
Reinforcement Learning for Intensity Control: An
Application to Choice-Based Network Revenue

Management

Huiling Meng
CUHK

Ningyuan Chen
University of Toronto

Xuefeng Gao
CUHK

Abstract

Intensity control is a type of continuous-time dynamic optimization problems
with important applications in Operations Research. In this study, we adapt the
reinforcement learning framework to intensity control using choice-based network
revenue management as a case study, which is a classical problem in revenue
management that features a large state space, a large action space and a continuous
time horizon. We show that the inherent discretization from jump points, a key
feature of intensity control, eliminates the need to discretize the time horizon
upfront, which was believed to be necessary because most reinforcement learning
algorithms are designed for discrete-time problems. This facilitates computation
and significantly reduces discretization error. We lay the theoretical foundation
for policy evaluation and develop policy-gradient-based actor-critic algorithms for
intensity control. A comprehensive numerical study demonstrates the benefit of
our approach versus state-of-the-art benchmarks.

1 Introduction

Many dynamic optimization problems in Operations Research are intensity control problems, featur-
ing continuous time and a discrete state space. Two notable areas are control problems in queueing
[2, 3] and dynamic pricing/assortment problems in revenue management [5, 11]. Despite extensive
study, most problems remain challenging to solve in practice because the state space—such as combi-
nations of remaining inventory—can be extremely large, rendering optimal solutions intractable.

Reinforcement learning (RL) provides a computational framework for general dynamic optimization
problems. However, standard RL algorithms are designed for discrete-time Markov decision processes
(MDPs). A common practice for applying RL to continuous-time problems is to first discretize the
time horizon uniformly. This approach presents a difficult trade-off: a fine grid is needed for accuracy
but leads to prohibitive computational costs and numerical instability. Even worse, there are no
guidelines for selecting an appropriate grid size, and the performance of RL algorithms can be highly
sensitive to this choice [12].

In this paper, via the classical application of choice-based network revenue management (NRM)
(see [11] for a recent review), we provide a framework to implement RL algorithms for intensity
control problems, without the need for upfront time discretization. The key insight is to leverage the
event-driven discretization induced by the jump times of the system’s sample paths under a given
policy. For example, in the focused application, the system state (inventory) changes and the reward is
generated only when a customer arrives, and these random yet finite arrival times provide an adaptive
discretization of the time horizon.

The main contributions of our study are threefold. First, we adapt policy evaluation (PE) and policy
gradient (PG) in the standard discrete-time RL framework to the continuous time, and combine
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them to develop model-free actor-critic algorithms. With the adaptive discretization procedure, our
algorithm can be implemented with reduced approximation errors, while maintaining numerical
stability and computational efficiency. Second, we establish a theoretical underpinning for the
continuous-time PE and PG methods by extending the martingale approach—originally developed
for RL in controlled diffusion processes [6, 7]—to intensity control problems with discrete states.
Third, we conduct numerical experiments demonstrating that the proposed actor-critic algorithm
outperforms state-of-the-art benchmarks, including the CDLP policy [8] and the ADP policy [16],
despite being a model-free approach. In particular, one of the experiments features a state space of
size 11100 and an action space of size 2200, demonstrating the scalability and practical applicability
of our framework.

There is extensive literature related to this work. The choice-based NRM problems have been studied
by [4, 13, 17, 8, 16, 15], most of which focus on providing efficient approximate solution algorithms,
with provable performance guarantees. While some studies including [16, 9] design algorithms
based on approximate dynamic programming (ADP), which is an important concept and approach
in RL, they focus on the discrete-time formulation and value function approximations. In contrast,
we study the continuous-time formulation and general RL algorithms including exploration and the
policy gradient method. Methodologically, our paper builds on recent advances in continuous-time
RL with continuous state and action spaces [14, 6, 7], where dynamics are modeled by controlled
diffusion processes and rewards accrue continuously. In contrast, we focus on intensity control of
point processes with discrete states and actions, piecewise-constant paths, and rewards collected
only at jump times. This leads to significant differences in our theoretical analysis and algorithm
design. Moreover, the classical uniformization method for infinite-horizon continuous-time MDPs
[10, Chapter 11] is not directly applicable to our finite-horizon intensity control problem.

