
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TASK CHARACTERISTIC CONTEXTS FOR IMPROVING
GENERALIZATION IN OFFLINE META-REINFORCEMENT
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Context-based offline meta-reinforcement learning (meta-RL) methods typically extract
contexts summarizing task information from historical trajectories to achieve adaptation
to unseen target tasks. Nevertheless, previous methods are affected by context shift
caused by the mismatch between the behavior policy and context-based policy, as well as
the distinctness among tasks, leading to poor generalization and limited adaptation. Our
key insight is that existing methods overlook the task characteristic information, which
not only reflects task-specific information but also serves to distinguish among tasks,
thereby hindering the extraction and utilization of contexts during adaptation. To address
this issue, we propose a framework called task characteristic contexts for offline meta-
RL (TCMRL). We consider that such task characteristic information is directly related
to task properties, which consist of both reward functions and transition dynamics, and
the interrelations among transitions. More specifically, we design a characteristic metric
based on context-based reward and state estimators, which utilize task properties to
construct the relationships among contexts extracted from entire trajectories. Moreover,
we introduce a cyclic interrelation to obtain the interrelations among transitions within
sequential subtrajectories from forward, backward and inverse perspectives. Contexts
with task characteristic information provide a comprehensive understanding of each
task and implicit relationships among them, enabling effective extraction and utilization
of contexts during adaptation. Experiments in meta-environments demonstrate the
superiority of TCMRL over existing offline meta-RL methods in generating more
generalizable contexts and achieving effective adaptation to unseen target tasks.

1 INTRODUCTION

Context-based offline meta-reinforcement learning (meta-RL) learns how to extract contexts from a series
of training tasks and adapt to new tasks. Specifically, contexts encompass crucial statistical task information,
which is derived from historical trajectories and used to guide adaptation. Existing methods (Gao et al.,
2023; Li et al., 2021b; Yuan & Lu, 2022; Zhou et al., 2024; Nakhaeinezhadfard et al., 2025) learn to
generate and utilize contexts from offline trajectories of meta-training tasks during the meta-training phase
to avoid expensive online interactions with real or simulated environments. Subsequently, they collect
a few online trajectories from unseen target tasks (meta-testing tasks) and leverage contexts extracted from
these trajectories to achieve adaptation during the meta-testing phase.

However, existing methods face the challenge of context shift (Wang et al., 2023; Gao et al., 2023), which
is closely related to the classical memorization problem in meta-learning (Yin et al., 2020) and the Markov
decision process (MDP) ambiguity problem (Li et al., 2020; 2021a). This issue arises from the mismatch
between the behavior policy and the context-based policy, as well as the inherent distinctness among
tasks. Specifically, the context encoder overfits the offline trajectories of meta-training tasks generated
by the behavior policy during meta-training, failing to extract effective contexts from the online trajectories
collected by the context-based policy on unseen target tasks during meta-testing. Consequently, these
methods generate contexts with poor generalization, resulting in limited adaptation.

Our key observation is that the limited generalization of contexts in existing methods arises from the
failure to capture task characteristic information, which is a crucial component of task information. Such
information not only reflects the information of individual tasks but also distinguishes tasks from one

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Comparison of intra-task similarity and inter-task distinctness
for contexts generated by our method, ER-TRL (Nakhaeinezhadfard
et al., 2025), UNICORN (Li et al., 2024), and GENTLE (Zhou et al.,
2024). Both characteristics are measured using cosine similarity,
Euclidean distance, and L1 distance.

Methods Intra-task similarity Inter-task distinctness

Cosine Euclidean L1 Cosine Euclidean L1
similarity (↑) distance (↓) distance (↓) similarity (↓) distance (↑) distance (↑)

TCMRL (ours) 0.9971 0.2592 0.7710 0.1323 4.8553 17.0715
ER-TRL 0.9959 0.2653 0.8841 0.1492 4.3222 15.2584

UNICORN 0.9963 0.2749 0.8654 0.1745 4.5442 16.7882
GENTLE 0.9885 0.3495 1.2805 0.2195 3.8957 15.1122

10
5

0
5

10

10
5

0
5

10

15

10

5

0

5

10

15

Half-Cheetah-Vel

(a) TCMRL (ours)

15
10

5
0

5
10

15

10
5

0
5

10

15

10

5

0

5

10

Half-Cheetah-Vel

(b) ER-TRL

Figure 1: 3D t-SNE visualization
(van der Maaten & Hinton, 2008) of
contexts of TCMRL and ER-TRL
on 6 randomly sampled tasks in the
Half-Cheetah-Vel environment.

another, thereby constructing intra-task similarity and inter-task distinctness of contexts. The comparison
results in Table 1 and Figure 1 demonstrate that existing methods fail to capture these characteristics
effectively. Specifically, task characteristic information is directly related to the underlying task properties,
which consist of both reward functions and transition dynamics, as well as the interrelations among
transitions. First, each transition within the historical trajectories used for extracting contexts is associated
with these task properties, and their combination reveals the task characteristic information. Different
trajectories of the same task reflect similar task characteristic information, while those from different tasks
show clear distinctness. Consequently, the contexts extracted from these trajectories should capture such
intra-task similarity and inter-task distinctness, thereby enhancing their generalization. We aim to explicitly
model the reward functions and transition dynamics, and construct context relationships based on these
task properties, capturing the task characteristic information at the trajectory level. Second, we observe that
the interrelations among transitions, revealed by the temporal relationships among transitions, also reflect
the task characteristic information. Identifying and exploiting these relationships during meta-training,
rather than merely treating transitions as a collection reflecting task reward functions and transition
dynamics, captures comprehensive task characteristic information. Consequently, such a comprehensive
understanding of tasks leads to more generalizable contexts extracted from sequential trajectories of unseen
target tasks, and further facilitates effective adaptation during meta-testing. However, existing methods
neglect these interrelations when aggregating the transition representations into contexts, limiting their
adaptation performance. Taking into account the limitation of offline trajectories, we capture this critical
aspect of task characteristic information at a finer granularity through the subtrajectory level.

To this end, we propose a framework called task characteristic contexts for offline meta-RL (TCMRL) to
enhance the generalization of contexts and achieve effective adaptation to unseen target tasks. Specifically,
we introduce context-based reward and state estimators to respectively model the reward functions
and transition dynamics of tasks, and design a characteristic metric based on these estimations. This
metric aims to construct the relationships among contexts based on reward functions and transition
dynamics, capturing the task characteristic information at the trajectory level. Additionally, we discover
the overlooked interrelations among transitions, which are revealed by the temporal relationships within
subtrajectories. For each subtrajectory, we formulate temporal prediction objectives from both forward
and backward perspectives, and introduce an inverse model to perform inverse prediction between the
first and last transition representations. Then, using subtrajectories as the basic unit, these interrelations
are extended to the entire trajectory. All these objectives form our cyclic interrelation, which captures the
task characteristic information at the subtrajectory level. Overall, with comprehensive task characteristic
information, TCMRL generates generalizable contexts with intra-task similarity and inter-task distinctness,
enabling effective adaptation to unseen target tasks. The main contributions of TCMRL are fourfold:

• We propose TCMRL to capture the task characteristic information for mitigating the negative
impacts of context shift, generating contexts with generalization, and achieving effective
adaptation to unseen target tasks.

• We design a characteristic metric that constructs the relationships among contexts based on
task reward functions and transition dynamics, capturing task characteristic information at the
trajectory level.

• We introduce a cyclic interrelation to discover the interrelations among transitions from forward,
backward and inverse perspectives, capturing task characteristic information at the subtrajectory
level.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• Experimental results on meta-environments demonstrate significant performance improvements
compared with previous offline meta-RL methods, validating the effectiveness of TCMRL.

2 RELATED WORK

Meta-reinforcement learning. Meta-reinforcement learning aims to acquire learning strategies from
a series of meta-training tasks and achieve adaptation to unseen target tasks. Previous meta-RL studies
can be primarily categorized into two distinct methods: context-based methods and optimization-based
methods. Context-based methods encode contexts from the critical statistical information about tasks,
which is generally presented in the form of historical trajectories. This process is commonly accompanied
by the utilization of recurrent (Fakoor et al., 2020; Wang et al., 2017), recursive (Mishra et al., 2018), or
probabilistic (Rakelly et al., 2019; Zintgraf et al., 2020) structures. Moreover, optimization-based methods
(Finn et al., 2017; Foerster et al., 2018; Houthooft et al., 2018) formalize the process of the task adaptation
as the execution of policy gradients over limited samples, aiming to acquire an optimal initialization of
the policy. TCMRL is most closely related to the context-based meta-RL.

Context-based offline meta-reinforcement learning. Although context-based online meta-RL methods
such as SimBelief (Zhang et al., 2025) exist, our work targets the offline setting, where generalizable
contexts are derived from offline trajectories rather than from online interactions during meta-training.
It aims to adapt to unseen target tasks during the meta-testing phase. FOCAL (Li et al., 2021b)
utilizes behavior regularization to restrict the task inference. CORRO (Yuan & Lu, 2022) improves the
generalization of contexts through contrastive learning. IDAQ (Wang et al., 2023) leverages a return-based
uncertainty quantification to ensure in-distribution contexts of tasks. CSRO (Gao et al., 2023) designs
a max-min mutual information representation learning mechanism to reduce the impact of context shift.
GENTLE (Zhou et al., 2024) and UNICORN (Li et al., 2024) aim to reconstruct the task models to deepen
task understanding. ER-TRL (Nakhaeinezhadfard et al., 2025) reduces the mutual information between
task representations and the behavior policy by maximizing the conditional entropy of the policy. However,
all these methods fail to capture comprehensive task characteristic information when generating contexts.
They rely solely on coarse task labels to construct the relationships among contexts, rather than leveraging
the underlying differences among tasks, which lie in both reward functions and transition dynamics.
Moreover, they overlook the interrelations among transitions, considering only the task properties reflected
in each transition. In contrast, TCMRL uses task properties to establish comprehensive relationships
among contexts. Furthermore, it identifies and exploits the interrelations among transitions to capture
task characteristic information for handling similar structures during meta-testing. With comprehensive
task characteristic information, TCMRL achieves effective adaptation to unseen target tasks.

3 PRELIMINARIES

Reinforcement learning. The formulation of a reinforcement learning (RL) task commonly takes
the form of a fully observable Markov decision process (MDP), which can be defined as a tuple
M=⟨S,A,p,r,γ,ρ0⟩. S is the state space, A is the action space, st∈S and at∈A respectively represent
the state and action at time-step t, p(st+1|st,at) is the transition dynamics, r(st,at) is the reward function,
ρ0 is the initial state distribution, and γ∈ [0,1) is the discount factor for future rewards. A stochastic policy
is a distribution π(at|st) of actions. Moreover, the definition of the marginal state distribution at time-step
t is µt

π(s
t) and the primary goal of the agent is to maximize the objective function maxπJM(π) =

Est∼µt
π,a

t∼π[
∑∞

t=0γ
tr(st,at)], which represents the expectation of the accumulated rewards over time.

