
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LOKO: LOW-RANK KALMAN OPTIMIZER FOR ONLINE
FINE-TUNING OF LARGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Training large models with millions or even billions of parameters from scratch
incurs substantial computational costs. Parameter Efficient Fine-Tuning (PEFT)
methods, particularly Low-Rank Adaptation (LoRA), address this challenge by
adapting only a reduced number of parameters to specific tasks with gradient-
based optimizers. In this paper, we cast PEFT as an optimal filtering/state estima-
tion problem and present Low-Rank Kalman Optimizer (LoKO) to estimate the
optimal trainable parameters in an online manner. We leverage the low-rank de-
composition in LoRA to significantly reduce matrix sizes in Kalman iterations and
further capitalize on a diagonal approximation of the covariance matrix to effec-
tively decrease computational complexity from quadratic to linear in the number
of trainable parameters. Moreover, we discovered that the initialization of the co-
variance matrix within the Kalman algorithm and the accurate estimation of the
observation noise covariance are the keys in this formulation, and we propose ro-
bust approaches that work well across a vast range of well-established computer
vision and language models. Our results show that LoKO converges with fewer
iterations and yields better performance models compared to commonly used op-
timizers with LoRA in both image classifications and language tasks. Our study
opens up the possibility of leveraging the Kalman filter as an effective optimizer
for the online fine-tuning of large models.

1 INTRODUCTION

The widespread adoption of deep neural networks, particularly large models, across various fields
is mainly driven by the pre-training on extensive datasets followed by task-specific fine-tuning (Han
et al., 2024). In recent years, the concept of online fine-tuning has attracted significant attention
across diverse domains, ranging from robotics (Yang et al., 2024; Fang et al., 2022; Julian et al.,
2020), reinforcement learning (Zheng et al., 2022; Nakamoto et al., 2024), computer vision (Gao
et al., 2023; Kang et al., 2020), and natural language processing (Fan et al., 2024). Online fine-
tuning refers to the process of continually updating a pre-trained model’s parameters as new data in a
temporal stream of data becomes available, typically during deployment or in real-time applications.
As online full fine-tuning requires substantial computational resources and can negatively impact the
generalization capabilities(Han et al., 2024), Parameter-Efficient Fine-Tuning (PEFT) techniques
freeze the majority of the model parameters and selectively update a smaller subset. Among PEFT
approaches, the Low-Rank Adaptation (LoRA) technique has recently been widely recognized due
to its efficient adaptation with low computational overhead (Han et al., 2024). Many extensions to
LoRA have also been proposed to improve its learning capacity and training stability (Liu et al.,
2024; Zhang et al., 2023; Renduchintala et al., 2023; Dettmers et al., 2024; Valipour et al., 2022).

In these PEFT approaches, stochastic gradient descent (SGD) has been the dominant method for the
parameter optimization. The adaptive first-order optimizers, such as Adam (Kingma & Ba, 2014)
and its variants, have demonstrated superior performance compared to traditional SGD ones(Ruder,
2016), as evidenced by their widespread adoption in LoRA extensions. Despite the simplicity and
efficacy of these gradient-based optimizers, they exclusively rely on first-order derivatives, which
may result in (sub-)optimal convergence and inefficient optimization (Reddi et al., 2019).

In contrast, many previous works (Singhal & Wu, 1988; 1989; Puskorius & Feldkamp, 1991;
Williams, 1992; Heimes, 1998; Rivals & Personnaz, 1998) showed that recursive Extended Kalman

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Filter (EKF) algorithm – a method for state estimation of nonlinear systems using a data stream
introduced by Kalman & Bucy (1961) – can optimize relatively small models with performance
surpassing the gradient-based counterparts. This achievement remained obscure until when Ol-
livier (2018) theoretically demonstrated that EKF is effectively equivalent to online natural gradient
descent. This offers a new perspective on advanced optimization: instead of relying on complex
techniques, we can recursively infer the optimal parameters as state estimation. However, despite
the commendable performance of the EKF in training neural models, its practicality has been ham-
pered, especially with the advent of large models. Pariticularly, the EKF algorithm involves several
sequential operations, including Linearization, Prediction, and Update steps, all of which entail sig-
nificant computational overhead. The size of the crucial covariance matrix in EKF can even grow
quadratically with the number of model parameters involved in training.

In this paper, we leverage the low-rank decomposition technique from LoRA to reduce the number
of trainable parameters in specific layers. We show that the EKF algorithm can be particularly
useful for fine-tuning as fine-tuning only involves a small portion of model parameters. We intro-
duce LoKO, a Kalman-based training algorithm, as an alternative to advanced optimizers for online
fine-tuning of large models. Particularly, our contributions are:

• Based on the Low-Rank Adaptation (LoRA) method, introduced by Hu et al. (2021), which
significantly reduces the number of trainable parameters, we demonstrated its compatibil-
ity with the Kalman filter. Also, we showed that this combination offers faster performance
than traditional optimizers in online fine-tuning scenarios.

• We employ a diagonal approximation for the covariance matrix P , a common approach to
reduce the computational overhead from quadratic to linear. By integrating this with the
exponential moving average (EMA) for estimating the matrix R and incorporating it into
the LoRA framework, we achieve improved performance without additional computational
cost.

• We conduct various experiments to demonstrate LoKO’s performance in online fine-tuning
classification tasks across computer vision and language modeling domains.

• To the best of our knowledge, this is the first successful attempt to fine-tune large and com-
plex models, including transformers with millions of parameters, using the Kalman filter
algorithm.

In summary, LoKO shows outstanding performance on computer vision and language modeling
benchmarks: MNIST (LeCun et al., 1998), CIFAR-10/100 (Krizhevsky et al., 2009), ImageNet100
(Vinyals et al., 2016), SST-2 (Socher et al., 2013), COLA (Warstadt, 2019), MRPC (Dolan & Brock-
ett, 2005). This paper contributes to ongoing efforts to develop a more efficient and fast optimization
algorithm for online fine-tuning of increasingly more complex large models.

2 RELATED WORK

Parameter-Efficient Fine-Tuning (PEFT): Traditional full fine-tuning typically demands sig-
nificant computational resources and may damage the model’s generalization ability, occasionally
leading to catastrophic forgetting (Han et al., 2024). In contrast, Parameter-Efficient Fine-Tuning
(PEFT) efficiently freezes a portion of the parameters while updating a reduced number of trainable
ones to mitigate these issues. Three primary approaches for PEFT are commonly used: plug-in
adapters, parameter freezing and model reparameterization. Plug-in adapters refer to the techniques
of introducing an extra trainable adapter module to the pre-trained model, as demonstrated in works
such as (Chen et al., 2024; Gao et al., 2024). Parameter freezing is to freeze selected model pa-
rameters and update only a targeted subset, like BitFit (Zaken et al., 2021), Child-Tuning (Xu et al.,
2021), IA3 (Liu et al., 2022), and FISH Mask (Sung et al., 2021). Model reparameterization, as the
name suggests, reparameterizes model parameters using typically the Low-Rank Adaptation (LoRA)
technique, which adds low-rank weight matrices as trainable parameters(Hu et al., 2021). Multiple
extensions to LoRA have been proposed to improve learning capacity and training stability. For
instance, DoRA (Liu et al., 2024) decomposes pre-trained weights into magnitude and direction
components to minimize the number of trainable parameters more efficiently. AdaLoRA(Zhang

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

et al., 2023) utilizes singular value decomposition (SVD) to dynamically allocate the parameter
budget based on importance scoring. Tied-LoRA(Renduchintala et al., 2023) leverages weight tying
and selective training to reduce the number of trainable parameters further. To optimize the memory
efficiency, QLoRA (Dettmers et al., 2024), QA-LoRA (Xu et al., 2023), and LoftQ (Li et al., 2023)
address the issue of memory usage by quantization technique. DyLoRA (Valipour et al., 2022) is a
dynamic search-free LoRA to avoid exhaustive search for the most optimal rank. However, all these
extensions utilize the Adam optimizer or its variants like AdamW in parameter optimization.

