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Abstract

While transformers demonstrate impressive performance on many knowledge
intensive (KI) tasks, their ability to serve as implicit knowledge bases (KBs)
remains limited, as shown on several slot-filling, question-answering (QA), fact
verification, and entity-linking tasks. In this paper, we implement an efficient,
data-programming technique that enriches training data with KB-derived context
and improves transformer utilization of encoded knowledge when fine-tuning
for a particular QA task, namely answer sentence selection (AS2). Our method
outperforms state of the art transformer approach on WikiQA and TrecQA, two
widely studied AS2 benchmarks, increasing by 2.0% p@1, 1.3% MAP, 1.1%
MRR, and 4.4% p@1, 0.9% MAP, 2.4% MRR, respectively. To demonstrate our
improvements in an industry setting, we additionally evaluate our approach on a
proprietary dataset of Alexa QA pairs, and show increase of 2.3% F1 and 2.0%
MAP. We additionally find that these improvements remain even when KB context
is omitted at inference time, allowing for the use of our models within existing
transformer workflows without additional latency or deployment costs.

1 Introduction

Transformers are powerful sequence-to-sequence models that leverage the mechanism of self-attention
[28] to capture long-range dependencies, such as relationships between words in a natural language
text. Compared to sequential models such as recurrent or convolutional networks, they make efficient
use of available processing power. Transformer based models such as BERT, XLNet and BART
[4, 33, 18, 17] hold state of the art on many natural language processing (NLP) tasks, including next
sentence prediction, natural language generation, and natural language inference [23, 17, 10]. In
addition to efficiently encoding linguistic information from unlabelled text, their top performance on
knowledge-intensive (KI) NLP tasks [21], such as question-answering [24] have led to the hypothesis
that transformers also encode relational knowledge, and as such serve as parameterized, implicit
knowledge bases (KBs) [22].

However, it has also been shown that transformer knowledge acquisition [22, 25] and subsequent
utilization [27, 12] can be uncontrollable, highly context dependent, and tightly coupled to language
acquisition. These limitations may impact performance on downstream tasks, including KI tasks
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Example 1: Q: How old is Elton John’s husband?
Correct: David Furnish is 57 years old. He was born on October 25, 1962.
Selected: Elton John and David Furnish became an item after meeting in the early 1990s and
in 2005.

Example 2: Q: How many humps on a Camel?
Correct: The two surviving species of camel are the dromedary, or one-humped camel, which
is native to the Middle East and the Horn of Africa; and the Bactrian, or two-humped camel,
which inhabits Central Asia.
Selected: A camel is an even-toed ungulate within the genus Camelus, bearing distinctive
fatty deposits known as "humps" on its back.

Example 3: Q: What some legal uses of meth?
Correct: Although rarely prescribed, methamphetamine hydrochloride is approved by the
U.S. Food and Drug Administration (FDA) for the treatment of attention deficit hyperactivity
disorder and obesity under the trade name Desoxyn.
Selected: Methamphetamine, also known as metamfetamine, meth, ice, crystal, glass, tik,
N-methylamphetamine, methylamphetamine, and desoxyephedrine, is a psychostimulant of the
phenethylamine and amphetamine class of psychoactive drugs.

Table 1: Three QA examples incorrectly predicted by a state-of-the-art transformer answer selection
model (TANDA [7]).

like answer sentence selection (AS2) [31]. Table 1 is illustrative of limitations of some of these
deficiencies of transformers in precisely leveraging encoded information. Transformer models that
show top performance [7, 15] on widely studied benchmarks [32, 31] still fail to classify many QA
pairs correctly. In Example 1, the model is unable to leverage knowledge of the identity between Elton
John’s husband and David Furnish. In Example 2, one-humped or two-humped are not recognizable
as quantities pertaining to the uncommonly quantity humps. Example 3 shows the difficulty in
reasoning for the a rare prescriptive use of the illicit drug methamphetamine. These examples also
illustrate relevance of this task as a means to assess impact of deficiencies in transformer knowledge
utilization.