Context-based offline meta-reinforcement learning. Context-based offline meta-RL is generally
formalized as partially observable Markov decision processes (POMDPs) (Kaelbling et al., 1998), where
states obtained from environments remain only partially visible. It assumes that the information of each
task is the unobservable part called the context and the agent needs to collect it from offline data as one
of the conditions to make decisions: ati∼π(ati|sti,ci), where ci is the context related to the task information
of task Ti and the complete state is formed by combining sti and ci. The goal of the meta-agent remains
consistent with that of the RL agent. Moreover, meta-RL assumes access to a set of ntask meta-training
tasks T={T1,...,Tntask

} and a set of unseen target tasks T∗. These tasks differ in their reward functions
and/or transition dynamics, and each task is individually modeled as a POMDP. The set of offline datasets

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Offline

dataset

𝒉𝑖 = {ℎ𝑖
𝑡}𝑡=1

𝑇

ℎ𝑖
𝑡 = [𝑠𝑖

𝑡 , 𝑎𝑖
𝑡 , 𝑟𝑖

𝑡 , 𝑠𝑖
𝑡+1]

(𝑐𝑖
1, 𝑐𝑖

2, … , 𝑐𝑖
𝑇)

Context 𝑐𝑖

Meta-training tasks Meta-testing tasks

𝜋(𝑎𝑖
𝑡|𝑠𝑖

𝑡 , 𝑐𝑖) 𝜋(𝑎𝑗
𝑡|𝑠𝑗

𝑡 , 𝑐𝑗)

(b) Meta-testing

𝒯4

𝒯1
𝒯3𝒯2

𝒯1
∗

𝒯2
∗

Context 𝑐𝑗

(𝑐𝑗
1, 𝑐𝑗

2, … , 𝑐𝑗
𝑇)

𝐿𝐶m

(a) Meta-training

Context-based
reward estimator

Ƹ𝑟(𝑠′𝑖
𝑡 , 𝑎′𝑖

𝑡 , 𝑐𝑖)

Context-based
state estimator

Ƹ𝑠(𝑠′𝑖
𝑡 , 𝑎′𝑖

𝑡 , 𝑐𝑖)

Context encoder
𝑒(ℎ𝑖

𝑡)

𝐿𝐶𝑦𝑐𝑙
𝐹𝑜𝑟

𝐿𝐶𝑦𝑐𝑙
𝐼𝑛𝑣

𝐿𝐶𝑦𝑐𝑙
𝐵𝑎𝑐𝑘

Context encoder
𝑒(ℎ𝑗

𝑡)

Mean Mean

𝒉𝑗 = {ℎ𝑗
𝑡}𝑡=1

𝑇

𝒉′𝑖

Figure 2: Framework overview. (a) Meta-training meta-trains a context encoder e(hti), a context-based
reward estimator r̂(s′ti,a

′t
i,ci), a context-based state estimator ŝ(s′ti,a

′t
i,ci) and a context-based policy

π(ati|sti,ci). r̂(s′
t
i,a

′t
i,ci) and ŝ(s′

t
i,a

′t
i,ci) are used to construct the characteristic metric loss LCm. The

cyclic interrelation loss LCycl discovers interrelations among transitions from forward, backward and
inverse perspectives. (b) Meta-testing utilizes the meta-trained modules e(htj) and π(atj|stj,cj) for effective
adaptation to unseen target tasks with contexts extracted from a few online trajectories collected from them.

D={D1,...,Dntask
} corresponds to the set of meta-training tasks. More preliminaries of meta-learning

and context-based offline meta-RL can be found in Appendices C and D, respectively.

4 METHOD

As illustrated in Figure 2, TCMRL comprises two main phases: meta-training and meta-testing.
Specifically, during the meta-training phase, TCMRL learns how to extract contexts ci from historical
trajectories hi sampled from the offline dataset Di associated with the meta-training task Ti. During the
meta-testing phase, trajectories hj of the unseen target task Tj are collected to extract the contexts cj. Such
contexts are then used to achieve effective adaptation to Tj. Generally, for hi={hti}

T
t=1 that consists of

T transitions hti=(sti,a
t
i,r

t
i,s

t+1
i), the process of context extraction is as follows:
{cti}

T

t=1=e({hti}
T

t=1), ci=mean({cti}
T

t=1). (1)

TCMRL primarily operates in the meta-training phase to learn how to capture task characteristic
information when generating contexts. Specifically, it (1) models reward functions and transition dynamics
of tasks using context-based reward and state estimators, and uses them to construct the relationships
among contexts based on the characteristic metric at the trajectory level; and (2) introduces the cyclic
interrelation to discover the overlooked interrelations among transitions at the subtrajectory level from
forward, backward and inverse perspectives.

4.1 CHARACTERISTIC METRIC

Context-based estimators. Reward functions and transition dynamics, as the essential differences
among meta-tasks, constitute critical task properties.

Assumption 1 (Deterministic task properties) For a particular state-action pair (sti, a
t
i) ∈ S × A

of Ti, and corresponding reward function ri(s
t
i, a

t
i) and transition dynamic pi(s

t+1
i |sti, ati),

p(rti, s
t+1
i |sti, ati, ri(·, ·), pi(·, ·)) = δ((rti = ri(s

t
i, a

t
i)) ∧ (st+1

i = pi(s
t
i, a

t
i))), meaning that both the

reward and next state of (sti,a
t
i) are deterministically given by task properties of Ti. Notably, δ(·) denotes

the Kronecker delta function, which returns 1 when the specified condition is satisfied and 0 otherwise.

GENTLE (Zhou et al., 2024) and UNICORN (Li et al., 2024) construct task properties from offline
data using neural networks to deepen the understanding of individual tasks. TCMRL further leverages

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Offline

datasets 𝔻
Meta-training tasks 𝕋,

𝒯𝑖 , 𝒯𝑗 , 𝒯𝑘 ∈ 𝕋

𝒉𝑖 = {ℎ𝑖
𝑡}𝑡=1

𝑇
Context 𝑐𝑖

𝒉𝑘 = {ℎ𝑘
𝑡 }𝑡=1

𝑇

Context-based
reward predictor

Ƹ𝑟(𝑠′𝑖
𝑡 , 𝑎′𝑖

𝑡 , 𝑐𝑖)

Context-based
state predictor

Ƹ𝑠(𝑠′𝑖
𝑡 , 𝑎′𝑖

𝑡 , 𝑐𝑖)

{(𝑠𝑘
𝑡 , 𝑎𝑘

𝑡)}𝑡=1
𝑇

𝒉𝑗 = {ℎ𝑗
𝑡}𝑡=1

𝑇 Context 𝑐𝑗

Context encoder
𝑒(ℎ𝑖

𝑡)

Ƹ𝑟(𝑠𝑘
𝑡 , 𝑎𝑘

𝑡 , 𝑐𝑖) Ƹ𝑟(𝑠𝑘
𝑡 , 𝑎𝑘

𝑡 , 𝑐𝑗) Ƹ𝑠(𝑠𝑘
𝑡 , 𝑎𝑘

𝑡 , 𝑐𝑖) Ƹ𝑠(𝑠𝑘
𝑡 , 𝑎𝑘

𝑡 , 𝑐𝑗)

Figure 3: Characteristic metric. TCMRL leverages reward functions and transition dynamics to construct
relationships among contexts through the characteristic metric. It revolves to r̂(s′

t
i,a

′t
i,ci), ŝ(s

′t
i,a

′t
i,ci)

and trajectories of tasks with label i, j and k, which may represent three kinds of possible label cases.

reconstructed task properties as constraints to establish both intra-task similarity and inter-task distinctness
of contexts, and additionally model the varying degrees of both. Specifically, we introduce context-based
reward and state estimators, r̂(s′ti,a

′t
i,ci) and ŝ(s′

t
i,a

′t
i,ci). These two estimators are implemented as

learnable neural networks, and are used to construct corresponding task properties. Each estimator receives
not only the state s′ti and action a′

t
i of the transition h′

t
i=(s′

t
i,a

′t
i,r

′t
i,s

′t+1
i) within h′

i, but also ci, which
encodes task information and enables generalization across all meta-training tasks.

r̂(s′
t
i,a

′t
i,ci) and ŝ(s′

t
i,a

′t
i,ci) are optimized using supervised objectives to accurately predict the rewards

and next states of transitions across all meta-training tasks under corresponding contexts, as follows:

Lr=

T∑
t=1

(r̂(s′
t
i,a

′t
i,ci)−r′

t
i)
2
, Ls=

T∑
t=1

(ŝ(s′
t
i,a

′t
i,ci)−s′

t+1
i)

2
. (2)

Notably, r̂(s′ti,a
′t
i,ci) and ŝ(s′

t
i,a

′t
i,ci) are trained and utilized jointly in an end-to-end manner. Our

experimental results show that both Lr and Ls rapidly converge to a low value, indicating that the
estimators effectively model these task properties.

Characteristic metric loss. As shown in Figure 3, we leverage r̂(s′ti,a
′t
i,ci) and ŝ(s′

t
i,a

′t
i,ci) to impose

constraints on relationships among contexts. These constraints, derived from task reward functions and
transition dynamics, enforce that the contexts extracted from trajectories capture task-specific information
and remain distinguishable. Therefore, the task characteristic information is effectively captured at the
trajectory level in a regularized manner and encoded into the contexts to enhance their generalization.

The bisimulation metric (Larsen & Skou, 1991; Ferns et al., 2012; 2011) measures the behavioral similarity
between two states based on differences in their rewards and transition dynamics. It ensures that bisimilar
states yield identical value functions under a given policy. Given two states sι and sν at time-step ι and
ν from the same task, an approximate transition dynamics model p̂ :S×A→M(S′), and a policy π, the
bisimulation metric function with approximate dynamics is defined as:

d(sι,sν)=cr|rι−rν|+cpW1(d)(p̂(·|sι),p̂(·|sν)), (3)

where
rι=Eaι∼π[r(s

ι,aι)],rν=Eaν∼π[r(s
ν,aν)], (4)

W1(d) is the 1-Wasserstein distance, and cr∈ [0,∞) and cp∈ [0,1) are hyperparameters for weighting.

We are not limited to the transition level but instead build on it to design a characteristic metric that
measures the distance between two contexts ci and cj through r̂(s′

t
i,a

′t
i,ci) and ŝ(s′

t
i,a

′t
i,ci). This metric

operates on hi and hj, which are sampled from Di and Dj, the offline datasets of Ti and Tj, respectively.
Both hi and hj are encoded into ci and cj. Then, another trajectory hk is sampled and used as an anchor
to capture task characteristic information. These task labels i, j and k associated with hi, hj and hk fall
into three possible cases: (1) i=j=k, where all data is from the same task; (2) two labels are the same,
involving two distinct tasks; (3) i, j and k are all different, involving three distinct tasks. By accounting
for all these cases, the characteristic metric provides a comprehensive measure of context distance through
estimations on state–action pairs across tasks, thereby broadening coverage and enhancing generalization.
For each htk=(stk,a

t
k,r

t
k,s

t+1
k), we apply r̂(s′

t
k,a

′t
k,ci) and ŝ(s′

t
k,a

′t
k,ci) (and similarly for cj) to predict

the reward and next state. Next, by comparing these estimations to the ground-truth (rtk,s
t+1
k), we measure

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Forward 𝐿𝐶𝑦𝑐𝑙
𝐹𝑜𝑟

𝑐𝑖
1 𝑐𝑖

𝐾𝑐𝑖
𝐾−1𝑐𝑖

2 … 𝑐𝑖
𝐾+1 …

Task 𝒯𝑖

𝑐𝑗
1 𝑐𝑗

𝐾𝑐𝑗
𝐾−1𝑐𝑗

2 … 𝑐𝑗
𝐾+1 …

Task 𝒯𝑗

Inverse 𝐿𝐶𝑦𝑐𝑙
𝐼𝑛𝑣

Backward 𝐿𝐶𝑦𝑐𝑙
𝐵𝑎𝑐𝑘

Forward 𝐿𝐶𝑦𝑐𝑙
𝐹𝑜𝑟

Backward 𝐿𝐶𝑦𝑐𝑙
𝐵𝑎𝑐𝑘 Inverse 𝐿𝐶𝑦𝑐𝑙

𝐼𝑛𝑣

Inverse 𝐿𝐶𝑦𝑐𝑙
𝐼𝑛𝑣

Inverse 𝐿𝐶𝑦𝑐𝑙
𝐼𝑛𝑣

Figure 4: Cyclic interrelation learning discovers the interrelations among transitions from forward,
backward and inverse perspectives. The forward and backward components rely on comparisons across
different tasks, while the inverse component focuses on intra-task structure.

the differences under ci and cj. The definitions of estimation accuracy are as follows:
racci =(r̂(stk,a

t
k,ci)−rtk), raccj =(r̂(stk,a

t
k,cj)−rtk), (5)

sacci =(ŝ(stk,a
t
k,ci)−st+1

k), saccj =(ŝ(stk,a
t
k,cj)−st+1

k). (6)
The characteristic metric between ci and cj is computed as follows:

dCm(ci,cj)=(racci −raccj)+(sacci −saccj). (7)
Additionally, we directly measure the differences between ci and cj as follows:

d(ci,cj)=(ci−cj). (8)
Subsequently, we combine these two kinds of differences to formulate our characteristic metric loss LCm.
The computation process of LCm is as follows:

LCm=(dCm(ci,cj)
2−d(ci,cj)2)2. (9)

This loss constructs the relationships among contexts according to the estimation accuracy of task reward
functions and transition dynamics. Beyond establishing intra-task similarity and inter-task distinctness, it
further models the varying degrees of similarity and distinctness, capturing task characteristic information
at the trajectory level and enhancing context generalization.

