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ABSTRACT

Training large models with millions or even billions of parameters from scratch
incurs substantial computational costs. Parameter Efficient Fine-Tuning (PEFT)
methods, particularly Low-Rank Adaptation (LoRA), address this challenge by
adapting only a reduced number of parameters to specific tasks with gradient-
based optimizers. In this paper, we cast PEFT as an optimal filtering/state estima-
tion problem and present Low-Rank Kalman Optimizer (LoKO) to estimate the
optimal trainable parameters in an online manner. We leverage the low-rank de-
composition in LoRA to significantly reduce matrix sizes in Kalman iterations and
further capitalize on a diagonal approximation of the covariance matrix to effec-
tively decrease computational complexity from quadratic to linear in the number
of trainable parameters. Moreover, we discovered that the initialization of the co-
variance matrix within the Kalman algorithm and the accurate estimation of the
observation noise covariance are the keys in this formulation, and we propose ro-
bust approaches that work well across a vast range of well-established computer
vision and language models. Our results show that LoKO converges with fewer
iterations and yields better performance models compared to commonly used op-
timizers with LoRA in both image classifications and language tasks. Our study
opens up the possibility of leveraging the Kalman filter as an effective optimizer
for the online fine-tuning of large models.

1 INTRODUCTION

The widespread adoption of deep neural networks, particularly large models, across various fields
is mainly driven by the pre-training on extensive datasets followed by task-specific fine-tuning (Han
et al.l 2024). In recent years, the concept of online fine-tuning has attracted significant attention
across diverse domains, ranging from robotics (Yang et al., [2024; [Fang et al. 2022} Julian et al.,
2020), reinforcement learning (Zheng et al., |2022; [Nakamoto et al., [2024)), computer vision (Gao
et al., 2023} [Kang et al., |2020), and natural language processing (Fan et al., 2024). Online fine-
tuning refers to the process of continually updating a pre-trained model’s parameters as new data in a
temporal stream of data becomes available, typically during deployment or in real-time applications.
As online full fine-tuning requires substantial computational resources and can negatively impact the
generalization capabilities(Han et al., [2024), Parameter-Efficient Fine-Tuning (PEFT) techniques
freeze the majority of the model parameters and selectively update a smaller subset. Among PEFT
approaches, the Low-Rank Adaptation (LoRA) technique has recently been widely recognized due
to its efficient adaptation with low computational overhead (Han et al., 2024)). Many extensions to
LoRA have also been proposed to improve its learning capacity and training stability (Liu et al.,
2024} Zhang et al.,|2023} |Renduchintala et al., 2023; Dettmers et al., [2024 |Valipour et al., [2022)).

In these PEFT approaches, stochastic gradient descent (SGD) has been the dominant method for the
parameter optimization. The adaptive first-order optimizers, such as Adam (Kingma & Bal 2014)
and its variants, have demonstrated superior performance compared to traditional SGD ones(Ruder,
2016), as evidenced by their widespread adoption in LoRA extensions. Despite the simplicity and
efficacy of these gradient-based optimizers, they exclusively rely on first-order derivatives, which
may result in (sub-)optimal convergence and inefficient optimization (Reddi et al., 2019).

In contrast, many previous works (Singhal & Wu, [1988; 1989} [Puskorius & Feldkampl 1991}
Williams), [1992; Heimes), |1998}; [Rivals & Personnaz, |1998)) showed that recursive Extended Kalman
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Filter (EKF) algorithm — a method for state estimation of nonlinear systems using a data stream
introduced by Kalman & Bucy| (1961) — can optimize relatively small models with performance
surpassing the gradient-based counterparts. This achievement remained obscure until when |OI-
livier| (2018)) theoretically demonstrated that EKF is effectively equivalent to online natural gradient
descent. This offers a new perspective on advanced optimization: instead of relying on complex
techniques, we can recursively infer the optimal parameters as state estimation. However, despite
the commendable performance of the EKF in training neural models, its practicality has been ham-
pered, especially with the advent of large models. Pariticularly, the EKF algorithm involves several
sequential operations, including Linearization, Prediction, and Update steps, all of which entail sig-
nificant computational overhead. The size of the crucial covariance matrix in EKF can even grow
quadratically with the number of model parameters involved in training.

In this paper, we leverage the low-rank decomposition technique from LoRA to reduce the number
of trainable parameters in specific layers. We show that the EKF algorithm can be particularly
useful for fine-tuning as fine-tuning only involves a small portion of model parameters. We intro-
duce LoKO, a Kalman-based training algorithm, as an alternative to advanced optimizers for online
fine-tuning of large models. Particularly, our contributions are:

* Based on the Low-Rank Adaptation (LoRA) method, introduced by Hu et al.| (2021)), which
significantly reduces the number of trainable parameters, we demonstrated its compatibil-
ity with the Kalman filter. Also, we showed that this combination offers faster performance
than traditional optimizers in online fine-tuning scenarios.

* We employ a diagonal approximation for the covariance matrix P2, a common approach to
reduce the computational overhead from quadratic to linear. By integrating this with the
exponential moving average (EMA) for estimating the matrix R and incorporating it into
the LoRA framework, we achieve improved performance without additional computational
cost.

* We conduct various experiments to demonstrate LoKO’s performance in online fine-tuning
classification tasks across computer vision and language modeling domains.

* To the best of our knowledge, this is the first successful attempt to fine-tune large and com-
plex models, including transformers with millions of parameters, using the Kalman filter
algorithm.

In summary, LoKO shows outstanding performance on computer vision and language modeling
benchmarks: MNIST (LeCun et al., |1998), CIFAR-10/100 (Krizhevsky et al.l 2009), ImageNet100
(Vinyals et al.,2016), SST-2 (Socher et al.,[2013), COLA (Warstadt, 2019), MRPC (Dolan & Brock-
ett,2005)). This paper contributes to ongoing efforts to develop a more efficient and fast optimization
algorithm for online fine-tuning of increasingly more complex large models.

