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ABSTRACT

Real-world graphs naturally exhibit hierarchical trees and cyclic structures that
are unfit for the typical Euclidean space. While there exist graph neural networks
that utilize hyperbolic or spherical spaces towards embedding such structures more
accurately, these methods are confined under the message-passing paradigm, mak-
ing them vulnerable against side-effects such as oversmoothing and oversquashing.
More recent work have proposed global attention-based graph Transformers that
can alleviate such drawbacks and easily model long-range interactions, but their
extensions towards non-Euclidean geometry are yet unexplored. To bridge this gap,
we propose Fully Product-Stereographic Transformer, a generalization of Trans-
formers towards operating entirely on the product of constant curvature spaces.
When combined with tokenized graph Transformers, our model can learn the curva-
ture appropriate for the input graph in an end-to-end fashion, without any additional
tuning on different curvature initializations. We also provide a kernelized approach
to non-Euclidean attention, which enables our model to run with computational
cost linear to the number of nodes and edges while respecting the underlying ge-
ometry. Experiments on graph reconstruction and node classification demonstrate
the benefits of generalizing Transformers to the non-Euclidean domain.

1 INTRODUCTION

Learning from graph-structured data is a challenging task in machine learning, with various down-
stream applications that involve modeling individual entities and relational interactions among
them (Sen et al., 2008; Watts & Strogatz, 1998; Gleich et al., 2004). A dominant line of work consists
of graph convolutional networks (GCNs) that aggregate features across graph neighbors through
message-passing (Gilmer et al., 2017; Kipf & Welling, 2016; Veličković et al., 2017; Wu et al., 2019;
Hamilton et al., 2017). While most GCNs learn features that lie on the typical Euclidean space with
zero curvature, real-world graphs often comprise of complex structures such as hierarchical trees and
cycles that Euclidean space requires excessive dimensions to accurately embed (Sala et al., 2018).
In response, the graph learning community has developed generalizations of GCNs to spaces with
non-zero curvature such as hyperbolic, spherical, or mixed-curvature spaces with both negative and
positive curvatures (Chami et al., 2019; Liu et al., 2019; Bachmann et al., 2020; Xiong et al., 2022).

Unfortunately, non-Euclidean GCNs are not immune to harmful side-effects of message-passing such
as oversmoothing (Oono & Suzuki, 2019; Cai & Wang, 2020; Yang et al., 2022) and oversquash-
ing (Topping et al., 2021; Alon & Yahav, 2020). These drawbacks make it difficult to stack GCN
layers towards large depths, limiting its expressive power (Feng et al., 2022; Maron et al., 2019)
as well as predictive performance on tasks that require long-range interactions to solve (Dwivedi
et al., 2022; Liu et al., 2021). To cope with such limitations, recent work have instead proposed
Transformer-based graph encoders that can easily exchange information across long-range distances
through global self-attention (Kim et al., 2022; Ying et al., 2021; Dwivedi & Bresson, 2020; Kreuzer
et al., 2021). However, existing graph Transformers are still confined within the Euclidean regime,
and their extensions towards non-Euclidean geometry has not yet been studied.

In this paper, we bridge this gap by generalizing the Transformer architecture (Vaswani et al., 2017)
towards non-Euclidean spaces with learnable curvatures. Specifically, we endow each attention head a
stereographic model (Bachmann et al., 2020) that can universally represent Euclidean, hyperbolic, and
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Figure 1: Illustration of our proposed FPS-T architecture. Well-known constant curvature spaces can
be projected to the stereographic model, with a common chart map isomorphic to the d-dimensional
Euclidean space. Each space can efficiently embed different types of graphs (e.g., trees in hyperbolic
space, lines in Euclidean space, and cycles in spherical space). In FPS-T, each layer chooses a set of
curvatures that fits the input graph by changing the sign of the curvature  in a differentiable manner.

spherical spaces (Figure 1). We generalize each operation of the Transformer architecture to inputs
on the product-stereographic model, all of which are end-to-end differentiable with respect to the
curvatures, thereby allowing the model to jointly train embeddings as well as the underlying curvature.
The resulting model, which we name as Fully Product-Stereographic Transformer (FPS-T), takes
advantage of both non-Euclidean geometry and long-range interactions. We empirically show that
the learnable sectional curvature of FPS-T successfully converges to the geometry of the input graph,
leading to better predictive performance and parameter efficiency in graph reconstruction and node
classification compared to its Euclidean counterpart. To the best of our knowledge, our work is the
first to propose a natural generalization of Transformers to mixed-curvature spaces. We summarize
our core contributions as follows:

• We propose FPS-T, a generalization of Transformer towards operating entirely on the
product-stereographic model with curvatures that are learnable in an end-to-end fashion.

