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Abstract
Federated learning suffers from a latency bottle-
neck induced by network stragglers, which ham-
pers the training efficiency significantly. In addi-
tion, due to the heterogeneous data distribution
and security requirements, simple and fast aver-
aging aggregation is not feasible anymore. In-
stead, complicated aggregation operations, such
as knowledge distillation, are required. The time
cost for complicated aggregation becomes a new
bottleneck that limits the computational efficiency
of FL. In this work, we claim that the root cause
of training latency actually lies in the aggregation-
then-broadcasting workflow of the server. By
swapping the computational order of aggrega-
tion and broadcasting, we propose a novel and
efficient parallel federated learning (PFL) frame-
work that unlocks the edge nodes during global
computation and the central server during local
computation. This fully asynchronous and par-
allel pipeline enables handling complex aggre-
gation and network stragglers, allowing flexible
device participation as well as achieving scalabil-
ity in computation. We theoretically prove that
synchronous and asynchronous PFL can achieve
a similar convergence rate as vanilla FL. Ex-
tensive experiments empirically show that our
framework brings up to 5.56× speedup com-
pared with traditional FL. Code is available at:
https://github.com/Hypervoyager/PFL.

1. Introduction
Federated Learning (FL) is an emerging distributed machine
learning framework that enables numerous devices to col-
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laboratively train a shared model without exposing their
private data (Shokri & Shmatikov, 2015; Konečnỳ et al.,
2016; Kairouz et al., 2019; Li et al., 2020). The main ad-
vantage of FL is the decoupling of model training from the
necessity of directly accessing to the training data. Thus,
in many data-sensitive scenarios, such as applications in
biomedicine (Xu et al., 2021b; Courtiol et al., 2019; Xu
et al., 2021b) and finance (Long et al., 2021; Pfitzner et al.,
2021), FL can significantly reduce the concern of privacy
and security.

Following the pioneer FedAvg (McMahan et al., 2017),
most existing FL schemes work in synchronous manner
(SyncFL), in which each round includes the following steps
(Zhang et al., 2023): 1) the central server broadcasts the
latest global model to edge devices; 2) each edge device then
updates its local model with the private data, and uploads
the local model update to the central server; 3) once all
local updates are received, the central server conducts the
aggregation operation to produce the next global model. In
the scenario of device heterogeneity, which widely exists in
practical applications, two issues heavily hinder the training
efficiency of SyncFL:

– Network Stragglers. Device heterogeneity inevitably in-
troduces network stragglers, which take much longer time
to complete local training than common ones. According to
the rule that aggregation is conducted after all local updates
are received, due to either the slowest training speed or drop-
ping out mid-round, the slowest-responding client becomes
the bottleneck of training efficiency of heterogeneous FL.

– Complicated Global Aggregation. The weighted average
manner is widely applied for global aggregation, which is
simple and fast. As a result, in most existing FL schemes,
the aggregation time spent in the central server is ignored.
However, for the scenario of FL over heterogeneous de-
vices, directly averaging local models is not feasible any-
more, since local models may have diverse structures and
sizes. Recently, some methods attempt to address the model
heterogeneity by performing knowledge distillation in the
server side (Zhu et al., 2021b; Lin et al., 2020), leading to
complicated aggregation operation. When the time cost for
aggregation is significant, as shown in Fig.1-(a), devices
are blocked to wait for the central server, which limits the
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Figure 1. The pipeline of FedAvg and Sync PFL. (a) FedAvg works in a synchronous manner, in which local and global computation are
conducted serially. (b) Sync PFL exchanges the execution order of global aggregation and broadcasting.

utilization (i.e., the fraction of processors actively comput-
ing at any time) of the system. Accordingly, complicated
global aggregation becomes another key factor influencing
the training efficiency of heterogeneous FL.

The network latency induced by network straggler has been
well studied, while the training latency induced by compli-
cated aggregation is overlooked by the community. The
state-of-the-art synchronous and asynchronous FL training
strategies attempt to remedy the network latency issue from
the edge side. For instance, Delayed gradient averaging
(DGA) (Zhu et al., 2021a) is proposed to conduct extra local
optimization during the process of communication, which
can save the overall time cost to some extent. However, as
a synchronous approach, DGA still suffers from the high
network latency induced by network stragglers. An alterna-
tive strategy is to allow clients to update the global model
asynchronously (Xie et al., 2019; Xu et al., 2021a; Dun
et al., 2022). For instance, Avdyukhin et al. (Avdiukhin
& Kasiviswanathan, 2021b) propose an asynchronous local
SGD model, where all the client iterates evolve in synchrony
with respect to the global clock, but communicate with the
server in asynchrony at arbitrary time intervals.

Instead of working on the edge side, in this paper, we claim
that the bottleneck of training latency actually lies in the
workflow of the server. This research line has not been
explored yet. We propose a novel and efficient scheme
called parallel federated learning (PFL) to achieve training
efficiency over heterogeneous devices, which can solve the
above two issues simultaneously. Specifically, the popular
FedAvg conducts serial computation between edge nodes
and the server: uploading→ global aggregation→ broad-

casting→ local optimization. In this pipeline, as shown in
Fig.1-(a), the server would be blocked to wait for receiv-
ing all local updates to perform the global aggregation; the
edge nodes would be blocked to wait for receiving the broad-
casted global model to start the next local optimization. By
carefully examining the above process, it can be found that
the root cause of training inefficiency actually lies in the
dependency of server on all local updates uploading and
the dependency of edge on global aggregation. An intuitive
idea is to decouple these dependencies such that the edge
and server can run in parallel.

