em-079

phasizing on algorithms that seek decision bound-080

aries between data, is it possible to directly learn a081

good intent space where projected samples are dis-082

tributed densely in clusters and easily segregated?083

Second, how could we quickly adapt pretrained084

LMs into a task-specific operator that generate such085

representations and discriminate OOS samples?086

To solve the above two concerns and mitigate087

the data scarcity issue, we propose an entirely un-088

supervised approach without labeled instances to089

induce new dialog intents and exclude OOS queries090

from a large non-annotated corpus. Intuitively, we091

first deploy two-phase pre-training on LMs to learn092

a good representation that both inherits the coher-093

ence characteristics within dialogs and is easily094

discriminated semantically. Then we introduce a095

cluster operator to assign each query representa-096

tion with their intents and exclude OOS ones with097

Probabilistic Linear Discriminant Analysis (pLDA)098

(Ioffe, 2006). We show that our pipeline is highly099

versatile to incorporate different LMs, pretraining100

strategies and cluster algorithms to tailor in each101

domain. The threshold in pLDA could be flexible102

chosen to trade off between accuracies of detecting103

IS/OOS queries.104

Our contributions are summarized as follows:105

1) We make the first attempt of introducing con-106

trastive learning in the dialog induction task with-107

out any label supervision.108

2) We introduce a flexible algorithm with a tunable109

threshold to detect OOS queries by forming clus-110

ters with only in-domain queries.111

3) Experimental results verify the SOTA perfor-112

mance of our approach on two intent induction113

datasets and demonstrate the effectiveness of de-114

tecting OOS queries with self-supervised learning.115

2 Problem Formulation116

In this section, we first follow Perkins and Yang117

(2020) to formulate the dialog induction task as118

the clustering task. Suppose we have a training119

corpus of unannotated dialogs X ∈ X where each120

sample has the following format: xi = (ui, ci), 121

ui is the first query utterance and ci with N − 1 122

length is the following contexts. We hope to find 123

an optimal operator f : X → Y, Y ⊆ RK to 124

assign a new query utest an one-hot vector y rep- 125

resenting its cluster id k. We introduce a function 126

ϕθ : X → Z that maps an input into a hidden 127

space Z ∈ RH , where we restrict ϕθ in a lan- 128

guage model function class Φ. We will finally try 129

to find a good set of parameters θ and best f s.t. 130

y∗test = argminϕ∈Φ,f,y J(ϕθ(utest), f) over some 131

clustering objective function J . We are also inter- 132

ested in detecting an OOS signal yoos ∈ R2 for 133

utest whether a query is in domain, i.e. ytest ∈ Y . 134

3 Methodology 135

3.1 P1: Self-supervised Pre-training (SSP) 136

We first deploy three language learning strategies 137

to adapt pretrained LMs into conversational tasks: 138

Mask Language Modeling (MLM), Mask Context 139

Modeling (MCM) and Next Context Prediction 140

(NCP). We first concatenate each utterance ui and 141

their contexts ci with ‘[SEP]’ as xi. Then, we will 142

retrieve the feature representation hi for the entire 143

dialog xi with each token as xt
i with a pretrained 144

LM, ϕθ(·) that implicitly learns sentential and con- 145

versational structures. We use two different projec- 146

tion matrices Wv ∈ RH×|V | and Wc ∈ RH×2 to 147

transform hi into one-hot vectors ŷi, where H is 148

BERT hidden size and |V | is vocabulary size. We 149

then update the parameters θ and Wv or Wc to 150

minimize the cross entropy losses as follows: 151

Lv(θ,Wv) = − 1

N

N∑
i=1

T∑
t=1

yilog⟨ϕθ(x
t
i),Wv⟩

(1)

