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Abstract

Diffusion models trained on large datasets can synthesize photo-realistic images of remark-
able quality and diversity. However, attributing these images back to the training data—that
is, identifying specific training examples which caused an image to be generated—remains
a challenge. In this paper, we propose a framework that: (i) provides a formal notion of
data attribution in the context of diffusion models, and (ii) allows us to counterfactually
validate such attributions. Then, we provide a method for computing these attributions effi-
ciently. Finally, we apply our method to find (and evaluate) such attributions for denoising
diffusion probabilistic models trained on CIFAR-10 and latent diffusion models trained on
MS COCO. We provide code at this https URL.

1 Introduction

Diffusion models can generate novel images that are simultaneously photorealistic and highly controllable via
textual prompting (Ramesh et al., 2022; Rombach et al., 2022). A key driver of diffusion models’ performance
is training them on massive amounts of data (Schuhmann et al., 2022). Yet, this dependence on data has
given rise to concerns about how diffusion models use it.

For example, Carlini et al. (2021); Somepalli et al. (2022) show that diffusion models often memorize training
images and “regurgitate” them during generation. However, beyond such cases of direct memorization, we
currently lack a method for attributing generated images back to the most influential training examples—
that is, identifying examples that caused a given image to be generated. Indeed, such a primitive—a data
attribution method—would have a number of applications. For example, previous work has shown that
attributing model outputs back to data can be important for debugging model behavior (Shah et al., 2022),
detecting poisoned or mislabelled data (Lin et al., 2022), and curating higher quality training datasets
(Khanna et al., 2019). Within the context of diffusion models, data attribution can also help detect cases
of data leakage (i.e., privacy violations), and more broadly, can be a valuable tool in the context of tracing
content provenance relevant to questions of copyright (Andersen et al., 2023; Images, 2023). Finally, synthetic
images generated by diffusion models are now increasingly used across the entire machine learning pipeline,
including training (Azizi et al., 2023) and model evaluation (Kattakinda et al., 2022; Wiles et al., 2022;
Vendrow et al., 2023). Thus, it is critical to identify (and mitigate) failure modes of these models that stem
from training data, such as bias propagation (Luccioni et al., 2023; Perera & Patel, 2023) and memorization.
Motivated by all the above needs, we thus ask:

How can we reliably attribute images synthesized by diffusion models back to the training data?

Although data attribution has been extensively studied in the context of supervised learning (Koh & Liang,
2017; Ghorbani et al., 2019; Jia et al., 2019; Ilyas et al., 2022; Hammoudeh & Lowd, 2022; Park et al., 2023),
the generative setting poses new challenges. First, it is unclear what particular behavior of these models we
hope to attribute. For example, given a generated image, certain training images might be responsible for
the look of the background, while others might be responsible for the choice of an object appearing in the
foreground. Second, it is not immediately obvious how to verify the attributions. In supervised settings,
a standard approach is to compare the outputs of the original model on given inputs with those of a new
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Figure 1: Overview of our attribution framework. For a given synthesized image, we apply our
attribution method at individual steps along the diffusion trajectory. At each step t, our method pinpoints
the training examples with the highest influence (positive in green, negative in red) on the generative process
at that step. In particular, positive influencers guide the trajectory towards the final sample, while negative
influencers guide the trajectory away from it. We observe that negative influencers increasingly resemble
the final sample (the grey text highlights notable differences with the final sample). For more examples, see
Appendix C.4.

model trained on a new dataset after removing the attributed examples. However, in the generative setting
it is less clear how to make such comparisons.

Our contributions. In this work, we present a data attribution framework for diffusion models. This
framework reflects, and is motivated by, the fact that diffusion models iteratively denoise an initial random
seed to generate the final image. In particular, rather than attributing only the final generated image,
i.e., the “destination,” we attribute each individual step along the (denoising) “journey” taken by diffusion
model (see Figure 1). This approach shifts our focus from the specific final image to the distribution of
possible generated images and, in particular, how this distribution evolves across the diffusion process. As
we demonstrate, this framework also enables us to attribute specific features of the final generated image.

To analyze this framework, we introduce two complementary metrics for evaluating attributions based on
their counterfactual impact on the distribution of generated images (rather than on specific samples). Finally,
we provide an efficient method for computing such attributions, building on data attribution approaches
developed for the supervised setting (Ilyas et al., 2022; Park et al., 2023). We then apply our method to
denoising diffusion probabilistic models (DDPM) (Ho et al., 2020) trained on CIFAR-10 (Krizhevsky, 2009),
and latent diffusion models (LDM) (Rombach et al., 2022) trained on MS COCO (Lin et al., 2014). In both
settings, we obtain attributions that are validated by our metrics and also visually interpretable.

2 Preliminaries

We first provide background on data attribution. Then, we give a brief overview of diffusion models, high-
lighting the components that we will need to formalize attribution for these models.

2.1 Data attribution

Broadly, the goal of training data attribution (Koh & Liang, 2017; Ilyas et al., 2022; Hammoudeh & Lowd,
2022; Park et al., 2023) is to trace model outputs back to the training data. Intuitively, we want to estimate
how the presence of each example in the training set impacts a given model output of interest (e.g., the loss
of a classifier) on a specific input.

To formalize this, consider a learning algorithm A (e.g., a training recipe for a model), together with an
input space Z and a training dataset S = (z1, . . . , zn) ∈ Zn of n datapoints from that input space. Given
a datapoint z ∈ Z, we represent the model output via a model output function f(z, θ(S)) : Z × Rd → R,
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where θ(S) ∈ Rd denotes the model parameters resulting from running algorithm A on the dataset S. For
example, f(z, θ(S)) is the loss on a test sample z of a classifier trained on S. ( Our notation here reflects the
fact that the parameters are a function of the training dataset S.) We now define a data attribution method
as a function τ : Z×Zn → Rn that assigns a score τ(z, S)i ∈ R to each zi ∈ S.1 Intuitively, we want τ(z, S)i

to capture the change in the model output function f(z, θ(S)) induced by adding zi to the training set.