2 RELATED WORK

Parameter-Efficient Fine-Tuning (PEFT): Traditional full fine-tuning typically demands sig-
nificant computational resources and may damage the model’s generalization ability, occasionally
leading to catastrophic forgetting (Han et al., 2024). In contrast, Parameter-Efficient Fine-Tuning
(PEFT) efficiently freezes a portion of the parameters while updating a reduced number of trainable
ones to mitigate these issues. Three primary approaches for PEFT are commonly used: plug-in
adapters, parameter freezing and model reparameterization. Plug-in adapters refer to the techniques
of introducing an extra trainable adapter module to the pre-trained model, as demonstrated in works
such as (Chen et al| 2024} |Gao et al,, |2024). Parameter freezing is to freeze selected model pa-
rameters and update only a targeted subset, like BitFit (Zaken et al.,|2021)), Child-Tuning (Xu et al.,
2021)), IA3 (Liu et al., [2022)), and FISH Mask (Sung et al.;|2021). Model reparameterization, as the
name suggests, reparameterizes model parameters using typically the Low-Rank Adaptation (LoRA)
technique, which adds low-rank weight matrices as trainable parameters(Hu et al., 2021). Multiple
extensions to LoRA have been proposed to improve learning capacity and training stability. For
instance, DoRA (Liu et al., |2024) decomposes pre-trained weights into magnitude and direction
components to minimize the number of trainable parameters more efficiently. AdaLoRA(Zhang
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et al., |2023) utilizes singular value decomposition (SVD) to dynamically allocate the parameter
budget based on importance scoring. Tied-LoRA(Renduchintala et al., 2023)) leverages weight tying
and selective training to reduce the number of trainable parameters further. To optimize the memory
efficiency, QLoRA (Dettmers et al.| 2024), QA-LoRA (Xu et al.,2023), and LoftQ (Li et al., [2023)
address the issue of memory usage by quantization technique. DyLoRA (Valipour et al.} 2022) is a
dynamic search-free LoRA to avoid exhaustive search for the most optimal rank. However, all these
extensions utilize the Adam optimizer or its variants like AdamW in parameter optimization.

Kalman Filter for Optimizing Neural Networks: The idea of using the Kalman filter as param-
eter optimization in deep learning comes from Singhal & Wu|(1988)), which showed that the process
of training neural networks can be conceptualized as tackling a system identification challenge for a
nonlinear dynamic system, and thus Extended Kalman Filter (EKF) can be used to train neural net-
work parameters. The superior performance of the Kalman-based training algorithm compared to
the traditional backpropagation technique drew attention to exploring the relationship between these
two classical algorithms (Ruck et al.}|1992;|Ollivier,[2018)). To make the Kalman filter more scalable,
several studies have addressed the computational complexity associated with this training algorithm,
notably using matrix partitioning techniques (Shah & Palmieri, |1990; [Shah et al.| |1992; |[Puskorius &
Feldkamp, |1991), and a low-dimensional (block-)diagonal approximation of the covariance matrix
(Murtuza & Chorianl [1994). Only recently, |Ollivier| (2018} 2019) demonstrated that training with
a Kalman filter is, in fact, equivalent to an online natural gradient descent. This finding renewed
interest in this training method once again. Various studies have since addressed the scalability
challenges of the EKF optimizer. For example, |(Chang et al.| (2022) introduced a diagonal Gaus-
sian approximation, while |(Chang et al.[|(2023) proposed a low-rank plus diagonal decomposition of
the posterior precision matrix. Hennig et al.| (2024) developed a matrix-free iterative algorithm to
further enhance efficiency. In the context of factorization models, (Gémez-Uribe & Karrer| (2021)
introduced a decoupled EKF (DEKF). Furthermore, EKF has been applied to several specialized ar-
eas, such as continual learning (Titsias et al., 2023)), test-time adaptation (Schirmer et al., | 2024)), and
reinforcement learning (Shashua & Mannor, [2019; 2020} [Shashua & Mannor [Totaro & Jonsson,
2021; |Shih & Liang, 2024). Other notable work includes loss adaptivity in the Kalman optimiza-
tion algorithm (Davtyan et al.,|2022)), the Bayesian online natural gradient (Jones et al., 2024), and
approaches for handling nonstationary data in online learning (Jones et al.| 2022bja). However, the
practical implementation of these methods remained infeasible for large models.

3  PRELIMINARIES AND BACKGROUND

3.1 EXTENDED KALMAN FILTER (EKF)
Consider a general state-space model:

sp = f(xk, Sk—1) + Wy, (1a)
Yr = h(x, Si) + v, (1b)

where s; € R”, yr € R™, and x;, € RP denote the states, measurement, and input vectors at time
k, respectively. In this framework, the function f(-) is called the process model or the state transition
function, and h(-) is the measurement model or observation function. In addition, wy, ~ N (0, Q%)
and vy, ~ N(0, Ry,) represent process noise and observation noise, respectively. These noises are
assumed to have known distributions, typically white Gaussian noise with zero mean. The problem
of state estimation for a nonlinear system, as depicted by equation can be addressed through
the well-established recursive EKF algorithm (Welch et al.| [1995)). In the following, we detail the
various steps involved in implementing the extended Kalman filter (EKF):

¢ Prediction:

Skik—1 = f(Tk,Sk—1) (2a)
Pyi—1 = Fy Py 1 F +Qy (2b)

where s ,_1 and Py are predicted (or prior) states and covariance, respectively. Fj
denotes the Jacobian matrix of the function f(-) with respect to states at time k.
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¢ Updating:

K, = Py H) (H, Py H + Ry,)™" (3a)
S = Spjp—1 + Ki(yr — h(Tk, Spjp—1)) (3b)
P, = Py — Ky Hp Py (30)

where K}, is the Kalman gain, and H}, indicates the Jacobian matrix of the function h(-)
with respect to the states at time k. Finally, si and Py, are updated (or posterior) states and
covariance matrix.