Without redesigning the whole FL framework, we propose
a very simple operation—exchange the execution order of
global aggregation and broadcasting. The new workflow of
the server becomes: uploading (server receives the currently
completed local updates)→ broadcasting (server broadcasts
the stale global model in the buffer)→ global aggregation
(server averages the currently received local updates to get
the next global model). Under this setup, for an edge device,
once the local optimization is completed, it uploads the lo-
cal update to the server; right after the server receives the
new local update, it immediately broadcasts the stale global
model in the buffer to the edge devices; the edge devices
no longer need to wait for the aggregation result but start
the next local optimization upon the received global model;
the global aggregation on new updates is then carried out.
In this way, the global aggregation is decoupled from the
communication and can be performed in parallel with local
training. PFL includes both synchronous and asynchronous
versions, as shown in Fig. 1-(b) and Fig. 2. We theoretically
prove that PFL can achieve the similar convergence rate
as FedAvg, and empirically show that our framework can
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tolerate both network stragglers and complicated aggrega-
tion operation, which brings 1.77× to 5.56× speedup. In
summary, PFL enjoys the following merits:

– Handling Device Heterogeneity and Network Stragglers.
Edge clients and the server conduct model updates in a fully
asynchronous fashion, which is favorable in handling device
heterogeneity. Moreover, the server no longer needs to wait
for the straggling devices, which upload the local updates
whenever they are available to the server.

– Flexible Device Participation. In cross-device FL, it
is expected that each client would only participate in an
arbitrary number of update rounds. Our PFL can achieve
flexible device participation naturally. Once a local client
gets disconnected, it can download the global model into
the buffer, upon which it can conduct a local model update
and rejoin the collaborative training circle.

– Scalability in Computation. In PFL, the global aggrega-
tion is executed in parallel with communication and local
updates, thus it can be generalized to conduct more compli-
cated aggregation operations beyond simple averaging. For
instance, we can employ knowledge distillation to deal with
the model heterogeneity or use homomorphic encryption to
boost security.

2. Methodology
We consider federated learning with N edge devices, each
of which owns a private dataset Si = {(xi

j , y
i
j)}

mi
j=1 in-

cluding mi training samples from an unknown and fixed
distribution Pi over X ×Y . The sample number mi and the
data distribution Pi can be diverse across edge devices. The
overall goal is to train a global model f(ω) using samples
from all clients, where ω is denoted as the model parameters
to be optimized. Formally, for each device i, an objective
function F (i)(ω) is defined for optimization over Si:

F (i)(ω) = E(x,y)∈Si
[L(f(x, ω), y)], (1)

2.1. Parallel Federated Learning

The proposed PFL can be conducted in both synchronous
and asynchronous modes. For the synchronous mode, in
each round, the server needs to wait until receiving all up-
dates of edge devices prior to conducting the global aggre-
gation; while for the asynchronous mode, the server allows
asynchronous updates. In the following, we introduce them
in detail.

2.1.1. SYNCHRONOUS PFL

Due to the limitation of synchronized aggregation, our syn-
chronous PFL (SPFL) cannot handle the bottleneck induced
by network stragglers, which instead is tailored to alleviate
the training latency induced by complicated aggregation.

Algorithm 1 Asynchronous Parallel Federated Learning
Input: N edge devices with private datasets {Si}Ni=1, the

maximum global clock number T .
Output: The final global model ω(g)

T

Initialization: ω(g)
0 ;

for global clock t = 1, ...T in parallel do
for edge device i corresponding to global clock t

– Received global models: get ω(g)
t−1

– Local Update: ω(i)
t ← ω

(g)
t−1 − γG

(i)
t−1;

– Uploading: Uploading the gradient updates δ(i) to the
central server;

Global Computation on Server
– Communication:
• Receive the gradient update δ(i) of arriving device i
at global clock (t+ n+ 1);
• Send back the stale global model ω(g)

t+n−r to device i;
– Aggregation:
• Update the global model:
ω
(g)
t+n+1 ← ω

(g)
t+n+1−p +

1
N

∑
i∈Ct

δ(i),

Specifically, for the t-th round, SPFL works as follows:

– Local Update: Based on the received global model ω(g)
t−1,

each edge node i updates the local model by stochastic
gradient descent using its private data:

ω
(i)
t ← ω

(g)
t−1 − γG

(i)
t−1, t = 1, ..., T, (2)

where G
(i)
t−1 represents the gradient updates computed by

the i-th node based on ω
(g)
t−1.

– Uploading: Once the edge node i finishes the local train-
ing, it uploads the gradient update δ(i) to the central server.

– Broadcasting: Right after receiving the uploaded signals
{δ(i)}Ni=1 from all edge devices, the central server sends
back to them the stale global model in the buffer. Note
that it is the aggregation result of the last round but not
the up-to-date one. If the aggregation procedure of the last
round has not yet completed, the server needs to wait until
its completion prior to broadcasting the global model.

– Global Aggregation: Along with broadcasting, the cen-
tral server performs the aggregation operation based on the
received local updates:

ω
(g)
t+1 = ω

(g)
t +

1

N

∑N

i=1
δ(i), t = 1, ..., T, (3)

When the central server is performing aggregation, the edge
nodes are performing local training. Accordingly, by ex-
changing the execution order of broadcasting and aggrega-
tion, we decouple local training and global aggregation and
achieve parallel speedup.
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Figure 2. The pipeline of asynchronous PFL. The local training process of the edge device and the aggregation process of the central
server can be carried out simultaneously, thus greatly improving the training efficiency of FL.