4.2 CYCLIC INTERRELATION

As a key component of comprehensive task characteristic information, the interrelations among transitions
used to generate the contexts focus on identifying and exploiting the temporal relationships among
transitions. These interrelations serve as a complementary means of capturing the task characteristic
information beyond task reward functions and transition dynamics. Therefore, learning to extract
task characteristic information from this aspect during meta-training enables a more comprehensive
understanding of tasks and further facilitates effective adaptation to unseen target tasks when encountering
similar structures in the online trajectories during meta-testing. However, existing methods overlook these
interrelations and merely treat transitions as independent reflections of task properties, thereby limiting the
generalization of contexts. To discover fine-grained interrelations among transitions under limited offline
data, we operate on sequential subtrajectories of length K rather than using entire trajectories. Notably,
K is a fixed hyperparameter that satisfies K>1. We then design a set of forward, backward, and inverse
prediction objectives to construct the cyclic interrelation, which captures comprehensive interrelations
among transitions and facilitates the extraction of task characteristic information.

The structure for discovering the interrelations among transitions is illustrated in Figure 4, and further details
are provided in Appendix B. Specifically, TCMRL discovers the interrelations within subtrajectories from
forward, backward and inverse perspectives. The forward perspective maximizes the mutual information
between the prior and last transitions, and the backward perspective does so between the first and subse-
quent transitions, jointly capturing intra-task similarity and inter-task distinctness. The inverse perspective
enhances the task understanding by predicting intermediate transitions from the first and last transitions.

Forward interrelation learning. The forward interrelation aligns naturally with the temporal
relationships among transitions within subtrajectories. Given a sequential subtrajectory of Ti, we regard
the average of transition representations from the first K−1 steps as prior context representation cprior
and consider the K-th step transition representation as target context representation ctarget. Then, we
maximize the mutual information between cprior and ctarget:

I (mt
i;c

t+K−1
i), (10)

where mt
i is a convenient representation for mean(cti,...,c

t+K−2
i). We approximate the lower bound of

the mutual information with the InfoNCE loss function (van den Oord et al., 2018).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Given a sequence of transition representations {{cti}Tt=1}
B

i=1 related to B tasks {Ti}Bi=1, we operate in two
distinct levels of steps. Specifically, we apply the InfoNCE loss to estimate the mutual information in Eq. 10,
aiming to capture the interrelations among transitions in the subtrajectories {(cti,c

t+1
i ,...,ct+K−1

i)}Bi=1. It
relies on the matching relationship between cprior and ctarget, as they encode the same task characteristic
information and share the temporal relationships within the subtrajectory. However, discovering forward
interrelations from a single subtrajectory is limited, as this process only considers the dependency between
transitions within mt

i and ct+K−1
i . Therefore, we extend these interrelations to entire trajectories with

sets of subtrajectories as the basic units. This operation allows each transition (except for the first and
last K−1 steps) to simultaneously contribute to both mt

i and ct+K−1
i , thereby capturing the interrelations

between each transition and its surrounding K neighbors. The complete computation process is as follows:

LFor
Cycl=−

1

T−K+1

1

B

T−K+1∑
t=1

B∑
i=1

log
mt

iWct+K−1
i∑B

l=1m
t
iWct+K−1

l

, (11)

where W is a learnable parameter that measures the similarity between mt
i and ct+K−1

i , which serve as
cprior and ctarget, respectively. Although the computation of LFor

Cycl in Eq. 11 seems to involve a double
loop with time complexity dependent on both B and T , it can be efficiently computed through matrix
operations, reducing the complexity of the inner loop. Then, the inner loop can be written as follows:

Linner=−
B∑
i=1

log
mt

iWct+K−1
i∑B

l=1m
t
iWct+K−1

l

=−Tr(M), Mij=log
mt

iWct+K−1
j∑B

l=1m
t
iWct+K−1

l

. (12)

Meanwhile, the outer loop primarily relates to the parallel computations of cprior.

Backward interrelation learning. The backward interrelation is similar to the forward one, but serves
more as a complementary perspective for discovering interrelations among transitions based on the temporal
relationships , thereby capturing the task characteristic information. This perspective operates in the reverse
temporal direction, using later transitions to predict earlier ones, thus offering a deeper understanding
of the temporal relationships among transitions. Similarly based on mutual information and the InfoNCE
loss function, we construct LBack

Cycl by treating the average of the last K−1 transition representations as
cprior and the first transition representation as ctarget. The complete computation process is as follows:

LBack
Cycl =−

1

T−K+1

1

B

T−K+1∑
t=1

B∑
i=1

log
m′t

iWcti∑B
l=1m

′t
iWctl

, (13)

where m′t
i=mean(ct+1

i ,...,ct+K−1
i) and LBack

Cycl , like LFor
Cycl, can also be computed via matrix operations

to reduce computational complexity.

Inverse interrelation learning. The inverse interrelation captures temporal relationships by predicting
intermediate transitions within each subtrajectory based on the first and last transitions. We do not impose
a strict prediction to match each intermediate transition representation. Instead, the prediction objective
is the average of the intermediate transition representations, aligning with the mean(·) operation used
in context extraction (Eq. 1). Specifically, we introduce an inverse model Inv(·,·), which takes cti and
ct+K−1
i as inputs and predicts mean(ct+1

i ,...,ct+K−2
i). The complete computation process is as follows:

LInv
Cycl=(Inv(cti,c

t+K−1
i)−mean(ct+1

i ,...,ct+K−2
i))

2
. (14)

Overall, LFor
Cycl, LBack

Cycl and LInv
Cycl collectively capture the interrelations embedded in the temporal

relationships among transitions within subtrajectories from multiple perspectives, and together constitute
our cyclic interrelation loss LCycl. We consider all three perspectives to play important and complementary
roles in discovering interrelations among transitions, and assign them equal weight:

LCycl=LFor
Cycl+LBack

Cycl +LInv
Cycl. (15)

With LCycl, TCMRL captures comprehensive task characteristic information that includes interrelations
among transitions, thereby enhancing the generalization of contexts and enabling effective adaptation
to unseen target tasks. Pseudo-codes of both the meta-training and meta-testing phases can be found in
Appendix A. The theoretical analysis is in Appendix E and more implementation details are in Appendix H.

5 EXPERIMENTS

We evaluate TCMRL on: (1) whether generalizable contexts can be extracted and (2) whether
an effective adaptation to unseen target tasks can be achieved. Our code is available at
https://anonymous.4open.science/r/TCMRL-ICLR2026.

7

https://anonymous.4open.science/r/TCMRL-ICLR2026

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Comparison results of TCMRL and all baselines in experimental environments.

Environment TCMRL (ours) ER-TRL UNICORN GENTLE IDAQ CSRO ANOLE CORRO FOCAL

Out-of-Distribution

Half-Cheetah-Vel -110.54±15.04 -125.93±7.48 -124.15±8.47 -131.01±33.94 -127.00±21.03 -126.65±9.13 -121.77±17.55 -124.93±24.00 -144.47±47.94
Point-Robot -4.73±0.12 -4.81±0.14 -4.78±0.09 -7.31±1.22 -4.76±0.07 -4.78±0.14 -5.05±0.05 -5.82±0.50 -4.96±0.13

Point-Robot-Wind -5.55±0.31 -6.80±1.68 -15.61±1.15 -5.98±0.27 -5.56±0.28 -15.95±3.36 -5.81±0.39 -12.24±4.98 -5.98±0.27
Sparse-Point-Robot 12.66±0.24 12.31±0.55 12.38±1.11 5.27±1.16 12.45±0.22 11.06±1.36 11.99±0.93 7.22±2.75 12.39±0.32

Hopper-Rand-Params 360.87±15.80 345.12±25.95 313.87±22.75 238.09±21.94 314.00±18.59 348.78±30.38 310.92±49.51 256.79±6.48 309.70±20.44
Walker-Rand-Params 328.67±24.48 317.30±9.32 319.35±14.79 320.04±7.35 303.43±31.98 317.39±19.52 315.00±19.64 319.01±14.79 290.96±31.84

Ant-Goal -368.99±5.36 -616.43±8.17 -500.71±4.48 -500.84±2.79 -417.42±2.20 -524.41±92.41 -691.59±4.47 -614.59±4.10 -408.26±3.66
Humanoid-Dir 700.63±21.11 558.72±46.12 696.56±20.16 700.23±19.38 582.99±18.47 646.90±86.60 651.82±49.00 738.11±29.83 545.19±27.63

In-Distribution

Half-Cheetah-Vel -109.08±12.79 -125.55±6.06 -124.55±6.76 -132.26±24.00 -121.29±15.38 -120.18±14.75 -120.95±11.24 -119.26±12.50 -138.23±13.58
Point-Robot -4.71±0.04 -4.81±0.14 -4.73±0.02 -7.63±2.29 -4.76±0.04 -4.77±0.05 -5.11±0.02 -5.86±0.71 -4.80±0.02

Point-Robot-Wind -5.64±0.10 -6.63±1.75 -15.55±1.27 -5.80±0.16 -5.69±0.06 -15.82±3.55 -5.67±0.18 -12.13±4.85 -5.81±0.08
Sparse-Point-Robot 12.65±0.08 12.55±0.19 12.29±1.34 6.14±0.85 12.61±0.09 11.18±1.31 12.12±0.84 5.89±2.07 12.62±0.11

Hopper-Rand-Params 373.58±27.38 306.10±24.36 286.83±4.49 244.51±14.66 284.99±6.93 286.69±1.01 276.64±16.32 263.66±12.94 279.69±14.80
Walker-Rand-Params 333.38±22.99 342.80±12.50 316.30±20.03 327.89±17.62 306.42±29.85 327.68±10.99 326.82±36.33 338.42±9.22 301.76±21.28

Ant-Goal -342.64±5.00 -619.23±8.24 -517.66±4.13 -507.70±5.81 -403.12±6.55 -490.31±132.81 -697.59±4.69 -625.48±8.53 -392.15±7.04
Humanoid-Dir 698.20±37.58 559.93±50.44 697.37±19.56 703.53±17.87 574.96±15.41 645.32±83.16 663.06±48.56 740.39±28.29 547.32±25.02

Table 3: Ablation results of TCMRL for analyzing the effects of LCm and LCycl.