More generally, these scores should help us make counterfactual predictions about the model behavior re-
sulting from training on an arbitrary subset S′ ⊆ S of the training datapoints. We can formalize this goal
using the datamodeling task Ilyas et al. (2022): given an arbitrary subset S′ ⊆ S of the training set, the task
is to predict the resulting model output f(z, θ(S′)). A simple method to use the attribution scores for this
task, then, is to consider a linear predictor: f(z, θ(S′)) ≈

∑
i:zi∈S′ τ(z, S)i.2

This view of the data attribution as a prediction task motivates a natural metric for evaluating attribution
methods: the agreement between the true output f(z, θ(S′)) and the output predicted by the attribution
method τ . Park et al. (2023) consider the rank correlation between the true and predicted values of f(z, θ(S′))
over different random samples S′ ⊆ S and name the corresponding metric the linear datamodeling score—we
will adapt it to our setting in Section 3.

Estimating attribution scores (efficiently). Given the model output function f evaluated at input z,
a natural way to assign an attribution score τ(z)i for a training datapoint zi is to consider the marginal effect
of including that particular example on the model output, i.e., have τ(z)i = f(z, θ(S)) − f(z, θ(S \ {zi})).
We can further approximate this difference by decomposing it as:

τ(z)i = (θ − θ−i)︸ ︷︷ ︸
(i) change in model parameters

·
(ii) change in model output︷ ︸︸ ︷

∇θf(z, θ) , (1)

where θ−i denotes θ(S \ {i}) (Wojnowicz et al., 2016; Koh & Liang, 2017). We can compute the second
component efficiently, as this only requires taking the gradient of the model output function with respect to
the parameters; in contrast, computing the first component is not always straightforward. In simpler settings,
such as linear regression, we can compute the first component explicitly, as there is a closed-form solution
for the parameters θ(S′) as a function of the training set S′. However, in modern, non-convex settings,
estimating this component efficiently (i.e., without re-training the model) is challenging. Indeed, prior works
such as influence functions (Koh & Liang, 2017) and TracIn (Pruthi et al., 2020) estimate the change in
model parameters using different heuristics, but these approaches can be inaccurate in such settings.

To address these challenges, trak (Park et al., 2023) observed that for deep neural networks, approximating
the original model with a model that is linear in its parameters, and averaging the estimates over multiple
θ’s (to overcome stochasticity in training) yields highly accurate attribution scores. The linearization is
motivated by the observation that at small learning rates, the trajectory of gradient descent on the original
neural network is well approximated by that of a corresponding linear model (Long, 2021; Wei et al., 2022;
Malladi et al., 2022). Here, we will leverage the trak framework towards attributing diffusion models.

2.2 Diffusion models

Training and sampling from diffusion models. At a high level, diffusion models (and generative
models, more broadly) learn a distribution pθ(·) meant to approximate a target distribution qdata(·) of interest
(e.g., natural images). To perform such learning, given a (training) sample x0 ∼ qdata(·), diffusion models first
apply a stochastic diffusion process that gradually corrupts x0 by adding more noise to it at each step. This
results in a sequence of intermediate latents {xt}t∈[T ] sampled according to xt ∼ N (αt · xt−1, (1− αt) · I)
where {αt}t are parameters of the diffusion process (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho
et al., 2020). Then, based on such sequences of intermediate latents, diffusion models learn a “denoising”
neural network εθ that attempts to run the diffusion process “in reverse.”

1Following the literature, we say that an example zi has a positive (respectively, negative) influence if τ(z, S)i > 0 (respec-
tively, τ(z, S)i < 0).

2Similarly to the prior work (Park et al., 2023), we only consider linear predictors here.
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t = 600

Figure 2: Samples from a diffusion trajectory. We show samples from pθ(·|xt), i.e., the distribution of
final images x0 conditioned on initializing from the latent xt at step t, and the corresponding approximation
x̂t

0 (a proxy for the expectation of this distribution, i.e., Ex0∼pθ(·|xt)[x0]) for different values of t, together
with the final generated image x0.

Once such a diffusion model is trained, one can sample from it by providing that model with an initial
seed xT ∼ N (0, 1) (i.e., just a sample of random noise), and then applying the (trained) denoising network
iteratively at each step t (from t = T to t = 0) to sample the corresponding diffusion trajectory {xt}t∈[T ],
ultimately leading to a final sample x0 ∼ pθ(·) ≈ qdata(·).

Conditioning sampling on partially denoised images. Importantly, in this work, it will be also useful
to consider the process of sampling a final image x0 when “resuming” the diffusion process after running it
up to some step t—this is equivalent to continuing that process at step t from the corresponding intermediate
latent xt. We denote the distribution arising from sampling an image x0 when conditioning on the latent
xt by pθ(·|xt). Also, it turns out that we can approximate the multi-step denoising process of generating
samples from pθ(·|xt) in a single step with the formula x̂t

0 := c1(αt) · (xt − c2(αt · εθ(xt, t))) , for some
constants c1(·), c2(·) that depend on the diffusion parameters {αt}t (Ho et al., 2020). In fact, x̂t

0 is a proxy
for the conditional expectation Ex0∼pθ(·|xt)[x0], and under certain conditions x̂t

0 is precisely equivalent to
this expectation (Song et al., 2023; Daras et al., 2023).3 See Figure 2 for an illustration of pθ(·|xt) and x̂t

0
for different values of t.

Types of diffusion models. Finally, Denoising Diffusion Probabilistic Models (DDPMs) are a popular
instantiation of diffusion models (Ho et al., 2020). More recently, Rombach et al. (2022) proposed a new
class of diffusion models called latent diffusion models (LDMs), which perform the above stochastic process
in the latent space of a pretrained encoder network. Moreover, Song et al. (2021); Ho & Salimans (2022)
show that one can also condition diffusion models on some additional information, e.g. a text prompt. This
way, one can control the semantics of the generated images by specifying such a text prompt. In this work,
we will instantiate our data attribution framework on both unconditional DDPMs and conditional LDMs.

3 A Data Attribution Framework for Diffusion Models

In this section, we introduce our framework for attributing samples generated by diffusion models back to
their training data. To this end, we will specify both what to attribute as well as how to verify the attributions.
Specifically, in Section 3.1 we define data attribution for diffusion models as the task of understanding how
training data influence the distribution over the final images at each step of the diffusion process. Then, in
Section 3.2, we describe how to evaluate and verify such attributions.