152

Lc(θ,Wc) = − 1

N

N∑
i=1

yilog⟨ϕθ(xi),Wc⟩ (2) 153

1) MLM: Similarly in BERT, we perform masking 154

on 15% of input tokens xi with 80% of the time a 155

special token ‘[MASK]’, 10 % of the time random 156

word tokens from vocabulary and others remaining 157

the same; and update LM with loss in Eq 1. 158

2) MCM: MLM does not take any account of se- 159

quential relations between utterances and their con- 160

texts. Instead, we only mask tokens in the contexts 161

ci to explicitly condition on utterances for token 162

prediction and update LM with loss in Eq 1. 163

3) NCP: We directly predict whether the entire di- 164

alog is reasonable based on ui and the given ci. 165

And update LM with the loss in Eq 2. For each ui, 166
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Figure 2: Illustration of the proposed framework for dialog intent induction and out-of-scope detection. There are
four phases including pretraining and detection. ūi means it is randomly masked. Conv is short for Conversational.

we also randomly sample a negative context cj\i to167

construct a negative pair (xi, cj\i).168

3.2 P2: Context-aware contrastive Learning169

(CACL)170

To better align with the downstream metric-based171

clustering, inspired by the recent success of con-172

trastive learning in few-shot setting (Vulić et al.,173

2021; Zhang et al., 2021b), we found it is rather174

appropriate to introduce similarity-based pretrain-175

ing for retrieving distant-sensitive1 representations176

for clustering, instead of pseudo labeling samples177

directly. As shown in Lee et al. (2021) of con-178

trastive learning setting, if we have the input vari-179

able X1 and its target random variable X2 for the180

pretext task, given the knowledge of their latent181

label Y , one can possibly predict X2 without know-182

ing much about X1. At this case, X2 is approxi-183

mately independent of X1 conditional on the label184

Y (X1 ⊥ X2|Y ). In other words, if we try to learn185

a good representation ϕ(x1) close to ϕ∗ in Eq 3186

by semantically minimizing distances between X1187

and X2, we implicitly force LMs to first predict188

Y ; and predict X2 from Y . And we could possibly189

linearly separate such learned representations ϕ∗190

with small representation errors.191

ϕ∗ = argmin
ϕ∈Φ

E||ϕ(X1)− ϕ(X2)||2 (3)192

In our case, X1 and X2 are the given utterance193

queries and their corresponding contexts. Intu-194

itively, successful dialogs should preserve coher-195

ence where X1 and X2 should be driven by the196

same underlying intent Y , regardless of being197

causes or effects of the intent. It elucidates that with198

a good representation ϕ∗, we shall easily cluster X1199

based on similarity by inducing their underlying200

1Here we mean the mapped representations preserve the
topological information within a latent intent space.

intents Y . Therefore, we leverage the dual-encoder 201

architectures to model the relevance between an 202

utterance and their context pair (u, c). We will use 203

the pretrained encoder ϕ(·) from section 3.1 to ob- 204

tain (hu,hc). And we take the final encoding from 205

the ‘[CLS]’ token via a pooling operation. 206

Context Filtering Before sending data pairs into 207

the encoder, some redundant sentences ci in the 208

dialog contexts c = {ci} may cause frictions to 209

obfuscate user intents. Therefore, instead of en- 210

coding all dialog contexts, we first obtain the hid- 211

den representations for each sentence in a dialog 212

(hu,h
1
c , ...,h

L−1
c ) where L is the dialog length. 213

Then we calculate the distance (cosine similarity) 214

between each dialog context representation and 215

the utterance. Eventually, we take the closest con- 216

text as the final sentence pair (hu,h
i′
c ) , where 217

i′ = argmini∈[1,L−1] cos(hu,h
i
c). 218

For a given pair (hu,h
i′
c ), we then introduce 219

three strategies to finetune our encoder ϕ. 220

1) Context Ranking: We leverage the standard 221

multiple negatives ranking loss (MNEG) (Hender- 222

son et al., 2017) to rank the correct context c′i 223

for the utterance ui over other negative contexts 224

c′j\i′ /∈ {ci} in a single batch. MNEG loss for a 225

single batch (u1, c1), ..., (uNB
, cNB

) is calculated 226

as the following: 227

LMNEG =−
NB∑
i=1

S · cos(ui, ci) 228

+

NB∑
i=1

log

NB∑
j=1,j ̸=i

eS·cos(uj ,cj) (4) 229

where S is a scaling factor. It will try to maximize 230

correct match score and abate negative scores. 231

2) Online Contrastive Learning (OCL): We se- 232

lect only hard positive and negative pairs to update 233

the contrastive loss (Robinson et al., 2021), where 234
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d(ui, cj) = 1− cos(ui, cj) and γ is the margin:235