Environment TCMRL TCMRL w/o LCm TCMRL w/o LCycl LCycl w/o LFor
Cycl LCycl w/o LBack

Cycl LCycl w/o LInv
Cycl LCycl with LFor

Cycl LCycl with LBack
Cycl LCycl with LInv

Cycl

Out-of-Distribution

Half-Cheetah-Vel -110.54±15.04 -136.39±12.99 -114.62±13.62 -112.28±9.79 -129.33±23.77 -122.32±9.45 -115.27±15.22 -116.94±6.05 -110.82±6.83
Point-Robot -4.73±0.12 -4.85±0.12 -4.88±0.07 -4.76±0.02 -4.81±0.20 -4.81±0.11 -4.75±0.04 -4.88±0.11 -4.77±0.16

Point-Robot-Wind -5.55±0.31 -5.64±0.36 -5.89±0.44 -5.62±0.43 -5.73±0.39 -5.72±0.39 -5.62±0.49 -5.60±0.19 -5.80±0.09
Sparse-Point-Robot 12.66±0.24 10.88±0.37 12.22±0.40 12.51±0.17 12.42±0.32 11.58±0.44 12.39±0.39 11.46±0.35 12.44±0.28

Hopper-Rand-Params 360.87±15.80 327.11±23.12 352.91±20.08 338.60±29.48 335.59±11.50 355.63±43.55 357.60±9.63 348.04±14.61 347.77±24.09
Walker-Rand-Params 328.67±24.48 311.92±6.36 321.83±19.88 325.84±9.22 323.59±27.68 301.76±22.23 320.60±23.23 316.29±22.16 322.18±28.90

Ant-Goal -368.99±5.36 -373.46±4.90 -393.11±1.97 -369.38±4.78 -369.18±6.49 -369.16±3.96 -372.75±6.09 -370.97±3.37 -408.75±6.13
Humanoid-Dir 700.63±21.11 670.49±33.15 655.86±27.63 679.37±24.22 684.52±11.77 676.51±12.54 654.75±12.19 650.00±29.39 656.86±10.13

In-Distribution

Half-Cheetah-Vel -109.08±12.79 -140.50±16.15 -115.42±19.32 -110.93±8.48 -129.48±21.13 -132.54±11.38 -111.33±10.04 -119.27±12.43 -111.37±10.28
Point-Robot -4.71±0.04 -4.79±0.02 -4.73±0.06 -4.75±0.05 -4.74±0.08 -4.73±0.03 -4.75±0.04 -4.72±0.03 -4.73±0.04

Point-Robot-Wind -5.64±0.10 -5.69±0.10 -5.66±0.10 -5.71±0.17 -5.66±0.15 -5.72±0.11 -5.71±0.19 -5.73±0.10 -5.65±0.03
Sparse-Point-Robot 12.65±0.08 11.13±0.28 12.46±0.15 12.55±0.09 12.55±0.15 12.44±0.04 12.55±0.12 11.45±0.26 12.47±0.14

Hopper-Rand-Params 373.58±27.38 332.81±15.65 348.68±6.00 338.87±13.97 371.32±6.92 352.27±18.76 367.63±6.37 363.37±22.29 349.55±15.60
Walker-Rand-Params 333.38±22.99 319.00±14.04 328.27±13.87 327.13±12.59 329.89±29.07 330.66±10.74 323.12±8.69 332.87±24.34 332.98±26.25

Ant-Goal -342.64±5.00 -351.58±2.01 -347.08±5.66 -348.29±9.20 -342.84±4.22 -344.63±2.47 -349.55±5.53 -347.69±5.34 -343.75±4.07
Humanoid-Dir 698.20±37.58 665.19±23.19 654.78±27.59 674.47±20.58 686.42±14.63 685.57±17.94 652.05±17.30 643.56±31.51 656.94±12.32

Experimental setup. We compare TCMRL with ER-TRL (Nakhaeinezhadfard et al., 2025), UNICORN
(Li et al., 2024), GENTLE (Zhou et al., 2024), IDAQ (Wang et al., 2023), CSRO (Gao et al., 2023), ANOLE
(Ren et al., 2022), CORRO (Yuan & Lu, 2022) and FOCAL (Li et al., 2021b) in the Sparse-Point-Robot,
Point-Robot-Wind, Point-Robot, Half-Cheetah-Vel, Hopper-Rand-Params, Walker-Rand-Params, Ant-Goal
and Humanoid-Dir environments. Notably, for a fair comparison, we use the same offline datasets for
all baselines, which may result in deviations from their originally reported performance. More details
about the baselines, the experimental environments and their corresponding datasets are in Appendices G,
F and J respectively.

Comparison with baselines. We directly compare the performance of TCMRL and the baselines in
Table 2. These results demonstrate their adaptation performance during the meta-testing phase, where
online trajectories are collected to extract contexts for decision-making. The evaluation encompasses
both meta-testing tasks (out-of-distribution) and meta-training tasks (in-distribution). Furthermore, all
experimental results are averaged across six random seeds and their variances are measured with a 95%
bootstrap confidence interval. Results demonstrate that TCMRL achieves more effective adaptation to
unseen target tasks than most baselines, while maintaining strong performance on meta-training tasks. This
confirms that TCMRL improves context generalization, and thus adaptation, by leveraging constraints from
the characteristic metric and transition interrelations discovered via the cyclic interrelation. Additionally,
the complete adaptation processes to unseen target tasks are illustrated in Figure 9 in Appendix I.1.

Ablation study. To capture comprehensive task characteristic information, TCMRL employs two main
parts: the characteristic metric and cyclic interrelation losses. First, we build two variants of the complete
framework: one without the characteristic metric loss (TCMRL w/o LCm) and another without cyclic
interrelation (TCMRL w/oLCycl). Second, based on TCMRL, we further investigate the effects of the three
components of LCycl: LFor

Cycl, L
Back
Cycl and LInv

Cycl. We construct six additional variants: LCycl w/o LFor
Cycl,

LCycl w/o LBack
Cycl , LCycl w/o LInv

Cycl, LCycl with LFor
Cycl, LCycl with LBack

Cycl and LCycl with LInv
Cycl. Specifi-

cally, the former three variants remove one component from LCycl, while the latter use only one component.
Results in Table 3 demonstrate that removing any single component degrades the performance of TCMRL
for both meta-training and meta-testing tasks. Specifically, removingLCm weakens the constraints imposed
on contexts, while removing LCycl overlooks the interrelations among transitions. Moreover, the effects of
LFor
Cycl, L

Back
Cycl , and LInv

Cycl within LCycl are more complex. Removing any individual component or using
it in isolation leads to a performance drop. However, due to the interactions among these components,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Effects of subtrajectory length on interrelations among transitions in TCMRL.

Environment K=2 K=4 K=8 K=16 K=32 K=64 K=128

Out-of-Distribution

Half-Cheetah-Vel -133.07±13.12 -129.80±13.64 -118.23±32.17 -117.59±16.61 -110.54±15.04 -114.20±12.99 -126.32±23.77
Point-Robot -4.83±0.10 -4.85±0.21 -4.84±0.09 -4.73±0.12 -4.75±0.14 -4.76±0.03 -4.84±0.13

Point-Robot-Wind -5.79±0.18 -5.75±0.44 -5.78±0.31 -5.91±0.27 -5.55±0.31 -5.71±0.65 -5.82±0.31
Sparse-Point-Robot 12.31±0.41 12.49±0.14 12.36±0.46 12.52±0.27 12.66±0.24 12.36±0.45 12.29±0.20

Hopper-Rand-Params 328.90±10.82 345.49±17.42 350.14±16.49 351.31±28.58 355.59±11.75 360.87±15.80 317.97±31.07
Walker-Rand-Params 316.01±25.46 319.04±20.84 328.67±24.48 323.20±18.07 322.69±9.21 317.18±22.82 311.46±14.19

Ant-Goal -390.03±5.5 -373.16±0.68 -373.40±6.64 -368.99±5.36 -366.00±6.65 -370.91±2.93 -370.12±1.36
Humanoid-Dir 684.90±20.38 700.63±21.11 668.19±42.7 649.74±27.26 642.62±11.28 649.92±27.78 607.89±22.11

In-Distribution

Half-Cheetah-Vel -126.04±9.94 -120.07±6.33 -120.07±16.09 -113.76±14.00 -109.08±12.79 -110.68±3.74 -125.73±26.39
Point-Robot -4.87±0.03 -4.84±0.20 -4.78±0.04 -4.71±0.04 -4.81±0.03 -4.76±0.04 -4.78±0.03

Point-Robot-Wind -5.74±0.07 -5.69±0.13 -5.74±0.07 -5.67±0.04 -5.64±0.10 -5.71±0.14 -5.72±0.12
Sparse-Point-Robot 12.59±0.09 12.58±0.07 12.35±0.73 12.59±0.12 12.65±0.08 12.58±0.10 12.58±0.08

Hopper-Rand-Params 326.48±20.01 355.98±9.22 363.01±18.12 340.04±14.84 387.21±19.13 373.58±27.38 371.57±16.46
Walker-Rand-Params 329.31±8.85 325.78±23.27 333.38±22.99 331.28±4.19 309.81±9.86 303.41±12.95 301.53±13.59

Ant-Goal -341.57±2.46 -337.97±5.73 -324.39±3.64 -342.64±5.00 -320.04±4.94 -319.38±4.85 -324.76±5.57
Humanoid-Dir 687.10±24.69 698.20±37.58 672.81±32.29 669.55±28.46 672.86±10.23 672.13±31.34 607.31±25.02

30 20 10 0 10 20 30 40
40

30

20

10

0

10

20

30

Half-Cheetah-Vel

(a) TCMRL (ours)
40 30 20 10 0 10 20 30 40

40

30

20

10

0

10

20

30

40
Half-Cheetah-Vel

(b) ER-TRL
40 30 20 10 0 10 20 30

30

20

10

0

10

20

30

Half-Cheetah-Vel

(c) UNICORN
40 30 20 10 0 10 20 30

40

30

20

10

0

10

20

30

Half-Cheetah-Vel

(d) GENTLE

Figure 5: t-SNE visualization in Half-Cheetah-Vel of the learned context vectors of TCMRL, ER-TRL,
UNICORN and GENTLE.

using only one does not always result in lower performance than using two. The full combination of LFor
Cycl,

LBack
Cycl , and LInv

Cycl is crucial for effectively discovering the interrelations among transitions.

Effect of subtrajectory length. Since TCMRL discovers the interrelations among transitions from sub-
trajectories, the length K plays a crucial role. We evaluate the impact of K∈{2,4,8,16,32,64,128} across
meta-environments. Results in Table 4 demonstrate that an appropriate choice of K facilitates effective
adaptation, while the optimal value of K may vary across environments. Specifically, both excessively
small and overly large values of K lead to suboptimal performance. A small K may capture insufficient
interrelations that fail to obtain task characteristic information and introduce ambiguity, while a largeK may
result in weak interrelations due to overly broad temporal spans. We determine the best K via grid search.

Visualization analysis. We report the t-SNE visualization (van der Maaten & Hinton, 2008) of the
contexts generated by TCMRL, ER-TRL, UNICORN and GENTLE in the Half-Cheetah-Vel environment.
These visualizations include contexts from 10 meta-training and 10 meta-testing tasks randomly sampled
from the environment. As shown in Figure 5, ER-TRL, UNICORN, and GENTLE fail to capture
comprehensive relationships among contexts, exhibiting poor clustering within individual tasks and
significant overlap across different tasks. In contrast, TCMRL reveals both intra-task similarity and
inter-task distinctness, demonstrating improved context generalization. Additional t-SNE visualizations
in the Hopper-Random-Params environment are shown in Figure 10 in Appendix I.3.

6 CONCLUSION

We propose TCMRL, a context-based offline meta-RL method that captures comprehensive task character-
istic information at both trajectory and subtrajectory levels. It captures not only the task-specific information
of individual tasks but also the implicit relationships among tasks, thereby enhancing the generalization
of contexts. With such generalizable contexts, TCMRL achieves effective adaptation to unseen target tasks.
Specifically, we design a characteristic metric for constructing the relationships among contexts based on
task reward functions and transition dynamics at the trajectory level. Moreover, we introduce a cyclic interre-
lation to discover overlooked interrelations among transitions within sequential subtrajectories from forward,
backward and inverse perspectives. Experiments in deterministic continuous control meta-environments
demonstrate the superior performance of TCMRL compared with prior offline meta-RL methods.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Elwyn R. Berlekamp. Block coding with noiseless feedback. PhD thesis, Massachusetts Institute of
Technology, USA, 1964.

Rasool Fakoor, Pratik Chaudhari, Stefano Soatto, and Alexander J. Smola. Meta-q-learning. In ICLR, 2020.

Norm Ferns, Prakash Panangaden, and Doina Precup. Bisimulation metrics for continuous markov
decision processes. SIAM J. Comput., 40(6):1662–1714, 2011.

Norman Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite markov decision processes.
CoRR, abs/1207.4114, 2012.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In ICML, pp. 1126–1135, 2017.

Jakob N. Foerster, Gregory Farquhar, Maruan Al-Shedivat, Tim Rocktäschel, Eric P. Xing, and Shimon
Whiteson. Dice: The infinitely differentiable monte carlo estimator. In ICML, pp. 1524–1533, 2018.

Yunkai Gao, Rui Zhang, Jiaming Guo, Fan Wu, Qi Yi, Shaohui Peng, Siming Lan, Ruizhi Chen, Zidong
Du, Xing Hu, Qi Guo, Ling Li, and Yunji Chen. Context shift reduction for offline meta-reinforcement
learning. In NeurIPS, 2023.

Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J. Rezende, S. M. Ali Eslami,
and Yee Whye Teh. Neural processes. CoRR, 2018.

Jonathan Gordon, John Bronskill, Matthias Bauer, Sebastian Nowozin, and Richard E. Turner.
Meta-learning probabilistic inference for prediction. In ICLR, 2019.

Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas L. Griffiths. Recasting gradient-based
meta-learning as hierarchical bayes. In ICLR, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In ICML, 2018.

Rein Houthooft, Yuhua Chen, Phillip Isola, Bradly C. Stadie, Filip Wolski, Jonathan Ho, and Pieter Abbeel.
Evolved policy gradients. In NeurIPS, pp. 5405–5414, 2018.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in partially
observable stochastic domains. Artif. Intell., 101(1-2):99–134, 1998.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Kim Guldstrand Larsen and Arne Skou. Bisimulation through probabilistic testing. Inf. Comput., 94(1):
1–28, 1991.

Jiachen Li, Quan Vuong, Shuang Liu, Minghua Liu, Kamil Ciosek, Henrik I. Christensen, and Hao Su.
Multi-task batch reinforcement learning with metric learning. In NeurIPS, 2020.

Langqing Li, Yuanhao Huang, Mingzhe Chen, Siteng Luo, Dijun Luo, and Junzhou Huang. Provably
improved context-based offline meta-rl with attention and contrastive learning. CoRR, abs/2102.10774,
2021a.

Lanqing Li, Rui Yang, and Dijun Luo. FOCAL: efficient fully-offline meta-reinforcement learning via
distance metric learning and behavior regularization. In ICLR, 2021b.

Lanqing Li, Hai Zhang, Xinyu Zhang, Shatong Zhu, Junqiao Zhao, and Pheng-Ann Heng. Towards an
information theoretic framework of context-based offline meta-reinforcement learning. In NeurIPS, 2024.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-learner.
In ICLR, 2018.

Mohammadreza Nakhaeinezhadfard, Aidan Scannell, and Joni Pajarinen. Entropy regularized task
representation learning for offline meta-reinforcement learning. In AAAI, pp. 19616–19623, 2025.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In ICML, pp. 5331–5340, 2019.

Zhizhou Ren, Anji Liu, Yitao Liang, Jian Peng, and Jianzhu Ma. Efficient meta reinforcement learning
for preference-based fast adaptation. In NeurIPS, 2022.

Alfréd Rényi. On a problem of information theory. A Magyar Tudományos Akadémia Matematikai Kutató
Intézetének Közleményei, 6(4):515–516, 1961.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep
conditional generative models. In NeurIPS, 2015.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. CoRR, abs/1807.03748, 2018.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. J. Mach. Learn. Res., 9(86):
2579–2605, 2008.

Jane Wang, Zeb Kurth-Nelson, Hubert Soyer, Joel Z. Leibo, Dhruva Tirumala, Rémi Munos, Charles
Blundell, Dharshan Kumaran, and Matt M. Botvinick. Learning to reinforcement learn. In CogSci, 2017.

Jianhao Wang, Jin Zhang, Haozhe Jiang, Junyu Zhang, Liwei Wang, and Chongjie Zhang. Offline meta
reinforcement learning with in-distribution online adaptation. In ICML, pp. 36626–36669, 2023.

Mingzhang Yin, George Tucker, Mingyuan Zhou, Sergey Levine, and Chelsea Finn. Meta-learning without
memorization. In ICLR, 2020.

Haoqi Yuan and Zongqing Lu. Robust task representations for offline meta-reinforcement learning via
contrastive learning. In ICML, pp. 25747–25759, 2022.

Menglong Zhang, Fuyuan Qian, and Quanying Liu. Learning task belief similarity with latent dynamics
for meta-reinforcement learning. In ICLR, 2025.

Renzhe Zhou, Chenxiao Gao, Zongzhang Zhang, and Yang Yu. Generalizable task representation learning
for offline meta-reinforcement learning with data limitations. In AAAI, pp. 17132–17140, 2024.

Luisa M. Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann, and
Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep RL via meta-learning. In
ICLR, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A PSEUDO-CODE

We present the meta-training phase of TCMRL in Algorithm 1 and the meta-testing phase of TCMRL
in Algorithm 2. Notably, the data collection process can be divided into two distinct stages. In the initial
stage, the agent randomly samples actions atj to collect the trajectory hj for extracting context cj, while
in the subsequent stage, actions atj are sampled based on the context-based policy π(atj|stj,cj).

Algorithm 1 TCMRL meta-training.

Input: The set of offline datasets D = {Di}ntask
i=1 ; Context encoder e(ht

i); Context-based reward estimator
r̂(s′

t
i,a

′t
i,ci); Context-based state estimator ŝ(s′ti,a′

t
i,ci); Inverse model Inv(cti,c

t+K−1
i); Context-based policy

π(ati|sti,ci); Q-function Q.
1: while not done do
2: for step in training steps do
3: Randomly select a batch of B tasks {Ti}Bi=1;
4: Sample historical trajectory hi from the offline dataset Di∼D corresponding to each Ti;
5: Extract {cti}

T

t=1 from {ht
i}

T

t=1 through e(ht
i) and generate ci throughmean({cti}

T

t=1) for eachhi (Eq. 1);
6: Compute Lr and Ls to optimize r̂(s′ti,a′

t
i,ci) and ŝ(s′

t
i,a

′t
i,ci), respectively (Eq. 2);

7: Compute LCm based on r̂(s′
t
i,a

′t
i,ci) and ŝ(s′

t
i,a

′t
i,ci) (Eq. 5–Eq. 9);

8: Compute LFor
Cycl and LBack

Cycl with {{cti}
T

t=1}
B

i=1
(Eq. 11 and Eq. 13);

9: Compute LInv
Cycl with {{cti}

T

t=1}
B

i=1
and Inv(cti,c

t+K−1
i) (Eq. 14);

10: Aggregate LFor
Cycl, L

Back
Cycl and LInv

Cycl into LCycl (Eq. 15);
11: Update e(ht

i) and Inv(cti,c
t+K−1
i) to minimize LCm and LCycl;

12: Update π(ati|sti,ci) and Q with offline RL algorithm SAC (Haarnoja et al., 2018);
13: end for
14: end while

Algorithm 2 TCMRL meta-testing.

Input: The set of unseen target tasks T∗; Context encoder e(ht
j); Learned context-based policy π(atj|stj,cj); Random

explore step tr.
1: for each unseen target task Tj∼T∗ do
2: hj={};
3: for t=0,...,T−1 do
4: if t<tr then
5: Agent randomly samples an action atj to collect transition ht

j=(stj,a
t
j,r

t
j,s

t+1
j);

6: else
7: Compute context cj with e(ht

j) (Eq. 1);
8: Agent uses π(atj|stj,cj) to roll out ht

j=(stj,a
t
j,r

t
j,s

t+1
j);

9: end if
10: hj=hj∪ht

j;
11: end for
12: Compute context cj with e(ht

j);
13: Roll out π(atj|stj,cj) for evaluation;
14: end for

B STRUCTURE OF PERSPECTIVES OF CYCLIC INTERRELATION

We design a cyclic interrelation lossLCycl to discover interrelations among transitions within subtrajectories
from forward, backward and inverse perspectives. The forward and backward perspectives leverage
temporal relationships among transitions and constraints provided by task labels to construct both intra-task
similarity and inter-task distinctness based on contrastive learning. The inverse perspective focuses on
deepening the understanding within individual tasks rather than conducting cross-task comparisons.
Specifically, the forward interrelation loss LFor

Cycl and backward interrelation loss LBack
Cycl are directly

computed by constructing different prior contexts cprior and target contexts ctarget, as illustrated in
Figure 6 and Figure 7, respectively. In contrast, the inverse interrelation loss LInv

Cycl shown in Figure 8,
relies on an inverse model Inv(·,·), which takes the first and last transition representations within the
subtrajectory as inputs and predicts the mean of the intermediate transition representations.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Contrastive

learning

Mutual

information

𝑐𝑝𝑟𝑖𝑜𝑟1

𝑐𝑖
1 𝑐𝑖

𝐾𝑐𝑖
𝐾−1𝑐𝑖

2 … 𝑐𝑖
𝐾+1

Mean

𝑐𝑡𝑎𝑟𝑔𝑒𝑡1

…

Mean

𝑐𝑝𝑟𝑖𝑜𝑟2 𝑐𝑡𝑎𝑟𝑔𝑒𝑡2

Task 𝒯𝑖

𝑐𝑝𝑟𝑖𝑜𝑟1

𝑐𝑗
1 𝑐𝑗

𝐾𝑐𝑗
𝐾−1𝑐𝑗

2 … 𝑐𝑗
𝐾+1

Mean

𝑐𝑡𝑎𝑟𝑔𝑒𝑡1

…

Mean

𝑐𝑝𝑟𝑖𝑜𝑟2 𝑐𝑡𝑎𝑟𝑔𝑒𝑡2

Task 𝒯𝑗

Contrastive

learning

Mutual

information

Mutual

information

Mutual

information

Figure 6: Forward interrelation learning.

Contrastive

learning

Mutual

information

𝑐𝑡𝑎𝑟𝑔𝑒𝑡1

𝑐𝑖
1 𝑐𝑖

𝐾𝑐𝑖
𝐾−1𝑐𝑖

2 … 𝑐𝑖
𝐾+1

Mean

𝑐𝑝𝑟𝑖𝑜𝑟1

…

Mean

𝑐𝑡𝑎𝑟𝑔𝑒𝑡2 𝑐𝑝𝑟𝑖𝑜𝑟2

Task 𝒯𝑖

𝑐𝑡𝑎𝑟𝑔𝑒𝑡1

𝑐𝑗
1 𝑐𝑗

𝐾𝑐𝑗
𝐾−1𝑐𝑗

2 … 𝑐𝑗
𝐾+1

Mean

𝑐𝑝𝑟𝑖𝑜𝑟1

…
Mean

𝑐𝑡𝑎𝑟𝑔𝑒𝑡2 𝑐𝑝𝑟𝑖𝑜𝑟2

Task 𝒯𝑗

Contrastive

learning

Mutual

information

Mutual

information

Mutual

information

Figure 7: Backward interrelation learning.

𝑐𝑖
1 𝑐𝑖

𝐾𝑐𝑖
𝐾−1𝑐𝑖

2 … 𝑐𝑖
𝐾+1

Mean

…

Task 𝒯𝑖
Inverse model

Mean

Inverse model

Figure 8: Inverse interrelation learning.

C PRELIMINARIES OF META-LEARNING

We choose the standard supervised meta-learning to illustrate the concept of meta-learning (see, e.g., (Finn
et al., 2017)). We assume tasks Ti are sampled from a distribution of tasks p(T). The problem setting of the
meta-learning consists of two phases: the meta-training phase and the meta-testing phase. These two phases
confront distinct sets of tasks, with no overlap between the tasks they encounter. During the meta-training
phase, a meta-model is learned through a set of meta-training tasks T. We sample a set of meta-training
data D from these tasks. For a particular task Ti, the corresponding meta-training data Di consists of a
subset for training (xi,yi) and a subset for testing, while xi=(x1i ,x

2
i ,...,x

T
i) and yi=(y1i ,y

2
i ,...,y

T
i) are

sampled from p(xi,yi|Ti), and x∗i = (x∗1i ,x
∗2
i ,...,x

∗T
i) and y∗i = (y∗1i ,y

∗2
i ,...,y

∗T
i) are sampled from

p(x∗i ,y
∗
i|Ti). During the meta-testing phase, the learned meta-model is utilized to address a set of unseen

target tasks T∗ and tries to achieve effective adaptation. We denote the meta-parameters learned during the
meta-training phase as θ and the task-specific parameters computed based on the meta-training tasks as ϕ.