2.1.2. ASYNCHRONOUS PFL

Compared with the synchronous mode, the asynchronous
mode enjoys more degree of freedom. In the proposed
asynchronous PFL (APFL), we attempt to simultaneously
remedy the training latency induced by network stragglers
on the edge side and complicated aggregation operation on
the server side, as shown in Algorithm 1. In APFL, each
edge device and the central server have different clocks.
To handle this issue, we define the global clock: whenever
any device communicates with the central server, the global
clock will increase by 1. In other words, each global clock
corresponds to only one device. Specifically, for the t-th
global clock, the proposed PFL works as follows:

– Local Update: Edge device i completes the communica-
tion with the central server, which receives the global model
denoted as ω(g)

t−1. Based on ω
(g)
t−1, edge device i updates the

local model by stochastic gradient descent using its private
data:

ωt ← ω
(g)
t−1 − γG

(i)
t−1, t = 1, ..., T. (4)

– Uploading: After completing the local training, edge de-
vice i then uploads the gradient update δ(i) to the central
server. During the local training and the uploading process
of device i, there would be n other devices communicating
with the central server. Therefore, when the central server
receives the local update of the device i, the global clock
becomes t+ n+ 1.

– Broadcasting: Right after receiving the uploaded signal
δ(i) from edge device i, the central server sends back to
it the stale global model in the buffer, which is the most
recent aggregation result. It would be ω

(g)
t+n if the central

server is idle, or ω(g)
t+n−r if the central server is performing

aggregation, where r denotes the number of local devices

that previously arrived at the server but did not participate
in aggregation. The former is a special case of the latter
with r = 0. For simplicity, we denote the stale global model
as ω

(g)
t+n−r. If the local model uploaded in the previous

clock by that device has not completed aggregation, then
the device must wait until it has. Note that the local signal
δ(i) received this time does not participate in the current
aggregation process. Therefore, the edge device i no longer
needs to wait for the global aggregation, which immediately
starts the next local training relying on ω

(g)
t+n−r. The central

server then performs the next aggregation in parallel with
the broadcasting and the new local training on device i.

– Global Aggregation: The new broadcasting-then-
aggregation mechanism, which sends to clients the stale
global models but not the latest ones, makes the global ag-
gregation decoupled from the communication. However,
this fully asynchronous manner leads to a scenario that,
when the global aggregation is being executed, there are
some local updates arriving. This situation is easy to handle:
the arrivals just wait for the current aggregation to be done
and then launch a new aggregation. The averaging operation
is thus performed on the updates of the new received edge
devices:

ω
(g)
t+n+1 ← ω

(g)
t+n+1−p +

1

N

∑
i∈Ct

δ(i), t = 1, ..., T,

(5)
where Ct represents the devices that arrived during the last
aggregation, p is the number of devices in Ct. Normally, Ct
contains only one device.

2.1.3. COMPARISON OF SPFL AND APFL

The main difference between SPFL and APFL is whether
the central server needs to wait for all devices. SPFL is sub-
ject to the requirement of synchronized aggregation, while
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APFL is not. This results in SPFL and APFL having differ-
ent speed-up ratios compared to standard federated learning.
Specifically, we divide the training time of federated learn-
ing into four parts: the time cost Tl for local training, the
time cost Tc for communication, the time cost Tw for wait-
ing, and the time cost Tg for global aggregation. Standard
federated learning works in a serial manner, for which the
training time of each round is T = Tl + Tc + Tw + Tg. In
SPFL, the aggregation of the central server is performed in
parallel with the local training of the edge nodes and the
communication process, the training time for each round is
T = max(Tl + Tc + Tw, Tg). In APFL, there is no waiting
time, we have T = max(Tl + Tc, Tg).

2.2. Convergence Analysis

In this subsection, we present the convergence anal-
ysis to demonstrate in theory that the proposed syn-
chronous/asynchronous PFL both can get a similar conver-
gence as FedAvg. It is worth noting that there is a standard
routine for FL convergence analysis, thus we just follow it
without the necessity of creating a new one. We take the
following standard assumptions (Stich, 2018; Avdiukhin &
Kasiviswanathan, 2021a; Nguyen et al., 2022):

• Smoothness: All local functions f i(i ∈ [N ]) are L-
smooth.

• Bounded second moment: There exists a con-
stant Gmax > 0 such that: E

[
||∇F (i)(x)||2

]
≤

G2
max, ∀i ∈ [N ],∀x ∈ Rd,

where ∇F (i)(x) is an unbiased stochastic gradient of
f (i) at x.

• Bounded variance: There exists a constant σ ≥ 0
such that:

Eξ∼Si ∥∇Fi(x)−∇fi(x)∥ ≤ σ2, ∀i ∈ [N ], ∀x ∈ Rd.
(6)

– Analysis for Synchronous PFL. In synchronous PFL, we
only exchange the execution order of global aggregation
and broadcasting, which makes each edge device receive
the stale global model. At first glance, it looks a bit like
asynchronous FL. The difference is that in asynchronous FL,
only part of the devices (stragglers) upload the stale gradient
updates. In synchronous PFL, the global model received by
the devices is only from the last round. Due to the above
similarities, we can analyze the convergence of synchronous
PFL with the help of existing studies on asynchronous FL.
Here, we follow (Avdiukhin & Kasiviswanathan, 2021a),
but give a sharper bound.

