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Abstract

Large Reasoning Models (LRMs) have introduced a new paradigm in Al by en-
abling models to “think before responding” via chain-of-thought reasoning. How-
ever, the absence of open and reproducible recipes for building reasoning-centric
medical LMMs hinders community-wide research, analysis, and comparison. In
this paper, we present MEDVLTHINKER, a suite of simple yet strong baselines. Our
fully open recipe consists of: (1) systematic data curation for both text-only and
image-text medical data, filtered according to varying levels of reasoning difficulty,
and (2) two training paradigms: Supervised Fine-Tuning (SFT) on distilled reason-
ing traces and Reinforcement Learning with Verifiable Rewards (RLVR) based on
final answer correctness. Across extensive experiments on the Qwen2.5-VL model
family (3B, 7B) and six medical QA benchmarks, we find that RLVR consistently
and significantly outperforms SFT. Additionally, under the RLVR framework, a
key, counter-intuitive finding is that training on our curated text-only reasoning
data provides a more substantial performance boost than training on multimodal
image-text data. Our best open 7B model, trained using the RLVR recipe on text-
only data, establishes a new state-of-the-art on existing public VQA benchmarks,
surpassing all previous open-source medical LMMs. Furthermore, scaling our
model to 32B achieves performance on par with the proprietary GPT-4o0.
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Parallel to this, Large Reasoning Models (LRMs) extend large language models with a new response
paradigm: the model “thinks” through a chain-of-thought before producing a final answer. This allows
the model to devote more computation at inference time to reasoning, often improving performance
on complex tasks [[7} 16} [13]]. Early medical adaptations of text-only LRMs have demonstrated strong
performance on medical QA tasks [10} 14} |36} 14, [37]]. The ability to generate detailed reasoning steps
at test time appears to confer significant gains in accuracy on challenging questions [48]]. However,
how to best combine this reasoning paradigm with multimodal understanding remains underexplored.
While there have been efforts to build medical multimodal reasoning models, they are often limited
in openness—being either entirely closed-source [31}123]], releasing only model weights without data
or training code [29], or, if fully open, are confined to narrow datasets or specific domains (e.g., CT
or MRI only) [16} 27]. As a consequence, the field lacks a comprehensive analysis of how critical
factors such as data modality, curation pipelines, and training strategies affect model performance.

In this paper, we provide MEDV LTHINKER, the very first fully open-source recipe for building and
evaluating generalized Medical Vision-Language Reasoning Models. Our comprehensive framework
provides a complete workflow, from data curation and training pipelines to a standardized evaluation
protocol. This enables, for the first time, a fair and systematic comparison across diverse multimodal
medical QA benchmarks. Figure 2] provides an overview of our approach. We first curate two types
of training data: a fext-only QA dataset and an image-text (multimodal) QA dataset. Using a
general-purpose multimodal LLM (Qwen2.5-VL-Instruct) [2], we probe each question with multiple
trials to estimate its difficulty. Specifically, for each question, we generate multiple candidate answers
and count how many times the model answers correctly (the “pass count”). Questions that are
consistently answered correctly (too easy) or never answered correctly (too hard) are filtered out,
yielding a focused training set of medium-difficulty questions. We then employ strong teacher models
to generate detailed reasoning chains (long chains-of-thought, CoTs) for the remaining questions.
For text-only questions, we use the DeepSeek [[7] model (a powerful text-based LRM) as the CoT
teacher, and for image-based questions, we use GPT-4o [[11]] (a vision-enabled GPT-4 variant).

Using these data, we train the base multimodal LLM under two paradigms: (1) Supervised fine-
tuning (SFT) on the teacher-generated CoT traces, and (2) Reinforcement Learning with Verifiable
Rewards (RLVR) on the question-answer pairs (without CoTs). SFT directly teaches the model
to reproduce high-quality reasoning and answer traces, whereas RLVR uses only binary rewards
from answer correctness to encourage the model’s own reasoning. We implement RLVR via Group
Relative Policy Optimization (GRPO) [30]], an efficient policy-gradient algorithm that requires no
value estimator or critic model. In RLVR training, the model generates multiple reasoning traces for
each question; each trace is verified for correct answer format and correctness of the final answer,
yielding a +1 or -1 reward. These binary rewards are normalized (whitened) across the batch and
fed into the GRPO update step, which applies a PPO-style clipped objective. This process gradually
concentrates the model’s generation probability mass on verifiably correct reasoning traces while
limiting divergence from the original model output distribution.

