
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

WBSan: Webassembly Bug Detection for Sanitization and
Binary-Only Fuzzing

Anonymous Author(s)

Abstract
With the advancement of WebAssembly, abbreviated as Wasm, var-
ious memory bugs and undefined behaviors have emerged, leading
to security issues and discrepancies that affect usability and porta-
bility. Existing methods struggle to detect these problems in Wasm
binaries due to challenges associated with binary instrumentation
and the difficulty of defining legal memory bounds. While sani-
tizers combined with fuzzing are recognized as effective means
for identifying memory bugs and undefined behaviors, current
Wasm sanitizers necessitate compile-time instrumentation, render-
ing them unsuitable for practical scenarios where only binaries
are accessible. In this paper, we propose WBSan, the first Wasm
binary sanitizer by employing static analysis and Wasm binary
instrumentation to detect memory bugs and undefined behaviors.
We develop distinct instrumentation patterns tailored for each type
of memory issue and introduceWasm shadow memory to address
complex memory bugs. Our results reveal that WBSan achieves
a 16.8% false detection rate, outperforming current Wasm binary
checkers and native sanitizers in detecting memory bugs and unde-
fined behaviors. Furthermore, when compared with the binary-only
fuzzer, WBSan uncovers more crashes (1,174 vs. 556) and achieves
greater code coverage (162,385 vs. 22,237 unique search paths).

1 Introduction
WebAssembly (abbreviated Wasm) [30] is a binary instruction for-
mat that serves as a compilation target for high-level languages
including C, C++, C#, and more [45]. Wasm can be deployed to
the web and other platforms, such as IoTs [39, 40], smart con-
tracts [22, 57, 61], and cloud computing [35, 50, 58].

Analyzing closed-source Wasm binaries is currently not an easy
task since such analysis relies on automatic bug detection methods
which typically integrate sanitizers [25]. Current approaches for
identifying issues in Wasm binaries often utilize fuzzing without
adequate sanitization to trigger diverse bug types [33, 38], or are
limited to unsound statically targeting only specific categories of
bugs [19, 20]. Given the proven effectiveness of sanitizers in con-
junction with fuzzing for detecting a wide range of memory errors
and undefined behaviors, it is a logical progression to develop sani-
tizers specifically tailored for Wasm binaries. Sanitizers generally
capture the program execution state through static or dynamic
instrumentation to conduct relevant checks. Although a prevalent
WebAssembly compiler Emscripten already supports ASAN, Ad-
dress Santizer, and UBSAN, Undefined Behavior Santizer, in Wasm
programs [1], they necessitate instrumentation at the source code or
intermediate representation (IR) level during compilation, making
it hard to apply them on binary directly. To this end, developing a
comprehensive, cost-effective, and automation-integratable binary
Wasm sanitizer to detect these issues becomes meaningful.

Implementing such Wasm binary sanitizer presents several chal-
lenges: 1) Different program architectures. Although substantial

work exists on binary sanitizers in the native programming do-
main [15, 25, 29, 48, 53], Wasm diverges from traditional von Neu-
mann architecture, where code and data are stored together [36].
In Wasm, the code and data are stored separately. Native programs
use absolute or relative addressing instructions, along with register-
based addressing for jumps or function calls. In contrast, different
instruction set of Wasm employs indexing for memory accesses and
function calls, complicating the direct application of existing binary
static or dynamic instrumentation techniques [59]. Additionally,
the current binary rewriting techniques [23, 25] predominantly
focus on specific instruction sets and lack a universally applicable
framework across different architectures. 2) Detect legal memory
objects. Extracting the valid memory ranges from Wasm binaries
is also a non-trivial task. This complexity arises from the loss of
certain memory-related information during the compilation pro-
cess [18] and the uniquememory structure ofWasm,which employs
a managed stack for handling specific variables [36].

In this paper, we propose WBSan, a Wasm Binary Sanitizer de-
signed to detect memory bugs and undefined behaviors, which can
be effectively integrated with existing binary-only Wasm fuzzers.
To enhance performance and reduce false positives, we identify
potentially problematic instructions (anchor instructions) through
the analysis of control and data dependencies. We implementWasm
shadow memory in the target binary to more accurately define valid
memory boundaries. We use Wasm binary instrumentation [37] to
insert specialized dynamic checking patterns without affecting the
functionality of the Wasm binary. We create distinct detection pat-
terns for the four types of memory error and six types of undefined
behavior in Wasm, statically instrumenting the target binary with
these patterns. The instrumented detection patterns can identify
and locate erroneous instructions and call traces during execution
without disrupting the stack balance of Wasm.

We implement a prototype of WBSan and evaluate its bug detec-
tion effectiveness, performance overhead, and adaptability to the
current binary-only Wasm fuzzer. We compare bug-finding capabil-
ity of WBSan with two state-of-the-art Wasm binary checkers, Was-
mati [20] and fuzzm-canary [38], as well as three advanced native
binary sanitizers, Valgrind [48], QASan [29], and Retrowrite [25].
Although WBSan does not utilize source code information, we
also compare it with source-level Wasm sanitizer (ASAN, UBSAN)
provided by Emscripten. WBSan demonstrates superior accuracy
in detecting memory errors and undefined behaviors in Wasm bi-
naries, outperforming nearly all existing native binary checkers.
The instrumentation of WBSan results in an acceptable increase
in binary size, with the additional overhead for real large projects
being on par with the runtime overhead associated with compiler-
based instrumentation. We assess the applicability of WBSan with
a binary-only Wasm fuzzer, fuzzm, across 11 real-world programs
over 120 hours fuzzing. WBSan detects more crashes and achieves
higher code coverage compared to the current fuzzing method.

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

WBSan achieve superior sanitization effects compared to the
currentWasm and native sanitizers. It can be integrated into current
fuzzing frame work for fuzzing Wasm binaries, offering strong
performance and compatibility, and can serve as a viable drop-in
replacements for source-based tools. In summary, this paper makes
the following contributions:

• We propose WBSan, the first Wasm binary sanitizer that lever-
ages static analysis and binary instrumentation to detect memory
bugs and undefined behaviors.

• We design unique detection patterns for six undefined behaviors
and four memory bugs frequently occur in Wasm. These pat-
terns can be easily instrumented in target binary and triggered
runtime.

• We introduceWasm shadow memory, which dynamically verifies
memory validity by inserting red zones around allocatedmemory
and hooking relevant memory access instructions.Wasm shadow
memory addresses the challenge of identifying valid memory
boundaries within Wasm binaries.

• We evaluate WBSan regarding its bug detection capabilities,
performance overhead, and applicability for Wasm binary-only
fuzzing, yielding the following results:
– WBSan achieves a higher bug detection rate across 10 CWEs

in 14,278 test samples, surpassing all of the current Wasm
binary checkers and native binary sanitizers.

– WBSan can nearly match the detection rate of source-level
sanitizers without source code, and performs better on cer-
tain types of bugs (float-cast-overflow and memory-leak).

– WBSan introduces acceptable binary size increase and run-
time overhead comparable to compiler-based instrumenta-
tion.

– WBSan finds more crashes (1,174 vs. 556) and higher code
coverage (162,385 vs. 22,237 unique search paths) across
11 real-world programs compared to existing Wasm binary
fuzzing framework.

• We make WBSan publicly available [2].

2 Background and Motivation
In this section, we introduce the compilation pipeline of Wasm, the
role of sanitizers and their current development status in Wasm.
We highlight the shortcomings in the existing research field and
explain why there is a need for a binary-only sanitizer.

2.1 Webassmebly Binary

WebAssembly binaries are created by compiling from source code
in a high-level programming language, such as C or C++, with a
compiler. For example, Emscripten [60] is a prevalent C/C++-to-
Wasm compiler, which leverages Binaryen [10] and LLVM [13]
tools such as Clang [11] internally to generate a Wasm binary. Un-
like native x86/x64 binaries, Wasm binaries manage basic variable
types (integers, floating-point numbers) through a managed stack
maintained by the host sandbox, while more complex data types
(arrays, objects, etc.) are handled via an unmanaged stack [36]. Ad-
ditionally, memory access Wasm instructions and function calls
use indices [36] rather than relative or absolute addresses. The dif-
ferent program structure results in a significantly distinct analysis
approach for Wasm compared to traditional program analysis.