Definition 1 (Synchronous PFL Sequence) Let ω(g)
t repre-

sents the global model of synchronous PFL, G(i)
t represents

the uploaded gradient updates computed by the i-th client
based on ω

(g)
t , the global model ω(g)

t can be expressed as:

ω
(g)
t = ω

(g)
0 −

t∑
τ=2

γ avgi

(
G

(i)
τ−2

)
, t = 2, ..., T, (7)

where ω
(g)
0 and ω

(g)
1 are two different initialized models.

Definition 2 (Virtual Sequence) We construct a virtual
sequence in which each device at round t uses the ω

(g)
t−1

to calculate the uploaded gradient updates, this virtual se-
quence’s global model can be expressed as:

ζt = ω
(g)
0 −

t∑
τ=1

γ avgi

(
G

(i)
τ−1

)
, t = 1, ..., T. (8)

Similar virtual sequences have been used before in decen-
tralized optimization in various contexts (Lian et al., 2017;
Yuan et al., 2016; Nedić et al., 2018; Stich, 2018; Avdiukhin
& Kasiviswanathan, 2021a).

Proposition 3 (Distance Bound) For ζt of virtual sequence
and ω

(g)
t , ω

(i)
t in synchronous PFL we have:

max

(
E
[∥∥∥ζt − ω

(i)
t

∥∥∥2] ,E [∥∥∥ζt − ω
(g)
t

∥∥∥2]) ≤ 4γ2G2
max

(9)
This Proposition shows that ζt are close to ω

(g)
t and ω

(i)
t for

all devices. Its proof can be seen in Appendix.

Theorem 4 Let fmax = f
(
ω
(g)
0

)
−f (ω⋆), where ω⋆ is the

minimizer for f , γ =
√
N/
√
T we have:

1

T

T∑
t=0

E
[∥∥∥∇f (ω(g)

t

)∥∥∥2] = O

(
1√
NT

+
N

T

)
. (10)

Compared to the corresponding result for (Basu et al., 2019)
and (Avdiukhin & Kasiviswanathan, 2021a), O

(
1√
NT

)
,

when N is fixed, our results get a sharper convergence rate.
And illustrates a clearer relationship between T and N ,
i.e. as the number of nodes N increases, the number of
communication rounds T should be larger as well.

– Analysis for Asynchronous PFL. Convergence of asyn-
chronous PFL can be demonstrated in a similar way as
above, with the difference that in asynchronous PFL, the
global model received by the device will be more than one
clock staler than the current global model when aggregated.
For asynchronous PFL, we can use almost the same method
of (Avdiukhin & Kasiviswanathan, 2021a) to prove the con-
vergence of our method. Our contribution does not lie in the
novelty of the method of proof, but rather in pointing out
that our approach can be fully accommodated in existing
proofs of asynchronous FL and achieve greater speed-up
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Figure 3. The speedup ratio comparison under different setting. Tw/Tl represents the ratio of the straggler device’s dropout time to the
local training time. Ratio of Tg/Tl is associated with the number of devices and the computing power of the central server. Experimental
results show that PFL yields the highest speedup ratios in both situations.

ratios. For convenience, we use a notion similar to that used
in synchronous PFL to describe the global model and the
local model. Except for local models, we use wt to represent
the local model, since each global clock only corresponds
to one device.

Definition 5 (Asynchronous PFL Sequence) Let ω(g)
t rep-

resents the global model of asynchronous PFL, G(i)
t rep-

resents the uploaded gradient updates from the i-th client
based on ω

(g)
t , the global model ω(g)

t can be expressed as:

ω
(g)
t = ω

(g)
0 −

t∑
τ=1

γG
(i)
τ−δt

, t = 1, ..., T, (11)

where τ − δt denotes the clock of the global model received
by the device participating in the t-th round of aggregation,
and δt can represent the degree of asynchrony.

Proposition 6 (Distance Bound) For ζt of virtual sequence
and ω

(g)
t , ωt, we have:

max
(
E
[
∥ζt − ωt∥2

]
,E
[∥∥∥ζt − ω

(g)
t

∥∥∥)2])
≤ 4(δ − 1)2γ2G2

max,
(12)

Theorem 7 Let fmax = f
(
ω
(g)
0

)
−f (ω⋆), where ω⋆ is the

minimizer for f , if T > N3 and δ ≤ T 1/4/N3/4 we have:

1

T

T∑
t=0

E
[∥∥∥∇f

(
ω

(g)
t

)∥∥∥2
]
= O

(
Lfmax√
NT

+
G2

max√
NT

+
Lσ2

√
NT

)
,

(13)
where δ = max(δt).

3. Experiments
In this section, we provide a thorough evaluation of the
proposed PFL over heterogeneous devices. We first com-
pare the convergence speed and test accuracy of PFL un-
der average-based aggregation. Next, to investigate the

speedup ratio of PFL under different scenarios, experiments
are carried out with different Tw/Tl and Tg/Tl, where Tw

represents the reconnection time of the straggler devices,
Tl represents the local training time, and Tg represents the
aggregation time. We then show that our method is also
feasible for distillation-based aggregation. The convergence
curve of our method is also provided. Experimental re-
sults show that our method is resilient to stragglers and
can achieve a parallel pipeline to improve computational
efficiency without sacrificing test accuracy largely.