We conduct extensive experiments on six multimodal medical QA benchmarks to investigate the
properties of our MEDVLTHINKER. We use the Qwen2.5-VL series as the base models (in 3B, 7B,
and 32B parameter sizes). Our evaluations cover both general medical visual QA and modality-
specific QA (covering specialties like pathology, radiology, etc.). The results reveal several important,
and at times counter-intuitive, findings: First, regarding training paradigms, models trained with
RLVR consistently outperform those trained with SFT across both 3B and 7B scales. Second, in
terms of data modality, text-only training outperforms image-text training. Notably, SFT on distilled
text-only CoT data degrades performance relative to the base model (e.g., MEDVLTHINKER-7B
accuracy drops from 53.5% to 43.8%), whereas SFT on image-text data yields performance similar
to the untrained base model. In contrast, RLVR on text-only data provides the largest performance
boost, improving the 7B model from 53.5% to 54.9%. RLVR on image-text data also improves
performance, but to a lesser extent. Moreover, combining text, only and image-text data—either
through SFT+RL or sequential RL, does not yield additional gains beyond using text-only data alone.
Third, model scale has a clear impact: 7B models consistently outperform their 3B counterparts
across all configurations.

Among existing open-source 7B medical LMMs, MEDVLTHINKER-7B (trained with RLVR on
text-only data) achieves a new state-of-the-art average accuracy of 54.9% across six benchmarks.
To evaluate the effect of model scaling, we further train a 32B variant. As shown in Figure [I]
MEDVLTHINKER-32B performs competitively with the proprietary GPT-40, demonstrating the
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Figure 2: The data filtering and training pipeline. (A) We first filter both text-only m23k dataset
and image-text PMC-VQA dataset, by generating multiple answers per question with Qwen2.5-VL-
Instruct. Then we filter those questions are answered all wrong or almost correct. (B) Based on the
filtered two datasets, we conduct supervised finetuning (SFT), reinforcement learning with verfiable
rewaresd (RLVR), and their combination to train a herd of multimodal medical large reasoning
models.

potential of open models to close the performance gap with commercial systems. To accelerate
community-driven development and foster future innovation, we will release our complete research
toolkit, including all models, code, and pipelines for data curation, training, and evaluation.

2 Related Works

2.1 Large Reasoning Models and Medical Adaptation

Large Reasoning Models (LRMs) endow large language models with the ability to articulate step-
by-step reasoning before finalizing an answer [34} [7, 32, [13]]. This test-time “think then answer”
approach allows extended reasoning and has yielded impressive gains in domains such as mathe-
matical problem [44} 39, 25] solving and code generation [13} 40]. One way to train LRMs is via
Reinforcement Learning with Verifiable Rewards (RLVR), which forgoes supervised chain-of-thought
data and instead uses binary feedback on answer correctness [3,42]]. RLVR eliminates the need to
curate lengthy reasoning exemplars; it directly incentivizes correct reasoning by rewarding only the
final outcome. In practice, an efficient implementation of RLVR is crucial. Group Relative Policy
Optimization (GRPO) [30] has been adopted for its efficiency, removing the need for a separate
value network (critic) during RL updates. An alternative approach is to distill the reasoning traces of
stronger models via supervised fine-tuning (SFT). For example, one can use a GPT-4 level model
to generate high-quality explanations (CoTs) for medical questions, and then fine-tune a smaller
model on this data [4]. Recent work shows that fine-tuning medical-focused LRMs (either via SFT
on expert traces or via RL on answer rewards) can significantly improve medical question answering
performance [36, 10} [14]. Our work extends these ideas to the multimodal realm, examining whether
similar reasoning enhancements hold when visual information is involved.

2.2 Multimodal Medical Large Language Models

Given that clinical data often includes images (radiology [17]], pathology [12]], etc.), there is growing
interest in extending LL.Ms to handle visual inputs for medical applications. Med-Flamingo [24]]
was among the first to propose an interleaved vision-language training pipeline for a medical LLM,
enabling it to handle image-text pairs in a single prompt. LLaVA-Med [18]] introduced a two-
stage approach: first, connect a vision encoder with an LLM via a learned projection (connector)
and fine-tune on general images; second, fine-tune the combined model on medical image—text
instruction data to specialize it. PMC-VQA [435] is one such large-scale multimodal instruction
dataset, constructed from PubMed Central articles (figures and captions) using GPT-3.5 as an
annotator. However, the quality of GPT-3.5-generated questions and answers in PMC-VQA is
limited by the base model’s capacity, and the dataset likely contains noise or insufficiently detailed
questions. Other contemporaneous efforts include HuatuoGPT-Vision [5], which scales up LLaVA-
Med’s pipeline by generating a much larger set of QA pairs from a medical corpus and training larger
models (up to 34B parameters). There are also modality-specific medical VLMs such as RadFM [35]
and SkinGPT [46]] that follow similar pipelines but focus on particular domains (e.g., radiology,
dermatology) with domain-specific image-text data. In summary, several open-source medical LMMs
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Figure 3: Probing the questions difficulty with Qwen2.5-VL-Instruct. For each question, we generate
16 answers. Then we draw the pie plots for the pass count. When the scale of the multimodal LLM
increased, the number of high pass count questions increased. This indicate the potential of the
models, especially for latter RLVR training, which encourage the models improve this possibility to
answer questions correctly. The pass count are used for latter data filtering.

have been proposed, but integrating an explicit reasoning mechanism (as in LRMs) into these models
has not been thoroughly studied prior to our work.