Following Grant et al. (2018) and Gordon et al. (2019), we assess meta-learning algorithms that aim to
use the meta-training data D corresponding to the set of meta-training tasks T to maximize conditional
likelihood q(ŷ∗=y∗|x∗,θ,D), which is related to three distributions: q(θ|D) that generates the distribution
of the meta-parameters θ from the meta-training data D, q(ϕ|Di,θ) that generate the distribution of the
task-specific parameters ϕ and q(ŷ∗|x∗,ϕ,θ) that is the predictive distribution. The learning objective of
these distributions is as follows:

− 1

N

∑
i

Eq(θ|D)q(ϕ|Di,θ)

 1

T

∑
(x∗,y∗)∈Di

logq(ŷ∗=y∗|x∗,ϕ,θ)

. (16)

Meta-learning algorithms can be primarily categorized into two kinds of distinct algorithms: optimization-
based algorithms and context-based algorithms. Specifically, MAML (Finn et al., 2017) is a classic

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

optimization-based meta-learning algorithm. Within MAML, θ and ϕ denote the weights of the predictor
network, q(ϕ|Di, θ) is a delta function that is positioned at a location determined through gradient
optimization, and ϕ parameterizes the predictor network q(ŷ∗|x∗,ϕ). Moreover, it utilizes the meta-training
data Di and the parameter θ in the predictor model for determining the task-specific parameter ϕ, and
this process is as follows:

ϕ=θ+
α

T

∑
(x,y)∈Di

∇θlogq(y|x,ϕ=θ). (17)

Meanwhile, the conditional neural processes (CNP) (Garnelo et al., 2018) is a notable context-based
algorithm, which defines q(ϕ|D,θ) as a mapping from D to the parameter ϕ. Features e(D) extracted from
the meta-training data are aggregated through a network aggθ(·), and the output is computed through
ϕ= aggθ ·e(D). Subsequently, the parameter θ defines a predictor network that inputs ϕ and x∗ and
outputs the prediction of the distribution q(ŷ∗|x∗,ϕ,θ).

D PRELIMINARIES OF CONTEXT-BASED OFFLINE META-RL

We assume that context-based offline meta-RL corresponds to a set of tasks consisting of a series of
meta-training tasks and a series of meta-testing tasks (unseen target tasks). These tasks within this set
shares the same state space S and action space A, but exhibit variations in their transition dynamics
p(st+1

i |sti,ati) or reward functions r(sti,a
t
i). Moreover, a distribution of these tasks is modeled as joint

distribution of transition dynamics p(st+1
i |sti,ati) and reward functions r(sti,a

t
i), with the following form:

p(T)=p(p(st+1
i |s

t
i,a

t
i),r(s

t
i,a

t
i))

=p(p(st+1
i |s

t
i,a

t
i))p(r(s

t
i,a

t
i)).

(18)

This task distribution corresponds to a series of MDPs, and a meta-policy designed by context-based offline
meta-RL methods aims to perform well across all these MDPs. These MDPs are formed as POMDPs
since they consider the task information of each task to be the unobservable part. Consequently, a context
encoder e(·) is utilized to map the task information of the historical trajectory h that corresponds to the task
T to a representation of the context c∈C, where C is the space of contexts. The form of the augmented
state is as follows:

Saug←S×C, saug←concat(s,c). (19)

This set of MDPs is also defined as task-augmented MDP (TA-MDP) (Li et al., 2021b;a).

Previous context-based offline meta-RL methods (Li et al., 2021b; Rakelly et al., 2019; Wang et al.,
2023) typically obtain task information of task Ti by aggregating transitions from the historical trajectory
h1:t
i = {s1i ,a1i ,r1i ,s2i ...,sti,ati,rti,s

t+1
i } into a representation of the continuous latent space of contexts C.

These methods have proved that the quality of contexts, or the ability of the context encoder to extract
task information from historical trajectories, directly influences the performance of the meta-policy and its
adaptation to unseen target tasks. In addition, as a traditional and successful context-based offline meta-RL
method, probabilistic representations for actor-critic RL (PEARL) (Rakelly et al., 2019) generates contexts
ci in the form of vectors. Moreover, the complete process of adaptation to unseen target tasks involves
sampling the vector ci from the corresponding probabilistic distribution qe(ci|hi), which is parameterized
by an encoder e. Here, hi is a complete historical trajectory corresponding to the episode of task Ti.
Specifically, the context encoder is implemented by a neural network and the input historical trajectory
consists of a series of transitions hti =(sti,a

t
i,r

t
i,s

t+1
i). Additionally, the context ci is one of the inputs

of the context-based policy π(ati|sti,ci) for making action decisions.

E THEORETICAL ANALYSIS

E.1 CONTEXT-BASED REWARD AND STATE ESTIMATORS

Inspired by UNICORN (Li et al., 2024), we introduce context-based reward and state estimators,
r̂(s′

t
i, a

′t
i, ci) and ŝ(s′

t
i, a

′t
i, ci). They aim to optimize the context-based offline meta-RL through

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

reconstructing rewards and next states to maximize the mutual information I(rti,s
t+1
i |sti,ati,ci):

I(rti,s
t+1
i ;sti,a

t
i,ci)=∫

p(hti)p(ci|hti)log
p(rti,s

t+1
i |sti,ati,ci)

p(rti,s
t+1
i)

=

∫
p(hti)p(ci|hti)logp(rti,st+1

i |sti,ati,ci)

≃
∫
ht
i,ci

q(ci|hti)︸ ︷︷ ︸
encoder

logpr̂,ŝ(r
t
i,s

t+1
i |sti,ati,ci)︸ ︷︷ ︸

decoder

=Ee(ht
i)

[
logpr̂,ŝ(r

t
i,s

t+1
i |sti,ati,ci)

]
.

E.2 CHARACTERISTIC METRIC

Our characteristic metric involves three task labels (i, j and k) and considers the following three scenarios:
(1) all task labels are identical, with all data coming from the same task (i= j=k); (2) two task labels
are identical, involving data from two different tasks; (3) all task labels are distinct (i≠j ≠k). Our LCm

effectively captures task characteristic information and enhances the generalization of contexts across
all these scenarios.

Let Dk={htk}
T

t=1 be an offline dataset sampled from task Tk, and ci and cj be two contexts, possibly
from different tasks. We define the characteristic metric as follows:

dCm(ci,cj;Dk)=E(stk,a
t
k)∼Dk

[((r̂(stk,a
t
k,ci)−rtk)

−(r̂(stk,a
t
k,cj)−rtk))+((ŝ(stk,a

t
k,ci)−st+1

k)−(ŝ(stk,a
t
k,cj)−st+1

k))]

=E(stk,a
t
k)∼Dk

[(r̂(stk,a
t
k,ci)−r̂(stk,a

t
k,cj))+(ŝ(stk,a

t
k,ci)−ŝ(stk,a

t
k,cj))].

Then, we design our characteristic metric loss LCm:
LCm=LCm(ci,cj;Dk)=(d(ci,cj;Dk)

2−(ci−cj)
2)2.

In addition to Assumption 1, we further assume the following:

Assumption 2 (Decoder expressiveness) For any task Ti, there exists context c∗i such that:
r̂(s,a,c∗i)=ri(s,a), ŝ(s,a,c∗i)=pi(s,a).

Assumption 3 (Decoder smoothness (Lipschitz)) There exist constants lr and ls s.t.
|r̂(stk,atk,ci)−r̂(stk,a

t
k,cj)|≤lr||ci−cj||2,

||ŝ(stk,atk,ci)−ŝ(stk,a
t
k,cj)||2≤ls||ci−cj||2.

Case 1. In this case, task labels i=j=k. From Assumption 1:
r̂(stk,a

t
k,ci)= r̂(stk,a

t
k,cj)=rk(s

t
k,a

t
k)=rtk,

ŝ(stk,a
t
k,ci)= ŝ(stk,a

t
k,cj)=pk(s

t
k,a

t
k)=st+1

k .

It means that dCm(ci,cj;Dk)=0. Hence:

LCm=(ci−cj)
4.

Minimizing LCm promotes context consistency within the same task, ensuring that different trajectories
from the same task yield similar contexts.

Case 2. In this case, task labels i and j are different, while k is equal to one of them. Without loss of
generality, we consider the example where k=i≠j. We define the estimation errors:

δir= r̂(stk,a
t
k,ci)−ri(s

t
k,a

t
k),

δjr= r̂(stk,a
t
k,cj)−rj(s

t
k,a

t
k),

δis= ŝ(stk,a
t
k,ci)−pi(s

t
k,a

t
k),

δjs= ŝ(stk,a
t
k,cj)−pj(s

t
k,a

t
k).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Then:
r̂(stk,a

t
k,ci)−r̂(stk,a

t
k,cj)

= r̂(stk,a
t
k,ci)−(ri(s

t
k,a

t
k)−ri(s

t
k,a

t
k)−rj(s

t
k,a

t
k)+rj(s

t
k,a

t
k))−r̂(stk,a

t
k,ci)

=(r̂(stk,a
t
k,ci)−ri(s

t
k,a

t
k))+(ri(s

t
k,a

t
k)−rj(s

t
k,a

t
k))−(r̂(stk,a

t
k,ci)−rj(s

t
k,a

t
k))

=(δir−δjr)+(ri(s
t
k,a

t
k)−rj(s

t
k,a

t
k))

≤|ri(stk,atk)−rj(s
t
k,a

t
k)|+|δir|+|δjr|.

Using Assumption 3:
|δir|≤lr ·||ci−c∗i ||2,|δjr|≤lr ·||cj−c∗j ||2.

Similarly, for the term of transition dynamics. Hence, we get:
dCm(ci,cj;Dk)≤E(stk,a

t
k)
[|ri(stk,atk)−rj(s

t
k,a

t
k)|+||pi(stk,atk)−pj(s

t
k,a

t
k)||2]+ϵ,

ϵ=lr ·||ci−c∗i ||2+lr ·||cj−c∗j ||2+(ls·||ci−c∗i ||2+ls·||cj−c∗j ||2).
Minimizing LCm aligns context distance with the discrepancy of reward functions and transition dynamics
across tasks, so larger reward and dynamics differences across tasks are reflected in larger context distances,
thereby encouraging the inter-task distinctness.

Case 3. In this case, task labels i, j and k are different, i≠ j ≠k. Now both ci and cj are decoupled
from the offline dataset Dk. Estimation errors are defined as before. We consider:

|r̂(stk,atk,ci)−r̂(stk,a
t
k,cj)|= |ri(stk,atk)−rj(s

t
k,a

t
k)+δir−δjr|

≤|ri(stk,atk)−rj(s
t
k,a

t
k)|+|δir|+|δjr|,

where errors are controlled by:
|δir|≤lr ·||ci−c∗i ||,|δjr|≤lr ·||cj−c∗j ||.

Same for transition dynamics. Thus:
dCm(ci,cj;Dk)≤E(stk,a

t
k)
[|ri(stk,atk)−rj(s

t
k,a

t
k)|+||pi(stk,atk)−pj(s

t
k,a

t
k)||2]+ϵ,

where ϵ remains consistent with its definition in Case 2. The minimization condition for the loss LCm

is also the same as in Case 2. This case enables probing the gap in task properties between tasks Ti and
Tj, even without directly using their own data. It demonstrates that LCm can effectively establish the
connection between contexts and task properties, capture task characteristic information, and construct
both intra-task similarity and inter-task distinctness among contexts.

F EXPERIMENTAL ENVIRONMENTS

• Point-Robot. The Point-Robot environment involves navigating a point robot in a 2D space. The
robot always starts at the fixed position (0,0), and the goal for each task is located on a unit semi-
circle centered at the origin. The objective of each task is to guide the robot from its starting point
to the assigned goal. The state space is R2, representing the (x, y) position of the robot. The action
space is [−1,−1]

2, corresponding to the movement in the x and y directions. The reward function
is defined as the negative Euclidean distance between the current position of the robot to the goal.

• Sparse-Point-Robot. The Sparse-Point-Robot environment consists of a 2D navigation problem,
simulated by the MuJoCo physics simulator and introduced in PEARL (Rakelly et al., 2019).
In this environment setting, each task involves guiding the agent from the origin to a specific goal
position situated on the unit circle centered at the origin. The non-sparse reward is defined as
the negative of the distance between the current location and the goal position of the agent. In the
case of a sparse-reward scenario, the reward is set to 0 when the agent is outside a neighborhood
surrounding the goal, which is controlled by the goal radius. Conversely, when the agent is inside
this neighborhood, it receives a reward of 1 minus the distance at each step, yielding a positive
value. We use the sparse-reward scenario.