Kalman Filter for Optimizing Neural Networks: The idea of using the Kalman filter as param-
eter optimization in deep learning comes from Singhal & Wu (1988), which showed that the process
of training neural networks can be conceptualized as tackling a system identification challenge for a
nonlinear dynamic system, and thus Extended Kalman Filter (EKF) can be used to train neural net-
work parameters. The superior performance of the Kalman-based training algorithm compared to
the traditional backpropagation technique drew attention to exploring the relationship between these
two classical algorithms (Ruck et al., 1992; Ollivier, 2018). To make the Kalman filter more scalable,
several studies have addressed the computational complexity associated with this training algorithm,
notably using matrix partitioning techniques (Shah & Palmieri, 1990; Shah et al., 1992; Puskorius &
Feldkamp, 1991), and a low-dimensional (block-)diagonal approximation of the covariance matrix
(Murtuza & Chorian, 1994). Only recently, Ollivier (2018; 2019) demonstrated that training with
a Kalman filter is, in fact, equivalent to an online natural gradient descent. This finding renewed
interest in this training method once again. Various studies have since addressed the scalability
challenges of the EKF optimizer. For example, Chang et al. (2022) introduced a diagonal Gaus-
sian approximation, while Chang et al. (2023) proposed a low-rank plus diagonal decomposition of
the posterior precision matrix. Hennig et al. (2024) developed a matrix-free iterative algorithm to
further enhance efficiency. In the context of factorization models, Gómez-Uribe & Karrer (2021)
introduced a decoupled EKF (DEKF). Furthermore, EKF has been applied to several specialized ar-
eas, such as continual learning (Titsias et al., 2023), test-time adaptation (Schirmer et al., 2024), and
reinforcement learning (Shashua & Mannor, 2019; 2020; Shashua & Mannor; Totaro & Jonsson,
2021; Shih & Liang, 2024). Other notable work includes loss adaptivity in the Kalman optimiza-
tion algorithm (Davtyan et al., 2022), the Bayesian online natural gradient (Jones et al., 2024), and
approaches for handling nonstationary data in online learning (Jones et al., 2022b;a). However, the
practical implementation of these methods remained infeasible for large models.

3 PRELIMINARIES AND BACKGROUND

3.1 EXTENDED KALMAN FILTER (EKF)

Consider a general state-space model:

sk = f(xk, sk−1) +wk, (1a)
yk = h(xk, sk) + vk, (1b)

where sk ∈ Rn, yk ∈ Rm, and xk ∈ Rp denote the states, measurement, and input vectors at time
k, respectively. In this framework, the function f(·) is called the process model or the state transition
function, and h(·) is the measurement model or observation function. In addition, wk ∼ N (0,Qk)
and vk ∼ N (0,Rk) represent process noise and observation noise, respectively. These noises are
assumed to have known distributions, typically white Gaussian noise with zero mean. The problem
of state estimation for a nonlinear system, as depicted by equation 1a, can be addressed through
the well-established recursive EKF algorithm (Welch et al., 1995). In the following, we detail the
various steps involved in implementing the extended Kalman filter (EKF):

• Prediction:

sk|k−1 = f(xk, sk−1) (2a)

Pk|k−1 = FkPk−1F
⊤
k +Qk (2b)

where sk|k−1 and Pk|k−1 are predicted (or prior) states and covariance, respectively. Fk

denotes the Jacobian matrix of the function f(·) with respect to states at time k.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

• Updating:

Kk = Pk|k−1H
⊤
k (HkPk|k−1H

⊤
k +Rk)

−1 (3a)

sk = sk|k−1 +Kk(yk − h(xk, sk|k−1)) (3b)

Pk = Pk|k−1 −KkHkPk|k−1 (3c)

where Kk is the Kalman gain, and Hk indicates the Jacobian matrix of the function h(·)
with respect to the states at time k. Finally, sk and Pk are updated (or posterior) states and
covariance matrix.

3.2 LOW-RANK ADAPTATION (LORA)

Low-Rank Adaptation (LoRA) (Hu et al., 2021) is a technique designed to efficiently fine-tune large
pre-trained neural networks by reducing the number of trainable parameters. Instead of updating
the entire pre-trained weight matrix, LoRA introduces a low-rank decomposition that captures the
essential changes needed for fine-tuning. Consider a layer in a neural network with a pre-trained
weight matrix W0 ∈ Rd×q , where d and q represent the dimensions of the weight matrix. The
output of this layer can be expressed as:

z = W0x+∆Wx (4)

Here, x is the input vector, and ∆W represents the adjustment to the weights during fine-tuning.
LoRA modifies this by introducing two smaller matrices, A ∈ Rr×q and B ∈ Rd×r, where r is the
chosen rank with r ≪ min(d, q). The update to the weight matrix is then expressed as:

z = W0x+BAx (5)

At the beginning of training, the matrix A is initialized with a random Gaussian distribution
N (0, σ2I), and matrix B is initialized to zero. Using this low-rank decomposition, LoRA reduces
the number of trainable parameters from d × q to r × (d + q), where r is much smaller than d and
q. This technique can be applied on certain layers of a neural network model, h(x,θ), resulting
in a re-parameterized version, hLoRA(x, θ̃), with a reduced number of trainable parameters. This
reduction enables efficient fine-tuning of large models, making it feasible to apply the Kalman filter.

4 LOW-RANK KALMAN OPTIMIZER

4.1 KALMAN FORMULATION FOR LORA

Consider a pre-trained model in which certain layers are scaled down using the LoRA method. The
modified model is parameterized by a reduced set of trainable parameters θ̃k ∈ Rñ, where ñ ≪ n:

ŷk = hLoRA(xk, θ̃k). (6)

Here, xk ∈ Rp denotes the model input and ŷk ∈ Rm represents the predicted output in the kth

observed data. Let us adopt yk as the true output. The ŷk represents the predicted values for the
regression tasks and the predicted probabilities for the classification tasks. In both scenarios, the
predicted output ŷk can be interpreted as the mean parameter of a Gaussian distribution over the
actual output yk. This relationship can be expressed as white noise as vk ∼ N (0,Rk), where
Rk = Cov(yk|ŷk). More broadly, ŷk serves as the mean parameter for an exponential family
distribution over T (yk), where T (·) denotes the sufficient statistics for the exponential family. In this
case, Rk = Cov(T (yk)|ŷk) denotes the covariance matrix of the exponential family distribution.

Several approximations for the matrix Rk have been proposed in the literature. One common ap-
proach is to approximate it as the identity matrix, Rk ≈ I , as shown in (Puskorius & Feldkamp,
1991; Murtuza & Chorian, 1994). Other formulations include Rk = I · e−k/50(Singhal & Wu,
1988; 1989), and a more recent approximation, Rk = diag(ŷk) − ŷkŷ

⊤
k (Ollivier, 2018; Chang

et al., 2022). To obtain a more precise approximation of Rk, we employ an Exponential Moving
Average (EMA) approach based on the definition of the covariance matrix for estimating the matrix
Rk. We make the simplifying assumption that θ̃k ≈ θ̃k|k−1, allowing us to compute the covariance

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

matrix as follows:

Rk = βRk−1 + (1− β)R̂k, (7a)

where R̂k =
(
yk − hLoRA(xk, θ̃k|k−1)

)(
yk − hLoRA(xk, θ̃k|k−1)

)⊤
, (7b)

and β ∈ (0, 1) is the forgetting factor. The proofs and detailed derivations can be found in Appendix
B for more details.