In this paper study, we propose an efficient, data-programming approach utilizing a KB that improves
performance on answer selection tasks and demonstrate that some of these limitations can be mitigated
during fine-tuning with simple data augmentation technique.

A number of recent studies have also studied approaches that aim to improve transformer performance
on KI tasks, proposing the use of differentiable knowledge retrievers [8, 13, 16], retrieval-augmented
generation (RAG) [13], KB embeddings such as KnowBERT [20] and ERNIE [34], and pre-training
on verbalized KBs such as KELM [1]. While these approaches offer promising benefits for trans-
former knowledge encoding and retrieval, to our knowledge, none of them have been shown to
outperform existing state of the art for answer selection, a task that is essential to several question
answering services provided by commercial voice assistants. Additionally, each of these approaches
is significantly complex and require significant work to leverage in production applications. Our
approach, on the other hand, leverages ElasticSearch to tag KB entries in input QA pairs, derives weak-
supervision signals from tagged KB entries, and incorporates this context only during fine-tuning.
We show that our simple, efficient and data-programming method confers significant performance
benefits over the state of the art for answer sentence selection, even when KB context is omitted at
inference time.

The main contributions of our work are:

• We show that several limitations in the use of transformers implicit KBs can be overcome
using a simple data-programming approach by outperforming state-of-the-art models on
several QA tasks:

1. increasing by 2.0% p@1, 1.3% MAP, 1.1% MRR and 4.4% p@1, 0.9% MAP, 2.4%
MRR on WikiQA and TrecQA respectively, two widely used AS2 benchmarks.

2. increasing by 2.3% F1 and 2.0% MAP on AlexaQA pairs, a proprietary commercial
answer classification benchmark.

• We show that KB is not needed at inference time, allowing our trained models to be used as
drop-in replacements for existing transformer-based AS2 systems.
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2 Background

2.1 Transformers

The transformer [28] is an architecture for efficiently transforming one sequence into another via
self-attention, a mechanism that differentially weighs the significance of discrete tokens in an
input sequence. Compared to sequentially aligned or convolutional networks such as RNNs and
CNNs, transformer models have proven to be extremely effective at efficiently capturing long-range
dependencies between words in natural language [4, 18, 17], including some structured knowledge
such as the husband of relation between named entities [22]. Pre-training transformer models on
large, unstructured corpora of unlabelled text [3, 11] allows them to capture linguistic and factual
knowledge prior to subsequent fine-tuning on downstream tasks. The suitability of transformer based
models such as BERT [4] for this type of transfer learning dramatically increases their reusability,
driving state of the art results on many tasks [7, 15, 8, 33, 9] in addition to widespread adoption in
industry.

2.2 Transformer Limitations as Knowledge Bases

While transformers have demonstrated strong performance on question-answering [25] and fill-in-
the-blank cloze tasks [22, 12] without access to external information, the modulation of transformer
knowledge acquisition and utilization is limited. Cloze task [22] and question answering [25] probes
demonstrate transformer knowledge acquisition is largely uncontrollable and often only results in
the acquisition of frequently observed information. Further, transformer recall of factual knowledge
on cloze tasks remains tightly bound to learned linguistic representation [12]. In a systematic study
[27] on multiple tasks, it was shown that transformers lack robust multi-hop reasoning faculties,
are insensitive to adverbial modifies like "always", "some", and "never", and are unable to robustly
compare quantities. For example, while RoBERTa [18] appears able to effectively compare numbers,
it is unable to compare when values are given in ages. Other studies additionally have shown
insensitivity to negation [5], difficulty with misspellings and short, simple sequences [26], and
sensitivity to sequence length, punctuation, and subject-verb agreement [2].