3.2 LoOWwW-RANK ADAPTATION (LORA)

Low-Rank Adaptation (LoRA) (Hu et al.|2021)) is a technique designed to efficiently fine-tune large
pre-trained neural networks by reducing the number of trainable parameters. Instead of updating
the entire pre-trained weight matrix, LoRA introduces a low-rank decomposition that captures the
essential changes needed for fine-tuning. Consider a layer in a neural network with a pre-trained
weight matrix W, € R%*9, where d and ¢ represent the dimensions of the weight matrix. The
output of this layer can be expressed as:

z=Wyx+ AWx “4)

Here, x is the input vector, and AW represents the adjustment to the weights during fine-tuning.
LoRA modifies this by introducing two smaller matrices, A € R"*% and B € RI%" where r is the
chosen rank with » < min(d, ¢). The update to the weight matrix is then expressed as:

2 — Wox + BAx 5)

At the beginning of training, the matrix A is initialized with a random Gaussian distribution
N(O0, oI ), and matrix B is initialized to zero. Using this low-rank decomposition, LoRA reduces
the number of trainable parameters from d x ¢ to 7 x (d 4 ¢), where r is much smaller than d and
g. This technique can be applied on certain layers of a neural network model, h(x, 0), resulting
in a re-parameterized version, hr,ra(x, ), with a reduced number of trainable parameters. This
reduction enables efficient fine-tuning of large models, making it feasible to apply the Kalman filter.

4 LOW-RANK KALMAN OPTIMIZER

4.1 KALMAN FORMULATION FOR LORA

Consider a pre-trained model in which certain layers are scaled down using the LoRA method. The
modified model is parameterized by a reduced set of trainable parameters 6;, € R", where 71 < n:

Ui = hrora(xr, Or). (6)

Here, x;, € RP denotes the model input and 9, € R™ represents the predicted output in the k"
observed data. Let us adopt yy as the true output. The y;, represents the predicted values for the
regression tasks and the predicted probabilities for the classification tasks. In both scenarios, the
predicted output g, can be interpreted as the mean parameter of a Gaussian distribution over the
actual output yy. This relationship can be expressed as white noise as vy ~ N (0, Ry), where
R;, = Cov(yr|gr). More broadly, g; serves as the mean parameter for an exponential family
distribution over T'(yy,), where T'(-) denotes the sufficient statistics for the exponential family. In this
case, Ry = Cov(T(yx)|yx) denotes the covariance matrix of the exponential family distribution.

Several approximations for the matrix R, have been proposed in the literature. One common ap-
proach is to approximate it as the identity matrix, Ry ~ I, as shown in (Puskorius & Feldkamp,
1991; Murtuza & Chorianl, (1994). Other formulations include R, = I - e k/ 50(Singhal & Wul,
1988; |1989)), and a more recent approximation, Ry = diag(yx) — yky,;r(Ollivier, 2018; [Chang
et al., |2022). To obtain a more precise approximation of Ry, we employ an Exponential Moving
Average (EMA) approach based on the definition of the covariance matrix for estimating the matrix

R;,. We make the simplifying assumption that ), ~ ék‘k,l, allowing us to compute the covariance
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matrix as follows:

Ry, = BRy_1 + (1 - B)Ry, (7a)
. . ~ T
where Ry = (yk — hrora(®y, 0k|k71)> (yk — hrora(xk, 91@\1@71)) ; (7b)

and 8 € (0, 1) is the forgetting factor. The proofs and detailed derivations can be found in Appendix
for more details.

LoKO estimates the (sub-)optimal values of LoRA matrices A and B in real-time data streams
through the Kalman algorithm. To formulate the online fine-tuning problem within the Kalman fil-
tering framework, we assume there are no feedback loops in machine learning model, for example, a
feed-forward neural network and transformers. This assumption enables us to consider the trainable
parameters that are represented as the state vector of the process model (0, = sy,). Furthermore, the
process model (or transition function) can be modeled as an identity function f(xy, ék,l) =01
with no process noise (wy, = 0), which provides the prediction of the states at the next time step as
0, =0, ;. Finally, by defining y,. = hrora (g, ék) + v}, as the measurement model (or observa-
tion function), we can apply the recursive Kalman filter algorithm to estimate (sub-)optimal values
of 6 k-

Although the low-rank decomposition by LoRA offers a significant reduction in parameter size com-
pared to the original parameter space n, the size of the covariance matrix P scales quadratically with
the number of trainable parameters n. For large models such as deep neural networks, characterized
by high-dimensional trainable parameters, the computational cost of implementing the Kalman al-
gorithm becomes prohibitively expensive due to its 722 complexity. To address this challenge, one
strategy involves decoupling the update phase of the Kalman filtering algorithm into smaller par-
titions, as outlined by [Puskorius & Feldkamp) (1991), which, however, may be infeasible for large
models with millions of trainable parameters. The other approach is to approximate the covariance
matrix P with low-dimensional matrices. Our empirical findings demonstrate that as the fine-tuning
algorithm progresses, the covariance matrix of the feed-forward neural network asymptotically ap-
proaches a (block-)diagonal configuration:

E[p] = diag(P). 3

Therefore, we adopt a diagonal approximation of the covariance matrix, denoted as p. This approx-
imation significantly reduces both computational and storage costs.

Proposition 1. Leveraging the low-rank decomposition technique in LoRA and applying the diago-
nal approximation of covariance matrix, the steps of the Low-Rank Kalman Optimizer (LoKO) can
be outlined below:

 Prediction:

Opji—1 = Ox—1 (%a)
Dilk—1 = Pk—1 (9b)

* Pre-Updating:
R, = BRy_1+ (1 - PRy, (10a)

* Updating:
R R -1

K, = Pyjr—1  H (Hy(Prjr—1  Hy ) + Ri) (11a)
O = 01 + Ki(yr — hrora(zy, ék\k—l)) (11b)
B1)" = (Prjp—1)" — (Kk); (Hy)! (rjp—1)" (11¢)

where the symbol e represents the transposed Khatri—Rao product, which is essentially the
row-by-row Kronecker product of the vector py,—1 and matrix H ,;r . The equation
represents the diagonal update of the covariance matrix, expressed with Einstein notation.
For more details, see Appendix|B|
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Note that the operations used in equation [ITa] and equation [TTc| can be computed efficiently. For
example, in PyTorch, they can be seamlessly implemented using the *, and einsum() operators,
streamlining the computational process.

