
Published at the MLDD workshop, ICLR 2023

DOG: DISCRIMINATOR-ONLY GENERATION

Franz Rieger1,2 & Joergen Kornfeld1

1 Max Planck Institute for Biological Intelligence, Martinsried, Germany
2 Technical University of Munich, Munich, Germany
{first.last}@bi.mpg.de

ABSTRACT

As an alternative to generative modeling approaches such as denoising diffusion,
energy-based models (EBMs), and generative adversarial networks (GANs), we
explore discriminator-only generation (DOG). DOG obtains samples by direct
gradient descent on the input of a discriminator. DOG is conceptually simple,
generally applicable to many domains, and even trains faster than GANs on the
QM9 molecule dataset. While DOG does not reach state-of-the-art quality on
image generation tasks, it outperforms recent GAN approaches on several graph
generation benchmarks, using only their discriminators.

1 INTRODUCTION
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Figure 1: For generation, DOG opti-
mizes a sample directly by gradient de-
scent w.r.t. a generation loss on the out-
put of the discriminator. To trainD, sam-
ple generation (top) and D updates (bot-
tom) are alternated, like in a GAN, but
without requiring a generator.

Generative modeling approaches, such as denoising dif-
fusion Sohl-Dickstein et al. (2015); Ho et al. (2020) and
GANs Goodfellow et al. (2014); Sauer et al. (2023), have
revolutionized content creation in various domains. Given
their wide-ranging potential, thoroughly exploring their
design space is essential.

GANs consist of a generator, which generates samples
from noise vectors to match a real data distribution, and
a discriminator, which assigns a realness score to distin-
guish between real and generated samples. Notably, the
discriminator itself is discarded after training, and only
the generator remains in use. While optimizing genera-
tor architectures has received much attention Karras et al.
(2019; 2020; 2021); Walton et al. (2022); De Cao & Kipf
(2018); Krawczuk et al. (2021); Martinkus et al. (2022),
we explore DOG, an approach that removes the need for a
generator altogether and instead directly utilizes the infor-
mation stored in the discriminator. Conceptually, DOG is
a middle ground between GANs and EBMs Ackley et al.
(1985); Du & Mordatch (2019), making it a consequential
next step in exploring generative modeling approaches.

DOG uses only a single discriminator model for genera-
tion. It starts with a pure noise sample in the target domain
and optimizes it directly by gradient descent w.r.t. a gener-
ation loss on the output of the discriminator. The generated
samples are then used, together with real samples, to train
the discriminator by alternating sample generation and
discriminator update, as shown in Figure 1. In contrast to GANs, where the generator and the
discriminator are each other’s adversaries, the DOG discriminator acts as its own adversary.

Our main contribution is to demonstrate that DOG is applicable to several domains, such as a 2D-
Gaussian toy dataset, the FFHQ face image dataset, and several graph benchmark datasets. Strikingly,
DOG outperforms GANs on graphs without adjusting the discriminator architecture or the original
GAN hyperparameters.
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Algorithm 1 PyTorch-style pseudocode for DOG training.

1 discriminator_opt = Adam(D, learning_rate_d)
2 for x_real in dataloader: # train D
3 x_gen = Parameter(randn_like(x_real))
4 x_gen_opt = SGD([x_gen], learning_rate_g)
5 D.requires_grad_(False)
6 for _ in range(T): # optimize x_gen
7 x_gen_opt.zero_grad()
8 loss_g = -D(x_gen).mean()
9 loss_g.backward()

10 x_gen_opt.step()
11 D.requires_grad_(True)
12 discriminator_opt.zero_grad()
13 loss_d = D(x_gen.detach()).mean() \
14 - D(x_real).mean()
15 loss_d.backward()
16 discriminator_opt.step()

2 METHOD

GANs rely on two loss functions: LG, which incentivizes the generator G to generate samples xgen

that receive high scores from the discriminator D, and LD, which incentivizes the discriminator D to
assign low scores to xgen and high scores to real samples xreal. A popular example are Wasserstein
losses Arjovsky et al. (2017):

LG = −D(xgen) (1)

LD = D(xgen)−D(xreal) (2)

For DOG, we reuse these loss functions but replace the sample generation via a generator G with a
generation optimization (GO) process. GO aims to generate samples xgen that (locally) minimize
LG, similar to samples from a GAN generator G. Since there is no generator model G in DOG,
we refer to LG as a ”generation” loss instead of a ”generator” loss. GO depends on the current
discriminator D and a random starting sample xgen

0 ∼ P = N(0, I). We generate a sample
xgen = xgen

T = GO(D,xgen
0 ) by iteratively updating the sample using the gradient of LG with respect

to xgen
t . The sequence of samples xgen

t forms a GO path. We optimize for T steps using gradient
descent with a learning rate η:

xgen
t+1 = xgen

t − η∇xgen
t
LG(x

gen
t ) (3)

We train the discriminator model D to minimize the discriminator loss LD(xreal, sg(xgen)), where sg
is a stop gradient operator. As described in Algorithm 1, this process is repeated for each training
step.