LOCL =

{
d(ui, cj)

2 if j = i′

(ReLU(γ − d(ui, cj)))
2 if j ̸= i′

(5)

236

3) Triplet Loss (TL): Finally we also try to com-237

pare positive and negative pairs at once by mini-238

mizing the following triplet loss:239

LTL = max(γ + cos(ui, c
′
i)− cos(ui, cj ̸=i′), 0)

(6)
240

It will prompt the minimization of the distance241

from the anchor example and approximate that of242

the negative example to the margin γ.243

3.3 Clustering244

After two-phase context learning, our main goal245

is to induce the intents from a collection of new246

user queries. We follow Perkins and Yang (2020)247

to formulate it as an unsupervised clustering task248

that involves two popular clustering algorithms249

k-means and spectral clustering as an operator250

f : x → k(x) = mk(x), where k(x) is the clus-251

ter id associated with its mean mk(x). k-means252

only requires the query-view vectors from our pre-253

trained encoder ϕ while multi-view spectral clus-254

tering (MVSC) will solicit both query-view and255

content-view representations for matching.256

3.4 Out-of-scope (OOS) Detection257

After forming the query clusters, we are further258

interested whether such in-domain gaussian-like259

distributions could help us exclude the future out-260

of-scope queries. Here we propose to use the idea261

of Probabilistic Linear Discriminant Analysis262

(pLDA) (Ioffe, 2006) with predicted labels gener-263

ated from our kmeans operator f(·). The goal of264

pLDA is to further project query samples onto a265

latent space such that samples from the same class266

remain in the same distribution. It can generate267

class center using continuous non-linear functions268

even from single example of unseen class. By first269

obtaining the predicted labels yi from clustering,270

we could model both the distribution of utterances271

x ∼ N(x|y, ϕw) and class labels y ∼ N(y|m,Φb),272

where m is the parameter, Φw and Φb are the273

within/between-class covariance matrices. Latent274

variables u, v will represent the example of class275

and class variable in the projected space. For each276

class yk, we compute the mean latent representa-277

tions ūk from utterances belonging to class yk. Fi-278

nally, for a new test query xtest, we could calculate279

Dataset # Samples # Intent # Domain
TwACS (Perkins and Yang, 2020) 28,857 14 1 (Airline)
AskUbuntu (Perkins and Yang, 2020) 69,927 20 1 (Ubuntu)
CLINC (Larson et al., 2019) 23,700 150 10
BANKING (Casanueva et al., 2020) 13,083 77 1 (Banking)

Table 1: Statistics for Intent Datasets.

the likelihood ratio Rk with each class’s ūk: 280

R(utest, ūk) =
P (utest, ūk)