3.1. Experimental Setup

Straggler Devices and Sample Rate. Following the pre-
vious study (So et al., 2022), we randomly select p × N
devices where p is the dropout rate. To constrain the asyn-
chronous level between devices, we set Tw/Tl = 3, which
represents the ratio of waiting time to local training time.
We consider the worst-case scenario (Bonawitz et al., 2017),
where the straggler devices artificially drop after receiving
the global model. According to the realistic FL system
(Bonawitz et al., 2019), we set p = 0.2.

Datasets and Models. We conduct experiments on three
datasets, including MNIST, CIFAR-10, and Tiny-Imagenet
(100,000 images with 200 classes). For all three datasets,
we use the same ResNet-18 architecture for a fair and clear
comparison.

Communication bandwidth. In our experiments, we are
particularly focused on mobile devices in FL, the real mea-
sured bandwidth of a mobile phone is 4MB/s. The cost
of time to upload and broadcast updated local and global
models, denoted as Tc.

Baselines. We analyze and compare the performance of
PFL with three baseline schemes: FedAvg (McMahan et al.,
2017), DGA (Zhu et al., 2021a), and MIFA (Gu et al., 2021).
DGA allows extra local optimization during the communi-
cation process to implicitly reduce wasted computing power
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Table 1. Accuracy (%) comparison of synchronous FedAvg and our PFL’s on 3 datasets with both i.i.d and non-i.i.d data partitions.
Speed-up is measured for each global clock, normalized by the run-time of FedAvg. The best result is boldfaced.

Method
MNIST CIFAR-10 Tiny-ImageNet

Time for per global clock
i.i.d non-i.i.d i.i.d non-i.i.d i.i.d non-i.i.d

FedAvg (McMahan et al., 2017)
93.21 85.31 85.41 75.26 59.52 48.14

T = Tl + Tc + Tw + Tg
1× 1× 1×

DGA (Zhu et al., 2021a)
92.12 83.72 83,72 73.24 58.11 46.26 T = Tl + (Tc + Tw + Tg)

1× 1× 1× = Tl + TE

MIFA (Gu et al., 2021)
92.88 84.73 85.14 74.78 59.24 47.12

T = Tl + Tc + Tg
1.57× 1.86× 1.98×

Our SPFL
93.14 85.26 85.57 75.31 60.21 48.31

T = max(Tl + Tc, Tg) + Tw
1.22× 1.30× 1.33×

Our APFL
93.08 85.13 85.34 75.46 60.18 48.07

T = max(Tl + Tc, Tg)
2.20× 3.28× 3.91×

during communication. MIFA is an asynchronous commu-
nication FL method to solve straggler problems. These two
methods address the challenge of training efficiency in FL
from two different perspectives.

Data Partition: Following (Avdiukhin & Kasiviswanathan,
2021a; Lin et al., 2023), for IID setup, we randomly split
the data equally into N sub-datasets; for Non-IID setup,
each device has a corresponding class, where µ fraction of
local data is from the corresponding class, while the rest are
randomly selected from other classes. In our experiments,
µ = 0.3.

3.2. Performance Evaluation

To fully explore the communication efficiency of FL, we
simulate all the three scenarios mentioned in the above sec-
tion, concretely, 1) devices will randomly drop out, 2) the
upload and download time of the models is measured by
bandwidth 4Mb/s, and 3) the central server needs to per-
form additional complex computations such as knowledge
distillation or toxic device identification.

Average-based Aggregation. Although various novel ag-
gregation methods have been proposed, FedAvg is still the
most widely used method, so we first investigate the per-
formance of our method under the average-based approach.
To simulate complex operations on the central server in the
real environment without introducing additional effects, we
perform additional complex tasks on the central server to
demonstrate the superiority of the training efficiency of our
approach. Specifically, an additional stage of toxic device
identification is added before the central server performs the
aggregation. The local models uploaded from each device
need to be validated by the public dataset on the central
server before participating in aggregation. This is a very ef-
ficient but time-consuming detection method and, therefore,

is rarely used in real-world scenarios. As can be seen in Ta-
ble 1, our method can achieve almost the same accuracy as
FedAvg, while achieving a speed increase of approximately
3.91×. Speed-up is measured in run time per global clock
between device and central server, normalized by the run
time of FedAvg. DGA does not reduce the computation
time for each communication but rather speeds up conver-
gence by allowing the nodes to perform local training while
communicating. Therefore, it has an acceleration ratio of
only 1×. MIFA can get good speedups in the presence of
straggler, e.g. 1.86× faster on the CIFAR-10 dataset. Our
approach can improve the computational efficiency of feder-
ated learning in three dimensions simultaneously, the time
for per global clock is T = max(Tl + Tc, Tg), for example,
when on the CIFAR-10 dataset, our method can obtain a
3.28× speedup.

Impact of Tw/Tl on speedup ratio. Tw/Tl represents
the ratio of reconnection time of straggler devices to local
training time. The longer the dropout time, the greater its
impact on the overall computational efficiency of SyncFL
and the greater its impact on the accuracy of AsyncFL.
Therefore, it is necessary to investigate the effect of different
Tw/Tl on computational efficiency, here we set Tw/Tl = 1
and Tw/T l = 1, 2, 3, 4, 5, and the experiment is carried
out on the CIFAR-10. As can be seen in Fig. 3, as Tw/Tl

increases, the computational speed-up ratio between our
method and MIFA’s method gets higher and higher, and
when Tw/Tl = 5, the computational efficiency of our PFL
can be improved by up to 5.56×, while MIFA can only
improve the speed-up ratio by 3.16×.