2.3 Concurrent Works

Very recently, a few works have begun exploring the idea of eliciting medical reasoning in LLMs. For
text-only medical QA, HuatuoGPT-o1 uses a PPO-based RL approach [28]] with an external reward
model to train a medical reasoning LLM [4]], and MedS3 leverages Process-Reward Models (PRMs)
for RL to improve stepwise reasoning [14]]. Another approach, denoted M1 in a recent preprint,
distills the reasoning traces of a GPT-4-based model (denoted R1) into a smaller model via SFT [10].
In the multimodal domain, MedVLM-R1 [27] demonstrates the effectiveness of RLVR on a small
scale of multimodal data (fewer than 1K training samples), and Med-R1 [16] applies a similar RLVR
scheme on separate modality-specific datasets. However, these models are trained on limited data
and are not generalizable across different types of medical visual questions. GMAI-VL-R1 [31]
is a general multimodal medical LLM trained with an RLVR paradigm, but its training data and
code are not publicly available. In contrast, our work provides an open-source recipe for building
multimodal medical reasoning models with both SFT and RL techniques, and we conduct a thorough
experimental study across varying model scales (3B, 7B, 32B) and diverse benchmarks. To our
knowledge, this is the first work to systematically compare supervised CoT distillation and RLVR for
multimodal medical QA, and to benchmark the resulting models against prior open medical LMMs
and closed models like GPT-4.

3 Methods

We describe our data curation process and training methodologies for MEDVLTHINKER. Figure[Z]
illustrates the overall pipeline of data filtering and model training.

Data Curation and Filtering. We gather two datasets for training: a text-only medical QA dataset
and a multimodal (image+text) medical QA dataset. For text-only data, we use the m23k [10],
which compiles 23,493 multiple-choice medical questions from the training splits of MedQA [15],
MedMCQA [26]], and HeadQA [33]]. Each question in m23k is accompanied by a set of candidate
answers, and we have access to high-quality reasoning chains (CoTs) for these questions distilled
from the DeepSeek-R1 [[7]] model. For multimodal data, we adopt PMC-VQA [435]], a large dataset



of 176,948 visual QA pairs derived from biomedical literature figures and captions (covering about
149k images). PMC-VQA was generated using GPT-3.5 and covers a broad range of medical topics,
making it a general-purpose multimodal medical QA resource (unlike modality-specific datasets such
as PathVQA [8]], SLAKE [19], VQA-Rad [17], which target one type of image).

Not all questions in these datasets are equally useful for training a reasoning model; some are too
easy (already trivial for the base model) and some are too hard (unsolvable even with reasoning).
Following recent curriculum learning insights [25]], we perform a difficulty-based filtering on both
datasets. We prompt three variants of a general multimodal model (Qwen2.5-VL-Instruct with 3B,
7B, 32B parameters) to answer each question 16 times (using nucleus sampling with temperature 1.0).
For each question, we record the pass count, i.e. the number of trials (out of 16) that produced the
correct answer. Figure [3|shows the distribution of pass counts on the text-only m23k and image-based
PMC-VQA, for each model size. As model scale increases, more questions achieve high pass counts
(e.g. the 32B model answers a larger fraction of questions correctly in a majority of trials). This
indicates that the base model’s capability improves with scale, which in turn means that a sufficiently
large model can solve many of the questions reliably given enough attempts. For the purposes of
training data selection, we focus on medium-difficulty questions that are neither always solved nor
hopelessly unsolved. Concretely, we use the results of the 3B model to filter the data: any question
with pass count = 0 (all trials wrong) or > 7 (correct in at least 7 out of 16 trials) is removed. This
retains questions that a smaller model finds neither trivial nor impossible, under the assumption
that these medium-difficulty questions will benefit most from reasoning training. After filtering, the
text-only dataset is reduced to 16,512 questions and the image-text dataset to 115,456 questions.
These filtered datasets are used for all subsequent training of 3B, 7B, and 32B models, ensuring a fair
comparison across model scales.

3.1 Training Strategies

We train our MEDVLTHINKER models on the filtered data under different strategies, as outlined
above. We perform SFT and RLVR on the text-only and image-text datasets separately to isolate the
effect of each data modality. In addition, we experiment with two combined strategies: (a) SFT on
text-only data followed by RL on image-text data (denoted SFT@ + RL@ ), and (b) RL on text-only
data followed by RL on image-text data (RL@ + RL@ ). Figure[2[B) illustrates the training variants.
Below, we describe the two core training paradigms in detail:

Supervised Fine-Tuning (SFT). Supervised fine-tuning forms the foundation of our pipeline.
Starting from a general-purpose pretrained multimodal language model (Qwen2.5-VL), we minimize
the token-level cross-entropy loss on the curated question-answer pairs (with their reasoning traces).
Using teacher-forced learning on the high-quality CoT annotations provides a dense supervision
signal, allowing the model to quickly internalize domain-specific medical knowledge, terminology,
answer formatting, and the nuanced conventions of clinical explanations. For text-only questions,
we use long-form rationales generated by the DeepSeek-R1 model as targets, and for image-based
questions, we use GPT-4o0-generated rationales. This SFT step teaches the model to emulate the
step-by-step reasoning of superior teachers.