LoKO estimates the (sub-)optimal values of LoRA matrices A and B in real-time data streams
through the Kalman algorithm. To formulate the online fine-tuning problem within the Kalman fil-
tering framework, we assume there are no feedback loops in machine learning model, for example, a
feed-forward neural network and transformers. This assumption enables us to consider the trainable
parameters that are represented as the state vector of the process model (θ̃k ≡ sk). Furthermore, the
process model (or transition function) can be modeled as an identity function f(xk, θ̃k−1) = θ̃k−1

with no process noise (wk = 0), which provides the prediction of the states at the next time step as
θ̃k = θ̃k−1. Finally, by defining yk = hLoRA(xk, θ̃k) + vk as the measurement model (or observa-
tion function), we can apply the recursive Kalman filter algorithm to estimate (sub-)optimal values
of θ̃k.

Although the low-rank decomposition by LoRA offers a significant reduction in parameter size com-
pared to the original parameter space n, the size of the covariance matrix P scales quadratically with
the number of trainable parameters ñ. For large models such as deep neural networks, characterized
by high-dimensional trainable parameters, the computational cost of implementing the Kalman al-
gorithm becomes prohibitively expensive due to its ñ2 complexity. To address this challenge, one
strategy involves decoupling the update phase of the Kalman filtering algorithm into smaller par-
titions, as outlined by Puskorius & Feldkamp (1991), which, however, may be infeasible for large
models with millions of trainable parameters. The other approach is to approximate the covariance
matrix P with low-dimensional matrices. Our empirical findings demonstrate that as the fine-tuning
algorithm progresses, the covariance matrix of the feed-forward neural network asymptotically ap-
proaches a (block-)diagonal configuration:

E[p̂] = diag(P). (8)

Therefore, we adopt a diagonal approximation of the covariance matrix, denoted as p̂. This approx-
imation significantly reduces both computational and storage costs.

Proposition 1. Leveraging the low-rank decomposition technique in LoRA and applying the diago-
nal approximation of covariance matrix, the steps of the Low-Rank Kalman Optimizer (LoKO) can
be outlined below:

• Prediction:

θ̃k|k−1 = θ̃k−1 (9a)

p̂k|k−1 = p̂k−1 (9b)

• Pre-Updating:

Rk = βRk−1 + (1− β)R̂k (10a)

• Updating:

Kk = p̂k|k−1 •H⊤
k

(
Hk(p̂k|k−1 •H⊤

k) +Rk

)−1
(11a)

θ̃k = θ̃k|k−1 +Kk(yk − hLoRA(xk, θ̃k|k−1)) (11b)

(p̂k)
i
=

(
p̂k|k−1

)i − (Kk)
i
j (Hk)

j
i

(
p̂k|k−1

)i
(11c)

where the symbol • represents the transposed Khatri–Rao product, which is essentially the
row-by-row Kronecker product of the vector p̂k|k−1 and matrix H⊤

k . The equation 11c
represents the diagonal update of the covariance matrix, expressed with Einstein notation.
For more details, see Appendix B.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Note that the operations used in equation 11a, and equation 11c can be computed efficiently. For
example, in PyTorch, they can be seamlessly implemented using the ∗, and einsum() operators,
streamlining the computational process.

Importantly, in the above formulation, the matrix inversion required in the Kalman gain equation 11a
has a dimension of m2, where m represents the size of the model output. This implies that the
computational cost of the matrix inversion remains constant regardless of the size of the model.
Consequently, whether the model is small or large, the computational expense of this operation
remains constant, offering a consistent performance characteristic across different model sizes. In
contrast, many advanced optimizers such as the Natural Gradient Descent (NGD) necessitate the
inversion of the full pre-condition matrix (like the Fisher information matrix in NGD), which is
of high dimensionality. Moreover, the computation of the Jacobian matrix Hk does not require
individual backpropagation processes for each output component. Leveraging GPU capabilities
allows for parallel computation and thus efficiently streamlines the process.

4.2 INITIALIZATION OF P & APPROXIMATION OF R

Initialization of p̂0: Our findings demonstrate that the initialization of p̂0 plays a crucial role in
the performance of the filter as a training algorithm. High values of p̂0 indicate high uncertainty or
lack of confidence in the initial learning parameters, which can result in the Kalman filter making
large corrections and experiencing potential instability and divergence. In contrast, initialization
p̂0 with very low values suggests high confidence in the initial learning parameters. In this case,
the filter will heavily trust the initial model parameters. If these initial parameters are inaccurate,
this can lead to slow updates or even no updates at all, as the filter gives insufficient weight to new
measurements. Proper initialization of p̂0 balances these extremes, ensuring that the filter can adapt
appropriately to new data while maintaining stability and accuracy throughout the training process.
Therefore, it is essential to establish both upper and lower bounds for p̂0. To ensure the initialization
of p̂0 = [p1, p2, ...pi, ..., pn] yields a positive definite diagonal matrix, we examined two methods
for initialization of p̂0:

• Method 1: Setting a constant positive value: pi = c ∀i.
• Method 2: Assigning random positive values drawn from a uniform distribution: pi ∼
U(0, upper bound) ∀i.

Our experiments show that precisely estimating the Rk matrix greatly influences the bounds of p̂0.
The more accurate the estimation of Rk, the broader the acceptable range for the initial p̂0.

Approximation of Rk: In addition to the method described in equation 7, we propose an alter-
native method for approximating the observation noise covariance, Rk, with enhanced accuracy
and without additional computation cost. Specifically, we incorporate an additional term from the
first-order Taylor to approximate changes more precisely:

Rk = βRk−1 + (1− β)R̂k, (12a)

where R̂k =
(
yk − hLoRA(xk, θ̃k|k−1)

)(
yk − hLoRA(xk, θ̃k|k−1)

)⊤
+Hk(p̂k|k−1 •H⊤

k)

(12b)

with the forgetting factor of β ∈ (0, 1). Note that this method will not add extra computational cost
since the operation of Hk(p̂k|k−1•H⊤

k) will be part of the Kalman gain calculation in equation 11a.
See Appendix B for more details.

5 EXPERIMENTS AND ANALYSIS

5.1 EXPERIMENTS SETUP

We assess the performance of LoKO by implementing it in various well-established computer vision
and language models. Our computer vision experiments involve online fine-tuning for image classi-
fication on the MNIST dataset using DenseNet-121 with 7 million parameters (Huang et al., 2017),

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

the CIFAR-10/100 dataset with ResNet-18 and ResNet-50 (He et al., 2016), and ViT-B16 (Dosovit-
skiy, 2020), which contain 12 million, 26 million, and 86 million parameters, respectively. Further-
more, we evaluated ImageNet100 using ViT-L16 (Dosovitskiy, 2020), 305 million parameters. For
text classification tasks, we examine the SST-2, CoLA, and MRPC datasets using RoBERTa-base
and RoBERTa-large (Liu, 2019), which have 125 million and 355 million parameters, respectively.
We employ the following pre-trained models as backbones for our fine-tuning experiments:
• For MNIST/DenseNet-121, we used a backbone pre-trained on ImageNet via PyTorch Image

Models (timm) (Wightman et al., 2023).
• For CIFAR-10/ResNet18 and CIFAR-100/ResNet50, we employed pre-trained models from (He
et al., 2016), which were trained on ImageNet as the backbone.
• For CIFAR-10/ViT-B16, CIFAR-100/ViT-B16, and ImageNet100/ViT-L16, we used DINOv2
(Oquab et al., 2023), which was pre-trained on ImageNet.
• For the language tasks we employed RoBERTa pre-trained model from (Liu, 2019).