2 Problem Formulation and Methodology
We consider a network revenue management problem over a finite selling horizon [0, T ]. The firm
controls m resources with initial inventory c = [c1, . . . , cm]⊤, and it offers n products at fixed
prices p = [p1, . . . , pn]

⊤, each consuming certain resources upon sale. Let A = [aij ]m×n be the
consumption matrix, where aij is the amount of resource i used by selling one unit of product j.
Consumer arrivals follow a Poisson process with rate λ. Upon arrival, given the product assortment
S ⊂ {1, 2, . . . , n} offered by the firm at the moment, the customer purchases product j ∈ S with
probability Pj(S), yielding a revenue of pj for the firm. With probability P0(S), the customer makes
no purchase (j = 0) and the firm earns no revenue. The choice probabilities Pj(S) ∈ [0, 1] satisfy∑

j∈S∪0 Pj(S) = 1 and Pj(S) = 0 for j /∈ S, although they may be unknown to the RL algorithms.
The firm’s decision problem is to find a dynamic policy that offers assortment St at time t that
maximizes the expected total revenue over the selling horizon [0, T ].

We formulate the problem in the language of optimal intensity control. The system state
Xt = [X1,t, . . . , Xm,t]

⊤ is the remaining inventory levels, with state space denoted by X .
The action St is the assortment offered by the firm at time t, with action space denoted by
A. Let Nt = (N1,t, . . . , Nn,t)

⊤ be a vector of controlled Poisson processes with intensities
(λP1(St), . . . , λPn(St)), representing the cumulative number of the n products sold by time t.
The remaining inventory is then given by Xt = c−ANt.

In this study, we focus on policy-based RL and consider a class of admissible randomized Markov
policies Π. Each policy π ∈ Π is a mapping from [0, T ] × X × A to [0, 1], and π(· | t, x) is a
probability distribution on A. Under policy π, when a customer arrives, the firm draws an assortment
from the distribution π(· | t, x) given the current time t and state x. Hereafter, we use the superscript
π to denote processes generated under policy π; namely, Xπ

t , Sπ
t and Nπ

t .

To encourage exploration, we follow [7] and consider the entropy-regularized value function

J(t, x;π) = E
[ ∫

(t,T ]

p⊤dNπ
s + γ

∫ T

t

H(π(· | s,Xπ
s−))ds | Xπ

t = x

]
,

where the first term corresponds to the cumulative reward accrued over (t, T ] in the classical setting,
while the second term is an entropy bonus H(π(· | t, x)) = −

∑
S∈A π(S | t, x) log π(S | t, x). The

parameter γ ≥ 0 serves as a temperature that controls the degree of exploration.

The task of RL is to find a policy π∗ ∈ Π that attains J∗(t, x) = supπ∈Π J(t, x;π) for all t, x.
We address this task by focusing on two model-free objectives: policy evaluation (PE) and policy
improvement via the policy gradient (PG) method.

2



Policy Evaluation

For a given policy π, PE aims at the employment of a (numerical) procedure to determine J(t, x;π) as
a function of (t, x) without any knowledge of the customer arrival rate or the choice probabilities. It
is often achieved through function approximations, where J(t, x;π) is approximated by a parametric
family of functions {Jθ(t, x) : θ ∈ Θ}.

While Monte Carlo methods are a standard approach for offline policy evaluation in discrete time RL,
this section develops a continuous-time counterpart to the gradient Monte Carlo method. We achieve
this by formulating a valid loss function in the continuous-time setting as

L(θ) =
1

2
E
[ ∫ T

0

(∫
(t,T ]

p⊤dNπ
s + γ

∫ T

t

H(π(· | s,Xπ
s−))ds− Jθ(t,Xπ

t )

)2

dt

]
,

which tracks the error between the realized reward along sample paths and the estimated value
function. We first note that by taking the derivative of L(θ) we obtain a continuous-time updating rule
for θ which is parallel to that of gradient Monte Carlo. More importantly, we establish the validity of
our proposed loss function from a theoretical standpoint, as formalized in Theorem 1, which states
that minimizing L(θ) is equivalent to minimizing the mean-squared value error (MSVE). It is worth
noting that, although the MSVE is considered an ideal loss function, minimizing it does not directly
result in a feasible algorithm since the true function J(·, ·;π) is not known.