2.3 Answer Sentence Selection (AS2) and Answer Classification

Answer sentence selection (AS2) consists of ranking answer candidates given a question and one or
more answer candidates, while binary answer classification consists of classifying answer candidates
as correct or incorrect given the same input. Both tasks encourage models that leverage encoded
knowledge to select the most correct answer and thus may be used to probe model knowledge and
reasoning capabilities. Let q be a question, Cq = {c1, . . . , cn} be a set of answer sentence candidates
for q, we define R as a ranking function, which orders the candidates in Cq according to a score,
p (q, ci), indicating the probability of ci to be a correct answer for q. Answer sentence selection
is performed by taking the highest scoring candidate in Cq, while binary answer classification is
performed by assigning the label of the highest probability class as determined by the ranking function
R .

Widely used metrics for AS2 performance are mean average precision (MAP) and mean reciprocal
rank (MRR), while mean average precision (MAP) and F-score (F1) are commonly used for binary
answer classification. To our knowledge, transformer models [7, 15] demonstrate a strong state of the
art on the AS2 task.

3 Modeling

3.1 Datasets

We study popular Answer Sentence Selection datasets to evaluate the benefits of our approach for this
task: Answer Sentence Natural Questions (ASNQ) [7], WikiQA [32], and TrecQA [30]. ASNQ is a
large scale QA dataset derived from Google’s Natural Questions [14] dataset, with more than ∼84K
unique questions. The train split of this dataset is used to transfer a pre-trained transformer model
to the AS2 task. WikiQA [32] and TrecQA [30] are widely studied benchmark datasets for Answer
Sentence Selection with over ∼1.1K and ∼1.2K unique questions respectively. We utilize the clean

3

https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Mean_average_precision
https://en.wikipedia.org/wiki/Mean_reciprocal_rank
https://en.wikipedia.org/wiki/Mean_reciprocal_rank
https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Mean_average_precision
https://en.wikipedia.org/wiki/F-score
https://aclweb.org/aclwiki/Question_Answering_(State_of_the_art)
https://aclweb.org/aclwiki/Question_Answering_(State_of_the_art)


versions of both WikiQA and TrecQA, as well as the TRAIN-ALL split of TrecQA for fine-tuning. All
of these datasets are available under dataset specific licenses that permit their use and distribution for
academic purposes.

We additionally evaluate the benefits of our approach in an industry setting using the binary answer
classification task using AlexaQA. AlexaQA is a proprietary benchmark dataset that contains ∼107K
unique questions obtained from de-identified samples of Amazon Alexa QA traffic with correct/in-
correct labels assigned by expert annotators. Detailed statistics of each dataset by split are shown in
Table 6 in Appendix A.

3.2 Dataset Preprocessing

We implement a novel data enrichment pipeline that use an ElasticSearch index of 20.7M item and
relation labels obtained by popularity-based filtering of Alexa’s KB. Our pipeline tags KB entries
in input text by aggregating the results of three queries on our index. For each word w in the set of
words W = {w1, . . . , wn} in the input text, we tag wi as a KB entry if:

• wi is an exact match for a label in the index

• wi is contained by a label in the index

• wi and wi + 1 is a quorum match for a label in the index

Consecutive labels matching the same entry are assumed joined together, matches are sorted for
relevance, and the top result is selected as the KB entry. KB meta-data for entries is derived from
selected KB properties, such as the collection property that indicates classifications such as celebrity,
book, or album.

3.3 Incorporating KB-derived Context for Transformer Training

Metadata for each entry tagged by the preprocessing pipeline (Section 3.2) is resolved to a textual
representation using corresponding KB labels. An example of the JSON produced from this resolution
is shown below:

{
"text": "David Furnish is 57 years old.",
"kb_tags": [{

"kb_id": "e-478772",
"popularity": 0.981,
"candidate_title": "David Furnish",
"candidate_aliases": "David James Furnish, Elton John ’s

husband"
"collection": "celebrity",
"relations": "married_to, years_old, birth_date, ... ",

}]}

Inspired by other studies [19, 1] that verbalize structured data for use in language models, we insert
the textual representation of KB context directly into model input. This approach may distract the
model from attending to the QA pair itself if too much context is added and we thus employ two
strategies to prevent this. First, we limit metadata to the collection property, whose values include
common categories such as "celebrity", "quantity", and "generic drug form". 1. The collection
property in our KB has many analogous properties in other KBs, for example, the instance of relation
in Wikidata [6].