3.1 Attributing the diffusion process step by step

Diffusion models generate images via a multi-step process. We thus decompose the task of attributing a final
synthesized image into a corresponding series of stages, with each stage providing attributions for a single
step of the diffusion process. This stage-wise decomposition allows for:

• Fine-grained analysis. Identifying influential training examples at each individual step gives us
a fine-grained understanding of how data “guides” the diffusion process. This, in turn, allows us to

3This equivalence is referred to as the consistency property.
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Figure 3: Specific features appearing at specific steps. (Left) For a given image of a horse (x0)
generated by a CIFAR-10 DDPM model, we plot the likelihood that samples from the distribution pθ(·|xt)
(see Section 2.2) are classified as a horse according to a CIFAR-10 classifier. This likelihood increases rapidly
around steps 650 to 500, suggesting that these steps are most responsible for the formation of this feature.
(Top) For three steps t in this range, we visualize samples from pθ(·|xt). (Bottom) At each of these steps, we
also visualize the training examples with the highest influence (positive in green, negative in red) identified
by our method. Note that once the “horse” feature begins to appear (around t = 575), positive influencers
begin to reflect it; and after this feature is “decided” (around t = 500), negative influencers also do so.

capture, for example, that in some cases the same training example might be positively influential
at early steps but negatively influential at later steps (see Appendix C.2).

• Computational feasibility. Computing gradients through a single step requires only a single
backwards pass. So, it becomes feasible to apply existing efficient data attribution methods (Park
et al., 2023; Pruthi et al., 2020) that involve computing gradients.

• Feature-level attribution. As we demonstrate below, features tend to form only within a small
number of steps of the diffusion process. Thus, attributing at an individual step allows us to isolate
influences of training points on formation of specific features within the final generated image.

It remains now to define what exactly to attribute to the training data at each step. To this end, we first
motivate studying the conditional distribution pθ(·|xt) (see Section 2.2) as a way to quantify the impact of
each step t of the diffusion process to the final sample x0. Next, we highlight how analyzing the evolution
of this distribution over steps t can connect individual steps to specific features of interest. Finally, building
on these observations, we formalize our framework as attributing properties of this distribution pθ(·|xt) at
each step t to the training data.

Studying the distribution pθ(·|xt). At a given step t of the generative process, the relevant information
about the process up to that point is contained in the latent xt. While xt itself might not correspond to a
natural image, we can use it to directly sample from pθ(·|xt), i.e., the distribution of possible final images x0
when resuming the diffusion process at step t with latent xt. When t = T , this distribution is precisely the
diffusion model’s learned distribution pθ(·), and at t = 0 it is simply the final sampled image x0. Intuitively,
the progression of this conditional distribution over steps t informs us how the model gradually “narrows
down” the possible distribution of samples to generate the final sample x0 (see Figure 2 for an illustration).
A natural way to understand (and attribute) the impact of applying the diffusion process at each step t on
the final image x0 is thus to understand how this conditional distribution pθ(·|xt) evolves over steps.

Connecting features to specific steps. Given a final generated image, there might be many possible
features of interest within this image. For example, for x0 in Figure 2, we might ask: Why is there a grey
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bird? Why is the background white? How can we quantify the impact of a particular step t on a given feature
in the final image? To answer this question, we simply sample from the conditional distribution pθ(·|xt)
and measure the fraction of samples that contain the feature of interest. Now, if we treat this (empirical)
likelihood as a function of t, the steps at which there is the largest increase in (i.e., the steepest slope of)
likelihood are most responsible for the presence of this feature in the final image.

In fact, it turns out that such rapid increase in likelihood often happens within only a small interval; we
observe this phenomenon for both small-scale unconditional models (DDPM trained on CIFAR-10, Figure 3)
and large-scale text-conditional models (Stable Diffusion v2 trained on LAION-5B, Appendix C.3). As a
result, we are able to tie the presence of a given feature in the final image back to a small interval of steps
t in the sampling process. In Figure C.10, we further explore this phenomenon for both different generated
images and classifiers.

Implementing our approach. To implement our step-by-step attribution approach, we need a model
output function (see Section 2.2) that is specific to a step t. As we motivated above, this function should
be applied to samples from the conditional distribution pθ(·|xt). To that end, we introduce a step-specific
model output function ft(pθ(S)(·|xt), θ(S)). The function ft is intended to measure properties of the distri-
bution pθ(S)(·|xt). For example, in Section 4 we define a concrete instantiation of ft that approximates the
likelihood of the model to generate individual samples from pθ(S)(·|xt). Adapting the general definition of
data attribution from Section 2.1, we can now define data attribution for diffusion models at a step t as a
function τt that assigns a score τt(xt, S)i to each training example zi ∈ S. This score indicates the change
in ft(pθ(S)(·|xt), θ(S)) induced by adding zi to S

3.2 Validating data attribution for diffusion models

Visual inspection of the attributed training datapoints is a common heuristic for evaluating the quality of
data attribution. However, visual similarity is not always reliable (Ilyas et al., 2022; Park et al., 2023).
In particular, applications of data attribution such as data curation or model debugging often require that
the attributions are causally predictive. Motivated by that, we evaluate attribution scores according to
how accurately they reflect the corresponding training examples’ counterfactual impact on the conditional
distribution pθ(·|xt) using two different metrics. The first metric (the linear datamodeling score) uses models
trained on random subsets of the full training set, whereas the second metric uses models trained on specific
counterfactual training sets targeted for each generated image. The first metric is cheaper to evaluate, as
we can re-use the same set of models to evaluate attributions for different target images and from different
attribution methods. On the other hand, the latter metric (retraining without the most influential images)
more directly measures changes in the conditional distribution pθ(·|xt), so we do not need to rely on a specific
choice of a model output function ft.