Table 1: Current representative sanitizers in the Native and
Wasm binary domains.

Instrument
Level Native Binary Wasm Binary

Source/IR
ASan [24], KAsan [3],

UBSan[15], TySan [26],
...

ASan, UBSan (Em-
scripten [60])

Binary

QASan [29],
RetroWrite [25],
Valgrind [48],

...

WBSan

2.2 Binary Sanitizer
Binary sanitizers have proven to be an effective way of detecting
memory errors and undefined behavior in binaries without source
code. They can be used independently for program analysis [25]
or combined with fuzzing to automate bug detection process [23].
In recent years, there have been binary-only sanitizers targeting
memory errors and undefined behaviors in the native binary do-
main, both in user space [23, 25, 47] and the kernel [24, 43]. In the
Wasm domain, to our knowledge, Emscripten, as an LLVM-based
Wasm compiler, currently supports the integration of existing two
sanitizers [1], namely ASan and UBSan, during the compilation
process at the source code (UBSan) or generated LLVM-IR (ASan).
Both of these sanitizers require the source code of the program.

2.3 Why a binary-only Wasm Sanitizer
In applications where Wasm is utilized for smart contracts [22,
57, 61], IoT [39, 40], or in browsers [14], users often interact with
compiled third-party Wasm modules without access to the source
code. Daniel et al. [36] demonstrated that compiling a vulnerable
third-party C library into Wasm could facilitate malicious cross-site
scripting attacks in browsers. The absence of source code, combined
with the fact that such vulnerabilities are typically triggered by
specific inputs, complicates their analysis and detection by current
Wasm checkers. Existing research has developed fuzzing [31, 38]
and symbolic execution [32, 33, 44] frameworks for Wasm binaries;
however, not all bugs manifest as crashes or hangs, making detec-
tion challenging. Table 1 outlines the current landscape of binary
sanitizer for both native and Wasm binaries. To address this gap,
we propose WBSan, which assists developers in more effectively de-
tecting memory errors and undefined behaviors in Wasm binaries.
WBSan can be integrated seamlessly with existing Wasm fuzzing
frameworks to trigger a broader range of bugs.

3 Design
This section details our approach to identifying memory bugs and
undefined behaviors in Wasm binaries. In section 3.1, we give an
overview of WBSan. Section 3.2 introduces WBSan, our binary
Wasm sanitizer, and describes its implementation details.

3.1 Overview of WBSan
We design WBSan, which effectively performs memory and unde-
fined behavior sanitizing through Wasm bianry instrumentation
for the target Wasm binary. The key accomplishments of WBSan
are as follows: (1) WBSan provides unique detection patterns for

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

WBSan: Webassembly Bug Detection for Sanitization and Binary-Only Fuzzing

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Wasm
Shadow
memory

(a) Dependency analysis

(c) Selective sanitization

cgddgcfg

Control&Data
dependency

graph

Anchor
instructions

Check
patterns

selective
sanitization
points

(d) Customized instrumentation

......

i32.shl
check pattern

check pattern

......
local.get 27
local.get 28
i32.shl

......

......

(b) Shadow memory

Wasm
Shadow
memory

(a) Dependency analysis

(c) Selective sanitization

astddg cdg

Control&Data
dependency

graph

Anchor
instructions

Check
patterns

selective
sanitization
points

(d) Customized instrumentation

......

i32.shl
check pattern

check pattern

......
local.get 27
local.get 28
i32.shl

......

......

(b) Shadow memory

Figure 1: Workflow of WBSan

the four common memory bugs and six undefined behaviors in
Wasm, enabling the dynamic acquisition of program internal states
and real-time error detection. (2) WBSan introduces Wasm shadow
memory, which dynamically captures valid memory boundaries
by inserting red zones in allocated heaps and stacks, along with
hooking relevant access instructions.

Figure 1 presents an overview workflow of WBSan, which con-
sists four key steps: First, WBSan employs static analysis to analyze
the control and data dependency of the given Wasm binary (❶).
WBSan then hooks memory allocation and deallocation functions,
maintaining a Wasm shadow memory by inserting red zones in the
heap and stack. This Wasm shadow memory dynamically tracks
valid memory ranges at runtime and reports errors when illegal
memory accessed (❷). Next, WBSan conducts pattern matching
analysis on all instructions susceptible to memory errors and un-
defined behaviors (anchor instructions). If an anchor instruction is
identified, WBSan designates it as a selective sanitization point. (❸).
WBSan instruments all selective sanitization points with corre-
sponding detection patterns, while ensuring the targetWasm binary
maintains stack balance and type correctness (❹). The instrumented
Wasm binary can function independently for sanitization or be inte-
grated with automated detection tools, such as fuzzing, to enhance
the detection process.

3.2 WBSan Implementation

3.2.1 Control & Data dependency analysis. The objective of
WBSan is to detect memory bugs and undefined behaviors within
the target Wasm binaries. These issues are often not apparent in a
single instruction; rather, they necessitate specific control or data
conditions to be triggered. For instance, a use-after-free bug involves
three steps: allocating memory, freeing that memory object, and
subsequently reusing it. Triggering such a bug requires: 1) The
existence of a control flow path from allocation to deallocation to
usage; 2) Allocation, deallocation, and usage of the same memory
object. To facilitate a more effective analysis of these complex bugs,
it is essential to gather sufficient information regarding control and
data dependencies within the target Wasm binary.

In this work, we extract and analyze the control dependencies,
data dependencies, and function call information from Wasm bi-
naries to: 1) identify the instructions that require instrumentation,
and 2) minimize the performance overhead and errors in the instru-
mented samples. We construct the data dependence graph (DDG),
control dependency graph (CDG), and abstract syntax tree (AST)

of Wasm programs to obtain insights into control, data, and func-
tion call dependencies. We leverage the C++ APIs provided by the
WebAssembly Binary Toolkit [16], which offers a mapping represen-
tation fromWasm binaries to C++ objects, enabling straightforward
analysis ofWasm functions, memory, and global variables. Our anal-
ysis adheres to the standard definitions for DDG, CDG, and AST,
with the parsed graphs stored as C++ objects for subsequent anal-
ysis. The parsed graphs will be stored in the form of C++ objects
and used for subsequent analysis.

3.2.2 Wasm shadowmemory. Identifying valid memory bound-
aries for memory bugs poses significant challenges due to infor-
mation loss during the compilation process [18], complicating the
detection of such issues. To address this, we introduceWasm shadow
memory, which inserts red zones in allocated heap and stack mem-
ory objects while hooking relevant memory access instructions to
dynamically ascertain valid memory boundaries during the execu-
tion of Wasm programs.

While shadowmemory is a widely adopted solution in ASan [53],
its implementation in Wasm binaries necessitates careful consider-
ation of Wasm’s unique memory structure and allocation methods.
Notably, the stack of Wasm is different as basic variable type is
mantained by the host [36]. Directly inserting red zones and storing
shadowmemory withinWasm’s memory can disrupt the program’s
original functionality.

WBSan implements red zones by instrumenting memory allo-
cation/deallocation functions. For the stack, in Wasm supporting
WebAssembly System Interface (WASI), the stack pointer is the
first global variable. For non-WASI Wasm, simple heuristics can be
employed to identify the stack pointer [38]. Once identified, we sub-
tract the size of the red zone (defaulting to 16 bytes, configurable)
from the stack pointer. At each function exit, the red zone is unpoi-
soned, and the stack pointer is adjusted by 16 bytes. For the heap
allocation and deallocation, such as malloc, calloc, and free. The
instrumentation process involves allocating an additional 32 bytes,
comprising 16 bytes both before and after the heap region. Upon
completion of the allocation function, the preamble and postamble
areas are marked as poisoned in the shadow memory. The first
four bytes of the preamble store the size of the allocated space, fol-
lowed by another four bytes containing a magic value used during
deallocation. Subsequently, the internal heap region is unpoisoned
and made accessible, with the possibility of re-poisoning during
deallocation. When the instrumented store/load instructions ac-
cess memory, they check whether the target address is accessible
in shadow memory to ascertain if illegal memory read or write
requests occur.