Second, we employ a filter that constrains the number of entries from which KB context is added.
The intersection filter exploits the intuitive hypothesis that correct QA pairs will contain the same
KB entries, adding context only if the same entry is tagged in both the question and the answer. For
example, this filter adds context for entry David Furnish from the QA pair: Q: how old is Elton John’s
husband; A: David Furnish is 57 years old because the question contains Elton John’s husband,
an alias for "David Furnish" in our KB, and the answer contains David Furnish. The intersection

1initial experimentation using metadata derived from the popularity, aliases, and relations suggested that the
collection property was the most effective.
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filter excluded context for entries like 57 and husband, even though entries for both exist in our
KB. We additionally study the 1-best filter, which selects the KB entry from the answer with the
highest popularity in our KB as a more lenient alternative. Two strategies of concatenating context
to question/answer text are also explored: append and prepend; in both cases, the model’s special
separator token 2 is used to separate the context from question/answer text.

An example of the resulting sequences are shown below:

• Append: how old is elton john’s husband <\s> john furnish is 57 years old. he was born on
october 25, 1962 <\s> celebrity <\s> celebrity

• Prepend: <\s> celebrity <\s> celebrity <\s> how old is elton john’s husband <\s> john
furnish is 57 years old. he was born on october 25, 1962

3.4 Model Architecture

Figure 1: The Transfer-and-Adapt architecture using our approach

Our approach builds upon the Transfer-and-Adapt (TANDA) [7] architecture, the state of the art
approach for answer sentence selection, by leveraging KB-derived context to address deficiencies
observed in transformer knowledge utilization for this task. As illustrated in figure Figure 1, we
transfer a pre-trained RoBERTa-base model [18] to the answer sentence selection task by fine-tuning
on ASNQ and adapt the transferred model via further fine-tuning on our target dataset, either WikiQA,
TrecQA, or AlexaQA. Training incorporates KB-derived context in both transfer and adapt steps, as
discussed below. During inference, we optionally remove KB context so as to evaluate our approach
as a drop-in replacement for existing transformer-based AS2 systems.

In order to isolate the benefits of our approach, we reuse the same optimizer, hyper-parameters, and
early stopping strategy described in [7] and only alter the sequence length, increasing from 128 to
256 to accomodate additional context. Experiments on ASNQ, WikiQA, and TrecQA use AWS
EC2 p3dn.24xlarge hosts, and those on AlexaQA use AWS SageMaker ml.p3.16xlarge notebook
instances.

4 Results

Performance of KB augmented transformer models for standard fine-tuning (FT) on ASNQ is shown
in Table 2. Transfer-and-Adapt performance with KB augmentation is reported for WikiQA, TrecQA,
and AlexaQA in Tables 3, 4 and 5 respectively. We indicate the datasets used in Transfer-and-Adapt
setting using two arguments, transfer dataset→ adapt dataset with numerics in parentheses indicate

2We tried other separator tokens, including "#", ":", and " ", and found the special separator performs
marginally better
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training epochs. Baseline models - i.e. the RoBERTa base TANDA state-of-the-art set by [7] - are
indicated by * and lack the -KB suffix.

We additionally evaluate a setting in which KB context is omitted at inference time to explore the
ability of our approach to modulate transformer knowledge utilization. Results for this setting are
reported for each dataset and are indicated by the value of the Incl. KB at Inference column.

The results in the tables below demonstrate that:

• KB context improves fine-tuning performance on ASNQ, increasing the p@1, MRR and
MAP by 2.9%, 3.0%, and 2.9% after 9 epochs.

• Training with KB context improves on the strong performance set by the state of the art
TANDA approach on widely studied benchmarks, increasing the p@1, MRR and MAP by
2%, 1.3%, and 1.1% and 4.4%, 0.9%, and 2.4% on WikiQA and TrecQA respectively.

• The benefits of KB context generalize to our industry setting, increasing the F1 and MAP by
2.3% and 2.0% over the TANDA state of the art, RoBERTa ASNQ(9)→AlexaQA(1), and
by .4% and 2.3% over the more challenging baseline, RoBERTa ASNQ(1)→ AlexaQA(1).