Importantly, in the above formulation, the matrix inversion required in the Kalman gain equation|[TTa]
has a dimension of m?2, where m represents the size of the model output. This implies that the
computational cost of the matrix inversion remains constant regardless of the size of the model.
Consequently, whether the model is small or large, the computational expense of this operation
remains constant, offering a consistent performance characteristic across different model sizes. In
contrast, many advanced optimizers such as the Natural Gradient Descent (NGD) necessitate the
inversion of the full pre-condition matrix (like the Fisher information matrix in NGD), which is
of high dimensionality. Moreover, the computation of the Jacobian matrix H}, does not require
individual backpropagation processes for each output component. Leveraging GPU capabilities
allows for parallel computation and thus efficiently streamlines the process.

4.2 INITIALIZATION OF P & APPROXIMATION OF R

Initialization of py: Our findings demonstrate that the initialization of pg plays a crucial role in
the performance of the filter as a training algorithm. High values of pg indicate high uncertainty or
lack of confidence in the initial learning parameters, which can result in the Kalman filter making
large corrections and experiencing potential instability and divergence. In contrast, initialization
Po with very low values suggests high confidence in the initial learning parameters. In this case,
the filter will heavily trust the initial model parameters. If these initial parameters are inaccurate,
this can lead to slow updates or even no updates at all, as the filter gives insufficient weight to new
measurements. Proper initialization of p,y balances these extremes, ensuring that the filter can adapt
appropriately to new data while maintaining stability and accuracy throughout the training process.
Therefore, it is essential to establish both upper and lower bounds for py. To ensure the initialization
of po = [p1,p2,..-Pi, ..., Pn] yields a positive definite diagonal matrix, we examined two methods
for initialization of pg:

* Method 1: Setting a constant positive value: p; = ¢ Vi.

* Method 2: Assigning random positive values drawn from a uniform distribution: p; ~
U (0, upper_bound) Vi.

Our experiments show that precisely estimating the Ry, matrix greatly influences the bounds of py.
The more accurate the estimation of Ry, the broader the acceptable range for the initial pg.

Approximation of R;: In addition to the method described in equation [/} we propose an alter-
native method for approximating the observation noise covariance, Ry, with enhanced accuracy
and without additional computation cost. Specifically, we incorporate an additional term from the
first-order Taylor to approximate changes more precisely:

Ry = BRy 1 + (1 - B)Ry, (12a)

R ~ ~ T ) .

where Ry = (yk — hrora(xk, 9k\k4)) (yk — hpora(xk, 0k|k71)) + Hy(Prjp—1 @ Hy )
(12b)

with the forgetting factor of 5 € (0, 1). Note that this method will not add extra computational cost
since the operation of H},(py|—1 ¢ H, ,j ) will be part of the Kalman gain calculation in equation
See Appendix [B]for more details.

5 EXPERIMENTS AND ANALYSIS

5.1 EXPERIMENTS SETUP

We assess the performance of LoKO by implementing it in various well-established computer vision
and language models. Our computer vision experiments involve online fine-tuning for image classi-
fication on the MNIST dataset using DenseNet-121 with 7 million parameters (Huang et al.,|2017)),
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the CIFAR-10/100 dataset with ResNet-18 and ResNet-50 (He et al.| 2016), and ViT-B16 (Dosovit-
skiyl 2020), which contain 12 million, 26 million, and 86 million parameters, respectively. Further-
more, we evaluated ImageNet100 using ViT-L16 (Dosovitskiyl, 2020), 305 million parameters. For
text classification tasks, we examine the SST-2, CoLA, and MRPC datasets using RoBERTa-base
and RoBERTa-large (Liu, 2019), which have 125 million and 355 million parameters, respectively.
We employ the following pre-trained models as backbones for our fine-tuning experiments:

* For MNIST/DenseNet-121, we used a backbone pre-trained on ImageNet via PyTorch Image
Models (timm) (Wightman et al.,2023)).
» For CIFAR-10/ResNet18 and CIFAR-100/ResNet50, we employed pre-trained models from (He
et al., 2016), which were trained on ImageNet as the backbone.
» For CIFAR-10/ViT-B16, CIFAR-100/ViT-B16, and ImageNet100/ViT-L16, we used DINOv2
(Oquab et al.| |2023)), which was pre-trained on ImageNet.
* For the language tasks we employed RoBERTa pre-trained model from (Liu, 2019).

We use AdamW (Loshchilov & Hutter,[2017) and AdaGrad (Duchi et al.,[2011)) as baseline methods
since they are widely used in LoRA. We set the batch size to 1 so that the learning algorithms train
the models in the context of online classification tasks at each time step. We configure AdamW with
a linear learning rate decay schedule (weight_decay=0.0001), starting from le-4, which empirically
yields the highest accuracy after a preliminary sweep of various learning rates and schedules. In ad-
dition, 51 and [ for this optimizer are set to 0.9 and 0.999, respectively. Furthermore, the learning
rate of AdaGrad is set to 0.001 with no weight decay. The hyperparameters in our LoKO algorithm
are set according to our discussion in The diagonally approximated covariance vector py is
initialized with random numbers sampled from a uniform distribution between 0 and 0.2. Further-

more, we use our second method for Ry, estimation, and the forgetting factor for the EMA is set to
B = 0.95. We also adopt the pre-trained models introduced by (Caron et al.,|2021)) as the backbone
for our fine-tuning experiments with ViT. The low-rank decomposition is applied on guery layers
in transformer-based architectures and convolution layers in CNN networks. All experiments are
conducted on an A100 GPU platform three times and the average and standard deviation of them
are reported.

5.2 MAIN RESULTS

We use two primary evaluation metrics in our study. First, we calculate the moving average of the
loss with a window size of 1000. Second, we measure the average online accuracy, as adopted by
Cai et al.[(2021), up to the current timestep k. The average online accuracy is defined as acc(k) =

3 Zle 1.4 (y:), where 1.4(-) is an indicator function, and A is the set of Top1 or Top5 prediction.
This metric is computed online during the training process and serves to evaluate the algorithm’s
capacity to incorporate new knowledge in real-time. We evaluate the convergence speed of LoKO by
comparing the number of observations required to achieve equivalent loss or accuracy levels across
different algorithms. Figure [I] 2] illustrate LoKO’s performance in online fine-tuning for image
and language classification, compared to LoRA with AdamW and AdaGrad, across various well-
established models and datasets. The figures illustrate L1 losses for images and cross-entropy losses
for texts, along with accuracy during training. These results demonstrate that LoKO consistently
matches or surpasses the performance of alternative optimizers. Additionally, Tables|I]and 2] present
the average and standard deviation of online accuracy for a single epoch of online fine-tuning. Note
that for COLA and MRPC datasets, we performed multiple epochs due to their smaller dataset sizes.
These results demonstrate that across all models and datasets, LoKO consistently outperforms (and
in some cases performs almost equivalently) the other methods by achieving the highest average
online accuracy with LoKO. The lower standard deviation in LoKO’s results also highlights its
more consistent and robust performance compared to other methods. Furthermore, it is important
to emphasize that (sub-)optimal values of the trainable parameters can be attained across a range
of LoKO hyperparameters, provided they fall within the permissible initialization interval. This
contrasts with gradient-based optimizers, whose performance is highly sensitive to the selection of
appropriate hyperparameters, particularly the learning rate.