P (utest)P (ūk)
(7) 281

If all of R(utest, ūk) are below a threshold T , we 282

could conclude the query is out-of-scope that does 283

not belong to any of the in-domain clusters. 284

Supervised Fine-tuning To further validate the 285

pLDA-based OOS detection performance from 286

trained representations, we also perform similarity- 287

based contrastive learning on datasets with K la- 288

bels available. We generate a sets of n positive 289

pairs (xi,xj) for each intent yk and obtain totally 290

K × n samples. Then, we use LM encoder ϕ(·) 291

to generate representations ϕ(xi), ϕ(xj). Then we 292

adopt MNEG loss mentioned above to conduct the 293

ranking task. Finally, we use the pairs (ϕ(xi), yi) 294

to train pLDA model and perform OOS detection. 295

4 Experimental Setup 296

4.1 Datasets 297

We collect four datasets with two of them (TwACS, 298

AskUbuntu) having smaller amount of annotated 299

user intents (Perkins and Yang, 2020) and two of 300

them (CLINC, BANKING) (Larson et al., 2019) 301

with much larger intent annotated corpus. Table 1 302

shows the data statistics. For pretraining and con- 303

trastive learning purposes, we only use unlabeled 304

corpus for training. For supervised contrastive 305

learning, we use labeled training corpus from 306

CLINC and BANKING. For evaluation datasets, 307

there are three experimental settings: 308

1) Clustering: we use all annotated dialogs in 309

TwACS and AskUbuntu to verify our model’s per- 310

formance on the dialog intent induction task. 311

2) Unsupervised OOS: we first generate pseudo 312

training set by first sampling n = 6000 dialogs 313

xi ∈ X as Xs; then obtain their representations 314

ϕ(xi) and their assigned clusters ŷi = f(ϕ(xi)) 315

via k-means as data pairs (ϕ(xi), ŷi). We use these 316

training datasets to assess necessary parameters 317

from pLDA. For evaluation, we randomly select 318

1000 samples from OOS test sets from CLINC and 319

BANKING as OOS samples and select 1000 sam- 320

ples from IS training sets Xt ∈ X (Xt ∩ Xs = ∅). 321

3) Supervised OOS: we directly use the training 322

data (ϕ(xi), yi) where yi is the true label for pLDA 323
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Dataset TwACS AskUbuntu
Pretraining Method Clustering P R F1 ACC P R F1 ACC
Autoencoder (Perkins and Yang, 2020) k-means 27.1 18.7 22.2 15.9 27.9 19.3 22.8 14.4
Autoencoder (Perkins and Yang, 2020) MVSC 29.3 21.2 24.6 18.9 28.6 13.0 17.9 11.2
Autoencoder (Perkins and Yang, 2020) Avkmeans 46.0 33.6 38.9 31.6 50.2 43.8 46.8 36.2
QT (Logeswaran and Lee, 2018) Avkmeans 51.1 38.1 43.7 35.9 56.6 55.1 55.8 43.2
DialoGPT (Zhang et al., 2020a) k-means 28.2 16.2 20.6 15.1 20.1 15.4 17.5 13.3
BERT (Devlin et al., 2019) k-means 26.3 19.5 22.4 15.8 22.7 15.6 18.5 13.8
TOD-BERT (Wu et al., 2020) k-means 28.7 22.8 25.4 16.4 36.8 30.5 33.3 28.6
SBERT (Reimers and Gurevych, 2019) k-means 37.6 28.0 32.1 26.7 53.3 44.8 48.7 41.5
BERT∗ (Devlin et al., 2019) k-means 35.4 23.8 28.5 22.8 58.1 45.6 51.1 45.1
TOD-BERT∗ (Wu et al., 2020) k-means 33.7 21.4 26.2 20.6 55.0 47.7 51.1 45.6
BERT (NCP + CACL) (ours) k-means 55.1 46.8 50.6 42.4 68.3 52.6 59.5 47.8
BERT (MLM + CACL) (ours) k-means 53.8 45.5 49.3 44.0 72.2 63.5 67.6 62.2
BERT (MCM + CACL) (ours) k-means 47.5 37.0 41.6 34.6 76.8 63.0 69.2 61.2
BERT (NCP + CACL) (ours) MVSC 53.0 43.5 47.8 42.0 74.2 61.2 67.1 58.0
BERT (MLM + CACL) (ours) MVSC 53.6 40.3 46.0 39.0 75.8 63.6 69.2 61.9
BERT (MCM + CACL) (ours) MVSC 51.6 40.7 45.5 38.1 76.1 64.3 69.7 63.2

Table 2: Evaluation results (%) on TwACS and AskUbuntu datasets for different pretrain and cluster strategies. QT
is short for Quick Thoughts. ∗ indicates the model has been finetuned with in-domain corpus. NCP, MLM, MCM
denote the different pretraining methods, followed by contrastive learning (CACL). The best results are in bold.