Reinforcement Learning with Verifiable Rewards (RLVR). After SFT, we further refine the
model using RL on answer correctness as feedback. We adopt Group Relative Policy Optimization
(GRPO), a variant of PPO that operates on a group of sampled outputs. For each question, we sample
N reasoning trace rollouts from the model (we use N = 8 in our experiments). A deterministic
verifier then checks each output: if the answer is given in the expected format (e.g., the model
produces a chain-of-thought delineated by special tokens and then a final answer choice) and the final
answer is correct, a reward +1 is assigned; otherwise, a reward —1 is assigned. We normalize (whiten)
these binary rewards across the group of outputs to obtain advantage estimates. The GRPO algorithm
then updates the model policy using a PPO-style clipped objective, where the usual learned value
function is replaced by group-based advantage computation. This yields a KL-regularized, contrastive
policy update that steadily pushes the model to generate more verifiably correct reasoning traces (i.e.
reasoning that leads to the correct answer) while constraining it to stay close to the behavior policy
(to avoid degeneration). Importantly, RLVR does not require explicit CoT annotations, only a reliable
way to verify final answer correctness, making it an appealing method to enhance reasoning using



Table 1: Performance on multimodal medical benchmarks for our baselines. We use greedy decoding
to evaluate the ability of the models. @ means text-only data; @ means image-text data.

Model | PMC MMMU MedX-M | PathVQA SLAKE VQA-Rad | Avg.
Qwen?2.5-VL-3B-Instruct 4477 44.12 20.69 61.96 61.30 62.01 | 49.14
SFT(@ m23k) 2853 32.55 16.00 42.74 4391 33.09 | 32.80
SFT(@ PMC) 54557 47.84 21.46 52.76 65.79 58.58 | 50.16
SFT(@ m23k)}+RL(@ PMC) | 46.32 4431 20.52 43.85 58.49 50.98 | 44.08
RL(© m23K) 4732 [ 52.16 22.90 62.28 63.38 71.08 | 53.19
RL(@ PMC) 5422 4843 21.51 51.61 75.56 62.38 | 52.28
RL(@® m23k)+RL(@PMC) | 51.33 4843 22.60 49.71 66.11 60.17 | 49.72
Qwen2.5-VL-7B-Instruct 4930  52.94 18.89 65.39 65.71 68.75 | 53.50
SFT(@ m23k) 3458 46.86 16.40 56.35 54.97 53.80 | 43.83
SFT(@ PMC) 54677 49.80 21.39 53.02 67.71 5772 | 50.72
SFT(@ m23k)+RL(@ PMC) | 43.18  47.84 21.84 51.43 60.34 55.15 | 46.63
RL(@ m23K) 50.67 | 56.86 24.43 66.83 65.79 6471 | 54.88
RL(@ PMC) 5538 55.29 24.11 57.09 66.59 63.48 | 53.66
RL(@ m23k)+RL(@ PMC) | 5637  50.98 25.80 48.24 59.13 58.09 | 49.77

Table 2: Performance on multimodal medical benchmarks with other methods. We use greedy
decoding to evaluate the ability of the models. @ means text-only data. Open Weights (OW): only
the model parameters are released; Open Recipe (OR): data, code, and training details are released,
enabling full reproducibility.

Model | OW | OR | PMC MMMU MedX-M | PathVQA SLAKE VQA-Rad | Avg.
General LMM
GPT-40-mini X | X |519 6353 28.55 63.33 75.24 66.91 | 58.24
GPT-4o0 X | X |5855 6882 35.95 72.43 76.44 7022 | 63.74
Gemme 3 4B V| X | 4442 4667 21.89 59.24 66.59 56.86 | 49.28
Gemme 3 27B v | X 5205 6078 30.80 65.70 72.60 6520 | 57.86
Qwen2.5-VL-3B-Instruct Vo X 4477 4412 20.69 61.96 61.30 62.01 | 49.14
Qwen2.5-VL-7B-Instruct vV | X | 4930 5294 18.89 65.39 65.71 68.75 | 53.50
Qwen2.5-VL-32B-Instruct vV | X 5328 6392 27.68 67.98 73.24 75.12 | 60.20
Medical LMM
MedGemma 4B vV | X | 4273 3255 8.17 59.64 83.49 7855 | 50.86
MedGemma 27B v | X 3675 3588 12.13 62.09 77.40 72.67 | 49.49
Llava Med v1.5 Mistral 7B v |V | 3428 3137 22.56 56.52 62.82 56.74 | 44.05
HuatuoGPT-Vision-7B v |V |5339 5059 22.00 63.53 75.00 63.60 | 54.69
HuatuoGPT-Vision-34B vV |V | 5254 5706 21.80 66.72 78.85 7426 | 58.54
MEDVLTHINKER-3B RL@m23k) | v/ | v/ | 4732 5216 22.90 62.28 63.38 71.08 | 53.19
MEDVLTHINKER-7B RL@m23k) | v/ | v/ | 5067 56.86 24.43 66.83 65.79 64.71 54.88
MEDVLTHINKER-32BRL@m23k) | v/ | v/ | 5437  70.00 34.60 68.82 73.96 76.96 | 63.12

the same data. In our setting, all questions are multiple-choice or otherwise have objectively correct
answers, so the reward signal is automatically obtained.