To align with the memory structure of Wasm, WBSan maps
eight bytes of real memory address to one byte of shadow memory,
storing this shadow memory in an additional linear memory using
the multi-memory mechanism in Wasm [4]. We instrument each
memory access to verify whether it attempts to access an invalid
address within a redzone. If such an access is detected, an error code
is generated, and the program is terminated via an exit function.
Algorithm 3 and Algorithm 4 in Appendix show specific redzone
instrumentation methods.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Table 3: Matching patterns for undefined behaviors

Undefined behavior Anchor instruction(s) Matching pattern(s) Constraints

Shift-overflow
i32.shl/i32shr_s/

i32.shr_u/i64.shl/

i64.shr_s/i64.shr_u

①local.get a
②local.get b

③X

③→②

③→①

Integer-overflow

i32.add/sub/mul/div

i64.add/sub/mul/div

①local.get a
②local.get b

③X

③→②

③→①

i32.add/i32.sub/

i32.mul/i32.div

①X
②local.set a
③local.get b
④local.get c

⑤i32.strore16/i32.store8

①⇒② ②⇒③

③⇒④ ②→①

④→② ⑤→④

i32.load8u/load16u/

i64.load8u/load16u/load32u

①X

②local.set a
②→①Implicit-integer-sign-change

$malloc/$dlmalloc/

$memcpy/$memmove/$strncpy
①X -

Float-cast-overflow

f32.demote_f64

①local.get a
②X

③local.set b

②→①

③→②

i32.trunc_f32/

i32.trunc_f64

block
①X
②local.set a

end
③i32.const I32_MIN

④local.set a

①⇒② ②⇒③

③⇒④

②→① ④→③

Null-dereference i32.load/i64.load

①local.get a
②local.get b

③X

③→②

③→①

Float-divide-by-zero f32.div/f64.div

①local.get a
②local.get b

③X

③→②

③→①

Note: Anchor instruction(s) indicate potential sink instructions in Wasm. If the anchor instructions for each type of undefined
behavior simultaneously match the patterns and corresponding constraints, they can be considered sanitization points for subsequent
instrumentation. X in Matching pattern(s) represents any specific anchor instruction corresponding to a particular undefined behavior.
②→① indicates that ② has a data dependency on ①, and ②⇒① indicates that there exists a path in control flow from ② to ①.

3.2.3 Wasm selective sanitization. Existing sanitizers primar-
ily define memory errors and undefined behaviors from the per-
spective of source code. However, in Wasm binaries, there is no
direct one-to-one correspondence between binary instructions and
lines of code. Since Wasm only supports four basic variable types
(i32, i64, f32, f64), more complex variable types, such as arrays and
structures, necessitate the use of Wasm unmanaged stack and linear
memory for representation and manipulation [36]. Consequently,
error points (sink) occurring in the source code cannot be directly
mapped to a single binary instruction or variable. Therefore, it is
essential to elucidate the specific manifestations of these memory
bugs and undefined behaviors at the Wasm binary level to enable
effective detection of these issues.

From the perspective of source code, identifying memory er-
rors or undefined behaviors is straightforward, as they typically
arise from specific operations on particular variables. However, in
the context of Wasm binaries, these issues are often attributed to
generic and repetitive instructions (e.g., load/store), many of which
are subject to control and data dependency constraints. Even simple
variable assignments transform into abstract operations involving
storing and loading from memory. Consequently, merely detecting
these instructions in Wasm binaries is impractical and prone to

errors. Table 9 in Appendix presents a selection of sinks (error lo-
cations) for four types of memory bugs and six kinds of undefined
behaviors, illustrating how they manifest in both source code and
Wasm binaries.

To address this issue, we propose theWasm selective sanitization
mechanism, which filters the sinks requiring instrumentation by
analyzing control and data dependencies for all anchor instructions.
WBSan selects sanitization points by applying our defined static
analysis passes and dynamicallymatching all instructions that could
lead to issues. Next, we will sequentially introduce the dynamic
matching patterns for various types of undefined behaviors and
analysis passes for memory bugs. Table 3 lists the matching patterns
and control and data dependency constraints we define for the six
types of undefined behaviors.

Shift-overflow. Shift overflow happens when a bitwise shift
operation exceeds the boundaries of the data type, potentially caus-
ing unexpected results or data loss. In Wasm binaries, The shift
operation is represented by a direct instruction, shift, which pops
two elements, a and b, from the stack and shifts b by a positions.
Consequently, WBSan hooks all shift instructions in Wasm and
associates them with their operands using local instructions.

Integer-overflow. In Wasm binaries, integer overflow bugs can
arise in two scenarios: 1) Overflow of 32-bit and 64-bit integers,

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

WBSan: Webassembly Bug Detection for Sanitization and Binary-Only Fuzzing

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

represented by the basic Wasm variable types i32 and i64. 2) Over-
flow of 8-bit (char) and 16-bit (short) integers. For the first scenario,
WBSan hooks the arithmetic operation instructions for 32-bit and
64-bit integers along with their operands, ensuring that the corre-
sponding operands can be located in the control&data dependency
graph for the instruction. For the second scenario, Wasm truncates
the upper 24 or 16 bits of 32-bit integers through memory access
and shifting, facilitating operations on 8-bit or 16-bit values. WBSan
analyzes data dependencies to identify possible truncation or shift-
ing operations, confirming that control flow paths support these
operations. If WBSan finds that a 32-bit integer operation’s data
dependency leads to instructions like i32.store16 (store the lower
16 bits of a 32-bit value in memory) and a control flow path exists,
it marks this as a sanitization point.

Implicit-integer-sign-change. Implicit integer sign change
refers to the implicit conversion of integer types that can lead to
unexpected results due to the change in sign. In Wasm, such sign
conversions often occur during operations like i32.load8u, which
read smaller bitwise numbers from larger memory units. Since
smaller bit sizes may not be aligned with memory units, Wasm uses
shift instructions afterward to clear the upper bits of the retrieved
data, ensuring data cleanliness. WBSan hooks these five types of
instructions (as shown in the Table 3) and records the data flow
for subsequent instrumentation. Additionally, implicit integer sign
changes can occur in function calls that use unsigned parameters,
such as passing a negative number to the malloc function. WBSan
marks such function calls as sanitization points.

Null-dereference. WBSan hooks all load instructions and their
operands, and subsequently checks during instrumentationwhether
the addressed location is zero.

Float-cast-overflow. Flow casting overflow values in floating-
point numbers occurs during type conversions , resulting in pre-
cision loss or overflow. The f32.demote_f64 instruction is used
for converting double-precision floating-point numbers to single-
precision inWasm, andWBSan designates this instruction as a sani-
tization point. Additionally, i32.trunc_f32/f64 instructions to trun-
cate the floating-point values to integers. Wasm programs check
whether a floating-point number exceeds the range of integers; if
it does, they directly replace its value with the minimum integer,
which is -2,147,483,648 (I32_MIN). While this mechanism provides
a form of mitigation, it merely replaces the value when an over-
flow occurs without accompanying any error messages. WBSan
hooks this detection mechanism and marks the i32.trunc_f32 or
i32.trunc_f64 instructions as sanitization points.

Float-divide-by-zero. ExistingWasm sandboxes report an error
when encountering integer division by zero withour checking the
float number. Therefore, WBSan hooks the f32.div and f64.div

instructions as sanitization points to detect floating-point division
by zero errors.