Finally, as can be seen in Table |2 LoKO demonstrates slightly lower performance than AdamW
on certain language tasks. A justification for this observation is the fact that the AdamW optimizer
benefits from the decoupled weight decay, which has contributed to its strong performance in lan-
guage modeling tasks (Xie & Li,[2024). On the other hand, the gradient-free Kalman algorithm used
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Figure 1: Performance of LoKO (blue) compared to LoRA/AdamW (red) and LoRA/AdaGrad
(green) for different computer vision datasets and models. The upper rows show the training loss,
and the lower rows display the average online accuracy versus the number of observed data.

in LoKO does not incorporate a similar regularization mechanism, which may explain the slightly
lower performance in certain cases compared to AdamW.

At the end, we conducted supplementary experiments by applying the Kalman filter on the DoRA
variant of LoRA. These experiments were performed on transformer-based models, and the results
were compared against those obtained using AdamW and AdaGrad. The corresponding outcomes
are presented in Figure |3 and E| in Appendix |§| as well as Table |I{ and 2l As shown, the results
are promising for the Kalman algorithm, demonstrating its compatibility and effectiveness when

integrated with this Weight-Decomposed Low-Rank Adaptation technique (Liu et al., 2024).

5.3 ABLATION OF INITIALIZATION AND COVARIANCE APPROXIMATION

Initialization of py: Initializing Py requires prior knowledge of the network weights and their
associated uncertainties. In the absence of such knowledge, almost any initial values for pg can be
chosen, provided they are not too close to zero, and in some cases, they are not too far from an
upper bound. To develop a comprehensive understanding of the behavior of the initialization of pg,
we begin by evaluating its impact on training from scratch using the Kalman filter. The MNIST
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Table 1: Results for MNIST, CIFAR-10/100, and ImageNet100 datasets across various neural net-
work models. The table presents the average and standard deviation of online accuracy achieved
during a single epoch of online fine-tuning with different methods, where higher values indicate
better performance. The boldfaced numbers represent the best values achieved for each column.

MNIST | CIFAR-10 | CIFAR-100 | ImageNet100

Method DemseNet121 ResNetl8  VIT-BI6  ResNetS0  ViTB16  VIiTLl6

LoKO(ours) 98.17:|:0,56 96.05:|:0_12 99.93:|:0_05 79-39i0.12 91.56i0.40 97.71i0,22

LoRA/AdamW 94.73+0.65 65.9840.52 98.9840.49 60.3940.40 85.9540.40 95.1340.13
LoRA/AdaGrad 86.22i4‘10 61.83i0_10 99-17i0.20 40.62io_05 80.04i0,87 93-91i1,28

DoRA/Kalman — — 99.8440.03 — 92.1740.58 97.9640.05
DoRA/AdamW — — 98.8240.02 — 89.4340.18 94.5040.08
DoRA/AdaGrad — — 99.0110.04 — 85.3941.11 92.8840.06

Table 2: Results for SST-2, COLA, and MRPC datasets across various neural network models. The

table presents the average and standard deviation of online accuracy achieved during online fine-

tuning with different methods, where higher values indicate better performance. For SST-2, we

conducted a single epoch of training. For COLA and MRPC, we performed multiple epochs due to

their smaller dataset sizes. The bolded numbers represent the maximum values for each column.
SST-2 | COLA | MRPC

ROBbasc ROBla'rgc ROBbase ROBla'rge ROBbasc ROBlargc

Method

LoKO (ours) 88.4140.2 88.2140.1 83.67+0.3 82.6940.4 89.17+0.3 88.70+0.6

LoRA/AdamW 89.5540.1 90.6640.2 84.4140.1 86.19499 90.95+0.3 93.0440.4
LoRA/AdaGrad  87.7910.2 86.2541.1 78.3140.0 79.7240.3 81.9840.1 83.8841.1

DoRA/Kalman 88.3240.2 88.76+0.2 84.05+0.0 83.33+0.1 89.64+40.34  89.49+0.27
DoRA/AdamW  89.6440.1 90.50+0.6 84.37+0.1 85.33+15 91.4840.2 93.57+0.1
DoRA/AdaGrad  87.994¢.1 86.75+0.7 78.2940.1 79.5140.7 82.0240.4 83.87+0.0

dataset is employed for experimentation, utilizing the LeNet-5 architecture due to its fast training
speed and low computational demands. Our experiments combine two proposed methods for ini-
tializing po with four widely used parameter initialization strategies: Xavier Uniform and Xavier
Normal (Glorot & Bengio, [2010), as well as Kaiming Uniform and Kaiming Normal (He et al.|
2015). Figure[6[in Appendix [D[illustrates the average online accuracy of the MNIST dataset after
1000 iterations of training from scratch. As shown, when pg values are set far from the lower and
upper bounds, the algorithm diverges, resulting in low prediction accuracy. The results indicate that
initializing po with random values drawn from a uniform distribution (second method) provides a
robust and wide range of choices for py without causing divergence. Our experiments demonstrate
that as long as the initialization falls within an acceptable range, the filter will eventually converge
to the optimal values. Notably, the optimal values are not highly sensitive to the initial covariance
matrix. To obtain the upper bounds for our case studies, we conducted a series of experiments across
a wide range of initial values and tracked the average online accuracy. If the accuracy doesn’t reach
a specific threshold within a predetermined number of iterations, we consider the test to have di-
verged. The boundary values derived from this analysis have been reported in Table (4| in Appendix
@ specifically for case studies where an upper bound for the initial values of the covariance matrix
is defined. To the best of our knowledge, no general criterion exists for this selection, and only a few
studies have addressed the issue of initialization such as (Heimesl |1998; Rivals & Personnaz, |1998).