4 Experiments

4.1 Implementation Details

We initialize our models from the Qwen2.5-VL checkpoint. For SFT, we fine-tune the model for 3
epochs with a batch size of 32 and learning rate 1 x 10~%. For RLVR, we train using GRPO for 5
epochs on the text-only data and 1 epoch on the image-text data, with a learning rate of 1 x 1076,
We set the total batch size to 128 for text-only RL (sufficient to sample 8 rollouts per question)
and 256 for image-text RL (since each sample includes image features). For experiments where
RL is continued on a second dataset (e.g., applying RL on PMC-VQA after an SFT on m23k), we
reduce the batch size (to 64) during the second stage to accommodate the longer sequence lengths



(the combined image+CoT+answer sequence can reach ~2048 tokens). All models are trained on
8xH100 GPUs using mixed precision, except the 32B model, which is trained on 32 GPUs.

4.2 Evaluation

We evaluate our models on a suite of six multimodal medical QA benchmarks, which can be
divided into two categories: (1) general-domain medical QA and (2) modality-specific QA. The
general-domain evaluations include the test set of PMC-VQA [435]] (for direct comparison, since our
models train on a filtered subset of its training data), the validation set of MMMU-Health [43] (the
health and medicine portion of the MMMU benchmark), and MedXpert-MM [48]], a challenging
benchmark requiring complex reasoning over multimodal inputs. The modality-specific evaluations
include PathVQA [8] (pathology images), SLAKE [19] (slit-lamp ophthalmology images) and VQA-
Rad [17] (radiology X-rays). Together, these six datasets cover a broad range of medical visual
question answering scenarios, from generic biomedical knowledge to highly specialized imaging
tasks.

For each benchmark, we report the accuracy (% of questions answered correctly). Model responses
are generated using greedy decoding (temperature 0) to evaluate base capability without sampling
variance. We note that even with deterministic decoding, slight nondeterminism in the inference
engine (due to floating-point precision) can cause minimal variability; thus, we run each evaluation 3
times and report the average accuracy (the standard deviation was below 0.1 and is provided in the
appendix for completeness). In the result tables, we use the notation @ to indicate models trained
on the text-only (m23k) data and @ for models trained on the image-text (PMC-VQA) data. For
example, “SFT@ ~ denotes a model fine-tuned on text-only CoT data, and “RL@ +RL@ ” denotes a
model first trained with RL on text-only data then further with RL on image-text data.

4.3 Results

Impact of Training Paradigm (SFT vs. RLVR). Table[I| summarizes the performance of the
Qwen2.5-VL 3B and 7B models under various training recipes. We observe that RLVR-trained
models consistently outperform SFT-trained models of the same size across all benchmarks. For the
3B base, RLVR on text-only data (RL@ ) achieves 53.19% average accuracy, versus 32.80% for SFT
on text-only (SFT@ ) (a dramatic drop below the 49.14% base performance). Similarly, the 7B RL@
model reaches 54.88% average, compared to 43.83% for SFT@ (again, SFT underperforms even the
53.50% base model). These results confirm that simply fine-tuning on distilled CoT data does not
guarantee better performance — in fact, it may overload the model with long, possibly mismatched
rationales that hurt its effectiveness on multimodal QA. In contrast, RLVR directly optimizes the
model’s own reasoning policy and proves markedly more effective at improving accuracy.

Impact of Training Data (Text-only vs. Image-text). The choice of training data modality also
has a significant effect. From Table[I] training on the text-only data tends to yield better results than
training on the image-text data. For instance, the 7B RL@ (54.88% avg) outperforms RL@ (53.66%
avg). However, SFT on the text-only CoT data consistently harms performs relative to the base model
(43.83% for 7B SFT@ ), whereas SFT on the multimodal data yields a slight improvement over base
on some benchmarks (e.g., +1-2% on PathVQA, SLAKE) but overall comparable average (50.72%
SFT@ vs 53.50% base). We hypothesize that the long, text-only rationales distilled from a text-based
LRM (DeepSeek) may not align well with the needs of a multimodal model that also has to interpret
images. The image-based data, while noisy, at least engages the model’s visual processing during
training, which might explain why SFT@ does not drastically degrade performance. Nonetheless, the
strongest gains come from RLVR on text-only data, which boosts performance substantially (e.g.,
+4.05% for 3B, +1.38% for 7B, compared to base). RLVR on the multimodal data also improves
over base, but to a lesser degree. These results highlight that in RLVR, high-quality fextual QA data
(with verifiable answers) can be more valuable than larger but noisier image-based data for training
the reasoning capability of multimodal models. Improving the quality of multimodal training data
remains an important challenge (see Discussion).