Unlike undefined behaviors, memory bugs often involve more
intricate control and data dependencies. AlthoughWasm shadow
memory can detect all memory bugs by hooking all memory ac-
cess instructions. WBSan provides a set of passes for analyzing
two types of memory bugs, use-after-free and memory-leak on the
control&data dependency graph. WBSan hook only the suspicious
load/store instructions after using defined analysis passes to re-
duce the overhead caused by instrumentation. Additionally, WBSan

(func $test (type 1) (param i32) (result i32)
...
block ;; label = @1
block ;; label = @2

...
local.get a
local.get b
i32.shl
...
br 1 (;@1;)

end
...
i32.const 2000
local.set c
local.get d
local.get e
i32.add
local.set f

...
end
...
return)

)

block
block

local.get b ;; if b<0,error
i32.const 0
i32.lts
br_if 0
local.get a
i32.const 32;; if a>32,error
i32.ges
br_if 0
local.get a
i32.const 0
i32.lts ;; if a<0,error
br_if 0
br 1

end
unreachable

end

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.

shift-overflow instrumentation

sanitization
point

Figure 2: Instrumented Wasm with shif-overflow check.

applies PCA [42], a static analysis tool for memory—leak, assessing
whether the data has been properly released by analyzing whether
memory objects have been freed through control and data depen-
dency. WBSan designates the identified potential memory alloca-
tions and memory read/write instructions as sanitization points.
Algorithm 1 and Algorithm 2 in Appendix outline the detailed anal-
ysis algorithms corresponding to use-after-free and memory-leak.

3.2.4 Customized instrumentation. WBSan will only perform
instrumentation at the designated sanitization points after they
have been identified. WBSan maps all identified sanitization points
to their corresponding control and data dependencies in the tar-
get binary, allowing for the retrieval of the operands of anchor
instructions. It then inserts the appropriate detection mechanisms
at these points. We developed an instrumentation tool consist-
ing of approximately 2K lines of Rust code, utilizing three Rust
crates: Wasabi [37] (for analysis), WasmParser [5] (for parsing),
and WasmEncoder [6] (for encoding and decoding Wasm). Figure 2
illustrates one instrumentation example. WBSan instruments in-
structions to check whether the operands are greater than 32 (Line
7-10) and whether both the operands and backup operands are
positive numbers (Line 3-6 and Line 11-13). We have design unique
instrumentation methods for undefined behaviors and memory
bugs as detailed in Table 10 in the Appendix for conciseness.

4 Evaluation

4.1 Evaluation Target
To evaluate WBSan, we aim to address three research questions:
• RQ1 - Effectiveness:How effective is WBSan in detecting mem-

ory bugs and undefined behaviors compared to the existing
Wasm binary checkers, as well as source-level Wasm and na-
tive binary sanitizers?

• RQ2 - Applicability of Wasm fuzzing: Can WBSan be inte-
grated into existing Wasm fuzzing framework?

• RQ3 - Performance overhead: Is the amount of runtime over-
head and code increase incurred by WBSan acceptable?

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 4: CWE Descriptions.

CWE(s) Cases Description

680 288 + 114 Shift-Overflow (SO)
190, 191 4,184 + 4,216 Integer-Overflow (IO)
195 576 + 576 Implicit-integer-Sign-Change (ISC)
681 54 + 54 Float-Cast-Overflow (FCO)
476 283 + 283 Null-Dereference (ND)
369 450 + 450 Float-Divide-by-Zero (FDZ)

Total 5,835 + 5,803 Undefined behaviors

415, 416 1,228 + 1,228 Use-After-Free (UAF)
401 1,268 + 1,268 Memory-Leak (ML)
122 3,460 + 3,460 Heap-buffer-Overflow (HO)
121 2,824 + 2,824 Stack-buffer-Overflow (SO)

Total 8,780 + 8,780 Memory bugs

Note: Cases include the filtered malicious samples plus their correspond-
ing benign samples.

Table 5: Target Real-World Programs.

Name Input Version LOC Files

Abc2metx Alembic 1.6.1 4.63K 6
Libsndfile Audio 1.2.2 65.33K 3

Flite Text 2.2.0 583.38K 208
Flac Flac 1.3.2 59.25K 90

Libtomcrypt Text 1.18.2 74.39K 2
Http-parser Text 2.9.4 7.67K 7
Libpng Png 1.6.35 40.88K 18
Jbig2dec Jbig 1.4.0 15.97K 24
Libtiff Tiff 4.3.0 87.38K 7

Openjepg Bmp/Png/... 1.5.1 207.26K 241
Pdfresurrect Pdf 0.23 1.65K 2

4.2 Experimental Setup

4.2.1 Dataset We employ the Juliet benchmark test suite from
NIST [49] as our dataset for detecting memory bugs and undefined
behaviors, which encompasses 118 CWE (Common Weakness Enu-
meration) types. As shown in Table 4, 13 out of 118 CWEs are
selected, which correspond to the four types of memory bugs and
six types of undefined behaviors with 29,198 test cases in total. To
ensure that all test samples can reliably trigger the target issues,
we removed non-determinism, which include: 1) Functions that use
random numbers for branching. 2) Functions labeled as good but
that still exhibit memory bugs or undefined behaviors.

As shown in Table 5, to test whether WBSan can effectively
integrate with existing Wasm fuzzing framework, we select 11 real-
world programs from recent work [23, 38, 41] and github [7–9, 12].
These projects encompass intended WebAssembly use cases such
as data processing, media file handling, and cryptography.

4.2.2 Environment We use Clang 10.0.0, Emscripten 3.1.45 (for
the Juliet test suite), andWASI SDK 20 (for real-world projects) as
the backend compilers. We perform our experiments on Ubuntu
20.04 LTS with an Intel(R) Xeon(R) 2.00GHz CPU, and 128GB RAM.

4.3 RQ1: Effectiveness of Bug Detection
To comprehensively evaluate the detection capability of WBSan,
we tested bug detection capability on 12 CWEs corresponding to
6 types of undefined behavior and 4 types of memory errors, and
compared it WBSan with: 1) Two state-of-the-art Wasm binary bug
checkers, Wasmati and Fuzzm-canary. 2) Three prevalent Native
binary sanitizers, Valgrind, QASan and Retrowrite. 3) Two source-
level Wasm sanitizers, ASAan and UBSan, provided by Emscripten.
Table 6 presents the comparison results. Since the Juliet test suite
provides both bug-triggering samples and benign samples for the
same test case, Cases represents the total number of bad functions
plus good functions. FN represents False Negatives, which are mali-
cious samples incorrectly classified as benign, while FP represents
False Positives, which are benign samples incorrectly identified as
malicious.

4.3.1 Compared with Wasm binary checkers. We carefully
select Wasm bug checkers capable of detecting issues in Wasm
binaries, specifically Wasmati [20] and fuzzm-canary [38]. Wasmati
is a static analysis tool for detecting Wasm bugs that utilize a code
property graph to identify memory errors and undefined behav-
iors. Fuzzm-canary instrument Wasm binaries for detecting stack
and heap buffer overflows. WBSan achieves superior results in the
detection of six types of undefined behaviors with zero false nega-
tive rate (successfully detects all problematic samples) and only a
4.7% false postive rate. For four types of memory bugs, it exhibits a
16.8% false negative rate and a zero false postive rate. The detection
results of Wasmati across all CWEs are not ideal, as the analysis
passes provided by Wasmati are often limited to specific cases,
such as fixed function names and calling methods. Compared to
Fuzzm-canary, WBSan perfectly detects all heap-buffer-overflows
(0 < 67.2%) because Wasm shadow memory can dynamically check
the valid ranges of the stack or heap during execution, and it also
achieves a significant lead in stack buffer overflows (49.2% < 67.2%).

4.3.2 Compared with source-level Wasm sanitizers. Due
to information loss during the compilation process [23], source-
level sanitizers leverage richer information (specific types, array
or pointer boundary, etc.) compared to those operating directly on
binaries. Despite getting less code information, WBSan still out-
performs UBSan for undefined behaviors (0 vs. 0.3%), and achieves
a detection rate comparable to ASan for memory bugs (16.8% vs.
10.8%). This limitation also makes it difficult to determine whether
variables are signed in Wasm binaries and distinguish between ar-
ray and pointer, resulting inWBSan encountering 6% false positives
in integer-overflow and 49.2% false positives in stack-buffer-overflow.

UBSan cannot detect the precision loss when converting dou-
ble precision floating-point numbers (double) to single precision
floating-point numbers (float), andWBSan performs better in detect-
ing float-cast-overflow (0 vs. 40.1%). Since ASAN requires specific
exit points in the program, WBSan also achieves better results in
detecting memory-leak bug (7.1% vs. 74.5%).