We use AdamW (Loshchilov & Hutter, 2017) and AdaGrad (Duchi et al., 2011) as baseline methods
since they are widely used in LoRA. We set the batch size to 1 so that the learning algorithms train
the models in the context of online classification tasks at each time step. We configure AdamW with
a linear learning rate decay schedule (weight decay=0.0001), starting from 1e-4, which empirically
yields the highest accuracy after a preliminary sweep of various learning rates and schedules. In ad-
dition, β1 and β2 for this optimizer are set to 0.9 and 0.999, respectively. Furthermore, the learning
rate of AdaGrad is set to 0.001 with no weight decay. The hyperparameters in our LoKO algorithm
are set according to our discussion in 5.3. The diagonally approximated covariance vector p̂k is
initialized with random numbers sampled from a uniform distribution between 0 and 0.2. Further-
more, we use our second method for R̂k estimation, and the forgetting factor for the EMA is set to
β = 0.95. We also adopt the pre-trained models introduced by (Caron et al., 2021) as the backbone
for our fine-tuning experiments with ViT. The low-rank decomposition is applied on query layers
in transformer-based architectures and convolution layers in CNN networks. All experiments are
conducted on an A100 GPU platform three times and the average and standard deviation of them
are reported.

5.2 MAIN RESULTS

We use two primary evaluation metrics in our study. First, we calculate the moving average of the
loss with a window size of 1000. Second, we measure the average online accuracy, as adopted by
Cai et al. (2021), up to the current timestep k. The average online accuracy is defined as acc(k) =
1
k

∑k
i=1 1A(yi), where 1{·}(·) is an indicator function, and A is the set of Top1 or Top5 prediction.

This metric is computed online during the training process and serves to evaluate the algorithm’s
capacity to incorporate new knowledge in real-time. We evaluate the convergence speed of LoKO by
comparing the number of observations required to achieve equivalent loss or accuracy levels across
different algorithms. Figure 1, 2 illustrate LoKO’s performance in online fine-tuning for image
and language classification, compared to LoRA with AdamW and AdaGrad, across various well-
established models and datasets. The figures illustrate L1 losses for images and cross-entropy losses
for texts, along with accuracy during training. These results demonstrate that LoKO consistently
matches or surpasses the performance of alternative optimizers. Additionally, Tables 1 and 2 present
the average and standard deviation of online accuracy for a single epoch of online fine-tuning. Note
that for COLA and MRPC datasets, we performed multiple epochs due to their smaller dataset sizes.
These results demonstrate that across all models and datasets, LoKO consistently outperforms (and
in some cases performs almost equivalently) the other methods by achieving the highest average
online accuracy with LoKO. The lower standard deviation in LoKO’s results also highlights its
more consistent and robust performance compared to other methods. Furthermore, it is important
to emphasize that (sub-)optimal values of the trainable parameters can be attained across a range
of LoKO hyperparameters, provided they fall within the permissible initialization interval. This
contrasts with gradient-based optimizers, whose performance is highly sensitive to the selection of
appropriate hyperparameters, particularly the learning rate.
Finally, as can be seen in Table 2, LoKO demonstrates slightly lower performance than AdamW
on certain language tasks. A justification for this observation is the fact that the AdamW optimizer
benefits from the decoupled weight decay, which has contributed to its strong performance in lan-
guage modeling tasks (Xie & Li, 2024). On the other hand, the gradient-free Kalman algorithm used

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

MNIST / DenseNet121 CIFAR-10 / ViT-B16CIFAR-10 / ResNet18

CIFAR-100 / ViT-B16CIFAR-100 / ResNet50 ImageNet100 / ViT-L16

Figure 1: Performance of LoKO (blue) compared to LoRA/AdamW (red) and LoRA/AdaGrad
(green) for different computer vision datasets and models. The upper rows show the training loss,
and the lower rows display the average online accuracy versus the number of observed data.

in LoKO does not incorporate a similar regularization mechanism, which may explain the slightly
lower performance in certain cases compared to AdamW.
At the end, we conducted supplementary experiments by applying the Kalman filter on the DoRA
variant of LoRA. These experiments were performed on transformer-based models, and the results
were compared against those obtained using AdamW and AdaGrad. The corresponding outcomes
are presented in Figure 3 and 4 in Appendix D as well as Table 1 and 2. As shown, the results
are promising for the Kalman algorithm, demonstrating its compatibility and effectiveness when
integrated with this Weight-Decomposed Low-Rank Adaptation technique (Liu et al., 2024).

5.3 ABLATION OF INITIALIZATION AND COVARIANCE APPROXIMATION

Initialization of p̂0: Initializing p̂0 requires prior knowledge of the network weights and their
associated uncertainties. In the absence of such knowledge, almost any initial values for p̂0 can be
chosen, provided they are not too close to zero, and in some cases, they are not too far from an
upper bound. To develop a comprehensive understanding of the behavior of the initialization of p̂0,
we begin by evaluating its impact on training from scratch using the Kalman filter. The MNIST

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Results for MNIST, CIFAR-10/100, and ImageNet100 datasets across various neural net-
work models. The table presents the average and standard deviation of online accuracy achieved
during a single epoch of online fine-tuning with different methods, where higher values indicate
better performance. The boldfaced numbers represent the best values achieved for each column.

Method MNIST CIFAR-10 CIFAR-100 ImageNet100
DenseNet-121 ResNet18 ViT-B16 ResNet50 ViT-B16 ViT-L16

LoKO (ours) 98.17±0.56 96.05±0.12 99.93±0.05 79.39±0.12 91.56±0.40 97.71±0.22

LoRA/AdamW 94.73±0.65 65.98±0.52 98.98±0.49 60.39±0.40 85.95±0.40 95.13±0.13

LoRA/AdaGrad 86.22±4.10 61.83±0.10 99.17±0.20 40.62±0.05 80.04±0.87 93.91±1.28

DoRA/Kalman — — 99.84±0.03 — 92.17±0.58 97.96±0.05

DoRA/AdamW — — 98.82±0.02 — 89.43±0.18 94.50±0.08

DoRA/AdaGrad — — 99.01±0.04 — 85.39±1.11 92.88±0.06

Table 2: Results for SST-2, COLA, and MRPC datasets across various neural network models. The
table presents the average and standard deviation of online accuracy achieved during online fine-
tuning with different methods, where higher values indicate better performance. For SST-2, we
conducted a single epoch of training. For COLA and MRPC, we performed multiple epochs due to
their smaller dataset sizes. The bolded numbers represent the maximum values for each column.

Method SST-2 COLA MRPC
RoBbase RoBlarge RoBbase RoBlarge RoBbase RoBlarge

LoKO (ours) 88.41±0.2 88.21±0.1 83.67±0.3 82.69±0.4 89.17±0.3 88.70±0.6

LoRA/AdamW 89.55±0.1 90.66±0.2 84.41±0.1 86.19±0.9 90.95±0.3 93.04±0.4

LoRA/AdaGrad 87.79±0.2 86.25±1.1 78.31±0.0 79.72±0.3 81.98±0.1 83.88±1.1

DoRA/Kalman 88.32±0.2 88.76±0.2 84.05±0.0 83.33±0.1 89.64±0.34 89.49±0.27

DoRA/AdamW 89.64±0.1 90.50±0.6 84.37±0.1 85.33±1.5 91.48±0.2 93.57±0.1

DoRA/AdaGrad 87.99±0.1 86.75±0.7 78.29±0.1 79.51±0.7 82.02±0.4 83.87±0.0

dataset is employed for experimentation, utilizing the LeNet-5 architecture due to its fast training
speed and low computational demands. Our experiments combine two proposed methods for ini-
tializing p̂0 with four widely used parameter initialization strategies: Xavier Uniform and Xavier
Normal (Glorot & Bengio, 2010), as well as Kaiming Uniform and Kaiming Normal (He et al.,
2015). Figure 6 in Appendix D illustrates the average online accuracy of the MNIST dataset after
1000 iterations of training from scratch. As shown, when p̂0 values are set far from the lower and
upper bounds, the algorithm diverges, resulting in low prediction accuracy. The results indicate that
initializing p̂0 with random values drawn from a uniform distribution (second method) provides a
robust and wide range of choices for p̂0 without causing divergence. Our experiments demonstrate
that as long as the initialization falls within an acceptable range, the filter will eventually converge
to the optimal values. Notably, the optimal values are not highly sensitive to the initial covariance
matrix. To obtain the upper bounds for our case studies, we conducted a series of experiments across
a wide range of initial values and tracked the average online accuracy. If the accuracy doesn’t reach
a specific threshold within a predetermined number of iterations, we consider the test to have di-
verged. The boundary values derived from this analysis have been reported in Table 4 in Appendix
D, specifically for case studies where an upper bound for the initial values of the covariance matrix
is defined. To the best of our knowledge, no general criterion exists for this selection, and only a few
studies have addressed the issue of initialization such as (Heimes, 1998; Rivals & Personnaz, 1998).