• Models trained with our approach continue to outperform the TANDA state of the art even
when KB context is omitted at inference time; in other words, the benefits of KB context are
primarily realized during model training.

Model KB Approach Incl. KB at Inference p@1 MAP MRR
RoBERTa FT ASNQ(9)* – No .599 .672 .716
RoBERTa FT ASNQ-KB(9) Append, Intersection Yes .627 .696 .737
RoBERTa FT ASNQ-KB(9) Prepend, Intersection Yes .627 .702 .745
RoBERTa FT ASNQ-KB(9) Prepend, 1 best Yes .616 .694 .736

RoBERTa FT ASNQ-KB(9) Append, Intersection No .628 .692 .736
RoBERTa FT ASNQ-KB(9) Prepend, Intersection No .621 .696 .739
RoBERTa FT ASNQ-KB(9) Prepend, 1 best No .617 .693 .735

Table 2: Performance of KB-augmented fine-tuned (FT) transformer models on ASNQ

Model KB Approach Incl. KB at Inference p@1 MAP MRR
RoBERTa ASNQ(9) → WikiQA(9)* – No .827 .890 .901
RoBERTa ASNQ-KB(9) → WikiQA-KB(9) Append, Intersection Yes .835 .891 .903
RoBERTa ASNQ-KB(9) → WikiQA-KB(9) Prepend, Intersection Yes .847 .903 .913
RoBERTa ASNQ-KB(9) → WikiQA-KB(9) Prepend, 1-best Yes .835 .885 .898

RoBERTa ASNQ-KB(9) → WikiQA-KB(9) Append, Intersection No .835 .892 .902
RoBERTa ASNQ-KB(9) → WikiQA-KB(9) Prepend, Intersection No .843 .895 .907
RoBERTa ASNQ-KB(9) → WikiQA-KB(9) Prepend, 1-best No .839 .887 .900

Table 3: Performance of KB-augmented fine-tuned (FT) transformer models on WikiQA

Model KB Approach Incl. KB at Inference p@1 MAP MRR
RoBERTa ASNQ(9) → TrecQA(9)* – No .897 .906 .942
RoBERTa ASNQ-KB(9) → TrecQA-KB(9) Append, Intersection Yes .911 .901 .952
RoBERTa ASNQ-KB(9) → TrecQA-KB(9) Prepend, Intersection Yes .926 .914 .960
RoBERTa ASNQ-KB(9) → TrecQA-KB(9) Prepend, 1-best Yes .897 .900 .944

RoBERTa ASNQ-KB(9) → TrecQA-KB(9) Append, Intersection No .941 .915 .966
RoBERTa ASNQ-KB(9) → TrecQA-KB(9) Prepend, Intersection No .911 .901 .955
RoBERTa ASNQ-KB(9) → TrecQA-KB(9) Prepend, 1-best No .926 .905 .959

Table 4: Performance of KB-augmented fine-tuned (FT) transformer models on TrecQA
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Model KB Approach Incl. KB at Inference F1 MAP

RoBERTa ASNQ(1) → AlexaQA(1) – No .848 .839
RoBERTa ASNQ(9) → AlexaQA(1)* – No .829 .842
RoBERTa ASNQ-KB(1) →AlexaQA-KB(1) Append, Intersection Yes .852 .860
RoBERTa ASNQ-KB(1)→AlexaQA-KB(1) Prepend, Intersection Yes .850 .862
RoBERTa ASNQ-KB(1)→AlexaQA-KB(1) Prepend, 1-best Yes .850 .858

RoBERTa ASNQ-KB(1)-→AlexaQA-KB(1) Append, Intersection No .851 .859
RoBERTa ASNQ-KB(1)→AlexaQA-KB(1) Prepend, Intersection No .850 .861
RoBERTa ASNQ-KB(1)→AlexaQA-KB(1) Prepend, 1-best No .849 .857

Table 5: Performance of KB-augmented fine-tuned (FT) transformer models on AlexaQA. Models
transferred for only (1) epoch are shown, since our experiments indicate that further epochs of transfer
to ASNQ conveyed marginal benefits for AlexaQA.