4.3.3 Compared with native binary sanitizers. We carefully
chose state-of-the-art binary sanitizers, Valgrind [48], QASan [29]
and Retrowrite [25] to compare with WBSan for detecting memory
bugs. Because Wasm shadow memory can dynamically maintain
the valid memory range at runtime by inserting red zones, WBSan

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

WBSan: Webassembly Bug Detection for Sanitization and Binary-Only Fuzzing

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 6: Memory bug and undefined behavior detection results on Juliet test suite compared to:1) Wasm binary checkers (Wasmati and Fuzzm-canary), 2)
Source-level sanitizer (ASan and UBSan) and 3) Native binary sanitizers(Valgrind, QASan and Retrowrite).

CWE
WBSan Wasmati Fuzzm-canary ASan UBSan Valgrind QASan Retrowrite

FN/FP FN/FP FN/FP FN/FP FN/FP FN/FP FN/FP FN/FP

680 (SO) 0/0 288(100%)/0 - - 0/0 - - -
190, 191 (IO) 0/254(6.0%) 4,126(98.6%)/0 - - 0/0 - - -
195 (ISC) 0/0 560(97.2%)/0 - - 0/0 - - -
681 (FCO) 0/0 54(100%)/0 - - 18(40.1%)∗/0 - - -
476 (ND) 0/0 283(100%)/0 - - 0/0 - - -
369 (FDZ) 0/0 438(97.3%)/0 - - 0/0 - - -

Total 0/254(4.7%) 5,749(98.5%)/0 - - 18(0.3%)/0 - - -

415, 416 (UAF) 0/0 1,194(97.2%)/0 - 0/0 - 22(1.8%)/0 82(6.7%)/0 337(27.4%)/0
401 (ML) 90(7.1%)/0 1,268(100%)/0 - 945(74.5%)/0 - 698(55.0%)/0 698(55.0%)/0 266(20.9%)/0
122 (HO) 0/0 3,400(91.2%)/76(2.0%) 1,899(67.2%)/0 0/0 - 1,997(57.7%)/0 532(15.4%)/0 1,826(52.8%)/0
121 (SO) 1,388(49.2%)/0 2,520(89.2%)/144(5.1%) 1,899(67.2%)/0 0/0 - 2,107(74.6%)/0 1,381(48.9%)/0 1,632(57.8%)/0

Total 1,478(16.8%)/0 8,382(95.5%)/220(2.5%) 3,798(43.3%)/0 945(10.8%)/0 - 4,824(55.0%)/0 2,693(30.7%)/0 4,061(46.3%)/0

Note: The first six rows of CWEs belong to undefined behaviors, while the last four belong to memory bugs. ASan and UBSan are source-level sanitizers provided by
Emscripten. * indicates UBSan can not detect double-to-float samples. FN indicates false negative and FP indicates false postive.

performs with a false negative rate of 0, 7.1%, and 0 for use-after-
free, memory-leak, and heap-buffer-overflow respectively, which
all surpass three native sanitizers. WBSan also shows compara-
ble results in detecting stack-buffer-overflow among native binary
sanitizers (49.2% for WBSan and 48.9% for QASan).

Answer: WBSan is currently the most effective Wasm bina-
ries bug detection tool for memory bugs (16.8% false negetive
and 0 false postive) and undefined behaviors (0 false nege-
tive and 4.7% false postive), achieving results comparable
to source-level tools (despite with less code information).
Compared to established binary sanitizers, WBSan achieves
leading results in three of four types of memory bug.

4.4 RQ2: Combine with Wasm Binary Fuzzing

To answer RQ2, we integrat WBSan with a Wasm fuzzing frame-
work fuzzm [38], and conduct 120 hours of fuzzing on 11 real-world
programs. Fuzzm incorporates canary instrumentation that imple-
ments heap and stack canary checks by inserting random numbers
at the memory boundaries, subsequently verifying these values
during deallocating and function returns.

Table 7 presents the results of fuzzing process, detailing crashes
detected, as well as the unique paths identified. Unique path refers
to the number of paths maintained by fuzzer that can trigger
higher code coverage; a larger value indicates greater code coverage
achieved during the fuzzing process. WBSan detects more crashes
than fuzzm (1,174 vs. 556) within the same duration of time. In five
out of the eleven programs where fuzzm was able to find crashes,
WBSan identifies a greater number of crashes (abc2metx, libpng,
pdfresurrect, openjepg, flite). WBSan discovers 37 new crashes in
jbig2dec where fuzzm did not find any crash. WBSan finds more
unique paths than fuzzm (162,385 vs. 22,237) in programs where
crashes were detected, indicating higher code coverage because
WBSan can trigger more crashes, helping the fuzzer build a richer
seed corpus and guiding fuzzing to explore deeper code space.

Table 7: 120-hours Wasm binary-only fuzzing results on 11 real-
world programs.

Real-world
program

Crash Unique path

Fuzzm WBSan Fuzzm WBSan
Abc2metx 170 561 1,264 115,869
Flac 0 0 1,512 1,511
Jbig2dec 0 37 2,459 3,931
Libpng 118 135 761 853
Libtiff 0 0 1,727 1,785
Pdfresurrect 58 86 517 33,959
Openjepg 124 264 11,310 16,107
Libsndfile 0 0 152 152
Libtomcrypt 0 0 53 53
Flite 86 91 1,997 2,064
Http-parser 0 0 503 501
Total 556 1,174 22,237 162,385

Note: Unique path represent the path found that can trigger unex-
plored code, with a larger value indicating higher code coverage.

Answer: WBSan can effectively integrates with existing
Wasm binary fuzzing framework, enabling the detection
of more crashes (1,174 > 556) and achieving higher code
coverage (593.96% more unique paths).

4.5 RQ3: Performance Overhead
We assess the impact of WBSan on Wasm binary performance
overhead through two metrics: the binary size increase and the
runtime overhead. We obtain the binary size increase and runtime
overhead of WBSan using a standalone Wasm benchmark designed
for performance evaluation, Wasm-r3 [17]. We also compare the
average execution speed of 11 real-world programs with source-
level sanitizers UBSan and ASan.

4.5.1 Binary size increase. We evaluate the binary size increase
on 25 Wasm binaries in the Wasm-r3 benchmark. WBSan instru-
mentation results in an average increase of 72.1% in the size of

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 8: Average Execution Time

Program
Average Execution Time (ms)

Original WBSan UBSan ASAan
Abc2metx 0.67 1.07(1.59×) 0.78(1.16×) 6.81(10.1×)
Flac 2.13 3.98(1.87×) 3.11(1.46×) 12.84(6.03×)
Jbig2dec 1.06 3.63(3.44×) 3.02(2.86×) 8.21(7.76×)
Libpng 0.33 0.72(2.21×) 0.65(2.00×) 1.28(3.90×)
Libtiff 16.96 33.11(1.95×) 18.48(1.09×) 37.15(2.19×)
Pdfresurrect 37.60 52.29(1.39×) 48.93(1.30×) 561.23(14.93×)
Openjepg 0.43 0.93 (2.16×) 0.67 (1.56×) 1.99 (4.63×)
Libsndfile 3.44 5.19 (1.51×) 4.93 (1.43×) 10.27(2.99×)
Libtomcrypt 3.24 4.85 (1.50×) 6.47 (2.00×) 9.70 (2.99×)
Flite 111.17 186.96(1.68×) 151.16(1.36×) 274.47(2.47×)
Http-parser 2.08 4.14(1.99×) 3.24(1.56×) 9.54(4.59×)
Average 1× 1.94× 1.62× 5.69×

Note: × denotes the multiple of the runtime compared to the Original.

Wasm binaries, with a minimum increase of 50% and a maximum
of 210%. Figure 3 in Appendix lists the specific code size growth.

4.5.2 Runtime overhead. Table 8 shows the average runtime of
the originalWasm,WBSan, UBSan, and ASan after one thousand ex-
ecutions. Compared to uninstrumented Wasm binaries, the average
runtime of the Wasm instrumented with WBSan is approximately
1.94 times greater. The additional runtime overhead incurred by
WBSan is about 19.75% higher than that of UBSan and 65.91% lower
than ASan. The overhead associated with ASan is significantly
greater due to its extensive stack tracing [53]. Our analysis reveals
that stack tracing in ASan accounts for nearly 80% of the runtime,
as it provides detailed stack trace information through JavaScript
or Host runtime APIs, even for code that does not contain issues.