• Point-Robot-Wind. The Point-Robot-Wind environment is a variant of the 2D navigation
environment called Point-Robot. In this variant, each task solely differs in their transition
dynamics, while sharing the same reward function. Specifically, each task is characterized by
a distinct wind, which is uniformly sampled from [−l,l]2. Consequently, whenever the agent
takes a step, it undergoes a drift determined by the corresponding wind.

• Half-Cheetah-Vel. The Half-Cheetah-Vel environment serves as a multi-task MuJoCo
benchmark wherein tasks exhibit variations in their reward functions. Specifically, definitions
of these tasks are revolved around the specification of the target velocity of the agent. The
distribution of the target velocity follows a uniform distribution denoted as U [0,vmax].

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• Hopper-Rand-Params. The Hopper-Rand-Params environment controls the forward movement
of a single-legged robot. Tasks encompass diverse aspects such as body mass, body inertia,
joint damping, and friction. Each parameter is determined by the default value multiplied by a
coefficient randomly selected from the range [1.5−3,1.53]. The state space is R11 and the action
space is [−1,1]

3. Meanwhile, the reward function comprises forward velocity and bonuses for
staying alive and controlling costs.

• Walker-Rand-Params. The Walker-Rand-Params environment controls the forward movement
of a bipedal robot. Similar to the Hopper-Rand-Params environment, each parameter
is determined using the same method. Meanwhile, the reward function mirrors that of
Hopper-Rand-Params. The state space encompasses R17, while the action space is [−1,1]

6.
• Ant-Goal. The Ant-Goal environment involves controlling a quadruped “ant” robot to navigate

toward a target location. For each task, the goal is positioned on a circle of radius 2 centered
at the origin (0,0). The state space is R29, which includes the position and velocity of the ant, as
well as the angle and angular velocity of its 8 joints. The action is [−1,1]

8, with each dimension
representing the torque applied to a corresponding joint. The reward function is defined as the
negative Euclidean distance to the goal, with an additional control cost penalty.

• Humanoid-Dir. The Humanoid-Dir environment involves controlling a “humanoid” robot to
move in a specified target direction. For each task, the direction is sampled uniformly from the
interval [0,2π]. The state space is R376, and the action space is [−1,1]

17. The reward function
is defined as the dot product between the velocity and the target direction of the robot, with
additional components including a survival bonus and a control cost penalty.

Additionally, in the meta-RL environments we employed, each task is characterized by distinct goals. In the
Point-Robot, Sparse-Point-Robot and Half-Cheetah-Vel environments, their task sets both consist of 100
tasks, of which 80 tasks are designated as meta-training tasks and 20 tasks are designated as meta-testing
tasks. In the Point-Robot-Wind environment, its task set comprises 50 tasks, wherein 40 tasks are
meta-training tasks and 10 tasks are meta-testing tasks. In the Hopper-Rand-Params, Walker-Rand-Params,
Ant-Goal and Humanoid-Dir environments, their task sets both consist of 40 tasks, while 30 tasks are
meta-training tasks and 10 tasks are meta-testing tasks. Notably, all these MuJoCo environments have MIT
licenses. Moreover, more detailed environment settings can be found in the configuration files provided
in our code.

G BASELINES

• FOCAL (Li et al., 2021b). FOCAL introduces behavior regularization to the learned
policy framework while utilizing a deterministic context encoder for efficient task inference.
Furthermore, it incorporates a novel negative-power distance metric within a bounded context
embedding space, enabling gradient propagation that is decoupled from the Bellman backup
process. Specifically, it treats all online experiences as effective data for generating contexts.

• IDAQ (Wang et al., 2023). IDAQ is a framework that extends the foundations of FOCAL. It
leverages a return-based uncertainty quantification to generate context within the in-distribution.
Additionally, it utilizes effective task belief inference methods to tackle new tasks.

• ER-TRL (Nakhaeinezhadfard et al., 2025). ER-TRL is an algorithm that approximately
minimizes the mutual information between the distribution over the task representations
and behavior policy by maximizing the entropy of behavior policy conditioned on the task
representations. With such optimization, it aims to mitigate the negative effects of context shift.

• UNICORN (Li et al., 2024). UNICORN is a context-based meta-RL optimization scheme that
drives a unified and generalized task representation learning objective based on the information
bottleneck principle. It aims to combat the context shift by seeking better optimality bounds
or approximations of the objective.

• GENTLE (Zhou et al., 2024). GENTLE is to learn task representations with generalization under
data constraints. It leverages a task auto-encoder (TAE), which is an encoder-decoder structure, to
reconstruct both the state transitions and rewards, capturing the generative structure of task models.

• CSRO (Gao et al., 2023). CSRO is an approach that addresses the context shift problem with only
offline datasets by minimizing the influence of policy in context during both the meta-training
and meta-test phases. Specifically, a max-min mutual information representation learning
mechanism is designed to diminish the impact of the behavior policy on task representations

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

during the meta-training phase. The non-prior context collection strategy is introduced to reduce
the effect of the exploration policy during the meta-testing phase.

• ANOLE (Ren et al., 2022). ANOLE is an algorithm designed for few-shot adaptation based on
human preferences. It enables the agent to determine the objectives of new tasks by querying a
human oracle, which compares preferences between pairs of behavior trajectories. This algorithm
relates the problem to the classical problem known as Rényi-Ulam’s game (Rényi, 1961) in
information theory and introduces an extension of Berlekamp’s volume (Berlekamp, 1964),
which is a metric used to quantify uncertainty in noisy preference feedback.

• CORRO (Yuan & Lu, 2022). CORRO is a context-based meta-RL framework for addressing
the change of behavior policies. It aims to learn how to obtain robust task representations through
contrastive learning.

Notably, all these baselines have MIT licenses.

H IMPLEMENTATION DETAILS

H.1 OFFLINE DATA COLLECTIONS

To ensure a fair comparison, we follow the same approach as CSRO in generating the offline datasets,
which are used during the meta-training phase (see Appendix J). For each training task, we use SAC
(Haarnoja et al., 2018) to train an agent and save the corresponding policy at different training stages as the
behavior policy. Each saved policy is used to roll out 50 trajectories within the corresponding environment,
constructing the offline datasets. This approach is widely employed in offline meta-RL methods (Li et al.,
2021b;a; Yuan & Lu, 2022; Wang et al., 2023; Gao et al., 2023; Zhou et al., 2024).

H.2 EXPERIMENTAL DETAILS

Our experiments are performed on a machine with NVIDIA GeForce RTX 2080 Ti and implemented with
PyTorch. TCMRL uses the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 3e−4 for the
policy, Q-network, V-network, context encoder and our module, and 1e−4 for the dual critic. The batch size
is set to 256, and the discount factor is 0.99. Moreover, the context encoder e(hti), context-based reward esti-
mator r̂(s′ti,a

′t
i,ci), context-based state estimator ŝ(s′ti,a

′t
i,ci) and inverse model Inv(cti,c

t+K−1
i) are imple-

mented with multi-layer perceptron (MLP) neural network architectures, where each hidden layer consists
of a fully connected layer. The detailed configurations of these neural networks are available in our code.

We train 50000 steps for the Point-Robot environment, 100000 steps for the Point-Robot-Sparse,
Point-Robot-Wind, Hopper-Rand-Params, Walker-Rand-Params and Humanoid-Dir environments, 40000
steps for the Half-Cheetah-Vel environment and 200000 steps for the Ant-Goal environment. Moreover,
because the hyperparameter K used in discovering interrelations among transitions is crucial, we carefully
set it for each environment to ensure optimal performance. We focus on the adaptation performance of
TCMRL on unseen target tasks and use it as the criterion for evaluating the effectiveness of different values
of K. Specifically, we set K to 32 for the Half-Cheetah-Vel, Point-Robot-Wind, Sparse-Point-Robot and
Ant-Goal environments, 16 for the Point-Robot environment, 64 for the Hopper-Rand-Params environment,
8 for the Walker-Rand-Params environment, and 4 for the Humanoid-Dir environment.

H.3 IMPLEMENTATION OF BASELINES

We re-evaluate the baselines on the experimental environments using the official code provided by the
corresponding papers.

The hyperparameters of the baselines are mostly adopted from the original papers. Moreover, to ensure a
fair comparison, all baselines and TCMRL are trained using the same settings under the same environments.

H.4 WAYS TO DETERMINE HYPERPARAMETER

The fixed hyperparameter K is crucial for TCMRL. In our experiments and analysis, since K represents the
length of subtrajectories within the full trajectory, it must not exceed the length of the complete trajectory.
Moreover, the value of K should not be too small, as it may hinder the effectiveness of discovering

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0 10000 20000 30000 40000
Step

350

300

250

200

150

100

Av
er

ag
e

R
et

ur
n

Half-Cheetah-Vel

0 10000 20000 30000 40000 50000
Step

25

20

15

10

5

Av
er

ag
e

R
et

ur
n

Point-Robot

0 20000 40000 60000 80000 100000
Step

50

40

30

20

10

Av
er

ag
e

R
et

ur
n

Point-Robot-Wind

0 20000 40000 60000 80000 100000
Step

0
2
4
6
8

10
12

Av
er

ag
e

R
et

ur
n

Sparse-Point-Robot

0 20000 40000 60000 80000 100000
Step

50
100
150
200
250
300
350
400

Av
er

ag
e

R
et

ur
n

Hopper-Rand-Params

0 20000 40000 60000 80000 100000
Step

200

250

300

350

400

Av
er

ag
e

R
et

ur
n

Walker-Rand-Params

0 40000 80000 120000 160000 200000
Step

800

700

600

500

400

Av
er

ag
e

R
et

ur
n

Ant-Goal

0 20000 40000 60000 80000 100000
Step

400
450
500
550
600
650
700
750
800

Av
er

ag
e

R
et

ur
n

Humanoid-Dir

TCMRL IDAQ FOCALCORROANOLECSROGENTLEUNICORNER-TRL

Figure 9: Comparisons of the adaptation. The experimental results of TCMRL and baselines in
the Half-Cheetah-Vel, Point-Robot, Point-Robot-Wind, Sparse-Point-Robot, Hopper-Rand-Params,
Walker-Rand-Params, Ant-Goal and Humanoid-Dir environments.

interrelations among transitions. This hyperparameter may vary across different environments because
of the distinctness of these environments. Currently, we determine the optimal K through grid search.

I ADDITIONAL EXPERIMENTAL RESULTS

I.1 ADAPTATION PROCESSES

To further compare the adaptation performance of TCMRL and the baselines on unseen target tasks, we
present the adaptation processes across all experimental environments in the form of figures. Results in
Figure 9 demonstrate that TCMRL achieves more effective adaptation to unseen target tasks than the base-
lines in most environments. Specifically, in the Point-Robot and Point-Robot-Wind environments, TCMRL
and most baselines quickly converge to satisfactory performance. In the Sparse-Point-Robot, Hopper-Rand-
Params, Walker-Rand-Params, and Ant-Goal environments, TCMRL starts with relatively high performance
and consistently converges to a superior level. In the Half-Cheetah-Vel environment, although TCMRL
starts with lower performance, it eventually achieves strong final performance as well. Additionally, in
the Walker-Rand-Params environment, the adaptation performance of ER-TRL and UNICORN exhibits
significant fluctuations: although they achieve higher rewards than TCMRL during the middle stages, their
performance subsequently degrades, eventually converging to a lower level than that of TCMRL. In the
Humanoid-Dir environment, TCMRL starts with a relatively low performance but quickly converges to
a higher level. Although the final performance is not the best among all methods, it remains competitive.