• For graph representation learning, we integrate FPS-T with Tokenized Graph Trans-
former (Kim et al., 2022), and develop a kernelized approximation of non-Euclidean attention
to reduce the computational cost to linear in number of nodes and edges.

• Graph reconstruction and node classification experiments on synthetic as well as real-world
graphs demonstrate the benefit of generalizing Transformers to the mixed-curvature domain.

2 RELATED WORK

Non-Euclidean graph representations. Non-Euclidean spaces are known to well-preserve specific
types of graph structure where Euclidean space fails. Especially, non-Euclidean spaces with constant
sectional curvature, e.g., hyperbolic and spherical spaces, are widely used in graph representation
learning due to its tractable operations. Hyperbolic spaces are capable of efficiently embedding
complex hierarchical structures in graphs (Nickel & Kiela, 2018; 2017; Ganea et al., 2018; Kri-
oukov et al., 2010; Sala et al., 2018). Graphs with cyclic structures are well-suited for spherical
spaces (Wilson et al., 2014; Grattarola et al., 2019). Riemannian manifolds with varying curvature
and constant sign are also proposed for graph encoding (Cruceru et al., 2021). However, Riemannian
manifolds where the sign of the curvature is fixed are not a good choice for more complex graphs
that exhibit both hierarchy and cycles. Instead, the product of constant-curvature spaces (Gu et al.,
2019), heterogeneous manifolds (Giovanni et al., 2022), and pseudo-Riemannian manifolds (Law &
Stam, 2020) are found to be well-suited for learning representations of such complex graphs.

Message passing GCNs also benefit from considering a non-Euclidean representation space. Hy-
perbolic GCNs are known to outperform Euclidean counterparts in various tasks on hierarchical
graphs such as citation networks (Chami et al., 2019; Zhang et al., 2021; Pei et al., 2020) and
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molecules (Chami et al., 2019; Liu et al., 2019). Deepsphere (Defferrard et al., 2020) also adopted the
spherical space to GCNs with applications such as 3D object and earth climate modeling. To take the
advantage of multiple spaces, (Zhu et al., 2020b) proposed a hybrid architecture that fuses Euclidean
and hyperbolic graph representations together. (Deng et al., 2023) similarly proposed modeling
interactions between three constant-curvature spaces (i.e., Euclidean, hyperbolic, and spherical). To
allow smooth connections between the three constant-curvature spaces, (Bachmann et al., 2020)
proposed a model of constant-curvature space called the stereographic model, on which geometric
operations such as distances and inner products are differentiable at all curvature values including
zero. Incorporating pseudo-Riemannian manifolds with the GCN architecture also showed promising
results (Xiong et al., 2022), but its performance is sensitive to the time dimension of the manifold,
which requires extensive hyperparameter tuning.

Overall, GCNs achieve great predictive performance in homophilic graphs where connected nodes
share the same features, but they tend to fail in hetereophilic graphs, as stacking up GCN layers to
capture message passing between distant nodes induces oversmoothing (Oono & Suzuki, 2019; Cai &
Wang, 2020) and oversquashing (Topping et al., 2021). To relieve this architectural limitation while
utilizing non-Euclidean geometrical priors, we instead develop a Transformer-based graph encoder
that operates on the steregraphic model to learn graph representations.

Graph Transformers. Inspired by huge success of Transformers in NLP and CV (Devlin et al.,
2018; Brown et al., 2020; Dosovitskiy et al., 2020), there exist various work that extend Transform-
ers for encoding graphs with edge connectivities that are neither sequential nor grid-like. Graph
Transformer (Dwivedi & Bresson, 2020) and Spectral Attention Network (Kreuzer et al., 2021)
were the first pioneers to explore this direction by replacing sinusoidal positional encodings widely
used in NLP with Laplacian eigenvectors of the input graph. Graphormer (Ying et al., 2021) then
proposed utilizing edge connectivities by using shortest-path distances as an attention-bias, showing
state-of-the-art performance on molecular property prediction. TokenGT (Kim et al., 2022) proposed
a tokenization technique that views each graph as a sequence of nodes and edges. Unlike other
methods, TokenGT allows straightforward integration of engineering techniques of pure Transformers
such as linearized attention (Katharopoulos et al., 2020), while enjoying theoretical expressivity that
surpasses that of message-passing GCNs.

However, existing graph Transformer architectures are yet confined within the Euclidean domain,
making them unable to precisely embed graphs onto the feature space similarly to geometric GCNs.
While Hyperbolic Attention Network (Gulcehre et al., 2018) proposed an attention mechanism that
operates on hyperbolic space, its distance-based approach imposes a computational cost quadratic to
the graph size and its geometry is fixed to hyperbolic. Instead, we generalize the representation space
of Transformer to stereographic model, which allows us to cover more various types of graphs. We
also linearize the attention mechanism on the stereographic model similar to Katharopoulos et al.
(2020), which results in a model that runs in cost linear to the number of nodes and edges.