Linear datamodeling score. The linear datamodeling score (LDS) is a measure of the effectiveness of a
data attribution method that was introduced in Ilyas et al. (2022); Park et al. (2023) (see Section 2.1). This
metric quantifies how well the attribution scores can predict the exact magnitude of change in model output
induced by (random) variations in the training set. In our setting, we apply it to the step-specific model
output function ft(pθ(S)(·|xt), θ(S)). Specifically, we use the attribution scores τ to predict the diffusion-
specific model output function ft(pθ(S)(·|xt), θ(S)) as

gτ (pθ(S)(·|xt), S′; S) :=
∑

i : zi∈S′

τ(xt, S)i. (2)

Then, we can measure the degree to which the predictions gτ (pθ(S)(·|xt), S′; S) are correlated with the true
outputs ft(pθ(S)(·|xt), θ(S′)) using the LDS:

LDS(τ, xt) := ρ({ft(pθ(S)(·|xt), θ(Sj)) : j ∈ [m]}, {gτ (pθ(S)(·|xt), Sj ; S) : j ∈ [m]}),
where {S1, . . . , Sm : Si ⊂ S} are randomly sampled subsets of the training set S and ρ denotes Spearman’s
rank correlation (Spearman, 1904). To decrease the cost of computing LDS, we use x̂t

0 in lieu of samples
from pθ(S)(·|xt) (see Section 2.2), since, as noted in Section 2.2, x̂t

0 turns out to be a good proxy for the the
latter quantity. In other words, we consider ft and gτ as functions of x̂t

0 rather than pθ(S)(·|xt).
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Retraining without the most influential images. In practice, we may want to use the data attributions
to intentionally steer the diffusion model’s output. For example, we may want to remove all training examples
that cause the resulting model to generate a particular style of images. To evaluate the usefulness of a given
data attribution method in these contexts, we remove from the training set the most influential (i.e., highest
scoring) images for a given target xt, retrain a new model θ′, then measure the change in the conditional
distribution pθ(·|xt) (see Section 2.2) when we replace θ with θ′ only in the neighborhood of step t in the
reverse diffusion process. If the data attributions are accurate, we expect the conditional distribution to
change significantly (as measured in our case using the FID distance for images (Heusel et al., 2017)).

As we consider data attributions that are specific to each step, in principle we should use the denoising
model only for the corresponding step t. However, the impact of a single step on the final distribution might
be small, making it hard to measure. Hence, we assume that attributions change only gradually over steps
and replace the denoising model for a small interval of steps (i.e., between steps t and t−∆).

4 Efficiently Computing Attributions for Diffusion Models

In this section, we describe how we can efficiently estimate data attributions for diffusion models using
trak (Park et al., 2023). As we described in Section 2.1, we can decompose the task of computing data
attribution scores into estimating two components: (i) the change in model parameters, and (ii) the induced
change in model output. Following trak (Park et al., 2023), computing the first component (change in
model parameters) only requires computing per-example gradients of the training loss (and in particular,
does not require any re-training per each training datapoint). Similarly, computing the second component
(change in model output) only requires computing gradients with respect to the model output function of
choice (see Section 3 of Park et al. (2023) for details). We now describe how to adapt the estimation of the
above two components to the diffusion model setting.

Estimating the change in model parameters. For diffusion models, the training process is much
more complicated than the standard supervised settings (e.g., image classification) considered in Park et al.
(2023). In particular, one challenge is that the diffusion model outputs a high-dimensional vector (an image)
as opposed to a single scalar (e.g., a label). Even if we approximate the diffusion model as a linear model
in parameters, naively applying trak would require keeping track of p gradients for each training example
(where p is the number of pixels) and thus be computationally infeasible. Nonetheless, it is still the case
that the presence of a single training example influences the optimization trajectory only via the gradient of
the loss on that example—specifically, the MSE of the denoising objective. Hence, it suffices to keep track of
a single gradient for each example. This observation allows us to estimate the change in model parameters
using the same approach that trak uses (see Section 2.1).

An additional challenge is that the gradient updates in the diffusion process are highly stochastic due to
the sampling of random noise. To mitigate this stochasticity, we average the training loss over multiple
resampling of the noise at randomly chosen steps and compute gradients over this averaged loss.

A model output function for diffusion models. In Section 3, we motivated why we would like to
attribute properties of the conditional distribution pθ(S)(·|xt), i.e., the distribution that arises from sampling
when conditioning on an intermediate latent xt. Specifically, we would like to understand what training
data causes the model to generate samples from this distribution. Then, one natural model output function
ft would be to measure the likelihood of the model to generate these samples. Attributing with respect to
such a choice of ft allows us to understand what training examples increase or decrease this likelihood.

In order to efficiently implement this model output function, we make two simplifications. First, sampling
from pθ(S)(·|xt) can be computationally expensive, as this would involve repeatedly resampling parts of
the diffusion trajectory. Specifically, sampling once from pθ(S)(·|xt) requires applying the diffusion model t
times—in practice, t can often be as large as 1000. Fortunately, as we described in Section 2.2, we can use
the one-step estimate x̂t

0 as a proxy for samples from pθ(S)(·|xt), since it approximates this distribution’s
expectation Ex0∼pθ(·|xt)[x0].
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Algorithm 1 trak for diffusion models
1: Input: Model checkpoints {θ⋆

1 , ..., θ⋆
M}, training dataset S = {z1, ..., zN}, target sequence {x1, ..., xT }

corresponding to T steps, projection dimension k ∈ N.
2: Output: Attribution scores τ(xt, S) ∈ RN for each t

3: ftrain(x, θ) := Eε,t

∥∥ε− εθ(S)
(√

ᾱtx +
√

1− ᾱtε, t
)∥∥2

2 ▷ DDPM training loss
4: ft (·, θ) defined as in Equation (3) ▷ Step-specific model output function ft(·)
5: for m ∈ {1, . . . , M} do
6: P ∼ N (0, 1)p×k ▷ Sample random projection matrix
7: for i ∈ {1, . . . , N} do
8: ϕi ← P⊤∇θftrain(zi, θ⋆

m) ▷ Compute training loss gradient at θ⋆
m and project

9: end for
10: for t ∈ {1, . . . , T} do
11: x̂(t)

0 ← c1(αt) · (xt − c2(αt · εθ⋆
m

(xt, t))) ▷ Compute expectation of conditional distribution
12: gi ← P⊤∇θft(x̂(t)