I.2 COMPARISON WITH CORRO

We compare TCMRL with CORRO (Yuan & Lu, 2022), a method that generates robust contexts (task
representations) through contrastive learning. Specifically, CORRO treats contexts corresponding to the
same task as anchor samples and positive samples, respectively, while it constructs negative samples in
two different ways. First, in the cases where the overlap of state-action pairs between tasks is larger, it
employs a pretrained condition variational auto-encoder (CVAE) (Sohn et al., 2015) for generating negative
samples. Second, in the cases where the overlap of state-action pairs between tasks is small, it generates
negative samples by reward randomization (RR). The results of CORRO presented in Table 2 represent
the maximum performance attained across both CORRO with CVAE and CORRO with RR, serving as
a comprehensive result for comparison. The comparative results between TCMRL and CORRO can be

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 5: Detailed comparison between CORRO and TCMRL.

Environment TCMRL (ours) CORRO (CVAE) CORRO (RR)

Out-of-Distribution

Half-Cheetah-Vel -110.54±15.04 -124.93±24.00 -131.11±27.26
Point-Robot -4.73±0.12 -14.38±1.89 -5.82±0.50

Point-Robot-Wind -5.55±0.31 -12.24±4.98 -12.57±5.67
Sparse-Point-Robot 12.66±0.24 5.23±0.95 7.22±2.75

Hopper-Rand-Params 360.87±15.80 256.79±6.48 221.66±6.58
Walker-Rand-Params 328.67±24.48 312.78±11.67 319.01±14.79

Ant-Goal -368.99±5.36 -638.57±6.95 -614.59±4.10
Humanoid-Dir 700.63±21.11 713.50±38.82 738.11±29.83

In-Distribution

Half-Cheetah-Vel -109.08±12.79 -134.54±19.72 -119.26±12.50
Point-Robot -4.71±0.04 -14.84±0.14 -5.86±0.71

Point-Robot-Wind -5.64±0.10 -12.13±4.85 -12.90±5.94
Sparse-Point-Robot 12.65±0.08 5.89±2.07 7.63±2.40

Hopper-Rand-Params 373.58±27.38 263.66±12.94 248.42±7.80
Walker-Rand-Params 333.38±22.99 316.02±12.36 338.42±9.22

Ant-Goal -342.64±5.00 -625.48±8.53 -627.33±8.82
Humanoid-Dir 698.20±37.58 709.16±37.31 740.39±28.29

30 20 10 0 10 20 30

30

20

10

0

10

20

30

Hopper-Rand-Params

(a) TCMRL (ours)
30 20 10 0 10 20 30

30

20

10

0

10

20

30

Hopper-Rand-Params

(b) ER-TRL
30 20 10 0 10 20 30

30

20

10

0

10

20

30

Hopper-Rand-Params

(c) UNICORN
40 20 0 20 40

40

20

0

20

40

Hopper-Rand-Params

(d) GENTLE

Figure 10: t-SNE visualization in Hopper-Rand-Params of the learned context vectors of TCMRL,
ER-TRL, UNICORN and GENTLE.

found in Table 5. These comparative results demonstrate that TCMRL outperforms both CORRO with
CVAE and CORRO with RR across most environments, showcasing superior performance.

I.3 ADDITIONAL VISUALIZATION ANALYSIS

We present the t-SNE visualization (van der Maaten & Hinton, 2008) of the contexts of TCMRL,
ER-TRL, UNICORN and GENTLE in the Hopper-Rand-Params environment. These contexts are
related to 10 randomly sampled meta-training tasks and all 10 meta-testing tasks. Visualization results in
Figure 10 demonstrate that TCMRL, ER-TRL and UNICORN can effectively construct the comprehensive
relationships among contexts of different tasks, reflecting the intra-task similarity and inter-task distinctness.
In contrast, the contexts generated by GENTLE fail to form coherent clusters within the same task and
exhibit confusion across different tasks, indicating limited generalization.

I.4 COMPARISON WITH SIMBELIEF

SimBelief (Zhang et al., 2025) is an online meta-RL method that applies the bisimulation metric and
operates only coarsely at the trajectory level. In contrast, TCMRL, as a context-based offline meta-RL
method, faces a different challenge and performs optimization at both the trajectory and subtrajectory
levels. Specifically, TCMRL aims to improve the extraction and utilization of contexts through offline
data while avoiding poor adaptation performance on unseen target tasks caused by overfitting. TCMRL
leverages the characteristic metric to construct comprehensive relationships among contexts at the trajectory
level by capturing intra-task similarity, inter-task distinctness, and varying degrees of both as reflected
in task reward functions and transition dynamics. In addition, TCMRL discovers overlooked interrelations
among transitions within trajectories to further capture task characteristic information at the subtrajectory

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 6: Comparison between SimBelief and TCMRL.

Environment TCMRL (ours) SimBelief

Out-of-Distribution

Half-Cheetah-Vel -110.54±15.04 -583.51±3.40
Point-Robot -4.73±0.12 -99.56±5.55

Sparse-Point-Robot 12.66±0.24 9.36±2.13
Ant-Goal -368.99±5.36 -889.93±23.70

In-Distribution

Half-Cheetah-Vel -109.08±12.79 -547.17±4.46
Point-Robot -4.71±0.04 -92.34±5.51

Sparse-Point-Robot 12.65±0.08 6.64±1.93
Ant-Goal -342.64±5.00 -1046.41±29.47

Table 7: Loss landscape comparison under the same plane and normalization in the Half-Cheetah-Vel
environment.

Metric LTCMRL (ours) LDm

Normalized sharpness within ε (lower is better) 0.4599 0.4744
Normalized Ring-Mean ∆L (lower is better) 0.5654 0.5788

Hessian condition number at the center (closer to 1 is better) 1.4145 1.6663
Low-loss area fraction (higher is better) 0.0198 0.0177

level. By combining these two complementary aspects of optimization, TCMRL captures comprehensive
task characteristic information, enhances context generalization and achieves effective adaptation to unseen
target tasks. To further compare SimBelief and TCMRL, we apply several experimental settings from
TCMRL to SimBelief and conduct experiments in the Half-Cheetah-Vel, Point-Robot, Sparse-Point-Robot,
and Ant-Goal environments. Results in Table 6 demonstrate that SimBelief may suffer from poor
performance on both meta-training tasks (in-distribution) and unseen target tasks (out-of-distribution) due
to limited online learning steps, whereas TCMRL may be constrained by the returns of the offline datasets.
Overall, under the same training steps, TCMRL achieves better adaptation performance on unseen target
tasks and retains strong performance on meta-training tasks.

I.5 DISCUSSION ON FLAT MINIMA

To comprehensively explore the effectiveness of our designed LCm and LCycl, we analyze them
from the perspective of flat minima. Specifically, on a fixed 2D loss plane around parameters θ0,
define ∆L(α,β) = L(θ0 + αd1 + βd2) − L(θ0), and normalize by the 95th percentile p95 of ∆L:
∆Lnorm=∆L/p95. Let r=

√
α2+β2, rmax=maxr, and ε=ρrmax (default ρ=1/3). This analysis

revolves around a series of metrics.

• Normalized sharpness within ε (lower is better): worst normalized rise within radius ε.
• Normalized Ring-Mean ∆L (lower is better): average of ∆Lnorm over concentric rings.
• Hessian condition number at the center (closer to 1 is better): anisotropy of local curvature

near the center, quantified by κ.
• Low-loss area fraction (higher is better): fraction of the plane with ∆Lnorm ≤ τ (default
τ=0.1).

FOCAL (Li et al., 2021b) introduces a distance metric, which is widely adopted in existing context-based
offline meta-RL methods (Nakhaeinezhadfard et al., 2025; Li et al., 2024; Wang et al., 2023; Gao et al.,
2023), to optimize the context encoder. Similar to general contrastive learning functions, this distance
metric constructs relationships among contexts solely based on the task labels, without accounting for
the varying degrees of similarity and distinctness. The objective of this distance metric is as follows:

LDm=1{i=j}||ci−cj||22+1{i≠j} ζ

||ci−cj||22+ϵ0
, (20)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

alpha

-1.00-0.75-0.50-0.250.000.250.500.751.00

beta

-1.00
-0.75

-0.50
-0.25

0.00
0.25

0.50
0.75

1.00

Loss

14

16

18

20

22

Loss landscape (center=12.53)

14

16

18

20

22

Lo
ss

(a) LTCMRL (ours)

-1.0 -0.5 0.0 0.5 1.0
α

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

β

Loss landscape (center=12.53)

12.4

13.6

14.8

16.0

17.2

18.4

19.6

20.8

22.0

23.2

Lo
ss

(b) LTCMRL (ours)

alpha

-1.00-0.75-0.50-0.250.000.250.500.751.00

beta

-1.00
-0.75

-0.50
-0.25

0.00
0.25

0.50
0.75

1.00

Loss

2

3

4

5

6

7

Loss landscape (center=1.286)

2

3

4

5

6

7
Lo

ss

(c) LDm

-1.0 -0.5 0.0 0.5 1.0
α

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

β

Loss landscape (center=1.286)

1.2

2.0

2.8

3.6

4.4

5.2

6.0

6.8

Lo
ss

(d) LDm

Figure 11: Loss landscape comparison between LDm and LTCMRL in the Half-Cheetah-Vel environment.

Table 8: Computation cost comparison.

Method Testing Time Training Time GPU Memory

TCMRL (ours) 4h12m50s 2h48m40s 2107MB
TCMRL w/o LCm 4h02m33s 2h35m08s 1306MB
TCMRL w/o LCycl 4h09m02s 2h40m31s 2104MB

ER-TRL 4h25m14s 3h28m46s 1316MB
UNICORN 4h51m33s 2h41m53s 1276MB

IDAQ 4h51m25s 2h35m02s 1272MB
CSRO 4h02m52s 2h35m02s 1274MB

where ϵ0 is a hyperparameter introduced to avoid division by zero, and ζ is a weighting hyperparameter.
We compare the loss landscapes of LDm and LTCMRL under the same plane and normalization in
the Half-Cheetah-Vel environment, where LTCMRL =LCm+LCycl+LDm, to analyze the auxiliary
optimization effects of LCm and LCycl relative to using LDm alone. Results in Table 7 and Figure 11
validate the improved optimization stability and robustness achieved by LCm and LCycl.

I.6 COST ANALYSIS OF TCMRL

To assess the computational costs of our proposed TCMRL framework, we experiment in the Half-Cheetah-
Vel environment with an RTX 2080 Ti GPU. Following the setup described in Appendix H.2, each
experiment consists of a total of 40000 steps. The results in Table 8 demonstrate that the computational
costs of TCMRL are manageable and within accepted limits. Moreover, the increased GPU memory

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 9: Dataset average returns in experimental environments.

Environment Dataset Return

Point Robot -17.70
Sparse-Point-Robot 7.24
Half-Cheetah-Vel -138.29
Point-Robot-Wind -7.84

Hopper-Rand-Params 450.84
Walker-Rand-Params 496.33

Ant-Goal -379.74
Humanoid-Dir 737.53

usage in TCMRL is primarily attributed to the computation of the characteristic metric loss. We plan to
optimize this component in future work. Notably, as an end-to-end framework, we do not compare the
computational costs of TCMRL with methods such as GENTLE and CORRO, which require pretraining.
This is because pretraining introduces additional and often substantial computational costs.

J OFFLINE DATASET RETURNS

Table 9 reports the average returns of the offline datasets, which are utilized in the meta-training phase.

K USE OF LARGE LANGUAGE MODELS

We utilize large language models (LLMs) to aid and polish writing.

23

	Introduction
	Related Work
	Preliminaries
	Method
	Characteristic Metric
	Cyclic Interrelation

	Experiments
	Conclusion
	Pseudo-code
	Structure of Perspectives of Cyclic Interrelation
	Preliminaries of Meta-learning
	Preliminaries of Context-based Offline Meta-RL
	Theoretical Analysis
	Context-based Reward and State Estimators
	Characteristic Metric

	Experimental Environments
	Baselines
	Implementation Details
	Offline Data Collections
	Experimental Details
	Implementation of Baselines
	Ways to Determine Hyperparameter

	Additional Experimental Results
	Adaptation Processes
	Comparison with CORRO
	Additional Visualization Analysis
	Comparison with SimBelief
	Discussion on Flat Minima
	Cost Analysis of TCMRL

	Offline Dataset Returns
	Use of Large Language Models