5 Discussion

5.1 Comparing Context Generation Strategies

Results reported in Tables 2, 3, 4 and 5 all demonstrate that our approach outperforms the state of the
art approach, even in the more challenging setting where KB context is omitted at inference time. We
explain the robustness of our models to the omission of KB context in light of the proportion of each
dataset that our approach impacts. The intersection filter adds KB context to only 3.38% of the ASNQ
dataset, 5.27% of TrecQA, and 8.33% of WikiQA while the 1 best filter adds context for 31.17% for
ASNQ, 51.1% for TrecQA, 40.79% for WikiQA. We hypothesize that the large number of training
examples seen without context allows the model to leverage context as a for weak supervision that
encourages knowledge utilization and elaborate further in subsection 5.2 below.

These results show that the more intuitive intersection filter performs better than the 1 best filter
for both concatenation strategies, despite impacting between significantly less of each dataset. We
conclude that the explicit conceptual alignment provided by the intersection conveys additional
benefits beyond the addition of conceptual keywords provided by the 1 best filter. The prepend
strategy outperforms the append strategy on all datasets other than TrecQA, a deviation that we
attribute to the small size of the TrecQA test set. We explicate these findings in light of the positional
invariance the prepend strategy - that is, prepend always adds context in the same position in the
sequence, whereas append does not. As a result, prepend models appear better able to attend to
context and outperform their append counterparts, even though prepend models suffer more when
context is omitted at inference.

5.2 Impact of KB Context

We leverage the three illustrative examples presented in Table 1 to probe the impact of our KB context
and its potential to address the previously studied [12, 27] deficiencies of transformers as implicit
KBs. Models trained with our approach classify each of these examples correctly, even when KB is
omitted at inference, indicating that they may be able to exploit our context to refine their utilization
of encoded knowledge. In order to identify the mechanism behind these benefits, we compare the
attention of TANDA with that of our best model, prepend, intersection, using box plots of attention
intensity and bar plots of activate head counts per layer in Appendix B.

Example 1 requires the model to leverage encoded knowledge in order to make the connection
between "husband" and "David Furnish" necessary to recognize that the phrase "is 57 years old"
answers the question phrase "how old". Figure 2 presents model attention weights between tokens
"how" and "57" and between "husband" and "David", where it can be seen that our approach
significantly improves both the quantity of heads attending to these keywords and the intensity of
this attention. It is likely that model pre-training has encoded this knowledge, given that the second
sentence on David Furnish’s Wikipedia page reads: "He is married to English musician Sir Elton
John". Unsurprisingly, changing the question or the answer text to remove this relation - to either
"How old is David Furnish" or "Elton John’s husband David Furnish is 57 years old" - produces the
correct answer from the TANDA model.
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Example 2 probes transformer ability to robustly recognize that "one-humped" and "two-humped"
are values for the quantity sought by "how many" and are related to the subject "Camel". We
hypothesize that the KB context "animal" added for similar entities during training increases attention
on "camel" tokens and their modifiers, "one-humped" and "two-humped" in this case. Figure 3
compares model attention weights of tokens "many" and "Camel" with the values "one" and "two"
and again demonstrate that our approach significantly increases the intensity of model attention
between these terms. Changing the answer to use common numeric values "the Dromedary Camel
has 1 hump...and the Bactrian Camel has 2 humps" is sufficient for the TANDA model to select the
correct answer.

Example 3 illustrates whether the model is able to connect the adverbial phrase "some legal uses" in
the question with the phrase approved...for the treatment of... in the correct answer. Interestingly,
the KB context added for "meth" and entities like it is "generic drug", which we hypothesize may
encourage attention to relevant terms like "treatment" that are not commonly used in context of the
subject "meth". Figure 4 shows the weights connecting "treatment" with "uses" and "meth" and
further demonstrates the impact of our approach on model attention. We conclude that in some cases,
the context itself may provide relevant information that helps the model more effectively utilize
uncommon knowledge, like that meth may be used as a medical treatment.