0 , θ⋆
m) ▷ Compute model output gradient at θ⋆

m and project
13: end for
14: Φm ← [ϕ1; · · · ; ϕN ]⊤
15: Gm ← [g1; · · · ; gT ]⊤
16: end for
17: [τ(x1, S); · · · ; τ(xT , S)]← 1

m

M∑
m=1

Φm(Φ⊤
mΦm)−1Gm ▷ Average scores over checkpoints

18: return {τ(xt, S)}

Second, it is computationally expensive to compute gradients with respect to the exact likelihood of gener-
ating an image. So, as a more tractable proxy for this likelihood, we measure the reconstruction loss4 (i.e.,
how well the diffusion model is able to denoise a noisy image) when adding noise to x̂t

0 with magnitude
matching the sampling process at step t. Specifically, we compute the Monte Carlo estimate

ft

(
x̂t

0, θ(S)
)

=
k∑

i=1

∥∥∥εi − εθ(S)

(√
ᾱtx̂(t)

0 +
√

1− ᾱtεi, t
)∥∥∥2

2
, (3)

where ᾱt is the DDPM5 variance schedule (Ho et al., 2020), εi ∼ N (0, 1) for all i ∈ [k], and k is the number
of resampling rounds of the random noise ε. Now that we have chosen our model output function, we can
simply compute gradients with respect to this output to obtain the second component in Equation (1).

The final algorithm. We summarize our algorithm for computing attribution scores in Algorithm 1. We
approximate the training loss (line 3) with different samples of noise ε and step t. Note that to attribute a
new target sequence, we only have to recompute lines 10-12.

5 Experiments

To evaluate our data attribution method, we apply it to DDPMs trained on CIFAR-10 and LDMs trained on
MS COCO. First, in Section 5.2, we visually inspect and interpet our attributions, and then in Section 5.3 we
evaluate their counterfactual significance using the metrics we introduced in Section 3.2. In Section 5.4, we
further explore how our data attributions can be localized to patches in pixel space. Finally, in Section 5.5,
we investigate the value of our step-specific attributions for attributing the full diffusion trajectory.

5.1 Experimental setup

We compute our data attribution scores using 100 DDPM checkpoints trained on CIFAR-10 and 50 LDM
checkpoints trained MS COCO (see Appendix A for training details.). As baselines, we compare our at-

4The reconstruction loss is a proxy for the likelihood of the generated image, as it is proportional to the evidence lower
bound (ELBO) (Sohl-Dickstein et al., 2015; Song et al., 2023).

5We only consider DDPM schedulers in this work. The above derivation can be easily extended to other schedulers.
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Figure 4: Predicting model behavior. The counterfactual predictiveness of attributions measured using
the LDS score along the diffusion trajectory (at every 100 steps) for three different methods: trak (computed
using 10 and 50 model checkpoints), CLIP similarity, and pixel similarity. Smaller steps are closer to the
final sample. Shaded areas represent standard error.
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Figure 5: Retraining without top influencers. Change in the distribution of generated images pθ(·|x400)
when substituting the original model with a new model only between steps 400 and 300. The new model
is trained without the k top influencers of x400 according to attributions from trak (computed at step
400), CLIP similarity, or pixel similarity. To evaluate the change in distribution, we measure the increase in
FID score over a baseline of models trained on the full dataset (see Section 3.2 for details). Bars represent
standard error.

tributions to two common image similarity metrics—CLIP similarity (i.e., cosine similarity in the CLIP
embedding space) and cosine similarity in pixel space.

5.2 Qualitative analysis of attributions

In Figure 1, we visualize the sampling trajectory for an image generated by an MS COCO model, along
with the most positive and negative influencers identified by trak (see Appendix C.4 for additional visual-
izations of identified attributions on CIFAR-10 and MS COCO). We find that positive influencers tend to
resemble the generated image throughout, while negative influencers tend to differ from the generated image
along specific attributes (e.g., class, background, color) depending on the step. Interestingly, the negative
influencers increasingly resemble the generated image towards the end of the diffusion trajectory.
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Intuitively, we might expect that negative influencers would not resemble the final generated image, as
they should to steer the trajectory away from that image. So, why do they in fact reflect features of the
final generated image? To answer this question, we study the relationship between the top (positive and
negative) influencers and the distribution pθ(·|xt) towards which we target our attributions. In Figure 3,
for a given image of a horse generated by our CIFAR-10 DDPM, we plot the likelihood that images from
pθ(·|xt) containing a horse (according to a classifier trained on CIFAR-10) as a function of the step t (left).
We also show the top and bottom influencers at three points along the trajectory (right). We find that
the top influencers begin to reflect the feature of interest once the likelihood of this feature begins to grow.
Yet, once the likelihood of the feature reaches near certain, the negative influencers also begin to reflect this
feature. This behavior has the following intuitive explanation: after this point, it would be impossible to
“steer” the trajectory away from presenting this feature. So, the negative influencers at later steps might
now steer the trajectory away from other features of the final image (e.g., the color of horse) that has not yet
been decided at that step. Additionally, images that do not reflect the “decided” features might no longer
be relevant to steering the trajectory of the diffusion process.

Generated Image

Attribution Region

Positive Influencers

Prompt: “A motorcycle and a stop sign” Prompt: “A giraffe in snow”

Figure 6: Patch-based attribution. We adapt our method to restrict attribution to user-specified patches
of a generated image. We show examples of attributing patches capturing individual concepts in images
synthesized by a latent diffusion model trained on MS COCO. Attributions are computed at step t = 400.

5.3 Counterfactually validating the attributions

We now evaluate our attributions using the metrics introduced in Section 3.2 to validate their counterfactual
significance.

LDS. We sample 100 random 50% subsets of CIFAR-10 and MS COCO, and train five models per mask.
Given a set of attribution scores, we then compute the Spearman rank correlation (Spearman, 1904) between
the predicted model outputs gτ (·) (see Eq. (2)) on each training data subset according to the attributions
and the (averaged) actual model outputs. To evaluate the counterfactual significance of our attributions over
the course of the diffusion trajectory, we measure LDS scores at every 100 steps over the 1000 step process.