Approximation of R: Our proposed methods for approximating Ry, are presented in Table [5]in
Appendix [D]alongside other estimation methods from the literature. Additionally, we have included
the accuracy results on the MNIST test dataset for comparison.
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Figure 2: Comparison of LoKO (blue) with LORA/AdamW (red) and LoRA/AdaGrad (green) across
various language models and datasets. For each combination, the top row presents the training
loss, while the bottom row illustrates the average online accuracy against the number of data points
observed.

6 CONCLUSION

In this study, we present the Low-Rank Kalman Optimizer (LoKO), a Kalman-based training
algorithm. LoKO offers a comparative alternative to advanced gradient-based optimizers for
online fine-tuning scenarios. By leveraging the low-rank adaptation technique, and a diagonal
approximation of the covariance matrix and incorporating a novel observation noise estimation
technique based on EMA, we reformulate the EKF algorithm accordingly. Empirical evaluations
on the benchmark of computer vision and language models, including MNIST, CIFAR-10/100,
ImageNet100, SST-2, COLA, and MRPC demonstrate that LoKO consistently achieves superiority
over (or at least comparability with) commonly used optimizers, showcasing its potential for
efficient online fine-tuning of large models. Although this paper focuses on online fine-tuning in
computer vision and language models for classification tasks, further evaluations are necessary
across a broader range of domains, such as reinforcement learning. We leave these explorations for
future work.

10
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TECHNICAL APPENDICES

A LOKO ALGORITHM

The LoKO online fine-tuning method is outlined in Algorithm [I] with our modification to the EKF
algorithm highlighted in red for clarity.

Algorithm 1 LoKO
1: Initialization:

2: Define & initialize trainable parameters using LoRA: 6o
3. Initialize covariance: pg

4: Initialize matrix R: Ry = O,,,xm

S:

6: Online Fine-Tuning:

7. while new data available do

8: Get data:

9: data input: xy,
10: data output: yy,

11:
12: Predict: ~ _

13: Predicted parameters: Oy, = 01

14: Predicted covariance: Pyjr—1 = Pr—1

15:

16: Pre-Updating: ~
17: Forward-propagation: §x, = hrorA(Tk, Okjk—1)
18:  Jacobian matrix: Hj, = L’gg}“ | Or1)

19: Rk calculation: Rk = (yk — gk) (yk — Qk)T —+ Hk(ﬁk“c—l ° H,;r)

20: Ry, estimation: Ry, = SRy + (1 — ,B)Rk
21:
22: Update:

23: Compute Kalman gain: Ky = pyj;—1 ® H,| (Hy(Prjp—1 ¢ H) + Rk)_1

24: Update parameters: 6, = ék\k—l + Ky (yr — 9k)

25: Update covariance: (pr)’ = (Brjr—1) — (Ki); (H)? (Prjp—1)"
26:

27: Output:

28: Updated Parameters: 0

29: end while

B PROOFS AND DETAILED DERIVATIONS

This section presents the proofs and detailed derivations of the proposed LoKO algorithm, offering
a comprehensive understanding of its underlying principles and mechanisms.

B.1 PROOF FOR PROPOSITION(I]
Here, we present the derivation of equation [TTa]and equation from Proposition [I] These equa-

tions represent our proposed method for calculating the Kalman gain and updating the covariance
matrix using a diagonal approximation.
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Proof of equation : Here, we will show that equation is equivalent to equation
under the assumption of covariance diagonal approximation. For this aim, we need to show that
Py—1H, = prjp—1 0 H, .

Proof. For simplicity, let’s drop the subscripts of py, 1, and H, ];r . Now, define a diagonal matrix:
P = diag([p1,p2,.--;pn]), where the diagonal elements [p1,pa, ..., p,| are the elements of the
vector P, and its off-diagonal elements are zeros. Then, the ith row of PH'T can be represented as:
(PHT) = p; (HT)Z,, where (HT)l represents the it row of matrix H ". Now, let’s represent

i
the i" row of the transposed Khatri—Rao product of the vector p and matrix H ': (ﬁ o H T)i =

(p); ® (HT)Z Since (p), = pi, and p; is a scalar, the equality p; ® (HT)Z, =p; (HT)Z, holds true.
Consequently, PH" =pe H'. O

Proof of equation : Here also, we will demonstrate that under the assumption of covariance
diagonal approximation, the equation[TIc]is equivalent to equation [3¢]in vanilla EKF algorithm.

Proof. Again, by dropping the subscripts, let’s define a diagonal matrix: P whose diagonal elements
are the elements of the vector p. Then, let’s expand the equation expressed with Einstein notation:

(K) (H)] (p)" = (K)’ (H)! (P); = (KHP);, where (K H P); represents the i’" element of

J v J T
the main diagonal of the matrix K H P. Consequently, the equation represents the diagonal

version of the covariance update in equation O

B.2 PROOF FOR Rj; APPROXIMATION

Here, we derive Equation equation[7]and Equation equation[I2] which corresponds to two different
methods for estimating the matrix Ry.

Proof of equation [7|for method 1:

Proof. We start by the definition of the observation noise covariance matrix —vy:
R, = E[vkvg}. Substituting the noise vy with vy, = yr — hrora(xk,Or), we get:

~ ~ T ~ ~

R, = E{(yk *hLoRA(eka:Bk)) (yk *hLoRA(Ok;mk)) } Assuming 0 ~ Op;_1, we
will have: .