6 Conclusion

In this paper, we presented a data-programming approach that enriches transformer training data with
KB-derived context, and demonstrate that it beats state of the art approach on several challenging
knowledge-intensive question-answering benchmarks such as ASNQ, WikiQA, TrecQA, and Alexa
QA. Our findings indicate that our approach addresses some deficiencies of transformer knowledge
utilization that negatively impact AS2 performance. We probed the mechanism of our approach
with challenging examples that highlight the potential ways in which our KB context may allow
transformers to better utilize encoded knowledge. Our method is simple, efficient and task-agnostic,
and training benefits remain even when KB context is omitted at inference time. We believe that
our approach provides a way to rapidly integrate the benefits of KBs within the deployed inference
pipelines utilized in many virtual-assistant workflows.

While we improve on the state of the art approach in AS2, we do acknowledge that our approach
may face limitations of its own. While our approach is efficient in that it not require significant
pre-training, unlike KB based approaches like KELM, KnowBERT, and ERNIE as well as retrieval
oriented approaches like REALM and RAG, it is inefficient in that it likely does not leverage the full
richness of our KB. This has the negative consequence that our approach still requires significant
task-specific training and thus consumes significant GPU hours and the natural resources used to
power them. Further work beyond the data-programming approach that we propose in the direction
of more effective transformer architectures that enhance knowledge utilization can lessen this impact
and provide models capable of more completely disentangling knowledge and language acquisition.
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A Dataset statistics

The table below shows the distribution of the datasets studied in this by each split, such as train, dev,
and test. These demonstrate that our pipeline is able to tag at least one KB entry in each input QA
pair, indicating that our simple tagging method is effective at producing KB context.

Dataset #QA pairs % w/o KB #Correct w/ KB #Incorrect w/ KB

ASNQ Dev 276,809 .020% 1,117 275,692
ASNQ Test 879,594 .036% 3,600 875,672

ASNQ Train 29,987,324 .027% 120,184 29,867,166

WikiQA Dev 1,130 .000% 140 990
WikiQA Test 2,351 .000% 293 2,507

WikiQA Train 8,672 .000% 1,040 7,632

TrecQA Dev 1,117 .000% 205 912
TrecQA Test 1,442 .000% 248 1,194

TrecQA Train 53,417 .000% 6,403 47,011

AlexaQA Dev 26,951 .040% 25,822 1,192
AlexaQA Test 26,965 .000% 25,796 1,169

AlexaQA Train 215,416 .635% 205,070 8,978

Table 6: Dataset Statistics and KB Tag Rate by Split

B Attention Weight Comparison

In the graphs below, we illustrate the impact of our approach on model attention for the challenging
AS2 examples presented in Table 1. We do not add KB context at inference for any of these examples,
opting to visualize the impact of our approach in the more challenging "omit KB" setting. We leverage
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BertViz [29] to extract model attention weights and quantify model attention between meaningful
keywords selected in question and answer texts. Box plots, shown on the left, quantify the intensity
of model attention across all layers, while bar plots, shown on the right, quantify the number of heads
per layer exhibiting attention weights greater than an arbitrary minimum of 0.1.

Figure 2: Attention comparison for the correct QA pair Q: How old is Elton John’s husband A: David
Furnish is 57 years old. He was born on October 25, 1962

.
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Figure 3: Attention comparison for the correct QA pair Q: How many humps on a Camel? A: The two
surviving species of camel are the dromedary, or one-humped camel, which is native to the Middle
East and the Horn of Africa; and the Bactrian, or two-humped camel, which inhabits Central Asia.

Figure 4: Attention comparison for the correct QA pair Q: What some legal uses of meth? A:
Although rarely prescribed, methamphetamine hydrochloride is approved by the U.S. Food and Drug
Administration (FDA) for the treatment of attention deficit hyperactivity disorder and obesity under
the trade name Desoxyn.
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