Approximation of R: Our proposed methods for approximating Rk are presented in Table 5 in
Appendix D alongside other estimation methods from the literature. Additionally, we have included
the accuracy results on the MNIST test dataset for comparison.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

SST-2 / RoBbase COLA / RoBbase MRPC / RoBbase

SST-2 / RoBlarge COLA / RoBlarge MRPC / RoBlarge

LoKO LoRA/AdamW LoRA/AdaGrad

Figure 2: Comparison of LoKO (blue) with LoRA/AdamW (red) and LoRA/AdaGrad (green) across
various language models and datasets. For each combination, the top row presents the training
loss, while the bottom row illustrates the average online accuracy against the number of data points
observed.

6 CONCLUSION

In this study, we present the Low-Rank Kalman Optimizer (LoKO), a Kalman-based training
algorithm. LoKO offers a comparative alternative to advanced gradient-based optimizers for
online fine-tuning scenarios. By leveraging the low-rank adaptation technique, and a diagonal
approximation of the covariance matrix and incorporating a novel observation noise estimation
technique based on EMA, we reformulate the EKF algorithm accordingly. Empirical evaluations
on the benchmark of computer vision and language models, including MNIST, CIFAR-10/100,
ImageNet100, SST-2, COLA, and MRPC demonstrate that LoKO consistently achieves superiority
over (or at least comparability with) commonly used optimizers, showcasing its potential for
efficient online fine-tuning of large models. Although this paper focuses on online fine-tuning in
computer vision and language models for classification tasks, further evaluations are necessary
across a broader range of domains, such as reinforcement learning. We leave these explorations for
future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Zhipeng Cai, Ozan Sener, and Vladlen Koltun. Online continual learning with natural distribu-
tion shifts: An empirical study with visual data. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 8281–8290, 2021.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the International Conference on Computer Vision (ICCV), 2021.

Peter G Chang, Kevin Patrick Murphy, and Matt Jones. On diagonal approximations to the extended
kalman filter for online training of bayesian neural networks. In Continual Lifelong Learning
Workshop at ACML 2022, 2022.

Peter G Chang, Gerardo Durán-Martı́n, Alexander Y Shestopaloff, Matt Jones, and Kevin Murphy.
Low-rank extended kalman filtering for online learning of neural networks from streaming data.
arXiv preprint arXiv:2305.19535, 2023.

Hao Chen, Ran Tao, Han Zhang, Yidong Wang, Xiang Li, Wei Ye, Jindong Wang, Guosheng Hu,
and Marios Savvides. Conv-adapter: Exploring parameter efficient transfer learning for convnets.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
1551–1561, 2024.

Aram Davtyan, Sepehr Sameni, Llukman Cerkezi, Givi Meishvili, Adam Bielski, and Paolo Favaro.
Koala: A kalman optimization algorithm with loss adaptivity. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 6471–6479, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In
Third international workshop on paraphrasing (IWP2005), 2005.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Reinforcement learning for fine-
tuning text-to-image diffusion models. Advances in Neural Information Processing Systems, 36,
2024.

Kuan Fang, Patrick Yin, Ashvin Nair, and Sergey Levine. Planning to practice: Efficient online
fine-tuning by composing goals in latent space. In 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 4076–4083. IEEE, 2022.

Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng Zhang, Hongsheng Li,
and Yu Qiao. Clip-adapter: Better vision-language models with feature adapters. International
Journal of Computer Vision, 132(2):581–595, 2024.

Qiankun Gao, Chen Zhao, Yifan Sun, Teng Xi, Gang Zhang, Bernard Ghanem, and Jian Zhang. A
unified continual learning framework with general parameter-efficient tuning. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 11483–11493, 2023.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

Carlos A Gómez-Uribe and Brian Karrer. The decoupled extended kalman filter for dynamic
exponential-family factorization models. Journal of Machine Learning Research, 22(5):1–25,
2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zeyu Han, Chao Gao, Jinyang Liu, Sai Qian Zhang, et al. Parameter-efficient fine-tuning for large
models: A comprehensive survey. arXiv preprint arXiv:2403.14608, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Felix Heimes. Extended kalman filter neural network training: experimental results and algorithm
improvements. In SMC’98 Conference Proceedings. 1998 IEEE International Conference on
Systems, Man, and Cybernetics (Cat. No. 98CH36218), volume 2, pp. 1639–1644. IEEE, 1998.

Philipp Hennig, Jon Cockayne, Jonathan Wenger, and Marvin Pförtner. Computation-aware kalman
filtering and smoothing. 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Matt Jones, David Mayo, Tyler Scott, Mengye Ren, Gamaleldin ElSayed, Katherine Hermann, and
Michael C Mozer. Neural network online training with sensitivity to multiscale temporal structure.
In NeurIPS workshop on Memory in Artificial and Real Intelligence (MemARI), 2022a.

Matt Jones, Tyler R Scott, Mengye Ren, Gamaleldin Fathy Elsayed, Katherine Hermann, David
Mayo, and Michael Curtis Mozer. Learning in temporally structured environments. In The
Eleventh International Conference on Learning Representations, 2022b.

Matt Jones, Peter Chang, and Kevin Murphy. Bayesian online natural gradient (bong). arXiv preprint
arXiv:2405.19681, 2024.

Ryan Julian, Benjamin Swanson, Gaurav S Sukhatme, Sergey Levine, Chelsea Finn, and Karol
Hausman. Never stop learning: The effectiveness of fine-tuning in robotic reinforcement learning.
arXiv preprint arXiv:2004.10190, 2020.

Rudolph E Kalman and Richard S Bucy. New results in linear filtering and prediction theory. 1961.

Taewon Kang, Soohyun Kim, Sunwoo Kim, and Seungryong Kim. Online exemplar fine-tuning for
image-to-image translation. arXiv preprint arXiv:2011.09330, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yixiao Li, Yifan Yu, Chen Liang, Pengcheng He, Nikos Karampatziakis, Weizhu Chen, and Tuo
Zhao. Loftq: Lora-fine-tuning-aware quantization for large language models. arXiv preprint
arXiv:2310.08659, 2023.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. Advances in Neural Information Processing Systems, 35:1950–1965, 2022.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. arXiv preprint
arXiv:2402.09353, 2024.

Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Syed Murtuza and SF Chorian. Node decoupled extended kalman filter based learning algorithm
for neural networks. In Proceedings of 1994 9th IEEE International Symposium on Intelligent
Control, pp. 364–369. IEEE, 1994.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-
tuning. Advances in Neural Information Processing Systems, 36, 2024.

Yann Ollivier. Online natural gradient as a kalman filter. 2018.