3 PRELIMINARIES

In this section, we introduce concepts related to our main geometrical tool, the product-stereographic
model (Bachmann et al., 2020). We also discuss multi-head attention, the driving force of the
Transformer architecture (Vaswani et al., 2017).

3.1 PRODUCT-STEREOGRAPHIC MODEL

Riemannian manifolds. A Riemannian manifold is consisted of a smooth manifold M and a metric
tensor g. Each point x on the manifold M defines a tangent space TxM, which is a collection of all
vectors that are tangent to x, also called the tangent vector. The metric tensor g : M ! R

n⇥n assigns
a positive-definite matrix to each point x, which defines its inner product h·, ·ix : TxM⇥TxM ! R

as vT

1 g(x)v2 where v1,v2 2 TxM are the tangent vectors of x. The metric tensor also defines
geometrical properties and operations on the Riemannian manifold. Geodesic � is the shortest curve
between two points x,y 2 M and its distance can be computed as dM(x,y) =

R 1
0 h�̇(t), �̇(t)i�(t)dt,

where � : [0, 1] ! M is a unit-speed curve satisfying �(0) = x and �(1) = y. We can move the
point x 2 M along a tangent vector v 2 TxM using exponential map expx : TxM ! M which is
defined as expx(v) = �(1) where � is a geodesic and �(0) = x, ˙�(0) = v. The logarithmic map
logx : M ! TxM is the inverse of expx. A tangent vector v 2 TxM can be transferred along a
geodesic from x to y using parallel transport PTx!y : TxM ! TyM.
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Note that the product of Riemannian manifolds is also a Riemannian manifold. A point on the product
Riemannian manifold x 2 ⌦n

i=1Mi is consisted of points from each component manifold Mi as
x = kn

i=1xi, where xi 2 Mi and k denotes concatenation. The distance between x,y 2 ⌦n

i=1Mi is
calculated as

qP
n

i=1 d
2
Mi

(xi,yi). Exponential/logarithmic maps and parallel transports are applied
in a manifold-wise fashion (e.g., expx(v) = kn

i=1 expxi
(vi) with v = kn

i=1vi and vi 2 TxiMi).

Constant-curvature spaces. Curvature is an important geometrical property used to characterize
Riemannian manifolds. One widely-used curvature to explain Riemannian manifolds is the sectional
curvature: given two linearly independent tangent vector fields U, V 2 X(M), the sectional curvature
K(U, V ) is computed as K(U, V ) = hR(U,V )V,Ui

hU,UihV,V i�hU,V i2 , where R(·, ·) : X(M)⇥X(M)⇥X(M) !
X(M) is a Riemannian curvature tensor. The sectional curvature measures the divergence between
geodesics starting with the tangent vector fields U, V for each point of the manifold. With positive or
negative sectional curvatures, geodesics become closer or farther than with zero curvature. Throughout
this paper, we refer to a space of a constant sectional curvature as a constant-curvature space. For
example, the Euclidean space E is the special case of the constant-curvature space with zero curvature.
When positive or negative, we call the corresponding spaces to be hyperbolic H or spherical S.

Stereographic models. A d-dimensional stereographic model std


is a constant-curvature space
with curvature  2 R. One attractive property of the stereographic model is that the operations such
as distance, exp/log-map, and parallel transport are differentiable at any curvature value , including
 = 0. This enables the stereographic model to learn the curvature value  without any constraint.

The manifold of the stereographic model std


is {x 2 R
d| � kxk2 < 1}. The metric tensor is

defined as g
(x) = 4

1+kxk2 I =: (�

x)
2I , where �



x is known as the conformal factor. The mobius

addition between two points x,y 2 std


is computed as x � y = (1�2xTy�kyk2)x+(1+kxk2)y
1�2xTy+2kxk2kyk2 .

Based on mobius addition, we can derive other geometric operations as Table 3 in Appendix A. The
table also shows that when  converges to zero, the operations become equivalent to Euclidean space
operations, so the stereographic model essentially recovers Euclidean geometry.

3.2 MULTI-HEAD ATTENTION

In vanilla Transformer (Vaswani et al., 2017), each block consists of multiple attention heads, each
taking a sequence of token embeddings X 2 R

n⇥d with sequence length n and feature dimension d

as input. Three linear layers WQ
,WK

,V V 2 R
d⇥d

0
first map each token embedding into queries

Q, keys K, and values V with head-dimension d
0, respectively. Then, the attention score matrix

is computed by scaled Euclidean dot-product between Q and K, followed by row-wise softmax
activation �(·). The attention score matrix is then multiplied to value V , returning contextualized
token embeddings. The overall procedure can be written as

Q = XWQ
, K = XWK

, V = XW V
, Attn(X) = �

✓
QKT

p
d0

◆
V . (1)

The output from multiple attention heads are concatenated together, then processed through a feed-
forward layer before proceeding to the next Transformer block.