Impact of Tg/Tl on speedup ratio. Tg/Tl represents the
ratio of the central server’s computation time to the local
device’s training time, which is related to the number of
devices and the computation capacity of the central server,
and is further complicated when the computation power of

7
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Table 2. Training efficiency (%) comparison of FedAvg and PFL on three datasets with different local epochs under distillation-based
aggregation. The communication time Tc and the stragglers are ignored, the times in the table are the average times for each training
between edge device and central server.

Dataset Local epoch Tl (s) Tg (s)
Fedavg PFL

Speedup
Time(s) Acc. Time(s) Acc.

MNIST
5 4 5 9 99.31 5 99.18 1.80 ×
10 7 5 12 98.17 7 98.09 1.71 ×
15 11 5 16 96.13 11 96.24 1.45 ×

CIFAR-10
5 19 20 39 89.22 20 89.13 1.95 ×
10 38 20 58 87.81 38 87.76 1.53 ×
15 60 20 80 86.48 60 86.37 1.33 ×

Tiny-ImageNet
5 185 180 365 62.88 185 62.79 1.97 ×
10 375 180 555 60.13 375 60.06 1.48 ×
15 563 180 743 57.25 563 57.22 1.32 ×

the edge devices is different from each other. To simplify the
computational model, we assume that the local training time
is the same for each edge device. Here, we set Tg/Tl =
1 and Tw/T l = 0.25, 0.5, 1, 2, 4, and the experiment is
carried out on the CIFAR-10. As can be seen in Fig. 3, the
speed-up ratio of our method reaches its maximum 2.52×
when Tg/Tl = 1.

Distillation-based Aggregation. To verify the effectiveness
of our method for complex aggregations, we have chosen
the first distillation-based aggregation method (Lin et al.,
2020). The distillation-based approach makes better use
of information from edge devices, but introduces serious
computational reductions in efficiency that make it difficult
to apply to real-world applications. Following (Lin et al.,
2020), we added additional public datasets to the central
server and then fine-tuned the global model by distillation
after coarse aggregation was completed by averaging opera-
tions. In this experiment, the straggler node is ignored. As
can be seen from Table 2, our method is still feasible under
distillation-based aggregation and can improve the compu-
tational efficiency without sacrificing accuracy, achieving
2× speedup when the training time for edge devices is the
same as the aggregation time for the central server.

Convergence Analysis. In our scheme, the key to achiev-
ing parallel computing is to send the stale global model
to the edge devices. It would be interesting to investigate
the influence of the stale global model on the final perfor-
mance. In this part, we conduct a convergence analysis
through empirical experiments with respect to both accu-
racy and communication rounds on the CIFAR-10 dataset
with 20 edge devices. The convergence curve is provided
in Fig. 4. It can be found that, in the early training stage,
the proposed PFL suffers from lower accuracy and stronger
oscillations compared with FedAvg; while with the commu-
nication round increases, the PFL finally achieves similar
performance to FedAvg. This is consistent with the intuition
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Figure 4. Convergence analysis of PFL and FedAvg on CIFAR-10.

that, when the algorithm converges, there is no significant
difference between using the stale global model or using the
up-to-date global model.

4. Conclusion
The traditional FL works in a serial computation manner, in
which communication is deemed a major bottleneck, lead-
ing to poor training efficiency. In this paper, we presented a
simple yet efficient scheme called parallel federated learn-
ing (PFL). Instead of remedying the efficiency issue from
the edge side as done in existing methods, we claim that the
bottleneck of computational efficiency actually lies in the
workflow of the server. Through exchanging the execution
order of global aggregation and broadcasting, global aggre-
gation is decoupled from the communication and can be
performed in parallel with local training. We theoretically
prove that PFL can achieve the same convergence rate as
FedAvg. The proposed scheme has the potential to serve
as a new baseline FL framework enabling a wide range of
applications.
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A. Convergence analysis of PFL
Proof for Synchronous PFL.

Proposition 3 (Distance Bound) For ζt of full synchronous FL and ω
(g)
t , ω

(i)
t of Algorithm 1, we have:

max

(
E
[∥∥∥ζt − ω

(i)
t

∥∥∥2] ,E [∥∥∥ζt − ω
(g)
t

∥∥∥2]) ≤ 4γ2G2
max. (14)

Proof:

E
[∥∥∥ζt − ω

(g)
t

∥∥∥2] = E

∥∥∥∥∥
t∑

τ=2

γ avgi

(
G

(i)
τ−2

)
−

t∑
τ=1

γ avgi

(
G

(i)
τ−1

)∥∥∥∥∥
2


≤ γ2E

∥∥∥∥∥
t∑

τ=2

avgi

(
G

(i)
τ−2 −G

(i)
τ−1

)
− γ avgi G

(i)
0

∥∥∥∥∥
2


≤ γ2G2
max.

(15)

Similarly, E
[∥∥∥ω(g)

t − ω
(i)
t

∥∥∥2] ≤ γ2G2
max. Combining these bounds, we have the following.

E
[∥∥∥ζt − ω

(i)
t

∥∥∥2] = E
[∥∥∥ζt − ω

(g)
t + ω

(g)
t − ω

(i)
t

∥∥∥2]
≤ 2

(
E
[∥∥∥ζt − ω

(g)
t

∥∥∥2]+ E
[∥∥∥ω(g)

t − ω
(i)
t

∥∥∥2])
≤ 4γ2G2

max.