Answer:WBSan exhibits performance with acceptable file
size increase (72.1%) and runtime overhead (1.94×) compared
with compiled-based instrumentation (1.62× and 5.69× com-
pared to uninstrumented).

5 Discussion

5.1 WebAssembly and Sanitizer
As a newly emerging language, WebAssembly presents challenges
for analysis due to its different program architecture, and target
platforms. Existing binary Wasm fuzzing methods lack of sanitiza-
tion method for triggering different kinds of bugs. To address this,
WBSan attempts to analyze and detect these bugs at the binary
level. WBSan achieves a leading bug detection rate while main-
taining acceptable overhead. WBSan can be used as a standalone
sanitization tool for developers, or combined with fuzzing for more
in-depth WebAssembly testing without source code.

5.2 Threats to Validity
Internal validity. Our results may not lead to our implications
because we identify the anchor instructions by analyzing Wasm
binaries compiled with Emscripten and WASI SDK, but this does
not preclude the possibility of other anchor instructions.
External validity. Our results might not generalize to broader
samples. Our findings may depend on testing samples from the

curated Juliet test suite, which consists of small test cases. And a
wider variety of test datasets may yield different results.
Construct validity. We may not detect all the memory bugs and
undefined behaviors. Due to the irretrievable loss of source in-
formation, such as the distinction between signed and unsigned
integers in Wasm, even though we have attempted to introduce
Wasm shadow memory and use static analysis as mitigation.

5.3 Improvements and Future Work

WBSan can instrumentWasm binaries generated by themainstream
Emscripten and WASI SDK compilers. Our future work aims to
enable WBSan to extract more program semantic information, al-
lowing for more accurate memory boundaries to be obtained from
binaries even when some compilation information is lost. The ap-
proaches used for recovering and extracting the semantic structure
of Wasm in these studies are ideas that we can draw upon [28].

6 Related Work

WebAssembly Analysis. Several works analyze the correctness
of the Wasm. Stiévenart et al. [56] manually analyze discrepancies
between the native and Wasm binaries on the Juliet benchmark.
Some work design dynamic analysis or symbolic execution frame-
works for WebAssembly [33, 37]. Wasabi [37] is a browser-based
dynamic analysis framework for Wasm binaries. Wasmati [20]
and Wasma [19] provide different kinds of graphs for static analy-
sis. Other works perform studies on real-world Wasm usage [34],
on Wasm compiler bugs [51], and on inlining optimizations in
Wasm [52].
Sanitizer. 1) Source/IR-level sanitizer. ASAan [53] and MSan [55]
are address sanitizers by instrumenting at IR-level and inserting
red-zone checks. UBSan [15] detects various undefined behaviors
by inserting corresponding check modes in the source code (AST).
EffectiveSan [27] employs dynamically typed checks for memory
bugs and undefined behaviors in C/C++. AddressWatcher [46] is a
memory-leak bug checker by tagging and tracking execution path.
2) Binary sanitizer. Valgrind [54] detects memory value errors using
red-zone insertion methods. Undangle [21] uses taint tracking for
memory bugs. RetroWrite [25] implements a binary address sani-
tizer through binary rewriting for static instrumentation. ZAFL [47]
is an instrumentation framework that achieves compiler-level per-
formance. MTSan [23] leverages ARM hardware features and bi-
nary rewriting to implement a high-performance memory sanitizer.
KUBO [43] is a static undefined behavior detector for the Linux
kernel. The above works are all focused on native programs and
kernels.

7 Conclusion
This paper presents the first WebAssembly binary sanitizer, WBSan,
designed for detecting memory bugs and undefined behaviors. WB-
San shows a great bug detection rate on the benchmark, making it
the most effective tool for bug detection for WebAssembly binaries
to date. WBSan integrates well with existing WebAssembly binary
fuzzing framework with acceptable performance overhead. WBSan
can effectively aid developers in detecting WebAssembly issues and
strengthening current binary WebAssembly fuzzing methods.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

WBSan: Webassembly Bug Detection for Sanitization and Binary-Only Fuzzing

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] https://emscripten.org/docs/debugging/Sanitizers.html.
[2] https://github.com/WasmSanitizer/WasmSanitizer.
[3] https://github.com/kateinoigakukun/wasminspect/issues/20.
[4] https://webassembly.github.io/multi-memory/core/intro/introduction.html.
[5] https://github.com/bytecodealliance/wasmparser.
[6] https://github.com/alex-gutev/wasm-encoder.
[7] https://github.com/libtom/libtomcrypt.git.
[8] https://github.com/festvox/flite.
[9] https://github.com/nodejs/http-parser.
[10] Binaryen. http://webassembly.github.io/binaryen/.
[11] Clang c language family frontend for llvm. https://clang.llvm.org/.
[12] Libsndfile. https://github.com/libsndfile/libsndfile.
[13] The llvm compiler infrastructure project. https://llvm.org/.
[14] The security of webassembly. https://webassembly.org/docs/security/.
[15] Undefined behavior sanitizer. https://clang.llvm.org/docs/

UndefinedBehaviorSanitizer.html.
[16] The webassembly binary toolkit. https://github.com/WebAssembly/wabt/.
[17] Doehyun Baek, Jakob Getz, Yusung Sim, Daniel Lehmann, Ben L Titzer, Suky-

oung Ryu, and Michael Pradel. Wasm-r3: Record-reduce-replay for realistic and
standalone webassembly benchmarks. arXiv preprint arXiv:2409.00708, 2024.

[18] Adam Benali. An initial investigation of neural decompilation for webassembly,
2022.

[19] Florian Breitfelder, Tobias Roth, Lars Baumgärtner, and Mira Mezini. Wasma: A
static webassembly analysis framework for everyone. In 2023 IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER), pages
753–757. IEEE, 2023.

[20] Tiago Brito, Pedro Lopes, Nuno Santos, and José Fragoso Santos. Wasmati: An
efficient static vulnerability scanner for webassembly. Computers & Security,
118:102745, 2022.

[21] Juan Caballero, Gustavo Grieco, Mark Marron, and Antonio Nappa. Undangle:
early detection of dangling pointers in use-after-free and double-free vulnerabil-
ities. In Proceedings of the 2012 International Symposium on Software Testing and
Analysis, pages 133–143, 2012.

[22] Weimin Chen, Zihan Sun, Haoyu Wang, Xiapu Luo, Haipeng Cai, and Lei Wu.
Wasai: uncovering vulnerabilities in wasm smart contracts. In Proceedings of the
31st ACM SIGSOFT International Symposium on Software Testing and Analysis,
pages 703–715, 2022.

[23] Xingman Chen, Yinghao Shi, Zheyu Jiang, Yuan Li, Ruoyu Wang, Haixin Duan,
Haoyu Wang, and Chao Zhang. MTSan: A Feasible and Practical Memory
Sanitizer for Fuzzing COTS Binaries. USENIX Security Symposium’23, 2023.

[24] Mingi Cho, Dohyeon An, Hoyong Jin, and Taekyoung Kwon. BoKASAN: Binary-
only Kernel Address Sanitizer for Effective Kernel Fuzzing.

[25] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer. RetroWrite:
Statically Instrumenting COTS Binaries for Fuzzing and Sanitization. In 2020
IEEE Symposium on Security and Privacy (SP), pages 1497–1511, San Francisco,
CA, USA, May 2020. IEEE.

[26] Gregory J Duck and Roland HC Yap. Effectivesan: type and memory error
detection using dynamically typed c/c++. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 181–195,
2018.

[27] Gregory J Duck and Roland HC Yap. Effectivesan: type and memory error
detection using dynamically typed c/c++. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 181–195,
2018.

[28] Weike Fang, Zhejian Zhou, Junzhou He, and Weihang Wang. Stacksight: Unveil-
ing webassembly through large language models and neurosymbolic chain-of-
thought decompilation. arXiv preprint arXiv:2406.04568, 2024.

[29] Andrea Fioraldi, Daniele Cono D’Elia, and Leonardo Querzoni. Fuzzing binaries
for memory safety errors with qasan. In 2020 IEEE Secure Development (SecDev),
pages 23–30. IEEE, 2020.