4 FULLY PRODUCT-STEREOGRAPHIC TRANSFORMER

Here, we describe the inner wirings of our proposed method. We generalize each operation in Trans-
former to the product-stereographic model, together forming a geometric Transformer architecture
that operates entirely within the stereographic model.

4.1 STEREOGRAPHIC NEURAL NETWORKS

We first introduce the stereographic analogies of the Euclidean neural networks such as the linear
layer, activation, layer normalization, and logit functions. We denote the product-stereographic
model ⌦H

i=1st
d

i
as std⌦, where  = (1, . . . , H) is the ordered set of curvatures of d-dimensional

component spaces within a Transformer block with H attention heads. We also use the superscript ⌦
to denote Riemannian operations on product-stereographic model that decompose representations into
equal parts, apply the operation, then concatenate back to the product space (e.g., if v = [v1, . . . , vH ],
then exp⌦

0 (v) := kH
i=1 exp

i
0 (vi)).
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Figure 2: Illustration of our attention mechanism on the non-Euclidean space. FPS-T considers each
value-vector as a point that resides on the stereographic model, and query/key-vectors as tangent
vectors on the corresponding tangent spaces. All query/key-vectors are parallel-transported to the
origin prior to dot-product attention, thereby taking the given geometry into account.

Stereographic linear layer, activation, and layer normalization. Given a Euclidean neural
network f , we can define its stereographic counterpart as exp⌦

0

�
f
�
log⌦

0 (X)
��

. The stereographic
linear layer Linear⌦(X;W ) is thus defined by setting f as the Euclidean linear layer f(X;W ) =
XW . The same approach can be used for any Euclidean activation function fact (e.g., ReLU, Tanh,
ELU, and Sigmoid), from which we obtain stereographic activation functions. Stereographic layer
normalization LN⌦ is defined in the same manner.

Stereographic logits. Suppose that x 2 std is a stereographic embedding retrieved from the last
transformer layer. For prediction tasks such as node classification, we need to compute the probability
that the node with embedding x belongs to class c. Inspired by logistic regression in Euclidean
spaces, Bachmann et al. (2020) proposes its stereographic variant as

p(y = c | x) / exp (sign(h�pc � x,aci)kackpcd(x, Hac,pc)) , (2)
where Hac,pc = {x 2 std | h�pc � x,aci = 0} is a hyperplane formed by ac 2 Tpcst

d

 and
pc 2 std. For stereographic model std


, the distance between x 2 std


and hyperplane Ha,p equals

d(x, Ha,p) = sin�1
⇤||

✓
2|h�p � x,ai|

(1 + kh�p � x,aik2)kak

◆
. (3)

This distance function can be easily extended to the product-stereographic model as mentioned in
Section 3.1, and parameters a,p that define the hyperplane are learnable during training.

4.2 STEREOGRAPHIC MULTI-HEAD ATTENTION

Using the stereographic operations above, we propose a multi-head attention mechanism under
product-stereographic models. The key intuition is that each h-th attention head operates on the
h-stereographic space. Given a sequence of n product-stereographic embeddings X 2 stn⇥d


, the

attention head with curvature  first obtains values using the stereographic linear layer. For queries
and keys, it maps each stereographic embedding to the tangent space of the values as:

Q = XWQ 2 TV stn⇥d
0


, K = XWK 2 TV stn⇥d

0


, V = Linear(X;W V ) 2 stn⇥d

0


, (4)

where WQ
,WK 2 R

d⇥d
0

are the query/key weight matrices, and W V 2 R
d⇥d

0
is the weight

matrix for values. Then, the attention score between the i-th query Qi and j-th key Kj is computed
by parallel-transporting the vectors to the origin, and taking the inner product at the origin as

↵ij = hPTVi!0(Qi),PTVj!0(Kj)i0. (5)
Figure 2 illustrates our geometric attention mechanism. Because the metric tensor of the origin of
the stereographic model is simply 4I with identity matrix I , the Riemannian inner product becomes
equivalent to the Euclidean inner product at the origin. Finally, we aggregate values based on the
attention scores using the Einstein midpoint:

Aggregate

(V ,↵)

i
:=

1

2
⌦

0

@
nX

j=1

↵ij�


VjP
n

k=1 ↵ik(�

Vk
� 1)