We use the stop gradient operator sg to prevent collapse: Suppose we kept the gradient from GO for
the discriminator weight update step, and also required gradient computation for the weights of D.
Then, the computational graph through which we backpropagate for a training step would contain
all the T forward and backward passes through D from GO, which would be problematic due to
memory constraints. In addition, since LD pushes D to assign a lower score to the final generated
sample xgen

T , D would have an advantage in modifying its score surface so that there are no GO paths
from noise to realistic samples, e.g., by giving zero gradient for noisy inputs.

DOG is flexible in the choice of P , LG, and LD. In practice, we also use learning rate scheduling, so
η depends on t, and Equation (3) is extended with the update rules of momentum-based optimizers.
For a formal analysis of DOG, see Appendix C.

3 EVALUATION

To evaluate the versatility of DOG, we tested it on various datasets across multiple domains. These
datasets include a 2D toy dataset with 25 Gaussians Tran et al. (2018), FFHQ, a dataset of face images
Karras et al. (2019), and several graph datasets such as QM9, a molecule dataset Wu et al. (2018).
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Based on the results of early experiments, we generally use Adam Kingma & Ba (2015) as the
optimizer for the GO process with T = 100 and a OneCycle learning rate schedule Smith & Topin
(2019) (max lr = 1.0 and a warm-up ratio of 0.3) for faster convergence than constant learning rate
gradient descent. An implementation can be found at https://github.com/riegerfr/dog.

3.1 25-GAUSSIANS TOY DATASET

To generate a 25-Gaussians dataset, we independently draw 2000 samples from a Gaussian with
covariance Σ = I ∗ 0.0001 for each mean µ in [−1.5,−0.75, 0, 0.75, 1.5]2 to obtain 50, 000 samples,
similar to Tran et al. (2018). As in Wang et al. (2022), we use a discriminator with 2 hidden linear
layers of 128 units each and LeakyReLU activations between them. We set max lr = 0.1 for the
OneCycle in the GO process and train with a batch size of 128 for 50 epochs using Adam with
lr = 10−5, (β1, β2) = (0, 0.9), and Wasserstein losses Arjovsky et al. (2017).

As shown in Figure 2, all modes of the data are covered, and most of the generated samples are close
to the real modes. Note that it is possible for the discriminator scores (and the resulting loss surface)
to be not perfectly symmetric and for some modes to receive higher scores than others, while still
providing many GO paths to each mode. In particular, the central mode at (0, 0) is still covered even
though it receives a lower score than others since GO often ends at local maxima. Furthermore, since
the starting point density is N(0, I), which is highest at (0, 0), we already initialize many GO paths
close to this mode.

(a) Discriminator surface

(b) Generation loss

(c) Training loss

Figure 2: Results of DOG on the 25-Gaussians toy dataset. (a) The background colors represent the
discriminator scores, with brighter colors indicating higher scores. The black crosses represent the
50, 000 real samples, while the white crosses represent 1, 280 generated samples. The colored lines
show a subset of the GO paths, which start at random locations xgen

0 and end at the generated samples
xgen
T . (b) Typical GO loss curves, colored according to the paths shown in (a). Both the initial and

final scores vary, and all GOs have converged. (c) Discriminator training loss of 25-Gaussians for
DOG. A loss close to zero indicates that generated and real samples receive similar scores.

3.2 FACE IMAGE DATA

For a first demonstration of DOG on image data, we utilize FFHQ (256² pixels) Karras et al. (2019)
and follow the settings of StyleNAT Walton et al. (2022) to a large extent. However, due to the
high computational cost of DOG, we use a slimmer discriminator architecture with a quarter of
the channels and train the model for only 100 epochs, which is about an order of magnitude less
than StyleNAT. Other hyperparameters and regularization terms, such as non-saturating (NS) GAN
losses, horizontal flips for data augmentation, balanced consistency regularization (bCR) Zhao et al.
(2021), R1 regularization Mescheder et al. (2018), a batch size of 64, and Adam with lr = 2 ∗ 10−4

and (β1, β2) = (0, 0.9), remain the same. While an exponential moving average was used for the
generator in the original setting, we do not apply it to the discriminator for DOG.
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Although the displayed images in Figure 3 show faces, their quality is not competitive with the current
state of the art, as quantified by a FID-50k of 142.86 for DOG versus 2.05 for StyleNAT. Since
discriminators have only been used in conjunction with generators so far, they may implicitly exploit
the generator’s architecture. Thus, to enable better performance for image generation, DOG may
require substantial changes to the discriminator architecture, larger models, different regularization
techniques, and tuning of hyperparameters. This should be explored in future work, after finding
ways to reduce the computational cost of DOG, as discussed in Appendix B.