[30] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael Holman,
Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. Bringing the web up to
speed with webassembly. In Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2017.

[31] Keno Haßler and Dominik Maier. Wafl: Binary-only webassembly fuzzing with
fast snapshots. In Reversing and Offensive-oriented Trends Symposium, pages
23–30, 2021.

[32] Ningyu He, Zhehao Zhao, Hanqin Guan, Jikai Wang, Shuo Peng, Ding Li, Haoyu
Wang, Xiangqun Chen, and Yao Guo. Seewasm: An efficient and fully-functional
symbolic execution engine for webassembly binaries. In Proceedings of the 33rd
ACM SIGSOFT International Symposium on Software Testing and Analysis, pages
1816–1820, 2024.

[33] Ningyu He, Zhehao Zhao, Jikai Wang, Yubin Hu, Shengjian Guo, Haoyu Wang,
Guangtai Liang, Ding Li, Xiangqun Chen, and Yao Guo. Eunomia: Enabling user-
specified fine-grained search in symbolically executing webassembly binaries.
2023.

[34] Aaron Hilbig, Daniel Lehmann, and Michael Pradel. An empirical study of real-
world webassembly binaries: Security, languages, use cases. In Proceedings of the
web conference 2021, pages 2696–2708, 2021.

[35] Wenjun Huang and Marcus Paradies. An evaluation of webassembly and ebpf as
offloading mechanisms in the context of computational storage. arXiv preprint
arXiv:2111.01947, 2021.

[36] Daniel Lehmann, Johannes Kinder, and Michael Pradel. Everything old is new
again: Binary security of {WebAssembly}. In 29th USENIX Security Symposium
(USENIX Security 20), pages 217–234, 2020.

[37] Daniel Lehmann and Michael Pradel. Wasabi: A framework for dynamically
analyzing webassembly. In Proceedings of the Twenty-Fourth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems,
2019.

[38] Daniel Lehmann, Martin Toldam Torp, and Michael Pradel. Fuzzm: Finding
memory bugs through binary-only instrumentation and fuzzing of webassembly.
arXiv preprint arXiv:2110.15433, 2021.

[39] Borui Li, Wei Dong, and Yi Gao. Wiprog: A webassembly-based approach to
integrated iot programming. In IEEE INFOCOM2021-IEEE Conference on Computer
Communications, pages 1–10. IEEE, 2021.

[40] Borui Li, Hongchang Fan, Yi Gao, and Wei Dong. Bringing webassembly to
resource-constrained iot devices for seamless device-cloud integration. In Pro-
ceedings of the 20th Annual International Conference on Mobile Systems, Applica-
tions and Services, pages 261–272, 2022.

[41] Shaohua Li and Zhendong Su. Finding unstable code via compiler-driven dif-
ferential testing. In Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume
3, pages 238–251, 2023.

[42] Wen Li, Haipeng Cai, Yulei Sui, and David Manz. Pca: memory leak detection
using partial call-path analysis. In Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pages 1621–1625, 2020.

[43] Changming Liu, Yaohui Chen, and Long Lu. KUBO: Precise and Scalable Detec-
tion of User-triggerable Undefined Behavior Bugs in OS Kernel. In Proceedings
2021 Network and Distributed System Security Symposium, Virtual, 2021. Internet
Society.

[44] Filipe Marques, José Fragoso Santos, Nuno Santos, and Pedro Adão. Concolic
execution for webassembly. In 36th European Conference on Object-Oriented
Programming (ECOOP 2022). Schloss-Dagstuhl-Leibniz Zentrum für Informatik,
2022.

[45] Matteo Basso. Awesome wasm. https://v8.dev/blog/liftoff, 2022.
[46] Aniruddhan Murali, Mahmoud Alfadel, Meiyappan Nagappan, Meng Xu, and

Chengnian Sun. Addresswatcher: Sanitizer based localization of memory leak
fixes. In IEEE Transactions on Software Engineering, pages 1–15, 2024.

[47] Stefan Nagy, Anh Nguyen-Tuong, Jason D Hiser, Jack W Davidson, and Matthew
Hicks. Breaking Through Binaries: Compiler-quality Instrumentation for Better
Binary-only Fuzzing. 2020.

[48] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. ACM Sigplan notices, 42(6):89–100, 2007.

[49] NIST. Juliet test suite for c/c++ 1.3. https://samate.nist.gov/SARD/testsuites/112.
[50] Mohammed Nurul-Hoque and Khaled A Harras. Nomad: Cross-platform compu-

tational offloading and migration in femtoclouds using webassembly. In 2021
IEEE International Conference on Cloud Engineering (IC2E), pages 168–178. IEEE,
2021.

[51] Alan Romano, Xinyue Liu, Yonghwi Kwon, and Weihang Wang. An empirical
study of bugs in webassembly compilers. In 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 42–54. IEEE, 2021.

[52] Alan Romano and Weihang Wang. When function inlining meets webassembly:
Counterintuitive impacts on runtime performance. In Proceedings of the 31st
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2023.

[53] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. {AddressSanitizer}: A fast address sanity checker. In 2012 USENIX
annual technical conference (USENIX ATC 12), pages 309–318, 2012.

[54] Julian Seward and Nicholas Nethercote. Using valgrind to detect undefined value
errors with bit-precision. In USENIX Annual Technical Conference, General Track,
pages 17–30, 2005.

[55] Evgeniy Stepanov and Konstantin Serebryany. Memorysanitizer: fast detector
of uninitialized memory use in c++. In 2015 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), pages 46–55. IEEE, 2015.

[56] Quentin Stiévenart, Coen De Roover, and Mohammad Ghafari. Security risks
of porting c programs to webassembly. In Proceedings of the 37th ACM/SIGAPP
Symposium on Applied Computing, pages 1713–1722, 2022.

[57] Dong Wang, Bo Jiang, and WK Chan. Wana: Symbolic execution of wasm
bytecode for cross-platform smart contract vulnerability detection. arXiv preprint
arXiv:2007.15510, 2020.

[58] wasmCloud Project Authors. Wasmcloud. https://wasmcloud.com/, 2022.
[59] Matthias Wenzl, Georg Merzdovnik, Johanna Ullrich, and Edgar Weippl. From

hack to elaborate technique—a survey on binary rewriting. ACM Computing

9

https://emscripten.org/docs/debugging/Sanitizers.html
https://github.com/WasmSanitizer/WasmSanitizer
https://github.com/kateinoigakukun/wasminspect/issues/20
https://webassembly.github.io/multi-memory/core/intro/introduction.html
https://github.com/bytecodealliance/wasmparser
https://github.com/alex-gutev/wasm-encoder
https://github.com/libtom/libtomcrypt.git
https://github.com/festvox/flite
https://github.com/nodejs/http-parser
http://webassembly.github.io/binaryen/
https://clang.llvm.org/
https://github.com/libsndfile/libsndfile
https://llvm.org/
https://webassembly.org/docs/security/
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://github.com/WebAssembly/wabt/
https://v8.dev/blog/liftoff
https://samate.nist.gov/SARD/testsuites/112
https://wasmcloud.com/

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Surveys (CSUR), 52(3):1–37, 2019.
[60] Alon Zakai. Emscripten: an llvm-to-javascript compiler. In Proceedings of the

ACM international conference companion on Object oriented programming systems
languages and applications companion, pages 301–312, 2011.

[61] Shuyu Zheng, HaoyuWang, Lei Wu, Gang Huang, and Xuanzhe Liu. Vmmatters:
a comparison of wasm vms and evms in the performance of blockchain smart
contracts. arXiv preprint arXiv:2012.01032, 2020.