Vj

1

A , (6)

with conformal factor �


Vi
at point Vi 2 std

0


. By concatenating the aggregated results from each

attention head, the final outcome of product-stereographic multi-head attention is
MHA⌦(X) = kH

h=1Aggregate
h
(V h

,↵h) 2 ⌦H

h=1st
n⇥d

h
, (7)

where h denotes the curvature of the h-th attention head.
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4.3 WRAP-UP

For completeness, we fill in the gap on how intermediate steps such as skip-connection are generalized
towards non-zero curvatures, and how representations are processed between Transformer layers
with distinct curvatures. First, recall that vanilla Transformer utilizes residual connections and Layer
normalization to mitigate vanishing gradients and induce better convergence (Vaswani et al., 2017).
To apply these operations on representations in the product-stereographic space, we switch to

Xl = MHA⌦(LN⌦(X
in
l
)) � X in

l
, Xout

l
= FFN⌦(LN⌦(Xl)) � Xl. (8)

Note that while each attention head in stereographic multi-head attention operates on each stereo-
graphic model independently, the product-stereographic feed-forward network FFN⌦, for which we
use two stereograhpic linear layers with an activation in between, fuses representations from distinct
geometries and performs interactions between different steregraphic models similarly to previous
work (Zhu et al., 2020b; Deng et al., 2023).

Furthermore, note that each l-th Transformer layer operates on a distinct product-stereographic space
std⌦l where l = (l

1, . . . , 
l

H
) together forms the geometric signature of the layer. For consistency,

we assume that the input embeddings are on the product-stereographic model of the first layer (i.e.,
std⌦1 ). In case of classification tasks where logits are computed, the product-stereographic logit layer
operates on the last set of curvatures (i.e., std⌦L where L denotes the number of Transformer layers).
In between layers, representations are translated from std⌦l to std⌦l+1 by assuming a shared tangent
space at the origin (i.e., X in

l+1 = (exp
⌦l+1

0 � log⌦l
0 )(Xout

l
)). Altogether, it is straightforward to

find that FPS-T becomes equivalent to the original Transformer as all  approaches 0, yet
it possesses the capability to deviate itself away from Euclidean geometry given it leads to better
optimization. For all experiments, we initialize all curvatures as zero to demonstrate the practicality of
our method by not requiring additional hyperparameter tuning over different curvature combinations.

4.4 EXTENSION TO GRAPH TRANSFORMER

To learn graph-structured data with FPS-T, we borrow the tokenization technique used by TO-
KENGT (Kim et al., 2022). Let G = (V, E) be a graph with N nodes in node-set V , M edges in
edge-set E , and respective features XV 2 R

N⇥d, XE 2 R
M⇥d. Then, we tokenize G into a sequence

X = [XV
,XE ] 2 R

(N+M)⇥d by treating each node and edge as an independent token, and augment
the tokens with 1) node identifiers that serve as positional encoding and 2) type identifiers that
allow the model to distinguish between node- and edge-tokens. TOKENGT feeds this sequence into
vanilla Transformer, an approach proven to pass the 2-dimensional Weisfeiler-Lehman (2-WL) graph
isomorphism test and surpass the theoretical expressivity of message-passing GNNs (Kim et al., 2022;
Maron et al., 2019). More details on the tokenization procedure can be found in Appendix B.

In our work, we encode the input sequence through FPS-T instead, such that nodes and edges
exchange information globally on the product-stereographic space. As augmented feature vectors
X are initially Euclidean, we assume each token lies within the tangent space at the origin of the
product-stereographic model of the first layer T0std

0

⌦1
⇠= R

H⇥d
0
, where |1| = H and Hd

0 = d.
Therefore, we apply exponential mapping on the tokens to place them on the product-stereographic
model via exp⌦1

0 (X), the output of which is forwarded through FPS-T.

4.5 COST LINEARIZATION OF STEREOGRAPHIC ATTENTION

One drawback of the graph tokenization method above is that its computational cost becomes
intractable when encoding large graphs. As computing the attention score matrix takes time and
memory quadratic to the sequence length, a graph with N nodes and M edges incurs an asymptotic
cost of O((N + M)2), which can be O(N4) for dense graphs. Fortunately, there exist various
advancements used to make Transformers more efficient (Tay et al., 2022; Kitaev et al., 2020;
Choromanski et al., 2020; Wang et al., 2020; Xiong et al., 2021; Cho et al., 2022).

In linearized attention (Katharopoulos et al., 2020), it is shown that the Euclidean attention score
hQi,Kji can be approximated with the product of kernel function �(Qi)�(Kj)T , where �(X) =
ELU(X) + 1. For stereographic attention (Equation 5), computing dot-products on the tangent
space of the origin allows us to extend this kernelization to FPS-T. Let Q̃i = PTVi!0(Qi) and
K̃j = PTVj!0(Kj) be the tangent vectors on the origin prior to taking the dot-product. By applying
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Table 1: Synthetic graph reconstruction results in average distortion (lower is better). The best FPS-T
configuration and its learned curvatures are well-aligned to the geometry of the input graph.