Yann Ollivier. The extended kalman filter is a natural gradient descent in trajectory space. arXiv
preprint arXiv:1901.00696, 2019.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Gintaras V Puskorius and Lee A Feldkamp. Decoupled extended kalman filter training of feedfor-
ward layered networks. In IJCNN-91-Seattle International Joint Conference on Neural Networks,
volume 1, pp. 771–777. IEEE, 1991.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. arXiv
preprint arXiv:1904.09237, 2019.

Adithya Renduchintala, Tugrul Konuk, and Oleksii Kuchaiev. Tied-lora: Enhacing parameter effi-
ciency of lora with weight tying. arXiv preprint arXiv:2311.09578, 2023.

Isabelle Rivals and Léon Personnaz. A recursive algorithm based on the extended kalman filter for
the training of feedforward neural models. Neurocomputing, 20(1-3):279–294, 1998.

Dennis W. Ruck, Steven K. Rogers, Matthew Kabrisky, Peter S. Maybeck, and Mark E. Oxley. Com-
parative analysis of backpropagation and the extended kalman filter for training multilayer per-
ceptrons. IEEE transactions on pattern analysis & machine intelligence, 14(06):686–691, 1992.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

Mona Schirmer, Dan Zhang, and Eric Nalisnick. Test-time adaptation with state-space models.
arXiv preprint arXiv:2407.12492, 2024.

Samir Shah and Francesco Palmieri. Meka-a fast, local algorithm for training feedforward neural
networks. In 1990 IJCNN International Joint Conference on Neural Networks, pp. 41–46. IEEE,
1990.

Samir Shah, Francesco Palmieri, and Michael Datum. Optimal filtering algorithms for fast learning
in feedforward neural networks. Neural networks, 5(5):779–787, 1992.

Shirli Di-Castro Shashua and Shie Mannor. Kalman optimization for value approximation.

Shirli Di-Castro Shashua and Shie Mannor. Trust region value optimization using kalman filtering.
arXiv preprint arXiv:1901.07860, 2019.

Shirli Di-Castro Shashua and Shie Mannor. Kalman meets bellman: Improving policy evaluation
through value tracking. arXiv preprint arXiv:2002.07171, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Frank Shih and Faming Liang. Fast value tracking for deep reinforcement learning. arXiv preprint
arXiv:2403.13178, 2024.

Sharad Singhal and Lance Wu. Training multilayer perceptrons with the extended kalman algorithm.
Advances in neural information processing systems, 1, 1988.

Sharad Singhal and Lance Wu. Training feed-forward networks with the extended kalman algorithm.
In International Conference on Acoustics, Speech, and Signal Processing,, pp. 1187–1190. IEEE,
1989.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language
processing, pp. 1631–1642, 2013.

Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse masks.
Advances in Neural Information Processing Systems, 34:24193–24205, 2021.

Michalis K Titsias, Alexandre Galashov, Amal Rannen-Triki, Razvan Pascanu, Yee Whye Teh, and
Jorg Bornschein. Kalman filter for online classification of non-stationary data. arXiv preprint
arXiv:2306.08448, 2023.

Simone Totaro and Anders Jonsson. Fast stochastic kalman gradient descent for reinforcement
learning. In Learning for Dynamics and Control, pp. 1118–1129. PMLR, 2021.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter effi-
cient tuning of pre-trained models using dynamic search-free low-rank adaptation. arXiv preprint
arXiv:2210.07558, 2022.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. Advances in neural information processing systems, 29, 2016.

A Warstadt. Neural network acceptability judgments. arXiv preprint arXiv:1805.12471, 2019.

Greg Welch, Gary Bishop, et al. An introduction to the kalman filter. 1995.

R Wightman, N Raw, A Soare, A Arora, C Ha, C Reich, et al. rwightman/pytorch-image-models:
v0. 8.10 dev0 release. Zenodo, 2023.

Ronald J Williams. Training recurrent networks using the extended kalman filter. In International
joint conference on neural networks, volume 4, pp. 241–246. Citeseer, 1992.

Shuo Xie and Zhiyuan Li. Implicit bias of adamw: l -norm constrained optimization. In
International Conference on Machine Learning, pp. 54488–54510. PMLR, 2024.

Runxin Xu, Fuli Luo, Zhiyuan Zhang, Chuanqi Tan, Baobao Chang, Songfang Huang, and Fei
Huang. Raise a child in large language model: Towards effective and generalizable fine-tuning.
arXiv preprint arXiv:2109.05687, 2021.

Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng Chang, Hengheng Zhang, Zhensu Chen, Xi-
aopeng Zhang, and Qi Tian. Qa-lora: Quantization-aware low-rank adaptation of large language
models. arXiv preprint arXiv:2309.14717, 2023.

Jingyun Yang, Max Sobol Mark, Brandon Vu, Archit Sharma, Jeannette Bohg, and Chelsea Finn.
Robot fine-tuning made easy: Pre-training rewards and policies for autonomous real-world rein-
forcement learning. In 2024 IEEE International Conference on Robotics and Automation (ICRA),
pp. 4804–4811. IEEE, 2024.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He,
Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-
efficient fine-tuning. arXiv preprint arXiv:2303.10512, 2023.

Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In international
conference on machine learning, pp. 27042–27059. PMLR, 2022.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

TECHNICAL APPENDICES

A LOKO ALGORITHM

The LoKO online fine-tuning method is outlined in Algorithm 1, with our modification to the EKF
algorithm highlighted in red for clarity.

Algorithm 1 LoKO
1: Initialization:
2: Define & initialize trainable parameters using LoRA: θ̃0
3: Initialize covariance: p̂0

4: Initialize matrix R: R0 = Om×m

5:
6: Online Fine-Tuning:
7: while new data available do
8: Get data:
9: data input: xk

10: data output: yk

11:
12: Predict:
13: Predicted parameters: θ̃k|k−1 = θ̃k−1

14: Predicted covariance: p̂k|k−1 = p̂k−1

15:
16: Pre-Updating:
17: Forward-propagation: ŷk = hLoRA(xk, θ̃k|k−1)

18: Jacobian matrix: Hk = ∂hLoRA

∂θ̃
|(xk,θ̃k|k−1)

19: R̂k calculation: R̂k = (yk − ŷk) (yk − ŷk)
⊤
+Hk(p̂k|k−1 •H⊤

k)

20: Rk estimation: Rk = βRk−1 + (1− β)R̂k

21:
22: Update:

23: Compute Kalman gain: Kk = p̂k|k−1 •H⊤
k

(
Hk(p̂k|k−1 •H⊤

k) +Rk

)−1

24: Update parameters: θ̃k = θ̃k|k−1 +Kk(yk − ŷk)

25: Update covariance: (p̂k)
i
=

(
p̂k|k−1

)i − (Kk)
i
j (Hk)

j
i

(
p̂k|k−1

)i
26:
27: Output:
28: Updated Parameters: θ̃k
29: end while

B PROOFS AND DETAILED DERIVATIONS

This section presents the proofs and detailed derivations of the proposed LoKO algorithm, offering
a comprehensive understanding of its underlying principles and mechanisms.

B.1 PROOF FOR PROPOSITION 1

Here, we present the derivation of equation 11a and equation 11c from Proposition 1. These equa-
tions represent our proposed method for calculating the Kalman gain and updating the covariance
matrix using a diagonal approximation.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Proof of equation 11a : Here, we will show that equation 11a is equivalent to equation 3a
under the assumption of covariance diagonal approximation. For this aim, we need to show that
Pk|k−1H

⊤
k = p̂k|k−1 •H⊤

k .