training. For evaluation, we combine the in-domain324

test set and OOS test set as the final testing set.325

4.2 Model Variants and Baselines326

We experiment with competitive baselines from327

some popular transformer-based LMs and cluster-328

ing approaches. The pretraining methods include:329

1) Autoencoders (Perkins and Yang, 2020) which330

are finetuned on TwACS and AskUbuntu datasets.331

2) Quick thoughts (QT) (Logeswaran and Lee,332

2018) which is a strong representation learning333

baseline that is adopted in BERT.334

3) DialoGPT (Zhang et al., 2020a) which is335

generative model trained with dialog corpus.336

4) BERT (Devlin et al., 2019) which is a contextu-337

alized representation model based on transformers.338

5) TOD-BERT (Wu et al., 2020) which is339

finetuned on conversational data based on BERT.340

6) Sentence-BERT (SBERT) (Reimers and341

Gurevych, 2019) which deploys dual-encoder342

structure for similarity training.343

344

We also experiment with a range of model345

variants enabled by our framework, and compare346

their performances against an array of cutting-347

edge conversational sentence encoders. The en-348

tire pipeline is specified as LM+P1+P2-LOSS,349

where we adopt a LM structure and pretrain it with350

Phase-1 (P1) pretraining and Phase-2 (P2) learn-351

ing with specific loss (LOSS). For LMs, we use 1)352

BERT, 2) RoBERTa (ROB) as an improved vari-353

ant of BERT, LM-pretrained with more data and354

3) DistilRoBERTa (DROB), a distilled version of355

RoBERTa, trained with around 4 times fewer data356

than the teacher RoBERTa model. All of models357

contain 768-dimensional transformer layers with358

12 (BERT, ROB) or 6 (DROB) attention layers. For 359

P1, we have pretraining methods: MLM, MCM, 360

NCP. And we use MNEG, TL, OCL for P2-LOSS. 361

For OOS detection, we use binary classification 362

with pretrained LMs as our baselines. BERT-all 363

indicates that we train all in-scope data and 250 364

out-of-scope queries. To avert class imbalancing, 365

we further subsample only 1000 in-scope data for 366

BERT, ROB and DROB model. We also pretrained 367

BERT with in-scope data beforehand as BERT∗. 368

Eventually we train different LMs as specified in § 369

3.4 and detect OOS queries with pLDA. 370

4.3 Experimental Setting 371

We use Sentence-Transformers package (Reimers 372

and Gurevych, 2019) to implement our framework. 373

We first pretrain the LMs with P1-SSP. We train 374

for 4 epochs in batches of 16. We also set the 375

max length as 200 and mask probability of 0.15. 376

For P2-CACL, we train each model with 2 epochs 377

in batches of 8. And for supervised contrastive 378

learning, we randomly sample n = 500 positive 379

query pairs for each class and train models with 380

10 epochs in batches of 10. Margin γ is set to be 381

5. We set the threshold T in pLDA as -1.7 for 382

CLINC and 0 for BANKING empirically. We use 383

the AdamW optimizer and 2e− 5 learning rate and 384

weight decay rate is 0.01. We run each experiment 385

5 times and report the average. We follow the met- 386

rics used in Perkins and Yang (2020) for clustering 387

precision/recall, f1 score and accuracy. 388

5 Results and Discussion 389

5.1 Main Clustering Results 390

The main results are summarized in Table 2. First 391

we observe that by directly deploying general 392
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Dataset TwACS AskUbuntu
Pretraining LM Loss P R F1 ACC P R F1 ACC

DROB (Sanh et al., 2020)
MNEG 53.8 42.2 47.3 39.4 73.8 61.6 67.2 57.9
TL 51.4 42.5 46.5 40.0 71.5 59.7 65.1 56.8
OCL 47.9 34.6 40.2 32.8 66.3 54.8 60.0 52.4

ROB (Liu et al., 2019)
MNEG 51.4 40.7 45.4 38.7 73.9 62.4 67.7 59.2
TL 55.1 42.9 48.3 40.9 72.9 62.8 67.5 60.1
OCL 43.5 38.3 40.8 35.9 69.5 56.8 62.5 53.4

BERT (Devlin et al., 2019)
MNEG 53.8 45.5 49.3 44.0 72.2 63.5 67.6 62.2
TL 54.9 41.6 47.3 39.0 74.4 63.4 68.4 62.0
OCL 48.8 35.9 41.4 33.0 72.0 59.6 65.2 57.5

Table 3: Clustering Performance (%) of our proposed approach with different pretraining LMs and losses. The best
results are in bold. We use MLM pretraining for all BERT-based structures.