Combined Training Strategies. We also evaluated whether combining text-only and image-text
training yields further benefits. Two combinations were tried: SFT on text then RL on images (SFT@
+RL@ ), and RL on text then RL on images (RL@ +RL@ ). As Table |l| shows, neither strategy



provided gains over the single-modality RL training. In fact, for the 7B model, SFT@ +RL@ (53.07%
avg) was worse than RL@ alone (53.66%), and RL@ +RL@ (49.77%) fell behind RL@ (54.88%).
For the 3B model, similar results are observed. It appears that after a model has been optimized
on the text-only data, adding the image-text data (even via RL) can hinder the reasoning capability,
resulting in a net drop in performance. We conclude that the best recipe in our study is to apply
RLVR directly on a high-quality text-only reasoning dataset. This produces the top results for both
3B and 7B. In most cases, adding an SFT stage or an extra RL stage on image data does not help, and
in the worst case, it reduces accuracy.

Effect of Model Scale. Increasing the model size clearly improves performance across the board.
The 7B models outperform the 3B models in every corresponding setting (comparing rows in Table|[T).
For example, the base 7B is 4.36% higher on average than base 3B; the RL@ 7B is +1.69% higher
than its counterpart 3B; and SFT@ 7B is +0.56% higher than SFT@ 3B. On certain benchmarks
like MedXpert-MM (which is especially challenging and requires complex reasoning), the gap is
more pronounced: the best 7B (RL@ ) attains 24.43% versus 22.90% for the best 3B, and 7B SFT@
achieves 16.40% vs 16.00% for 3B (both quite low). This trend suggests that larger models have
more capacity to learn medical knowledge and to benefit from the reasoning training. Pushing to
even larger scales may continue to yield gains (we test a 32B model below).

Comparison to Previous Models. In Table[2] we compare our MEDVLTHINKER models against
prior open-source medical VLMs and against GPT-4-based models. Our 7B RLVR-trained model
achieves an average score of 54.88%, which is 3-4% higher than the reported performance of
HuatuoGPT-Vision-7B-Qwen2.5 (48.60% avg) and also above LLaVA-Med v1.5 (Mistral-7B). On
general-domain benchmarks like MedXpert-MM, our advantage is even larger: MEDVLTHINKER-
7B scores 24.43% vs HuatuoGPT-Vision’s 22.00%. This demonstrates the benefit of our focused
reasoning training. HuatuoGPT-Vision was primarily trained with instruction tuning on multimodal
data (and a bit of RLHF), and it underperforms on challenging reasoning questions. We also note
that HuatuoGPT-Vision reportedly suffered a large performance drop on generic medical QA after
its multimodal fine-tuning (similar to our observation that SFT on image data can hurt general
QA). In contrast, our RLVR approach improved performance without such trade-offs. Finally, our
MEDVLTHINKER-32B (RL on text-only) reaches 63.12% average accuracy, surpassing the GPT-
40-mini model (58.24%) and essentially matching the full GPT-40 (63.74%) on these benchmarks.
This is a notable result: it suggests that with sufficient model size and proper training, open models
can approach the performance of proprietary models like GPT-4 on specialized tasks. We emphasize
that our entire training pipeline, data, and models are open-source, providing a foundation for the
community to build upon.

Qualitative Results. We provide a few anecdotal examples of our model’s outputs in Figure ] to
illustrate the reasoning quality of text-only RLVR training. More qualitative results of 3B, 7B, and
32B models can be found in the supplemental materials.

5 Conclusion

In this work, we presented MEDV LTHINKER, a set of baseline multimodal medical reasoning models
built by combining large vision-language models with advanced reasoning training paradigms. We
carried out a systematic study of supervised CoT fine-tuning versus reinforcement learning (GRPO-
based RLVR) for teaching a multimodal model to reason about medical questions. Our experiments
show that RLVR is markedly more effective than CoT fine-tuning in improving model performance,
especially when using high-quality text-only medical QA data. We also found that models trained
on text-only data generalize better than those trained on image-text data, highlighting a data quality
issue in current multimodal corpora. By training models at multiple scales, we demonstrated a clear
benefit to larger model size: our 7B MEDVLTHINKER achieves state-of-the-art results among open
models on six benchmarks, and a 32B variant reaches parity with a GPT-4-based competitor. Our
work provides not only strong baseline models for the community but also insights into training
strategies for multimodal reasoning. In future work, we plan to address the limitations identified (data
quality, curriculum, broader tasks) and hope that MEDVLTHINKER will inspire further research in
reliable and transparent medical Al.



Dataset: PMC VQA
Question: What did the imaging reveal about the patient's pericardial fluid?