In Figure 4, we plot LDS scores for CIFAR-10 (left) and MS COCO (right) over a range of steps for our
attribution scores as well as the two similarity baselines. Unlike in many computer vision settings (Zhang
et al., 2018), we find that for CIFAR-10, similarity in pixel space achieves competitive performance, especially
towards the start of the diffusion trajectory. However, for both CIFAR-10 and MS COCO, only trak is
counterfactually predictive across the entire trajectory.

Retraining without the most influential images. We compute attribution scores on 50 samples from
our CIFAR-10 and MS COCO models at step t = 400. Given the attribution scores for each sample, we
then retrain the model after removing the corresponding top k influencers for k ∈ {200, 500, 1000}. We
sample 5000 images from two distributions: (1) the distribution arising from repeatedly initializing at x400
and sampling the final 400 steps from the original model; and (2) the distribution arising from repeating
the above process but using the retrained model only for steps t = 400 to t = 300. We then compute FID
distance between these distributions, and repeat this process for each sample at each value of k.

In Figure 5, we display the average FID scores (a measure of distance from the original model) after removing
the k most influential images for a given sample across possible values of k. We notice that, for all values
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Figure 7: “Forgetting” an image. We quantify the impact of removing the highest scoring training
examples according to trak, CLIP similarity, and pixel similarity (and re-training). (Left) We compare
the original synthesized samples to those generated from the same random seed with the re-trained models.
(Right) To quantify the impact of removing these images, we measure the ℓ2 distance between 60 synthesized
samples and corresponding images generated by the re-trained models. Black bars represent standard error.

of k, removing the top influencers identified by our attribution method has a greater impact than removing
the most similar images according to CLIP or pixel space similarities.

5.4 Localizing our attributions to patches in pixel space

In Section 3, we discussed how step-by-step attribution allows us to attribute particular features appearing
within a particular interval of steps. However, some features may appear together within a small interval,
making it hard to isolate them only based on the step. Here we explore one possible approach for better
isolating individual features: selecting a region of pixels (i.e., a patch) in a generated sample corresponding
to a feature of interest, and restricting our model output function to this region. This way, we can restrict
attributions only to the selected patch, which can be useful for understanding what caused a specific feature
to appear (see Figure 6). To implement this model output function, we simply apply a pixel-wise binary
mask to Equation (3) and ignore the output outside of the masked region. To test this approach, we generate
images containing multiple features with an MS COCO-trained LDM. We then manually create per-feature
masks for which we compute attribution scores with our method (see Figure 6). The resulting attributions
for different masks surface training examples relevant only to the corresponding features in that region.

5.5 “Forgetting” how to generate an image

Our attribution scores and evaluation metrics are all step-specific. However, in practice we might care about
identifying training images that impact the full diffusion pipeline. In particular, we might be interested in
whether removing the important training images for a given synthesized image causes the diffusion model
to “forget” how to generate this image.

Specifically, given a set of attribution scores for a synthesized image, we remove the top k influencers (at
step t = 300), retrain the model, and generate new images from scratch using the same random seed. Here,
we leverage the fact that two diffusion models trained on the same dataset tend to generate similar images
given the same random seed (see Appendix C.1 for more details). We then compare the change in pixel
space between the original and newly generated image. This process is distinct from our second evaluation
metric, as (1) we directly compare two images rather than measure the distance between distributions, and
(2) we re-generate images with our new model from scratch rather than restarting from some intermediate
latent xt and substituting the new model for only a small interval of steps (between t and t−∆).
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We perform this process for our attribution scores on CIFAR-10 as well as the two similarity baselines (see
Figure 7). Our results suggest that trak is able to identify influential images that have a significant impact
on the full diffusion trajectory of the diffusion model.

6 Related Work

Data attribution. A long line of work has studied the problem of training data attribution, or tracing
model behavior back to training data; we focus here on works done in the context of modern machine learning
algorithms. Prior approaches include those based on the influence function and its variants (Hampel et al.,
2011; Wojnowicz et al., 2016; Koh & Liang, 2017; Basu et al., 2019; Khanna et al., 2019; Achille et al., 2021;
Schioppa et al., 2022; Bae et al., 2022), sampling-based methods that leverage models trained on different
subsets of data (Ghorbani & Zou, 2019; Jia et al., 2019; Feldman & Zhang, 2020; Ilyas et al., 2022; Lin et al.,
2022), and various other heuristic approaches (Yeh et al., 2018; Pruthi et al., 2020). These methods generally
exhibit a strong tradeoff between predictiveness or effectiveness and computational efficiency Jia et al. (2021).
The recent method of Park et al. (2023) significantly improves upon these tradeoffs by leveraging the empirical
kernel structure of differentiable models. While most prior work primarily focus on the supervised setting,
more recent works study attribution in generative settings, including to language models (Park et al., 2023)
and to diffusion models (Wang et al., 2023). In a recent work, Wang et al. (2023) propose a method for
efficiently evaluating data attribution methods for generative models by creating custom datasets with known
ground-truth attributions.

Memorization in generative models. We can view memorization as a special case of data attribution
where only few, nearly identical images in the training set are responsible for the generation of a corre-
sponding image. Prior to the increasing popularity of diffusion models, a number of previous works studied
memorization in other generative models. For example, Feng et al. (2021) study the impact of properties of
a dataset (size, complexity) on training data replication in Generative Adversarial Networks (GANs), and
van den Burg & Williams (2021) introduce a memorization score for Variational Autoencoders (VAEs) that
can be additionally applied to arbitrary generative models. Following the release of large text-to-image dif-
fusion models, the creators of one of these models (DALL·E 2) investigated memorization issues themselves
and found that memorization could be significantly decreased through de-duplication of the training data
(Nichol et al., 2022). Recently, Somepalli et al. (2022) explore the data replication behavior of diffusion mod-
els from the lens of “digital forgery,” and identify many cases where, even when Stable Diffusion produces
“unique” images, it directly copies style and semantic structure from individual images in the training set.
On the other hand, Carlini et al. (2023) investigate memorization from the perspective of privacy, and show
that query access to diffusion models can enable an adversary to directly extract the models’ training data.