BERT or DialoGPT, universal representations do393

not reveal clear boundaries for intent separation,394

causing relatively low performances. Training with395

conversational data like TOD-BERT offers better396

disentanglement of intent features for each sample.397

We then observe even competitive performance398

when we apply SBERT dual-encoder structure. The399

results suggest that the pretraining objectives and400

corpus may substantially influence the downstream401

clustering task. This prompts us to finetune pre-402

trained LMs like BERT and TOD-BERT with P1-403

SSP. The results unanimously suggest the improved404

performance even over the baselines by using pre-405

vious SOTA Avkmeans algorithm in AskUbuntu.406

The power of contrastive learning By introduc-407

ing the P2-CACL, the proposed approaches achieve408

the best performance across two datasets, partic-409

ularly at NCP+CACL+k-means in TwACS and410

MCM+CACL+MVSC in AskUbuntu. They suc-411

cessfully establish an intent subspace where utter-412

ances are close to their contexts, which congruently413

approximates the process of disclosing their under-414

lying latent intents. Such cross-instance similari-415

ties are especially useful when we compare these416

representations based on distance metrics, rather417

than simply learning a MLP-based mapping from418

each sentence to its class. In addition, we also419

see that NCP by differentiating correct utterance-420

context pair has slight improvement in TwACS over421

MLM, while we see MCM surpasses MLM more422

in AskUbuntu setting with MVSC approach. The423

context-aware pretraining (MCM, NCP) seem to424

be more beneficial in MVSC where contexts are425

considered, than single-view k-means approach.426

Impacts of input LMs and losses Table 3 dis-427

plays the results by adopting different pretrained428

LMs and losses from § 3.1 during P2-CACL. It429

verifies the versatility and wide applicability of430

our proposed method. But the model variants may431

still naturally impact the absolute clustering perfor-432

mance. Surprisingly, we see a better performance433

of BERT-based structure over RoBERTa, which de-434
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Figure 3: Varying the amount of the training data for
Phase-2 CACL; ×1 refers to the training size used in all
experiments, while other data sizes are relative to this
corpus size (e.g. ×1/64 denotes we only use 1/64 of
all data for training.)

duces the pretraining objectives may play crucial 435

roles of dominating how clusters are formed. The 436

comparison between DROB and BERT reveals that 437

loss regime influences more than the parameter ca- 438

pacity in TwACS; reversely in AskUbuntu. Overall, 439

both MNEG and TL yield similar strong results, 440

while OCL is poor by using only hard examples. 441

Amount of training examples We also analyze 442

what amount of in-domain corpus is adequate to 443

fairly discriminate utterances’ intents, i.e. to be 444

decently separable upon projection onto the latent 445

intent space. We reduce the amount of data through 446

subsampling The scores are provided in Figure 447

3. As expected, more training data yield better 448

performance on average while the absolute scores 449

reach the bottleneck after increasing up to 1/4 of 450

total training data. It implies that even few samples 451

may fairly discriminate the utterance and surpass 452

the models skipping Phase-2. 453

5.2 Ablation Study 454

A more careful ablation comparison is conducted in 455

Table 4 to investigate the effects of different stages 456

of pretraining and filtering method. Experimental 457
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Dataset TwACS AskUbuntu
SSP CACL Filtered Clustering P R F1 ACC P R F1 ACC
MLM ✓ ✓ k-means 53.8 45.5 49.3 44.0 72.2 63.5 67.6 62.2
MLM ✓ ✓ MVSC -0.2 -5.2 -3.3 -5 +3.6 +0.1 +1.6 -0.3
MLM ✓ k-means +1.1 -1.3 -0.3 -3.3 -0.8 -3.4 -2.3 -3.8