Theorem 1 It holds that argminθ L(θ) = argminθ
1
2E[

∫ T

0
|J(t,Xπ

t ;π)− Jθ(t,Xπ
t )|2dt].

Note that the integrals in L(θ) either amount to a finite sum of values at the jump points, such
as

∫
(t,T ]

p⊤dNπ
s , or share a common general form

∫ T

0
z(t,Xπ

t )dt. For a realized state sample
path {xt : t ∈ [0, T ]} with jump times {τl}Ll=1, the integral can be written as

∫ T

0
z(t, xt)dt =∑L

l=0

∫ τl+1

τl
z(t, xτl)dt, where τ0 := 0 and τL+1 := T . In contrast to a pre-specified discretization,

this essentially provides an adaptive scheme that discretizes the time horizon for each trajectory
without discretization error. Moreover, if the univariate function z(t, xτl) takes a simple form in
t, such as a polynomial, the integral

∫ τl+1

τl
z(t, xτl)dt can be evaluated exactly, without the need

for numerical procedures. Even when z(t, xτl) is not analytically integrable, the one-dimensional
integral can still be approximated with high accuracy using numerical integration.

Policy Gradient

For a given admissible policy, we next seek to improve it using the PG method. In particular, we
formulate the method to rely only on observable data and the value function of the current policy.
Consider a parametric family of admissible policies {πϕ(· | ·, ·) : ϕ ∈ Φ}, our objective is to
determine argmaxϕ∈Φ J(0, c;πϕ), which requires computing the policy gradient ∇ϕJ(0, c;π

ϕ).

Theorem 2 Under mild assumptions on πϕ, the policy gradient admits the following representation:

∇ϕJ(0, c;π
ϕ) = E

[ n∑
j=1

∫
(0,T ]

∇ϕ log πϕ(Sπϕ

t | t,Xπϕ

t− )[J(t,Xπϕ

t− −Aj ;πϕ)− J(t,Xπϕ

t− ;πϕ) + pj ]dN
πϕ

j,t

+ γ

∫ T

0

∇ϕH(πϕ(· | t,Xπϕ

t− ))dt

]
. (1)

With J(t, x;πϕ) approximated by Jθ∗
(t, x) obtained from the PE step, all the terms inside the

expectation in (1) become computable from observed trajectories under the current policy πϕ. When
dealing with the samples, the computation involves a finite sum of values at the jump points and an
integral of the entropy gradient, where the latter is addressed via the adaptive discretization scheme
discussed in the PE step to reduce the approximation error. Unlike the policy gradient for diffusion
processes [7], whose implementation requires an artificial discretization of time and successive action
randomization at all grid points, our policy gradient formula benefits from the inherent structure of
the jump process and only requires randomized actions at customer arrival times.

By combining the PE and PG modules in an iterative manner, we obtain the actor-critic algorithms.
In each iteration, based on the current parameters (θ, ϕ), trajectories are generated under the current
policy πϕ. This collected data is then used to update the value parameters θ by minimizing the loss
function L(θ), and the policy parameters ϕ via the policy gradient (1). This process is then repeated
with the updated parameters.
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3 Numerical Experiments
In this section, we evaluate the performance of our proposed algorithms on medium- and large-scale
choice-based network revenue management problems. We consider three different combinations of
value and policy approximations as follows.