Model Space TREE SPHERE TORUS RING OF TREES

TOKENGT E
10 0.04363 0.04023 0.07172 0.05553

E
5 ⇥ E

5 0.04357 0.04139 0.07167 0.05546

FPS-T (ours) st10
1

0.00072 0.02176 0.06415 0.03393
st5

1
⇥ st5

2
0.00105 0.02206 0.06135 0.01630

Best FPS-T curvatures (�1.219) (+0.0629) (+1.308,+0.2153) (+0.3241, �3.314)

(a) TREE (b) SPHERE (c) TORUS (d) RING OF TREES

Figure 3: Illustration of geometric graphs used in our synthetic graph reconstruction experiment.

kernelization to stereographic attention, we can rewrite the stereographic aggregation (Equation 6) as

1

2
⌦

0

@
nX

j=1

hQ̃i, K̃ji0�

VjP
n

k=1hQ̃i, K̃ki0(�

Vk
� 1)

Vj

1

A ⇡ 1

2
⌦

h
�(Q̃)

⇣
�
0(K̃)T Ṽ

⌘i

i

(9)

where �
0(K)i = �(K)i(�

Vi
� 1) and Ṽi =

�

Vi

�

Vi

�1Vi.

This approximation enables FPS-T to encode graphs with O(N +M) cost, matching the complexity
of message-passing GCNs (Wu et al., 2020) while taking the non-Euclidean geometry into account.
In Appendix C, we empirically verify this asymptotic cost and also find that the additional cost of
Riemannian operations in FPS-T are mostly dominated by pre-existing Transformer operations when
encoding large networks. In the upcoming experiments, we use the kernelized approach for FPS-T
and find that the approximation performs well in practice.

5 EXPERIMENTS
We first evaluate FPS-T on synthetic geometric graph reconstruction (e.g. tree or spherical graph)
to verify whether our approach learns curvatures that best fit the input graph. We also benchmark
existing graph reconstruction and node classification datasets to empirically demonstrate the benefit
of capturing long-range interactions under mixed-curvature spaces in real-world settings.

5.1 GRAPH RECONSTRUCTION

Datasets. For synthetic graph reconstruction, we generate four types of graphs where the suitable
geometry is known a priori — TREES (H), SPHERE (S), TORUS (S⇥S), and RING OF TREES (S⇥H).
An example illustration of the synthetic graphs can be found in Figure 3. We then evaluate FPS-T
on four real-world networks: WEB-EDU (Gleich et al., 2004) is a web-page network under the .edu
domain connected with hyperlinks; POWER (Watts & Strogatz, 1998) is a network that models the
electrical power grid in western US; BIO-WORM (Cho et al., 2014) is a genetics network of the C.
elegans worm; FACEBOOK (Leskovec & Mcauley, 2012) is a social network. Further details on the
datasets such as sectional curvature statistics of the networks can be found in Appendix D.

Training. The goal of graph reconstruction is to learn continuous node representations of the given
graph that preserve the edge connectivity structure through distances in the feature space. Let hu

denote the encoded representation of node u 2 V given a graph G = (V, E). For synthetic graph
reconstruction, we train FPS-T and TOKENGT by minimizing the graph distortion (Gu et al., 2019):

L(h, G) =
X

(u,v)2V⇥V
u 6=v

�����

✓
d(hu,hv)

dG(u, v)

◆2

� 1

�����

where d(hu,hv) denote the distance between hu and hv on the representation space, and dG(u, v)
equals the shortest path distance between nodes u and v on graph G. Both methods use a single layer
with 1 or 2 attention heads with a combined latent dimension of 10.
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Dataset WEB-EDU POWER FACEBOOK BIO-WORM
Avg. Curvature -0.63 -0.28 -0.08 -0.03

MLP 83.24±1.32 83.89±4.02 50.64±15.12 73.34±20.85
GCN 79.95±0.23 98.25±0.02 78.99±0.29 93.32±1.06
GAT 88.86±0.36 99.03±0.01 82.81±0.25 97.76±0.03
SAGE 86.34±0.31 97.58±0.14 81.01±0.26 96.86±0.06
SGC 78.78±0.12 97.69±0.05 74.69±0.36 89.73±0.59
TOKENGT 89.45±0.06 99.10±0.00 84.71±0.02 97.82±0.02

HGCN 80.13±0.31 96.82±0.08 74.35±5.39 86.96±0.30
HGNN 83.64±0.26 97.85±0.05 78.74±0.58 90.97±1.06
HAT 90.21±0.36 93.86±0.34 80.09±0.20 93.58±0.42

-GCN 55.34±35.88 98.23±0.09 20.80±20.69 84.16±13.67
Q-GCN 80.34±0.07 97.87±0.01 76.33±0.01 96.15±0.01

FPS-T 99.10±0.01 99.32±0.01 86.16±0.10 98.19±0.03

Figure 4: Left: Real-world graph reconstruction results. We run each method under 5 random seeds
and report the average mAP with 95% confidence intervals. Right: Test mAP (Y-axis) of FPS-T and
TOKENGT on WEB-EDU with decreasing model size (X-axis; by decreasing the latent dimension).
Using mixed-curvarture spaces can be more parameter efficient in preserving graph structures.