Ry, = E { (yk - hLoRA(éMk—l»wk)) (yk - hLoRA(ék\k—la wk)) } To com-
pute the expectation outlined above in an empirical manner, we define: R, =

N - T
(yk: _hLoRA(ak\kflva'k)) (yk _hLoRA(0k|k717wk)) as the impact of new data on Ry,

and employ an incremental averaging approach: Rj = %Rk_l + %Rk This incremental

averaging can be expressed as an EMA approach: Ry, = SRy_1 + (1 — B)Rk with the forgetting
factor of 3. O

Proof of equation [12|for method 2:

Proof. Similar to method 1, we start with the definition of the covariance matrix of the ob-

servation noise vy: Ry = Elvgv}]. Based on vy = yi — hLORA(LEk,ék), and substituting

. . T
the noise definition, we get: Ry = E{(yk —hLORA(Hk,a:k)) (yk —hLORA(Bk,wk)) }

Since the value of ék is not available before Updating step, let’s approximate hLoRA(ék,a:k)
using first-order Taylor series expansion around the last updated parameters 6y;,_1, which is:
hrora(Ok, k) = hpora(Okjk—1, Tk) + Hy (0 — Ogp—1). Thus: Ry =

- . . . T
E { (yk — hrorA(Okjk—1,%r) — Hr(Or — ek\kq)) (yk — hzorA(Okjk—1,%x) — Hy(0r — ek\kfl)) }

Expanding the above expression with dropping subscript and (ék‘k,l,xk) from
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hrora(Okk—1, ), and using Oy, = (8, — Oy;,_1) for simplicity will yield: Ry, =
E{yeyl —yh” — w0l HY — hyl +hh" + 10, HY — Hiry/ + H:h" + H.0,0, HY |.
Now, let’s take the expectation by considering:
— ~ ~ — T ~ ~ ~ ~
E[@k] = ]E[Bk — Gk‘k,l] =0, and E[@kek] = ]E[(@k — 0k|k—1)(0k — Gk‘k,l)T] = Pk\k—l-

Now, we have: R, = E{ywyl —ych" —hy] +hh' + H, Py H} }. We
already knew that HkPk”C_ng =  Hp(prj—1 ® H,:) Thus: Ry =
E {(yk —h) (yr — h)T + Hy(Prjp—1 ® H,I)} Similar to the previous approach,

we compute the above expectation in an empirical manner by defining: R, =

N 3 T
(?Jk - hLoRA(ek\k—lawk)> (yk — hrorA(Okjk—1, afk)) + Hy,(Prjp—1 © H))
O

C COMPUTATIONAL ANALYSIS

C.1 COMPUTATIONAL COMPLEXITY

To analyze the computational complexity of our proposed algorithm, let n represent the number
of parameters, n the number of trainable parameters (n < n), and m the number of model outputs.
The computational complexities of each step in the LoKO algorithm compared to the vanilla Kalman
filter are as follows:

Prediction: The computational complexity of both LoKO and the vanilla Kalman filter for the
Prediction step is O(1).

Pre-Updating: For LoKO, estimating the observation noise covariance using equation [7| has a
complexity of O(m?). When using equation the complexity increases to O(m?7). In contrast,
for the vanilla Kalman filter, the complexity for equation |7|is O(m?), while for equation [12|it is
O(m?n + n’m).

Updating: The computational complexity for LoKO when calculating the Kalman gain ( equa-
tion is O(m? + m?f), while for the vanilla Kalman filter (using equation [3a), it will be
O(m? + m?n + n?m). For updating parameters (equation, LoKO has a complexity of O(mn),
compared to O(mn) for the vanilla Kalman filter. And finally, the complexity of covariance updat-
ing (equation in LoKO is O(n), while for the vanilla Kalman filter (using equation , it will
be O(n?m).

Thus, the total computational complexity in the worst-case scenario, for LoKO is O(m3 + mQﬁ),
and for the vanilla Kalman filter will be O(m? + m?2n + n?m). In cases where the number of pa-
rameters is significantly larger than the output size, the dominant term for LoKO is O(m?7), while
for the vanilla Kalman filter, it will be O(an). Therefore, LoKO reduces the computational com-
plexity from quadratic to linear in the number of parameters as well as decreasing the number of
trainable parameters (n < n).

C.2 TIME ANALYSIS

To evaluate the time efficiency of our LoKO algorithm, we compare the number of steps required
for convergence, similar to the criterion used in (Liu et al., 2023). Convergence is defined as the
number of iterations at which the loss stays flat or decreases by less than a specified threshold. The
time analysis has been presented in Table
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Table 3: Time efficiency of LoKO in comparison to the baseline methods.

Dataset - Model | LoKO . | LoRA/AdamW | LoRA/AdaGrad |
steps  per-step time  steps  per-step time  steps  per-step time

MNIST - DenseNet-121 4000 0.23s 20000 0.025s 23000 0.026s
CIFAR10 - ResNet18 20000 0.11s 30000 0.007s 35000 0.006s
CIFARI10 - ViT-B16 2000 0.14s 2500 0.013s 4000 0.015s
CIFAR100 - ResNet50 30000 0.67s 30000 0.017s 20000 0.018s
CIFAR100 - ViT-B16 2000 0.53s 7000 0.014s 15000 0.015s
ImageNet100 - ViT-L16 5000 1.4s 12000 0.03s 25000 0.032s
SST-2 - RoBbase 48000 0.139s 47000 0.022s 48000 0.02s
SST-2 - RoBlarge 40000 0.17s 45000 0.034s 42000 0.034
COLA - RoBbase 87000 0.137s 87000 0.02s 45000 0.022s
COLA - RoBlarge 100000 0.169s 100000 0.035s 50000 0.034s
MRPC - RoBbase 60000 0.139s 60000 0.02s 35000 0.021s
MRPC - RoBlarge 65000 0.169s 60000 0.036s 46000 0.035s

D ADDITIONAL EXPERIMENT DETAILS
D.1 RESULTS FOR DORA EXPERIMENTS

Figure and show the results for DoRA experiments on vision and language datasets, respectively.

CIFAR-10/ ViT-B16 CIFAR-100/ ViT-B16 ImageNet100 / ViT-L16
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Figure 3: Performance of DoRA/Kalman (blue) compared to DoRA/AdamW (red) and
DoRA/AdaGrad (green) for different computer vision datasets and models. The upper rows show
the training loss, and the lower rows display the average online accuracy versus the number of ob-
served data.
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Figure 4: Comparison of DoRA/Kalman (blue) with DoRA/AdamW (red) and DoRA/AdaGrad
(green) across various language models and datasets. For each combination, the top row presents
the training loss, while the bottom row illustrates the average online accuracy against the number of
data points observed.