Options: A. Very little; B. A moderate amount; C. A massive amount; D. None

<think> To determine the amount of pericardial fluid in the patient, let's analyze the provided images: 1. Chest X-ray (Left
Image): The chest X-ray shows a widened mediastinum, which can be indicative of pericardial effusion. However, the X-ray
alone is not definitive for quantifying the amount of fluid. 2. CT Scan (Right Image): The CT scan provides a more detailed view
of the pericardial space. The image shows a significant amount of fluid surrounding the heart, which is consistent with a
pericardial effusion. The fluid appears to be extensive, filling the pericardial space and compressing the heart, which is
characteristic of a massive pericardial effusion. Given the visual evidence from both the chest X-ray and the CT scan, the
pericardial fluid appears to be extensive and significant. </think> <answer>C. A massive amount</answer>

Dataset: MedXpertQA-MM

Question: You are shown images of the right and left distal common
carotid arteries, respectively. Which of the following is the MOST
likely diagnosis?

Options: A. Intra-aortic balloon pump; B. Carotid artery dissection; C.
Mitral insufficiency; D. Subclavian steal; E. Aortic insufficiency

<think> To determine the most likely diagnosis, let's analyze the provided images and the options: 1. Images Analysis: The left
image shows the right distal common carotid artery (CCA) with a velocity of 98.0 cm/s in the proximal segment (PS) and 0.0
cm/s in the distal segment (ED). This suggests a significant reduction or absence of flow in the distal segment. The right image
shows the left distal common carotid artery (CCA) with a velocity of 149.1 cm/s in the proximal segment (PS) and 0.0 cm/s in the
distal segment (ED). This also indicates a significant reduction or absence of flow in the distal segment. 2. Key Observations:
The absence of flow in the distal segments of both carotid arteries is a critical finding. The presence of a "reversed" flow pattern
in the distal segments (indicated by the color inversion in the images) suggests retrograde flow, which is often associated with
conditions that cause a pressure gradient or flow reversal. 3. Diagnosis Consideration: This condition causes a diastolic runoff
of blood from the aorta back into the left ventricle, leading to a characteristic diastolic flow reversal in the carotid arteries. The
images show a significant reduction or absence of flow in the distal segments, which is consistent with aortic insufficiency. 4.
Conclusion: The most likely diagnosis is Aortic insufficiency because it explains the flow reversal and the significant
reduction in flow in the distal segments of both carotid arteries. </think> <answer>E. Aortic insufficiency</answer>

Dataset: PathVQA
Question: Does this image show burkits lymphoma?

Options: A. Intra-aortic balloon pump; B. Carotid artery dissection;
C. Mitral insufficiency; D. Subclavian steal; E. Aortic insufficiency

AT

<think> To determine whether the image shows Burkitt's lymphoma, let's analyze the key features: 1. Histological Appearance:
Burkitt's lymphoma is characterized by a highly mitotic, starry-sky appearance. This is due to the presence of numerous mitotic
figures and scattered macrophages (often referred to as "starry sky" because of the scattered appearance of these cells). 2.
Starry-Sky Pattern: In Burkitt's lymphoma, the lymphoma cells are small to medium-sized, with a high nuclear-to-cytoplasmic
ratio, and are often arranged in a diffuse pattern. The presence of tingible body macrophages, which are macrophages that
engulf apoptotic bodies, is a hallmark feature that gives the "starry-sky" appearance. 3. Image Analysis: The provided image
shows a diffuse population of cells with a high mitotic rate. There are scattered cells with a more prominent appearance, which
could be tingible body macrophages. The overall pattern is consistent with the "starry-sky" appearance typical of Burkitt's
lymphoma. 4. Conclusion: Based on the histological features observed in the image, it is consistent with the appearance of
Burkitt's lymphoma. </think> <answer>A. Yes</answer>

Figure 4: Case study on multiple medical VQA benchmarks with our 32B text-only RLVR model.
Our MEDVLTHINKER demonstrates robust reasoning capability across various imaging modalities.
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Implementation Details

We implement our training pipeline using two stages: supervised fine-tuning (SFT) followed by
reinforcement learning with verifiable rewards (RLVR). For SFT, we employ distributed training
using PyTorch’s torchrun with FSDP (Fully Sharded Data Parallel) configuration across 8 GPUs per
node. The SFT stage uses a learning rate of 1e-5 with cosine scheduler, warmup ratio of 0.05, weight
decay of 1e-4, and trains for 5 epochs with a global batch size of 16. We utilize gradient checkpointing
and bf16 precision to optimize memory usage. For the RLVR stage, we use the VERL framework

12



with GRPO (Group Relative Policy Optimization) as the advantage estimator. The RL training
employs a smaller learning rate of le-6, KL divergence regularization with coefficient 0.01, and
generates 8 samples per prompt during rollout. We implement a custom reward function that combines
format adherence (ensuring responses follow the <think>...</think> <answer>...</answer>
structure) with accuracy rewards based on exact answer matching. The training uses VLLM for
efficient inference during rollout generation with tensor model parallelism across 2 GPUs and 60%
GPU memory utilization. Throughout both stages, we use the instruction prompt template below.