7 Conclusion

In this work, we introduce a framework for data attribution for diffusion models and provide an efficient
method for computing such attributions. In particular, we formalize data attribution in this setting as task
of quantifying how individual training datapoints influences the distribution over final images at each step
of the diffusion process. We demonstrate the efficacy of our approach on DDPMs trained on CIFAR-10 and
LDMs trained on MS COCO. Our framework also constitutes a step towards better understanding of how
training data influences diffusion models.

There are several directions for potential improvements and future work. First, our particular instantiation
of the framework relies on proxies for the distribution pθ(·|xt) of final generated images conditioned on a
given step t, as well as for the likelihood of generating a given image. So, identifying more accurate proxies
could help improve the quality of the resulting attributions. More broadly, we evaluate our framework on
two academic-size datasets, but the most popular diffusion models (such as Stable Diffusion) are larger and
trained on significantly larger datasets. Thus, while feasible in principle, scaling our framework to such
settings is important. Finally, while we study the task of attributing individual steps, it would be valuable
to perform data attribution for the full diffusion process.
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A Experimental details

Throughout our paper, we train various diffusion models on CIFAR-10 and MS COCO.

DDPM training on CIFAR-10. We train 100 DDPMs (Ho et al., 2020) on CIFAR-10 for 200 epochs
using a cosine annealing learning rate schedule that starts at 1e-4. We used the DDPM architecture that
match the original implementation (Ho et al., 2020), which can be found here https://huggingface.co/
google/ddpm-cifar10-32. At inference time we sample using a DDIM scheduler with 50 inference steps.

LDM training on MS COCO. We train 20 text-conditional latent diffusion models (LDMs) (Rombach
et al., 2022) on MS COCO for 200 epochs using a cosine annealing learning rate schedule that starts at 2e-4.
We used the exact CLIP and VAE used from Stable Diffusion 2, but used a custom (smaller) UNet. These
models can be found here https://huggingface.co/stabilityai/stable-diffusion-2-1. At inference
time, we sample using a DDPM scheduler with 1000 inference steps.

We will open-source our code upon publication.

B Linear Datamodeling Score (LDS)

A useful data attribution should help us answer counterfactual questions of the form: can a model still
generate x0 if we trained our instead on S′ ⊂ S from the training set?

To quantify the usefulness of an attribution method for counterfactual predictions, we use the linear data-
modeling score (Park et al., 2023) used in evaluation of prior attribution methods. The LDS measures the
degree to which the attribution can be used to predict the model output ft that would result from training
on a random subset S′ (averaged over random choices of S′); a score of one indicates perfect predictions,
while a score of zero indicates lack of predictiveness.

More formally, viewing the output function f(x, θ) as a function ft(x, θ(S′)) of the training dataset S′ ⊂ S,
we consider the task of predicting f(x̄, S′) given S′. This is the so-called datamodeling task introduced in
(Ilyas et al., 2022; Park et al., 2023).

Then, consider predicting f using a linear function of the attribution scores τ :

f̂(x, S) := 1S′ · τ(x)

where 1S′ ∈ R|S| is an indicator vector encoding the subset S′ and τ(x) is the data attribution vector
corresponding to generated sample x.

Given this setup, the LDS is defined as the correlation between true and predicted outputs:

LDS(τ, x) := Spearman-r({f(x, Si), f̂τ (x, Si)})

where Si ⊂ S are randomly sampled subsets of the training set.
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C Additional Analysis and Results

C.1 Diffusion models are consistent across seeds

A priori, two independent models trained on the same dataset do not share the same latent space. That
is, a given noise sequence εT , ..., ε0 could be denoised to two unrelated images for two different models.
However, we find empirically that latent spaces from two diffusion models are highly aligned; we call this
property seed consistency. In fact, we find that images generated by many independently trained DDPMs
on CIFAR-10 from the same random seed and nearly indistinguishable (see Figure C.1, right). To evaluate
seed consistency quantitatively, we measure the ℓ2 distance between images generated by two models when
using identical or distinct noise sequences, and find that matching the noise sequences leads to a far smaller
ℓ2 distances (see Figure C.1, left).

We additionally evaluate seed consistency on multiple checkpoints of Stable Diffusion (we use check-
points provided at https://huggingface.co/CompVis/stable-diffusion and https://huggingface.co/
runwayml/stable-diffusion-v1-5) and find that images generated across these models with a fixed seed
share significantly more visual similarity that those generated from independent random seeds (see Figure
C.2.)

We take advantage of this property when evaluating the counterfactual impact of removing the training
examples relevant to a given generated image (see Section 5.5). Specifically, we now expect that retraining a
model on the full training set and then sampling from the same seed should produce a highly similar image
to the generated image of interest. Thus, we can evaluate the counterfactual significance of removing the
training examples with the top attribution scores for a given generated image by retraining and measuring
the distance (in pixel space) of an image synthesized with the same seed to the original generated image.
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Figure C.1: Seed consistency of CIFAR-10 DDPMs. We find that across DDPMs trained independently
on CIFAR-10, when using a fixed random seed during sampling, the resulting synthesized images are very
similar, and often visually indistinguishable (Right). Quantitatively, we find that the ℓ2 distance between
images generated from two different models is significantly smaller when we fix the noise sequence (Left).
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Random Seed Fixed Seed

Model 1 Model 2 Model 3 Model 4 Model 5 Model 1 Model 2 Model 3 Model 4 Model 5

“A horse on grass”

“A man in a coffee shop”

“A bear in New York city 
on a skateboard”

“An astronaut eating 
donuts in the kitchen”

“A bird with a cowboy 
hat flying in France”

Figure C.2: Seed consistency holds for Stable Diffusion models. We find that seed consistency holds
even for large, text conditioned model, specifically for Stable Diffusion models that are trained on LAION-
5B. We compare multiple checkpoints of Stable Diffusion provided by Stability AI, and find that fixing the
noise sequence during sampling surfaces very similar images (in comparison to using independent noising
sequences).
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C.2 Attribution scores can drastically change over the course of the diffusion process

As additional motivation for performing attribution at individual steps rather than the entire diffusion
trajectory, we highlight the following phenomena: the same training image can be both positively influential
and negatively influential for a generated sample at different steps. For example, consider an image of a red
car on a grey background generated by our DDPM trained on CIFAR-10 (See Figure C.3, top). We find
that a specific training example of a red car on grass is the single most positively influential image according
to trak at the early stages of the generative process (as it is forming the shape of the car), but is later the
single most negatively influential image (possibly due to the difference in background, which could steer the
model in a different direction). If we were to create an aggregate attribution score for the entire diffusion
trajectory, it is unclear what the attribution score would signify for this training example.