For real-world graph reconstruction, we instead minimize a loss function that aims for preserving
the local connections as computing the all-pairwise shortest path distances becomes computationally
intractable with large networks:

L(h, G) =
X

(u,v)2E

log
e
�d(hu,hv)

P
v02Ē(u) e�d(hu,hv0 )

Here, Ē(u) denotes the set of non-neighbors of node u. In addition to TOKENGT, we also compare
FPS-T against baselines including Euclidean (GCN (Kipf & Welling, 2016), GAT (Veličković et al.,
2017), SAGE (Hamilton et al., 2017), SGC (Wu et al., 2019)), hyperbolic (HGCN (Chami et al.,
2019), HGNN (Liu et al., 2019), HAT (Zhang et al., 2021)), and mixed-curvature (-GCN (Bachmann
et al., 2020), Q-GCN (Xiong et al., 2022)) message passing-based GCNs. For fair comparison, we
set the number of layers to one and latent dimension to 16 for all models. We train all models for 10k
epochs using an Adam optimizer with learning rate 1e�2. The node features are given as one-hot
encodings with additional random noise following Xiong et al. (2022). We defer details on the choice
of hyperparameters of baseline methods to Appendix E.

Results. Table 1 reports the synthetic graph reconstruction results in average graph distortion as
well as curvatures learned by FPS-T. As expected, FPS-T consistently outperforms its Euclidean
counterpart on all four networks due to the networks exhibiting highly non-Euclidean structures.
Despite being initialized at zero, the learnable curvatures in FPS-T converge towards curvatures
that intuitively match with the input graph: for RING OF TREES, FPS-T with two attention heads
converge towards one positive and one negative curvature, outperforming the single-head variant.

Next, the left table in Figure 4 shows the average sectional curvature of each real-world network
and corresponding graph reconstruction results in mean average-precision (mAP) which measures
the average ratio of nearest points that are actual neighbors of each node. We find that FPS-T
shows significant performance gains on all four networks when compared to all baselines including
Euclidean TOKENGT. Specifically, FPS-T shows a 10.5% gain in mAP against TOKENGT on
WEB-EDU with an average sectional curvature of -0.63, showing that performing attention on the
non-Euclidean product-stereographic space is especially effective when encoding graphs containing
of many non-zero sectional curvatures.

Note that non-Euclidean spaces are theoretically known to well-embed complex structures in low
dimensions, while Euclidean spaces require a large number of dimensions to attain reasonable
precision (Sala et al., 2018). Based on this observation, we test whether FPS-T enjoys better parameter
efficiency compared to TOKENGT by training two models with decreasing latent dimensions in
{16, 12, 8, 4}. In the right plot of Figure 4, we report the mAP score of TOKENGT and FPS-T on
the WEB-EDU network after training with decreasing number of parameters. We observe that our
approach of incorporating mixed-curvature spaces consistently obtains low distortion embeddings in
a more parameter-efficient manner, outperforming TOKENGT with d = 16 using half its model size.
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Table 2: Node classification results. We run each method under 10 different random seeds and report
the average F1 scores with 95% confidence intervals and average rankings across all datasets.

Dataset TEXAS CORNELL WISCONSIN ACTOR AIRPORT CITESEER PUBMED CORA Avg.
H(G) 0.11 0.13 0.20 0.22 0.72 0.74 0.80 0.81 Rank

MLP 70.54±3.00 58.38±4.04 81.20±1.87 33.62±0.55 54.05±1.78 52.58±1.97 67.17±0.91 52.44±1.08 8.25
GCN 57.84±1.62 47.84±1.77 45.40±2.62 27.09±0.36 92.00±0.63 71.38±0.43 78.37±0.26 80.40±0.53 7.38
GAT 59.46±1.12 55.14±1.80 46.20±2.30 27.43±0.23 92.35±0.36 71.70±0.28 78.14±0.31 82.29±0.46 6.13
SAGE 68.38±3.54 70.54±2.01 78.40±0.52 36.87±0.50 93.21±0.57 70.58±0.42 77.31±0.59 78.88±0.87 5.13
SGC 57.57±2.96 52.97±2.87 46.40±2.01 27.14±0.46 90.48±1.01 72.11±0.38 75.11±1.27 79.68±0.65 8.25
TOKENGT 88.65±2.06 71.62±2.13 83.00±0.65 36.59±0.89 95.90±0.59 71.23±0.51 78.93±0.27 81.42±0.79 2.50