✓ ✓ k-means -0.2 -2.4 -1.5 -4.2 -3.1 -3.0 -3.0 -5.1
✓ k-means +3.3 +0.0 +1.4 -2.9 -3.7 -5.8 -5.0 -6.6

MLM k-means -18.4 -21.7 -20.8 -21.2 -14.1 -17.9 -16.5 -17.1
NCP k-means -16.2 -17.5 -17.2 -18.8 -22.8 -20.1 -21.4 -22.6
MCM k-means -17.9 -19.7 -19.3 -20.2 -19.8 -21.1 -20.7 -22.5

k-means -27.5 -26.0 -26.9 -28.2 -49.5 -47.9 -49.1 -48.4

Table 4: Ablation study (%) of our proposed approach with different component combination. SSP is the Phase-1
pretraining. CACL is the Phase-2 contrastive learning. Filtered is whether to use whole context or only filtered
one. Clustering denotes the cluster method. Data points are specified as difference compared with the first row
comprehensive model.

results indicate that all of components are necessary458

to achieve the peak performance in both datasets.459

Around 3-4 % performance drop is observed when460

we do not perform context filtering where redun-461

dant noises may disturb. Forfeiting P1-SSP will462

result in further drops where we believe it will463

benefit the model discrimination ability of seman-464

tically similar utterances. In addition, we found465

large performance drops by only adopting P1-SSP466

in all three pretraining methods, which indicates467

the necessity of contrastive learning in differenti-468

ating samples with aid of their contexts. We also469

found that NCP is more beneficial in TwACS and470

MLM in AskUbuntu than P2-only models.471

5.3 Out-of-scope Detection472

Unsupervised detection Figure 4 shows the ROC473

curves of our unsupervised outlier detectors in both474

datasets. We could observe with varying thresh-475

old T , the specificity (True negative rate) will be476

inversely proportional to recall where our classi-477

fier predicts more outliers correctly and incorrectly.478

But surprisingly, without any label supervision,479

pLDA could still achieve around average 0.7 AUC480

score. We observe models pretrained with MLM481

perform better in TwACS and MCM in AskUbuntu.482

It alludes that models rely more on contexts in483

AskUbuntu with more turns than TwACS. In ad-484

dition, we care more about the recall than the pre-485

cision since precision errors will prompt fallback486

responses to make users reiterate. Hence, we could487

sacrifice little on in-scope accuracy and achieve488

higher recall by tuning T .489

Supervised detection Table 5 indicates the results490

of supervised OOS detection. We could observe491

that binary classification with LMs may give a492

high in-domain accuracy and low recall since the493

model tends to overfit, significantly depending on494

the amount of OOS data during training (extreme495

low recall by leveraging all in-scope data). In-496

Dataset CLINC BANKING
Classifier Detector TN R TN R
BERT-all binary 99.5 16.4 98.8 3.70
BERT binary 94.4 46.5 93.3 32.6
BERT∗ binary 98.9 43.9 95.0 18.9
ROB binary 97.3 52.5 94.6 36.8
DROB binary 97.5 51.8 93.5 43.6
S-BERT pLDA 94.3 52.2 92.5 51.6
S-ROB pLDA 96.4 55.6 93.5 67.0
S-DROB pLDA 94.4 53.2 91.8 62.0
S-BERT∗ pLDA 93.4 55.5 93.7 55.9

Table 5: Experimental results (%) of OOS detection
using different supervised pretraining strategies. ∗ indi-
cates that the model is finetuned with in-domain corpus.
TN refers to the true negative rate and R refers to Recall.