Prompt Template

You will solve a problem/request. You should provide your thoughts
within <think> </think> tags before providing the answer.

Write your final answer within <answer> </answer> tags.
{{ Question }}

{{ Optiomns }}

B Qualitative Results

More qualitative results (text-only RLVR 3B, 7B, and 32B) can be found in the supplemental
material.

C Discussions

Quality of Training Data. One striking observation is the performance gap between models trained
on text-only data versus image-text data. In our experiments, models trained purely on the PMC-VQA
image-text corpus often lost exhibit capability relative to their starting point (especially for general
QA tasks), whereas models trained on the m23k text-only corpus made clear gains. We suspect the
primary cause is the quality of the training data. The PMC-VQA dataset was generated automatically
by GPT-3.5 from journal figures and captions. Many of the questions may be simplistic or flawed, and
the answers might not always require deep reasoning (or could even be incorrect in some cases). In
contrast, the text-only m23k dataset is derived from human-authored exam questions and has higher
factual and linguistic quality, supplemented by expert-generated reasoning chains. Unfortunately,
besides PMC-VQA, other “general” multimodal medical QA datasets compiled from various sources
(e.g., OmniMedQA [9], GMAI-Bench [41]) currently do not contain training splits and thus are not
directly usable for model training. This highlights the need for better multimodal medical QA data.
An encouraging direction is the emergence of high-quality, human-curated medical image report
datasets (radiology reports, pathology reports, etc.), which could be leveraged to generate more
realistic multimodal QA pairs. In future work, we plan to incorporate such sources to improve the
image-text training signal.

Difficulty-Based Filtering. In applying RLVR, it is important to present the model with training
examples of appropriate difficulty. We performed a simple filtering by removing questions that
a smaller model got either 0/16 or >7/16 correct. This “one-size-fits-all” filter was then applied
uniformly for training all model sizes. In reality, different model scales have different ability levels,
and an optimal curriculum might adjust the filtering threshold per model (a form of capacity-aware
data selection). More adaptive curriculum learning strategies could further improve RLVR training
by continuously calibrating question difficulty to the model’s growing competence. We leave a full
exploration of curriculum learning for medical reasoning to future work.

Effectiveness of RLVR in the Medical Domain. Our results validate that RLVR is a powerful
approach for improving reasoning in medical QA, consistent with findings in other domains. With
only a few epochs of RL (a relatively small compute budget compared to pretraining), we observed
significant gains in the model’s ability to arrive at correct answers. This improvement can be
interpreted as an increase in sampling efficiency: after RLVR, the model is far more likely to produce
a correct answer in a single try, whereas the base model might need multiple attempts (as illustrated
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by Figure[3). Of course, RLVR is not a magic bullet; its success still depends on the diversity and
difficulty of the training questions and the reliability of the reward signal. In our case, we used
exact-match answer checking, which is straightforward for multiple-choice questions. Extending
RLVR to open-ended generation or multi-step clinical reasoning (where reward shaping is harder) is
an interesting challenge. We believe scaling up the RLVR approach, with larger verification datasets
and more compute, could yield even stronger medical reasoners. This work provides a first step in
that direction using openly available tools.

Task Scope and Future Work. So far, we have limited training and evaluation to single-turn
question-answering tasks. However, real-world medical scenarios often involve more interactive
and diverse tasks: multi-turn dialogues with patients, grounding textual descriptions in images (e.g.,
locating findings in an image), and reasoning about temporal sequences of images or data. Our
current MEDVLTHINKER could potentially be adapted to some of these tasks, but we have not
specifically trained or tested it on them. In the future, we aim to extend our framework beyond QA
format, incorporating vision-language grounding tasks, dialogue agents for patient interaction, and
other medically relevant capabilities. We are hopeful that the combination of explicit reasoning and
multimodal understanding, as demonstrated in MEDVLTHINKER, can serve as a foundation for more
advanced clinical Al systems.

D Limitations

While MEDVLTHINKER aims to advance the state of multimodal medical QA, there are several
limitations to acknowledge. First, the quality of the image-text training data (PMC-VQA) is a concern.
Because this dataset was synthetically generated by MLLMs, it likely contains noise and biases,
which in turn limited the gains from training on it. Future improvements will require either cleaning
this data or obtaining higher-quality human-curated multimodal data. Second, our difficulty-based
filtering strategy was static and based on the 3B model’s performance. This may not have been
optimal for the larger models; a more dynamic or model-specific curriculum could yield better
results. Third, our RLVR training was relatively short and task-specific, leveraging only QA-format
rewards. As a result, the models are specialized to the QA task format and may not generalize to other
interactions (e.g., multi-turn conversations or explanatory responses) without additional fine-tuning.
Finally, although we tested a 32B model, even larger models or more diverse pretraining might be
needed to capture the full complexity of real-world medical reasoning. We release our models and
code in hopes that the community can build on them to address these limitations.
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