To evaluate this phenomena quantitatively, we measure the percentage of generated images for which, for a
given K, there exists a training example that is one of the top K highest scoring images at some step and
one of the top K lowest scoring images at another step (according to trak). In Figure C.4, we show how
this percentage varies with K. As a baseline, we also include the probability of such a training example
existing given completely random attribution scores. We find that our observed probabilities match those
expected with random scores, signifying that an image being highly positively influential at a given step does
not decrease the probability that it is highly negatively influential at a different step.

To more broadly analyze the relationship between attributions at different steps, we additionally measure
the Spearman’s rank correlation (Spearman, 1904) between attribution scores for the same generated sample
at different steps (see Figure C.5). We find that for steps that are sufficiently far from each other (around
500 steps), the attribution scores are nearly uncorrelated.
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Pos + Neg Influencers

Negative Influencers

Positive Influencers

Figure C.3: Overlap between positive and negative influencers. Here, we visualize the generative
process for two images generated by a DDPM on CIFAR for which there exists a training image that is both
positively and negatively influential at different steps. If we consider an aggregate attribution score across
all time-steps of the diffusion trajectory, we might lose the significance of such training examples which
alternate between being positively and negatively influential during the sampling process.
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Figure C.4: The relationship between positive and negative influencers. Here, we plot the probability
that within the attribution scores for a given generated image, there exists a training example that is one of
the K most positive influencers at some step and one of the bottom K most negative influencers at another
step. We compute this probability empirically with the attribution scores from trak and find that it closely
aligns with the hypothetical baseline of completely random attribution scores. This signifies that being a
top positive influencer at some step does not decrease the likelihood of being a top negative influencer at a
different step.
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Figure C.5: Correlation between attribution scores over steps. Here, we plot the Spearman’s rank
correlation (Spearman, 1904) between the attribution scores for a given image generated by either our
CIFAR-10 or MS COCO models at different steps, as a function of the distance between steps (results are
averaged over 100 generated samples). As expected, steps that are closer in proximity have more closely
aligned attribution scores. Interestingly, when we compute attributions at steps of distance 500 or more
apart, the resulting scores are nearly uncorrelated.
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C.3 Feature analysis for Stable Diffusion

We analyze how the likelihood of different features in the final image varies over steps for images generated
by a Stable Diffusion model,6 similarly as we did for CIFAR-10 in Figure 3. In Figure C.6, we analyze an
image generated using the prompt, “A woman sitting on a unique chair beside a vase.” To measure the
relative likelihood between two features (e.g., “white blouse” vs. “dark blouse”), we use a pre-trained CLIP
model and measure whether the CLIP embedding of the generated image is closer to the text embedding of
the first feature or the second feature. We sample 60 images at each step and report the average likelihood.
We use 300 denoising steps to speed up the generation.

Figure C.6: Features appear at specific steps for Stable Diffusion. (Left) For each pair of features,
we plot the evolution in the relative likelihood of the two features (according to CLIP text-image similarity)
in the conditional distribution pθ(·|xt). Features differ in when they appear, but usually rapidly appear
within a short interval of steps. (Right) The generated image x0, sampled using T = 300 denoising steps.

6We use the stabilityai/stable-diffusion-2 pre-trained checkpoint.
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C.4 Omitted plots

In this section, we present additional visualizations extending upon the figures in the main text. In Figure C.7
and Figure C.8, we visualize the most influential training examples identified by our method for a sample
generated with a DDPM trained on CIFAR-10 and a LDM trained on MS COCO, respectively. In Figure C.9,
we more concisely display attributions for additional samples generated by a CIFAR-10 DDPM. Finally, in
Figure C.10 we display additional examples of the appearance of features over steps, and confirm that our
findings in the main text hold across when different classification models are used for identifying a given
feature.

Diffusion Trajectory Positive Influencers Negative influencers

Different class Different class/color Different background

Generative (Reverse Diffusion) Process

Final sampleInitial noise

   t = T   t = 0

Figure C.7: An example of step-dependent attribution scores for a sample generated by a DDPM trained on
CIFAR-10. At each step t, our method pinpoints the training examples with the highest influence (positive
in green, negative in red) on the generative process at this step. In particular, positive influencers guide the
trajectory towards the final sample, while negative influencers guide the trajectory away from it.

Diffusion Trajectory Positive Influencers Negative influencers

More zoomed in More zoomed out No fence

Generative (Reverse Diffusion) Process

Final sampleInitial noise

   t = T   t = 0

Figure C.8: An additional example of step-dependent attribution scores for a sample generated by a LDM
trained on MS COCO. At each step t, our method pinpoints the training examples with the highest influence
(positive in green, negative in red) on the generative process at this step. In particular, positive influencers
guide the trajectory towards the final sample, while negative influencers guide the trajectory away from it.
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Figure C.9: Additional examples our attributions identified by our method. Here, we visualize the diffusion
trajectory for generated images along with the most positively (green) and negatively (red) influential images
at individual steps throughout the diffusion trajectory.
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Figure C.10: Additional examples of the appearance of features over steps, similar to the analysis in Figure 3.
In each plot, we show the likelihood that a sample generated from the distribution pθ(·|xt) contains a the
feature of interest (in this case, the CIFAR-10 class of the final image) according to three different classifiers:
a ResNet trained on the CIFAR-10 dataset with either standard or robust training, and zero-shot CLIP-H/14
model (Radford et al., 2021). Note that in each example, the likelihood that the final image contains the
given feature increases rapidly in a short interval of steps, and that this phenomena is consistent across
different classifiers.
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