D.2 DIAGONAL APPROXIMATION OF COVARIANCE MATRIX

Our empirical observations reveal that throughout the training process, the covariance matrix of a
feedforward neural network tends towards a (block-)diagonal structure asymptotically. Figure [3]
illustrates the evolution of the covariance matrix P, € R"™*"™ in LeNet-5 utilizing the Kalman
optimizer. Initially, the matrix exhibits a fully dense positive-definite form, which progressively
transitions towards a (block-)diagonal configuration as the training algorithm advances.

D.3 INITIALIZATION OF pg
Ablation of p Initialization: The initialization of py with our two methods for MNIST/LeNet-5
has been showed in Figure[6]

The lower and upper bounds for the two proposed initialization methods of py have been reported
in Table El for case studies where an upper bound for the initial values of the covariance matrix is
defined.
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Figure 5: Evolution of covariance matrix P, € R™*" in LeNet-5 using Kalman optimizer. The ma-
trix starts with a fully dense positive-definite matrix, and with the progress of the training algorithm,
it gradually converges to a (block-)diagonal configuration.
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Figure 6: Initialization of pg with two different techniques: (left) Setting a constant positive value,
and (right) Assigning random positive values drawn from a uniform distribution.

Table 4: The lower and upper bounds for two proposed initialization methods of pg

| method 1 | method 2 |
min max min max

Dataset - Model

MNIST - DenseNet-121 ~ 0.0001  0.1140.01  0.0001  0.32+0.01
CIFARIO0 - ViT-B16 0.001 10543 0.001 16543
CIFAR100 - ViT-B16 0.001 0.240.01 0.001  0.5940.01

ImageNet100 - ViT-L16 ~ 0.001 1.010.1 0.001 2.040.1

Sensitivity to Initialization of py: As explained in Section the optimal values achieved by
LoKO are not highly sensitive to the initial covariance matrix. To show this, we present evidence
based on the results of CIFAR-100/ViT-B16 for four different covariance initialization values. As
demonstrated in Figurem the final outcomes show minimal sensitivity to these initializations.
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Figure 7: Sensitivity analysis to the initial values of pg
D.4 ESTIMATION OF R
A comparison of different approaches in the estimation of the observation noise covariance matrix

has been provided in Table

Table 5: Different approaches in the approximation of the observation noise covariance matrix

Ref. Equation ?\ZT\?IIS%Y
Puskorius & Feldkamp|(1991) _
Murtuza & Chorian|(1994) Ry =1 92.59 %
Singhal & Wu|(1988) oy —k/50

Singhal & Wul (T989) Ry =1Ie 93.65 %

Ollivier] (2018) g
Chang et al| (2022) Ry = diag(x) — Y&¥x 93.89 %
LoKO (method 1) By = BRe—1 + (1= B) Ry, 93.81 %

Ri = (ye = ¥&)(yr — %)
LoKO (method 2) Ry, = BR—1 + (1= B) R, 94.51 %

Ry = (yx = 98)(yx — 98)7 + He(prje—r © H)

D.5 SENSITIVITY TO 8 IN EMA

To assess the impact of hyperparameter 5 on LoKO’s performance, we conducted a sensitivity anal-
ysis varying [ values. Through this analysis, we measured the average online accuracy across dif-
ferent (3 settings. The results illustrate that excessively high or low [ values notably compromise
LoKO’s performance. Optimal performance lies within the range of 0.9 to 0.98 for 3. See Figure
for more details.

D.6 SENSITIVITY TO OOD DATA

To evaluate the sensitivity of LoKO to the Out-of-Distribution (OOD) data, we conducted a set of
experiments on MNIST classification task in an online manner. To generate the out-of-distributed
MNIST images, we applied a combination of random rotation (30 degrees) and color jitter (with
a brightness and contrast adjustment of 0.5). Then, we inserted these OOD images into the online
fine-tuning process by including one OOD sample after every 100 normal samples. As shown in
Figure E], both LoKO and AdamW exhibit some sensitivity to OOD data due to their use of the EMA
technique. However, the results for LoKO demonstrate that it adapts more quickly to the shifted dis-
tribution compared to AdamW. In contrast, AdaGrad shows less sensitivity to OOD data, as it does
not incorporate the EMA technique for the first moment.

21



Under review as a conference paper at ICLR 2025

100 4 / \l\
80
S
- 601
9]
e
=2
9
<
40
20 A .
—— MNIST with LeNet-5
—— CIFAR-10 with DenseNet-121 PY

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000
B

Figure 8: Sensitivity to 3

S

0.175

0.150

0.125

0.100

0.075

Training Loss

0.050

Ave. Online Accuracy (%)

0.025

0.000

— e
0 10000 20000 30000 ~ 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
Num. of Observations Num. of Observations

—— LoKO —— LoRA/AdamW —— LoRA/AdaGrad

Figure 9: Sensitivity analysis to the OOD data

E ADDITIONAL INFORMATION

The Table E] shows the LoRA layers, number of total parameters, and number of trainable parameters
in our experiments.

Table 6: Total and trainable parameters for each model utilized in the experiments.

Model LoRA layer Num. of total parameters ~ Num. of trainable parameters
DenseNet-121 convolution 7.5M 166 K
ResNet18 convolution 11M 150 K
ViT-B16 query 86 M 155K
ResNet50 convolution 24 M 520 K
ViT-L16 query 305 M 400 K
RoBERTa-base query 125 M 666 K
RoBERTa-large query 355M 1248 K

22



	Introduction
	Related work
	Preliminaries and Background
	Extended Kalman Filter (EKF)
	Low-Rank Adaptation (LoRA)

	Low-rank Kalman Optimizer
	Kalman Formulation for LoRA
	Initialization of p & Approximation of R

	Experiments and Analysis
	Experiments Setup
	Main results
	Ablation of Initialization and Covariance Approximation

	Conclusion
	Technical Appendices
	LoKO Algorithm
	Proofs and Detailed Derivations
	Proof for Proposition 1
	Proof for Rk Approximation

	Computational Analysis
	Computational Complexity
	Time Analysis

	Additional Experiment Details
	Results for DoRA Experiments
	Diagonal Approximation of Covariance Matrix
	Initialization of 0
	Estimation of R
	Sensitivity to  in EMA
	Sensitivity to OOD Data

	Additional Information