Appendices

Algorithm 1: Selective analysis pass for Use-after-free
N = [] ;
for m in malloc_functions do

for n1 in cfg.get_descendants(m) do
if n1.type == "Call" and n1 in free_functions and
ddg.reaches(n1,m) then

Insert n1 in N

end
end

end
for n2 in N do

for n3 in cfg.get_descendants(n2) do
if n3.type == "Load" or n3.type == "Store" then

if ddg.reaches(n3,n2) then
Potential Use-after-free found.

end
end

end
end

Algorithm 2: Selective analysis pass for Memory-leak
Flag = False ;
for m in malloc_functions do

for n1 in cfg.get_descendants(m) do
if n1.type == "Call" and n1 in free_functions and
ddg.reaches(n1,m) then

Flag = True ;
end

end
end
if Flag == False then

Potential memory-leak found.
end

Function get_descendants(node) represents the set of all child
nodes obtained from the corresponding graph. Function reaches

is used to determine whether a path exists between two points.
Notably, both Algorithm 1 and Algorithm 2 detect potentially prob-
lematic Wasm binaries, designating these problematic instructions
as selective sanitization points for subsequent instrumentation.

ric
on

pa
ck

er
rte

xp
ac

ke
r

rfx
ge

n
gu

iic
on

s
hy

dr
o

pa
th

fin
di

ng
fa

ct
or

ia
l

m
ul

tip
ly

In
t

bu
lle

t
fu

nk
y-

ka
rt

m
ul

tip
ly

Do
ub

le
rg

ui
st

yl
er

fig
m

a-
st

ar
tp

ag
e

ga
m

e-
of

-li
fe

co
m

m
an

de
rk

ee
n

bo
a jsc

m
an

de
lb

ro
t

pa
rq

ue
t

pa
ca

lc
jq

ku
ng

fu fib
rg

ui
la

yo
ut

ffm
pe

g
rte

xv
ie

we
r0.0

0.5

1.0

1.5

2.0

2.5

3.0

Th
e

fa
ct

or
 o

f f
ile

 si
ze

 in
cr

ea
se

.

1.8
2.0

1.71.6

2.5

0.5

2.3

2.0
2.1

0.6

2.0

1.6
1.8

3.1

1.4

0.7

2.0

0.5

1.6

1.9

1.5

2.01.9
2.1

1.8

3.1

0.5

1.72

File Size Increase

Figure 3: Wasm file size increase on 25 test cases of Wasm-r3.

Algorithm 3: Stack Instrumentation Procedure
Input: Wasm function F, Redzone size RZ (default: 16 bytes)
Output: Instrumented function F’

Insert at the beginning of F:
𝑆𝑃 ← 𝑆𝑃 − 𝑅𝑍

foreach instruction instr in F do
if instr is a return instruction then

Replace instr with:
Unpoison(SP, RZ)
SP← SP + RZ; Execute instr

end
end

return Instrumented function F’

Algorithm 4: Heap Instrumentation Procedure
Function InstrumentedAlloc(size):

memory← OriginalAlloc(size + 32)
preamble, userMemory, postamble← memory, memory
+ 16, memory + size + 16
Poison(preamble, 16); Poison(postamble, 16)
Store size and magic value in preamble
Unpoison(userMemory, size)
return userMemory

Function InstrumentedFree(ptr):
preamble← ptr - 16
if magic value in preamble is incorrect then

Report double-free error
end
Unpoison(preamble, 16); Unpoison(ptr + size, 16)
Poison(ptr, size) OriginalFree(preamble)

Replace malloc, calloc with InstrumentedAlloc; Replace
free with InstrumentedFree

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

WBSan: Webassembly Bug Detection for Sanitization and Binary-Only Fuzzing

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Table 9: Source and Wasm binary sinks for memory bugs and undefined behaviors

Memory bug Source sink (partial) Wasm sink (partial) Explanations

Heap-buffer-overflow
int*buffer=new int[10];

buffer[11]=1;

i32.store/i64.store

i32.load/i64.load

Writing or reading unallocated memory (heap) in Wasm.

Stack-buffer-overflow
int buffer[10];

buffer[11] = 1;

i32.store/i64.store

i32.load/i64.load

Writing or reading unallocated memory (stack) inWasm.

Use-after-free
data=malloc(...);

free(data);

printf("%s",data);

i32.store/i64.store/

i32.load/i64.load

Reading from or writing to deallocated memory objects.

Memory leak data=calloc(...);

data=0;

i32.store/i64.store/

i32.load/i64.load

Pointer overwrite/missing deallocation.

Undefined behavior Source sink (partial) Wasm sink (partial) Explanations

Shift-overflow data«100;
i32.shl/i64.shl The shift operand cannot exceed the bit width of the

number being shifted and cannot be negative.

Integer-overflow result=data±INT_MAX;

i32.add/sub/mul/div/

i64.add/sub/mul/div

Arithmetic operations in Wasm have corresponding in-
structions.

Implicit-integer-sign-
change

int data = -1;

malloc(data);

i32.load8u/i32.load16u/

i64.load8u/load16u/load32u

It typically occurs when retrieving a shorter unsigned
number from 32-bit or 64-bit memory units.

Null-dereference int*data=NULL;*data=1; i32.store/i64.store The dereferencing of NULL is reflected in the store.

Float-cast-overflow
(float)doubleNumber;

(int)floatNumber;

f32.demoteF64

——–
i32.trunc_f32/f64

Double to float.

Double or float to int.

Float-divide-by-zero (int)(100.0/0); f32.div/f64.div

Wasm hosts (such as browsers and runtimes) inherently
check integer division by zero; here, we only detect
floating-point division by zero.

Note: Source sink indicates the point in the source code where issue occur.Wasm sink indicates the location where they occur in the Wasm binary.

Table 10: Instrument logic for undefined behaviors

Undefined
behavior

Matching
pattern(s) Instrumented logic Description

Shift-overflow
①local.get a
②local.get b

③i32.shift

𝑏 ≥ 0𝑎𝑛𝑑 0 ≤ 𝑎 ≤ 𝑤
𝑤 represents the size of the variable; an
i32 integer has a width of 32 bits.

Integer-overflow
①local.get a
②local.get b

③i32.add/sub/mul

Add: ((𝑎 > 0 ∧ 𝑏 > 0) ∧ 𝑎 + 𝑏 < 0) == 0
Sub: ((𝑎 > 0 ∧ (−𝑏) > 0) ∧ 𝑎 + (−𝑏) < 0) == 0
Mul: 𝑎 ∧ (𝑎 ∗ 𝑏) == 𝑏

We compile these logic checks into Wasm
functions, and directly insert these valida-
tion functions during instrumentation.

Implicit-integer-
sign-change

①i32.load8u

②local.set a
(𝑎 ≪ 24) ≫ 24 == 𝑎

Similarly, for the i32.load16u, the shift op-
eration can be replaced with 16.

Float-cast-overflow

①local.get a
②f32.demote_f64

③local.set b

𝑃𝑟𝑜𝑚𝑜𝑡𝑒 (𝑏) == 𝑎

𝑃𝑟𝑜𝑚𝑜𝑡𝑒 refers to the extension of a 32-
bit floating-point number to a 64-bit rep-
resentation, which is achieved using the
f64.promote_f32 in Wasm.

block
①i32.trunc_f32

②local.set a
end

③i32.const

I32_MIN

𝑎 == 𝐼32_𝑀𝐼𝑁

or 𝑎 == 𝐼64_𝑀𝐼𝑁
Similarly for i64.trunc_f64.

Null-dereference
①local.get a
②local.get b

③i32.load/store

𝑎 == 0
The first parameter (a) of the load/store

instruction indicates the target address
and the second (b) specifies the value.

Float-divide-by-zero
①local.get a
②local.get b

③f32.div

𝑎 == 0 f32.div instruction performs the opera-
tion of b/a.

Note: X in Matching pattern(s) represents any specific anchor instruction corresponding to a particular undefined behavior.

11

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Webassmebly Binary
	2.2 Binary Sanitizer
	2.3 Why a binary-only Wasm Sanitizer

	3 Design
	3.1 Overview of WBSan
	3.2 WBSan Implementation

	4 Evaluation
	4.1 Evaluation Target
	4.2 Experimental Setup
	4.3 RQ1: Effectiveness of Bug Detection
	4.4 RQ2: Combine with Wasm Binary Fuzzing
	4.5 RQ3: Performance Overhead

	5 Discussion
	5.1 WebAssembly and Sanitizer
	5.2 Threats to Validity
	5.3 Improvements and Future Work

	6 Related Work
	7 Conclusion
	References
	Appendices