• Linear-Pair: Jθ(t, x) =
∑d

r=0 θ(0,r)(1 − t
T
)r +

∑m
i=1(

∑d
r=0 θ(i,r)(1 − t

T
)r)xi and πϕ(S | t, x) =

exp{ 1
γ

∑d
r=0(

∑
1≤j, j′≤n ϕ(j,j′,r)δj(S)δj′ (S))(1− t

T
)r}∑

S̄∈A(x) exp{ 1
γ

∑d
r=0(

∑
1≤j, j′≤n ϕ(j,j′,r)δj(S̄)δj′ (S̄))(1− t

T
)r} , where δj(S) = 1 if j ∈ S and 0 otherwise.

• Linear-RO: Jθ(t, x) is the same as in Linear-Pair, πϕ(S[k] | t, x) =
exp{ 1

γ

∑d
l=0 ϕ(k,l)(1− t

T
)l}∑K

k̄=1
exp{ 1

γ

∑d
l=0

ϕ(k̄,l)(1−
t
T

)l} ,

where S[1], . . . , S[K] are all the revenue-ordered assortments [1].
• 2-NNs: Two fully connected neural networks Jθ : R1+m 7→ R and Wϕ : R1+m 7→ Rn are adopted.

The former serves as the value approximator, while the policy approximator is constructed from

the latter via πϕ(S | t, x) =
∏

j∈S
e

1
γ

[Wϕ(t,x)]j

1+e
1
γ

[Wϕ(t,x)]j

∏
j /∈S

1

1+e
1
γ

[Wϕ(t,x)]j
.

Our benchmarks include UNIF-RAND, GREEDY, CDLP [8] and ADP [16]. The UNIF-RAND policy
selects each available assortment with equal probability, and the GREEDY policy always selects the
assortment with the highest expected revenue. Since the ADP method operates in discrete time, we
use ADP-∆t to denote the ADP policy with discretization step size ∆t.

A Medium-Sized Airline Network

We consider an airline network with 6 flight legs (resources) and 9 itineraries (products). The selling
horizon is T = 200 and the initial inventory is c = [12, 20, 16, 20, 12, 16]⊤. Customer choice
probabilities are assumed to follow the MNL model [8].

As summarized in Table 1, our algorithm performs well under three different approximation schemes.
The Linear-Pair policy achieves the best results, outperforming all benchmarks. Although the perfor-
mance of ADP-1 is competitive, ADP policies are highly sensitive to the level of time discretization.
For instance, with a suboptimal discretization of ∆t = 0.5, our algorithm surpasses ADP-0.5 by a
margin of up to 17.2%. This further demonstrates the advantage of our continuous-time framework,
as it avoids issues with upfront time discretization.

A Large Network

We consider a network with m = 100 resources and n = 200 products. Each resource has an initial
capacity of ci = 10 and the selling horizon is set to T = 2, 000. This configuration results in a
problem with a state space of size 11100 and an action space of size 2200, mirroring the scale of
real-world problems.

At this scale, the Linear-Pair and Linear-RO methods become computationally infeasible due to the
enormous policy space. Similarly, the ADP method is intractable. Therefore, we only implement the
2-NNs policy and other benchmarks. In this example, the CDLP method provides a theoretical upper
bound of 197,785 on the optimal expected revenue. Table 2 shows that the 2-NNs policy exhibits a
small performance gap of 0.13% from the upper bound, indicating that it nearly achieves the optimal
solution. The computational time for the 2-NNs experiment was approximately 33.6 hours, which is
reasonable given the scale of the example.

Table 1: Simulation results for medium network

Policy Avg. Rev. Rel. Perf. (%)

Linear-Pair 677.356 100.00
Linear-RO 673.595 99.44
2-NNs 676.369 99.85
UNIF-RAND 595.603 87.93
GREEDY 605.402 89.38
CDLP 651.294 96.15
ADP-1 675.566 99.74
ADP-0.5 560.899 82.81
ADP-0.1 640.854 94.61

Table 2: Simulation results for large network

Policy Avg. Rev. Gap (%)

2-NNs 197,533 0.13
UNIF-RAND 141,260 28.58
GREEDY 161,205 18.49
CDLP 173,502 12.28
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