(16)

Theorem 4 Let fmax = f
(
ω
(g)
0

)
− f (ω⋆), where ω⋆ is the minimizer for f , we have:

1

T

T∑
t=0

E
[∥∥∥∇f (ω(g)

t

)∥∥∥2] = O

(
1√
NT

+
N

T

)
. (17)

Proof: Similar to (Avdiukhin & Kasiviswanathan, 2021a) Theorem 2.4.

From smoothness Lipschitz condition on the gradients:

E
[∥∥∥∇f (ω(g)

t

)
−∇f (ζt)

∥∥∥2] ≤ L2E
[∥∥∥ω(g)

t − ζt

∥∥∥2] ≤ L2γ2G2
max, and

E
[∥∥∥∇f (i)

(
ω
(i)
t

)
−∇f (i) (ζt)

∥∥∥2] ≤ L2E
[∥∥∥ω(i)

t − ζt

∥∥∥2] ≤ 4L2γ2G2
max.

(18)

First, we bound ζt, for ζt, we have:

ζt+1 = ζt − γ avgi

(
G(i)

τ

)
. (19)

By the smoothness property:

E [f (ζt+1)] ≤ E [f (ζt)]− E
[〈
∇f (ζt) , γ avgi

(
G

(i)
t

)〉]
+

L

2
E
[∥∥∥γ avgi (G(i)

t

)∥∥∥2] . (20)
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The last term in Eq. 20 can be rewritten as:

L

2
E
[∥∥∥γ avgi (G(i)

t

)∥∥∥2]
=

γ2L

2
E
[∥∥∥avgi (G(i)

t +∇f (i)
(
ω
(i)
t

)
−∇f (i)

(
ω
(i)
t

))∥∥∥2]
=

γ2L

2
E
[∥∥∥avgi (∇f (i)

(
ω
(i)
t

)
+
(
G

(i)
t −∇f (i)

(
ω
(i)
t

)))∥∥∥2]
=

γ2L

2
E
[∥∥∥avgi (∇f (i)

(
ω
(i)
t

))∥∥∥2]+ γ2L

2
E
[∥∥∥avgi (G(i)

t −∇f (i)
(
ω
(i)
t

))∥∥∥2]
=

γ2L

2
E
[∥∥∥avgi (∇f (i)

(
ω
(i)
t

))∥∥∥2]+ γ2Lσ
2

2
.

(21)

Substituting this into the Eq. 20, get:

E [f (ζt+1)] ≤E [f (ζt)]− E
[〈
∇f (ζt) , γ avgi

(
∇f (i)

(
ω
(i)
t

))〉]
+

γ2L

2
E
[∥∥∥avgi (∇f (i)

(
ω
(i)
t

))∥∥∥2]+ γ2Lσ
2

2

≤E [f (ζt)]− γE
[〈
∇f (ζt) , avgi

(
∇f (i) (ζt)

)〉]
− γE

[〈
∇f (ζt) , avgi

(
∇f (i)

(
ω
(i)
t

)
−∇f (i) (ζt)

)〉]
+

γ2L

2
E
[∥∥∥avgi (∇f (i)

(
ω
(i)
t

))∥∥∥2]+ γ2Lσ
2

2
.

(22)

The second term in Eq. 22 can be simplified by avgi
(
f (i) (ζt)

)
= f (ζt):

γE
[〈
∇f (ζt) , avgi

(
∇f (i) (ζt)

)〉]
= γE

[
∥∇f (ζt)∥2

]
. (23)

For the third term in Eq. 22 we have:

γE
[〈
∇f (ζt) , avgi

(
∇f (i)

(
ω
(i)
t

)
−∇f (i) (ζt)

)〉]
≤ γ

2

(
E
[
∥∇f (ζt)∥2

]
+ E

[∥∥∥avgi (∇f (i)
(
ω
(i)
t

)
−∇f (i) (ζt)

)∥∥∥2])
≤ γ

2

(
E
[
∥∇f (ζt)∥2

]
+ avgi

(
E
[∥∥∥∇f (i)

(
ω
(i)
t

)
−∇f (i) (ζt)

∥∥∥2]))
≤ γ

2

(
E
[
∥∇f (ζt)∥2

]
+ 4L2γ2G2

max

)
. (According to Eq. 18)

(24)

For the fourth term in Eq. 22 we have:

γ2L

2
E
[∥∥∥avgi (∇f (i)

(
ω
(i)
t

))∥∥∥2]
=

γ2L

2
E
[∥∥∥avgi (∇f (i) (ζt) +

(
∇f (i)

(
ω
(i)
t

)
−∇f (i) (ζt)

))∥∥∥2]
≤ γ2L

(
E
[∥∥∥avgi (∇f (i) (ζt)

)∥∥∥2]+ E
[∥∥∥avgi (∇f (i)

(
ω
(i)
t

)
−∇f (i) (ζt)

)∥∥∥2])
≤ γ2L

(
E
[
∥∇f (ζt)∥2

]
+ 4L2γ2G2

max

)
. (According to Eq. 18)

(25)

12



No One Idles: Efficient Heterogeneous Federated Learning with Parallel Edge and Server Computation

Substituting Eq. 23, 24, 25 into the Eq. 22, get:

E [f (ζt+1)] ≤ E [f (ζt)]− γ

(
1 +

1

2
− γL

)
E
[
∥∇f (ζt)∥2

]
− 2γ3L2G2

max + 4γ4L3G2
max

+ γ2Lσ
2

2N
(Assume γ ≤ 1/(2L))

≤ E [f (ζt)]− γE
[
∥∇f (ζt)∥2

]
+ γ2Lσ

2

2N
.