Proof. For simplicity, let’s drop the subscripts of p̂k|k−1, and H⊤
k . Now, define a diagonal matrix:

P = diag([p1, p2, ..., pn]), where the diagonal elements [p1, p2, ..., pn] are the elements of the
vector p̂, and its off-diagonal elements are zeros. Then, the ith row of PH⊤ can be represented as:(
PH⊤)

i
= pi

(
H⊤)

i
, where

(
H⊤)

i
represents the ith row of matrix H⊤. Now, let’s represent

the ith row of the transposed Khatri–Rao product of the vector p̂ and matrix H⊤:
(
p̂ •H⊤)

i
=

(p̂)i⊗
(
H⊤)

i
. Since (p̂)i = pi, and pi is a scalar, the equality pi⊗

(
H⊤)

i
= pi

(
H⊤)

i
holds true.

Consequently, PH⊤ = p̂ •H⊤.

Proof of equation 11c : Here also, we will demonstrate that under the assumption of covariance
diagonal approximation, the equation 11c is equivalent to equation 3c in vanilla EKF algorithm.

Proof. Again, by dropping the subscripts, let’s define a diagonal matrix: P whose diagonal elements
are the elements of the vector p̂. Then, let’s expand the equation expressed with Einstein notation:
(K)

i
j (H)

j
i (p̂)

i
= (K)

i
j (H)

j
i (P)

i
i = (KHP)

i
i, where (KHP)

i
i represents the ith element of

the main diagonal of the matrix KHP . Consequently, the equation 11c represents the diagonal
version of the covariance update in equation 3c.

B.2 PROOF FOR Rk APPROXIMATION

Here, we derive Equation equation 7 and Equation equation 12, which corresponds to two different
methods for estimating the matrix Rk.

Proof of equation 7 for method 1:

Proof. We start by the definition of the observation noise covariance matrix vk:
Rk = E[vkv

T
k]. Substituting the noise vk with vk = yk − hLoRA(xk, θ̃k), we get:

Rk = E
{(

yk − hLoRA(θ̃k,xk)
)(

yk − hLoRA(θ̃k,xk)
)⊤

}
. Assuming θ̃k ≈ θ̃k|k−1, we

will have:

Rk = E
{(

yk − hLoRA(θ̃k|k−1,xk)
)(

yk − hLoRA(θ̃k|k−1,xk)
)⊤

}
. To com-

pute the expectation outlined above in an empirical manner, we define: R̂k =(
yk − hLoRA(θ̃k|k−1,xk)

)(
yk − hLoRA(θ̃k|k−1,xk)

)⊤
as the impact of new data on Rk,

and employ an incremental averaging approach: Rk = k−1
k Rk−1 + 1

k R̂k. This incremental
averaging can be expressed as an EMA approach: Rk = βRk−1 + (1− β)R̂k, with the forgetting
factor of β.

Proof of equation 12 for method 2:

Proof. Similar to method 1, we start with the definition of the covariance matrix of the ob-
servation noise vk: Rk = E[vkv

T
k]. Based on vk = yk − hLoRA(xk, θ̃k), and substituting

the noise definition, we get: Rk = E
{(

yk − hLoRA(θ̃k,xk)
)(

yk − hLoRA(θ̃k,xk)
)⊤

}
.

Since the value of θ̃k is not available before Updating step, let’s approximate hLoRA(θ̃k,xk)

using first-order Taylor series expansion around the last updated parameters θ̃k|k−1, which is:
hLoRA(θ̃k,xk) = hLoRA(θ̃k|k−1,xk) +Hk(θ̃k − θ̃k|k−1). Thus: Rk =

E
{(

yk − hLoRA(θ̃k|k−1,xk)−Hk(θ̃k − θ̃k|k−1)
)(

yk − hLoRA(θ̃k|k−1,xk)−Hk(θ̃k − θ̃k|k−1)
)⊤

}
.

Expanding the above expression with dropping subscript and (θ̃k|k−1,xk) from

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

hLoRA(θ̃k|k−1,xk), and using θk = (θ̃k − θ̃k|k−1) for simplicity will yield: Rk =

E
{
yky

⊤
k − ykh

⊤ − ykθ
⊤
k H

T
k − hy⊤

k + hh⊤ + hθ
⊤
k H

T
k −Hkθky

⊤
k +Hkθkh

⊤ +Hkθkθ
⊤
k H

T
k

}
.

Now, let’s take the expectation by considering:
E[θk] = E[θ̃k − θ̃k|k−1] = 0, and E[θkθ

⊤
k] = E[(θ̃k − θ̃k|k−1)(θ̃k − θ̃k|k−1)

⊤] = Pk|k−1.
Now, we have: Rk = E

{
yky

⊤
k − ykh

⊤ − hy⊤
k + hh⊤ +HkPk|k−1H

T
k

}
. We

already knew that HkPk|k−1H
T
k = Hk(p̂k|k−1 • H⊤

k). Thus: Rk =

E
{
(yk − h) (yk − h)

⊤
+Hk(p̂k|k−1 •H⊤

k)
}

. Similar to the previous approach,

we compute the above expectation in an empirical manner by defining: R̂k =(
yk − hLoRA(θ̃k|k−1,xk)

)(
yk − hLoRA(θ̃k|k−1,xk)

)⊤
+Hk(p̂k|k−1 •H⊤

k)

C COMPUTATIONAL ANALYSIS

C.1 COMPUTATIONAL COMPLEXITY

To analyze the computational complexity of our proposed algorithm, let n represent the number
of parameters, ñ the number of trainable parameters (ñ ≪ n), and m the number of model outputs.
The computational complexities of each step in the LoKO algorithm compared to the vanilla Kalman
filter are as follows:

Prediction: The computational complexity of both LoKO and the vanilla Kalman filter for the
Prediction step is O(1).

Pre-Updating: For LoKO, estimating the observation noise covariance using equation 7 has a
complexity of O(m2). When using equation 12, the complexity increases to O(m2ñ). In contrast,
for the vanilla Kalman filter, the complexity for equation 7 is O(m2), while for equation 12 it is
O(m2n+ n2m).

Updating: The computational complexity for LoKO when calculating the Kalman gain (equa-
tion 11a) is O(m3 +m2ñ), while for the vanilla Kalman filter (using equation 3a), it will be
O(m3 +m2n+ n2m). For updating parameters (equation 11b), LoKO has a complexity of O(mñ),
compared to O(mn) for the vanilla Kalman filter. And finally, the complexity of covariance updat-
ing (equation 11c) in LoKO is O(ñ), while for the vanilla Kalman filter (using equation 3c), it will
be O(n2m).
Thus, the total computational complexity in the worst-case scenario, for LoKO is O(m3 +m2ñ),
and for the vanilla Kalman filter will be O(m3 +m2n+ n2m). In cases where the number of pa-
rameters is significantly larger than the output size, the dominant term for LoKO is O(m2ñ), while
for the vanilla Kalman filter, it will be O(n2m). Therefore, LoKO reduces the computational com-
plexity from quadratic to linear in the number of parameters as well as decreasing the number of
trainable parameters (ñ ≪ n).

C.2 TIME ANALYSIS

To evaluate the time efficiency of our LoKO algorithm, we compare the number of steps required
for convergence, similar to the criterion used in (Liu et al., 2023). Convergence is defined as the
number of iterations at which the loss stays flat or decreases by less than a specified threshold. The
time analysis has been presented in Table 3

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 3: Time efficiency of LoKO in comparison to the baseline methods.