HGCN 54.59±3.93 55.68±1.80 55.60±2.53 28.89±0.16 92.47±0.63 69.92±0.61 75.67±0.99 80.00±0.85 7.00
HGNN 50.81±3.60 52.70±1.42 54.60±2.68 29.09±0.19 90.55±0.71 69.82±0.53 76.72±0.86 79.30±0.51 8.75
HAT 82.16±2.52 70.54±1.67 81.80±1.36 38.34±0.26 92.88±0.57 68.14±0.53 77.50±0.42 79.81±0.58 4.38

-GCN 56.22±4.38 55.68±5.59 46.60±2.41 26.39±0.60 82.58±3.70 54.06±4.45 68.61±3.05 73.70±0.69 10.3
Q-GCN 51.35±3.44 55.95±2.85 52.80±2.20 28.18±0.55 91.39±1.05 66.15±0.45 77.13±0.59 79.63±0.57 8.25

FPS-T 89.19±2.37 72.16±2.96 83.60±1.14 39.61±0.54 96.01±0.55 70.03±0.71 78.52±0.58 82.32±0.70 1.75

5.2 NODE CLASSIFICATION

Datasets. For node classification we experiment on eight different networks: three WebKB networks
(TEXAS, CORNELL, WISCONSIN) that connect web-pages via hyperlinks (Craven et al., 1998), a
co-occurrence network from Wikipedia pages related to English films (ACTOR) (Tang et al., 2009),
three citation networks (CITESEER, PUBMED, CORA) (Sen et al., 2008), and an airline network
(AIRPORT) (Chami et al., 2019). These networks are chosen to test our approach under a wide
spectrum of graph homophily H(G), which measures the ratio of edges that connect nodes that share
the same label (Zhu et al., 2020a). In other words, a hetereophilic graph with small graph homophily
requires capturing long-range interactions for proper labeling, which is naturally difficult for message
passing-based approaches with small receptive fields. More detailed statistics on the networks can be
found in Appendix D.

Training. For all methods, we fix the embedding dimension to 16 and train each model to minimize
the cross-entropy loss using an Adam optimizer with a learning rate of 1e�2. For models that use
learnable curvatures (i.e., HGCN, -GCN and FPS-T), we use a learning rate of 1e�4 for the
curvatures. The optimal number of layers, activation function, dropout rate, and weight decay of each
method are chosen via grid search on each dataset. Details on the hyperparameter search-space and
dataset splits can be found in Appendix E.2.

Results. Table 2 shows the results from node classification. Overall, our method attains best
accuracy on 6 out of 8 datasets, showing that FPS-T is effective across networks with various graph
homophily. In case of hetereophilic networks, we find that the small receptive fields of message-
passing GCNs are extremely inadequate, often being outperformed by a simple MLP that completely
ignores the graph connectivity. On the other hand, FPS-T consistently outperforms MLP as well as
GCN baselines, due to its ability to exchange information across long distances via global-attention.
It also significantly outperforms TOKENGT by 8.3% on Actor, showing that adjusting the geometry
towards non-Euclidean can further enhance predictive performance. In homophilic networks where
message-passing is more well-suited, FPS-T shows competitive performance against GCN baselines.
This is expected as FPS-T enjoys the same capacity as TOKENGT to mimic any order-2 equivariant
bases (Kim et al., 2022), which includes local message-passing, through attention score computation.

6 CONCLUSION
We propose FPS-T, a natural generalization of the Transformer architecture towards mixed-curvature
spaces with learnable curvatures. When combined with the graph tokenization technique of Kim
et al. (2022), our model can embed graphs with less distortion and higher parameter-efficiency than
its Euclidean counterpart by operating on the product-stereographic model. We also show that our
model outperforms existing hyperbolic and mixed-curvature message-passing GCN baselines on node
classification via global-attention that can capture long-range interactions. By linearizing the cost of
self-attention through kernelized approximation, FPS-T runs in cost linear to the number of nodes
and edges, allowing practical use on large-scale networks. For future work, we plan to extend towards
heterogeneous manifolds (Giovanni et al., 2022) with input-dependent sectional curvatures and also
optimize Riemannian operations towards better stability and efficiency under finite precision. As we
propose a foundational generalization of the Transformer architecture, investigating what geometry
suits best for various tasks in the NLP and CV domain would also be an interesting direction.
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