(26)

Move E
[
|| ∇f(ζt) ||2

]
to the left of the inequality;

E
[
∥∇f (ζt)∥2

]
≤ (E [f (ζt)]− E [f (ζt+1)])

γ
+ γ

Lσ2

2N
. (27)

Taking the sum over all iterations:

1

T

T∑
t=0

E
[
∥∇f (ζt)∥2

]
≤ (E [f (ζ0)]− E [f (ζT+1)])

γT
+ γ

Lσ2

2N
. (28)

Finally, we can bound || ∇f(ω(g)
t ) || in terms of || ∇f(ζt) || as:

E
[∥∥∥∇f (ω(g)

t

)∥∥∥2] ≤ 2

(
E
[∥∥∥∇f (ω(g)

t

)
−∇f (ζt)

∥∥∥2]+ E
[
∥∇f (ζt)∥2

])
≤ 2E

[
∥∇f (ζt)∥2

]
+ 2L2E

[∥∥∥ω(g)
t − ζt

∥∥∥2]
≤ 2E

[
∥∇f (ζt)∥2

]
+ γ2L2G2

max.

(29)

Substituting this into the inequality above on 1
T

∑T
t=0 E

[
∥∇f (ζt)∥2

]
gives the claimed bound:

1

T

T∑
t=0

E
[∥∥∥∇f (ω(g)

t

)∥∥∥2] = O

(
fmax

γT
+ γ2L2G2

max + γ
Lσ2

N

)
. (30)

Using the step size γ =
√
N/
√
T , we get:

1

T

T∑
t=0

E
[∥∥∥∇f (ω(g)

t

)∥∥∥2]
= O

(
fmax√
NT

+
N

T
L2G2

max +
Lσ2

√
NT

)
.

(31)

Proof for Asynchronous PFL. We use the same notation in synchronous PFL for convenience. In asynchronous PFL, we
can use almost the same method of (Avdiukhin & Kasiviswanathan, 2021a) to prove the convergence of our method. Our
contribution does not lie in the novelty of the method of proof, but rather in pointing out that our approach can be fully
accommodated in existing proofs of asynchronous FL and achieve greater speed-up ratios.

Definition 5 (Asynchronous PFL Sequence) Let ω(g)
t represents the global model of asynchronous PFL, G(i)

t represents
the uploaded gradient updates computed by the i-th client based on ω

(g)
t , the global model ω(g)

t can be expressed as:

ω
(g)
t = ω

(g)
0 −

t∑
τ=1

γG
(i)
τ−δ. (32)
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Server:

Node 1:

Node 2 :

Node 3 :

Upload / Broadcast / Receive

AggregationNo actions    Waiting time

Local Training

Figure 5. The timing diagram when the aggregation time is Tg = Tl + Tc + Tw.

Proposition 6 (Distance Bound) For ζt of virtual sequence and ω
(g)
t , ωt of Algorithm 1, we have:

max
(
E
[
∥ζt − ωt∥2

]
,E
[∥∥∥ζt − ω

(g)
t

∥∥∥)2]) ≤ 4(δ − 1)2γ2G2
max (33)

Proof:

E
[∥∥∥ζt − ω

(g)
t

∥∥∥2] = E

∥∥∥∥∥
t∑

τ=1

γ
(
G

(j)
τ−δ

)
−

(
t∑

τ=1

γG
(i)
τ−1

)∥∥∥∥∥
2


≤ γ2E

∥∥∥∥∥
t∑

τ=1

(
G

(i)
τ−δ −G

(i)
τ−1

)∥∥∥∥∥
2


≤ γ2(δ − 1)2G2
max.

(34)

Similarly, E
[∥∥∥ω(g)

t − ωt

∥∥∥2] ≤ γ2(δ − 1)2G2
max. Combining these bounds, we have the following.

E
[
∥ζt − ωt∥2

]
= E

[∥∥∥ζt − ω
(g)
t + ω

(g)
t − ωt

∥∥∥2]
≤ 2

(
E
[∥∥∥ζt − ω(g)

∥∥∥2]+ E
[∥∥∥ω(g) − ωt

∥∥∥2])
≤ 4γ2(δ − 1)2G2

max.

(35)

Theorem 7 Let fmax = f
(
ω
(g)
0

)
− f (ω⋆), where ω⋆ is the minimizer for f , we have:

1

T

T∑
t=0

E
[∥∥∥∇f (ω(g)

t

)∥∥∥2] = O

(
fmax

γT
+ γ2L2G2

maxδ
2 + γ

Lσ2

N

)
. (36)

Proof: Similar to Theorem 4 A.

If T > N3 and δ ≤ T 1/4/N3/4, we get:

1

T

T∑
t=0

E
[∥∥∥∇f (ω(g)

t

)∥∥∥2] = O

(
Lfmax√
NT

+
G2

max√
NT

+
Lσ2

√
NT

)
. (37)
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B. Special case in synchronous PFL for Tg = Tl + Tc + Tw

Here we give a timing diagram for a special case in synchronous PFL when Tg = Tl + Tc + Tw. As can be seen in Fig. 5,
in this setting, the time spent on each round is Tg .

15