Dataset - Model LoKO LoRA/AdamW LoRA/AdaGrad
steps per-step time steps per-step time steps per-step time

MNIST - DenseNet-121 4000 0.23s 20000 0.025s 23000 0.026s

CIFAR10 - ResNet18 20000 0.11s 30000 0.007s 35000 0.006s

CIFAR10 - ViT-B16 2000 0.14s 2500 0.013s 4000 0.015s

CIFAR100 - ResNet50 30000 0.67s 30000 0.017s 20000 0.018s

CIFAR100 - ViT-B16 2000 0.53s 7000 0.014s 15000 0.015s

ImageNet100 - ViT-L16 5000 1.4s 12000 0.03s 25000 0.032s

SST-2 - RoBbase 48000 0.139s 47000 0.022s 48000 0.02s

SST-2 - RoBlarge 40000 0.17s 45000 0.034s 42000 0.034

COLA - RoBbase 87000 0.137s 87000 0.02s 45000 0.022s

COLA - RoBlarge 100000 0.169s 100000 0.035s 50000 0.034s

MRPC - RoBbase 60000 0.139s 60000 0.02s 35000 0.021s

MRPC - RoBlarge 65000 0.169s 60000 0.036s 46000 0.035s

D ADDITIONAL EXPERIMENT DETAILS

D.1 RESULTS FOR DORA EXPERIMENTS

Figure 3 and 4 show the results for DoRA experiments on vision and language datasets, respectively.

CIFAR-10 / ViT-B16 CIFAR-100 / ViT-B16 ImageNet100 / ViT-L16

Figure 3: Performance of DoRA/Kalman (blue) compared to DoRA/AdamW (red) and
DoRA/AdaGrad (green) for different computer vision datasets and models. The upper rows show
the training loss, and the lower rows display the average online accuracy versus the number of ob-
served data.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

SST-2 / RoBbase COLA / RoBbase MRPC / RoBbase

SST-2 / RoBlarge COLA / RoBlarge MRPC / RoBlarge

DoRA/Kalman DoRA/AdamW DoRA/AdaGrad

Figure 4: Comparison of DoRA/Kalman (blue) with DoRA/AdamW (red) and DoRA/AdaGrad
(green) across various language models and datasets. For each combination, the top row presents
the training loss, while the bottom row illustrates the average online accuracy against the number of
data points observed.

D.2 DIAGONAL APPROXIMATION OF COVARIANCE MATRIX

Our empirical observations reveal that throughout the training process, the covariance matrix of a
feedforward neural network tends towards a (block-)diagonal structure asymptotically. Figure 5
illustrates the evolution of the covariance matrix Pk ∈ Rn×n in LeNet-5 utilizing the Kalman
optimizer. Initially, the matrix exhibits a fully dense positive-definite form, which progressively
transitions towards a (block-)diagonal configuration as the training algorithm advances.

D.3 INITIALIZATION OF p̂0

Ablation of p̂0 Initialization: The initialization of p̂0 with our two methods for MNIST/LeNet-5
has been showed in Figure 6.

The lower and upper bounds for the two proposed initialization methods of p̂0 have been reported
in Table 4 for case studies where an upper bound for the initial values of the covariance matrix is
defined.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 5: Evolution of covariance matrix Pk ∈ Rn×n in LeNet-5 using Kalman optimizer. The ma-
trix starts with a fully dense positive-definite matrix, and with the progress of the training algorithm,
it gradually converges to a (block-)diagonal configuration.

Figure 6: Initialization of p̂0 with two different techniques: (left) Setting a constant positive value,
and (right) Assigning random positive values drawn from a uniform distribution.

Table 4: The lower and upper bounds for two proposed initialization methods of p̂0

Dataset - Model method 1 method 2
min max min max

MNIST - DenseNet-121 0.0001 0.11±0.01 0.0001 0.32±0.01

CIFAR10 - ViT-B16 0.001 105±3 0.001 165±3

CIFAR100 - ViT-B16 0.001 0.2±0.01 0.001 0.59±0.01

ImageNet100 - ViT-L16 0.001 1.0±0.1 0.001 2.0±0.1

Sensitivity to Initialization of p̂0: As explained in Section 5.3, the optimal values achieved by
LoKO are not highly sensitive to the initial covariance matrix. To show this, we present evidence
based on the results of CIFAR-100/ViT-B16 for four different covariance initialization values. As
demonstrated in Figure 7, the final outcomes show minimal sensitivity to these initializations.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 7: Sensitivity analysis to the initial values of p̂0

D.4 ESTIMATION OF R

A comparison of different approaches in the estimation of the observation noise covariance matrix
has been provided in Table 5.

Table 5: Different approaches in the approximation of the observation noise covariance matrix

Ref. Equation Accuracy
MNIST

Puskorius & Feldkamp (1991)
Rk = I 92.59 %Murtuza & Chorian (1994)

Singhal & Wu (1988)
Rk = Ie−k/50 93.65 %Singhal & Wu (1989)

Ollivier (2018)
Rk = diag(ŷk)− ŷkŷ

⊤
k 93.89 %Chang et al. (2022)

LoKO (method 1) Rk = βRk−1 + (1− β)R̂k, 93.81 %
R̂k = (yk − ŷk)(yk − ŷk)

⊤

LoKO (method 2) Rk = βRk−1 + (1− β)R̂k, 94.51 %
R̂k = (yk − ŷk)(yk − ŷk)

⊤ +Hk(p̂k|k−1 •H⊤
k)

D.5 SENSITIVITY TO β IN EMA

To assess the impact of hyperparameter β on LoKO’s performance, we conducted a sensitivity anal-
ysis varying β values. Through this analysis, we measured the average online accuracy across dif-
ferent β settings. The results illustrate that excessively high or low β values notably compromise
LoKO’s performance. Optimal performance lies within the range of 0.9 to 0.98 for β. See Figure 8
for more details.

D.6 SENSITIVITY TO OOD DATA

To evaluate the sensitivity of LoKO to the Out-of-Distribution (OOD) data, we conducted a set of
experiments on MNIST classification task in an online manner. To generate the out-of-distributed
MNIST images, we applied a combination of random rotation (30 degrees) and color jitter (with
a brightness and contrast adjustment of 0.5). Then, we inserted these OOD images into the online
fine-tuning process by including one OOD sample after every 100 normal samples. As shown in
Figure 9, both LoKO and AdamW exhibit some sensitivity to OOD data due to their use of the EMA
technique. However, the results for LoKO demonstrate that it adapts more quickly to the shifted dis-
tribution compared to AdamW. In contrast, AdaGrad shows less sensitivity to OOD data, as it does
not incorporate the EMA technique for the first moment.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 8: Sensitivity to β

Figure 9: Sensitivity analysis to the OOD data

E ADDITIONAL INFORMATION

The Table 6 shows the LoRA layers, number of total parameters, and number of trainable parameters
in our experiments.

Table 6: Total and trainable parameters for each model utilized in the experiments.
Model LoRA layer Num. of total parameters Num. of trainable parameters

DenseNet-121 convolution 7.5 M 166 K

ResNet18 convolution 11 M 150 K

ViT-B16 query 86 M 155 K

ResNet50 convolution 24 M 520 K

ViT-L16 query 305 M 400 K

RoBERTa-base query 125 M 666 K

RoBERTa-large query 355 M 1248 K

22

	Introduction
	Related work
	Preliminaries and Background
	Extended Kalman Filter (EKF)
	Low-Rank Adaptation (LoRA)

	Low-rank Kalman Optimizer
	Kalman Formulation for LoRA
	Initialization of p & Approximation of R

	Experiments and Analysis
	Experiments Setup
	Main results
	Ablation of Initialization and Covariance Approximation

	Conclusion
	Technical Appendices
	LoKO Algorithm
	Proofs and Detailed Derivations
	Proof for Proposition 1
	Proof for Rk Approximation

	Computational Analysis
	Computational Complexity
	Time Analysis

	Additional Experiment Details
	Results for DoRA Experiments
	Diagonal Approximation of Covariance Matrix
	Initialization of 0
	Estimation of R
	Sensitivity to in EMA
	Sensitivity to OOD Data

	Additional Information