stead, even not relying on OOS train data, our 497

method could still achieve competitive true neg- 498

ative rates while maintaining superior recall espe- 499

cially in BANKING. In this case, Phase-1 pretrain- 500

ing seems to be less conducive to assist in out-of- 501

scope detection. Models with RoBERTa backbone 502

perform much better than the other model variants. 503

Figure 4 also shows the PR curve for OOS detec- 504

tion. By specifying the same range of available 505

thresholds, we observe that models with RoBERTa 506

backbone have both higher precision and recall. 507

Even models with DistilRoBERTa backbone may 508

have competitive results with BERT-based model. 509

5.4 t-SNE visualization 510

To understand how well the latent space is formu- 511

lated where encoded utterances are mapped onto, 512

we perform t-SNE visualization in Figure 5 on three 513

types of representations generated with disparate 514

pretrained encoders. First, we could see without 515

any finetuning, utterances with distinct intents are 516

entangled into a single mixed cluster. After Phase-1 517

of transforming LMs into conversational encoders, 518

we start to see some clusters with intents apart. 519

Eventually, Phase-2 further specializes the sentence 520

encoder to learn meaningful task-related semantic 521

clusters even without any label supervision. 522
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Figure 4: (a) ROC curves for proposed unsupervised OOS approach. The score behind the model name in each legend indicates
the Area-Under-Curve (AUC) score. (b) PR curves for proposed supervised OOS approach.

(a) BERT (no fine-tuning) (b) BERT (Phase 1: MCM) (c) BERT (Phase 1: MCM + Phase 2: CACL)

Figure 5: t-SNE plots of encoded utterances from AskUbuntu. The representations are created by BERT-based
encoder ϕ (a) without any finetuning (b) after Phase 1 MCM pretraining and (c) after Phase 1 and phase 2 contrastive
learning. The colors are true labels.

6 Related Work523

User intent clustering Clustering user utterances524

to discover new intents is a critical task that disam-525

biguates utterances. Early works focused on feature526

engineering for query traits to perform high-quality527

clustering (Kathuria et al., 2010; Cheung and Li,528

2012; Padmanabhan, 2016). Haponchyk et al.529

(2018) further leveraged supervised signals to de-530

tect duplicate questions. Samir Kanaan-Izquierdo531

and Perera-Lluna (2018) also proposed multi-view532

spectral clustering to consider consistent cluster as-533

signments across different views. Deep clustering534

was proposed to better represent data features (Xie535

et al., 2016; Zhang et al., 2021a; Chang et al., 2017;536

Nguyen et al., 2021). Perkins and Yang (2020) fur-537

ther finetuned pretrained representations for multi-538

view kmeans clustering.539

Out-of-scope detection Until recently, the idea540

of OOS data is considered to address possibility541

of queries that fall out of intended output classes542

(Hendrycks and Gimpel, 2018). Usually the prob-543

lem is formed as a binary classification task where544

Larson et al. (2019) provided a large-scale evalua-545

tion dataset with some benchmark classifier results.546

Data augmentation (Zhan et al., 2021; Chen and Yu,547

2021) and outlier detection (Lin and Xu, 2019; Yil-548

maz and Toraman, 2020; Cavalin et al., 2020) are549

two main streams to tackle such problem. Here we550

introduce new concepts of detecting OOS queries551

from probabilistic formed intent clusters. 552

Contrastive learning Models trained with con- 553

trastive learning have rendered striking perfor- 554

mances in many NLP tasks (Casanueva et al., 2020; 555

Gunel et al., 2021; Zhang et al., 2021b). In partic- 556

ular, Gunel et al. (2021) proposed supervised con- 557

trastive learning for pretrained models on several 558

benchmark tasks. Wu et al. (2019) trained models 559

to learn dialog orders. Zhang et al. (2021b) and 560

Vulić et al. (2021) proposed to transform pretrained 561

LMs by masking tokens and response reanking; 562

leveraging similarity-based learning for few-shot 563

intent detection. Our work differs from them that 564

we specifically tackle the intent clustering task with 565

entirely unsupervised fashion. 566

7 Conclusion 567

In this work, we present a simple yet effective two- 568

phase self-supervised pipeline to induce dialog in- 569

tents with clustering and detect OOS queries ac- 570

cordingly. We propose to transform LMs into con- 571

versational encoders and retrain them with context- 572

aware similarity-based learning. We demonstrate 573

that by extracting such intent-aware representa- 574

tions, it is possible to separate dialogs based on 575

their underlying intents. Without any supervision, 576

we could flexibly obtain decent recall on precluding 577

queries that do not belong in task-specific domains. 578
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