3.3 GRAPH DATA

To generate graphs using DOG, we directly optimize both the node feature matrix and the edge
feature matrix (or adjacency matrix if the edges have no features). At each generation step in GO, we
apply constraints to the edge matrix by setting its diagonals to zero and ensuring symmetry. Moreover,
we mask the edge matrix and the node feature matrix based on the given number of nodes for each
batch element, similar to the post-processing step used by Martinkus et al. (2022) for SPECTRE,
which is the current state-of-the-art for graph generation using GANs.

Data For a detailed description of each dataset used for the graph generation evaluation, data splits,
and statistics, we refer to Martinkus et al. (2022). In short, we evaluate DOG on benchmark datasets
that include both artificial and real-world graphs. The artificial datasets are Community-small You
et al. (2018), with 12-20 nodes; SBM, which includes graphs sampled from stochastic block models;
and Planar, containing only planar graphs. The two real-world datasets are Proteins Dobson &
Doig (2003), containing proteins with hundreds of nodes, and QM9 Ramakrishnan et al. (2014), an
exhaustive dataset of molecule graphs with up to 9 heavy atoms.

Metrics Following Martinkus et al. (2022), we generate as many graphs for each dataset as there are
in the test set. For the set of generated graphs, we report the percentage of valid, unique, and novel (V.,
U. & N.) graphs, as well as the maximum mean discrepancy (MMD) for various statistics (Degree,
Clustering, Orbit, Spectrum, and Wavelet) between the generated set and the test set, where applicable.
We also report the average ratio among all statistics between the MMD of the generated set and the
MMD of the training set, where a ratio of 1.0 indicates that the generated set is as distinguishable
from the test set as the training set. For Community-small, we use the earth mover’s distance (EMD)
instead of MMD, to maintain consistency with Martinkus et al. (2022).

Baselines As baselines, we compare the results of DOG with those of SPECTRE and GG-GAN
(RS)*, as reported in Martinkus et al. (2022). Note that they use the node number distribution of the
test set to generate samples, which we also adopt for consistency. Additionally, we include GG-GAN*
or MolGAN* Martinkus et al. (2022) where they perform better. Where available, we also include
the results of DiGress Vignac et al. (2023), a recent diffusion-based approach that does not use a
discriminator and updates the graph in discrete steps. Note that Vignac et al. (2023) report the MMD
ratios directly instead of the raw MMD values. Therefore, we calculate them using the training MMD
values of Martinkus et al. (2022), which may introduce rounding errors. The comparability of the
results is further limited because DiGress uses different splits for some datasets and uses the node
distribution of the training set for sampling.

Model Although DOG could use the more advanced discriminator of SPECTRE, which uses con-
ditioning on eigenvalues and eigenvectors, we focus on the simple discriminator architecture of
GG-GAN (RS)* with default hyperparameters, following the reference GG-GAN (RS)* implementa-
tion also introduced by Martinkus et al. (2022). For example, for QM9, we use a discriminator with 3
PPGN layers Maron et al. (2019) with 64 channels each and a batch size of 128.

Other Settings Like Martinkus et al. (2022), we train for 30 epochs for QM9 and 12, 000 epochs
for Community-small and Planar. Due to the expensive GO, we use only 130 epochs for Proteins
(instead of 1, 020) and 2, 400 for SBM (instead of 6, 000). Each run uses a single Nvidia A40, except
for Proteins where we use 2 GPUs (and maintain a total batch size of 4 as in SPECTRE). Training on
our default QM9 configuration takes about 15 hours. We keep the seeds constant as in the reference
implementation and, like Martinkus et al. (2022), select a checkpoint for testing according to the
validation performance. As the validation metric, we use the mean MMD ratio, except for QM9,
where we choose the ratio of valid and unique generated graphs. Like Martinkus et al. (2022), we use
WGAN-LP (λLP = 5) and gradient penalty as losses Petzka et al. (2018). We train using Adam with
lr = 10−4 and (β1, β2) = (0.5, 0.9).
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Table 1: QM9 results. °As discussed by Vignac
et al. (2023) novelty is a problematic metric for
QM9. Therefore, we report it here only for com-
pleteness.

METHOD V.↑ V. & U. ↑ V., U.& N.°

DIGRESS 99.0 ≈95.2 -
SPECTRE 87.3 31.2 29.1
GG-GAN (RS)* 51.2 24.4 24.4
DOG 3L. 64 CH. 93.8±1.3 91.7±0.9 58.1±2.4

DOG 6L. 128 CH. 98.9 95.8 42.0

QM9 Results As shown in Table 1, DOG outper-
forms all GAN approaches on QM9, including
GG-GAN (RS)* and SPECTRE, while being
competitive with DiGress for a larger discrim-
inator (6 layers, 128 channels each). For our
main experiment with the default configuration,
we report the mean and standard deviation for
five seeds. See Figure 4 for examples of gener-
ated graphs.

Hyperparameter Study We conducted a hyper-
parameter study on QM9 to evaluate the impact
of our design choices on the performance of our model. In Table 2, we start with the default model
and examine the effect of varying hyperparameters on the fraction of valid and unique graphs. We
also analyze the discriminator’s (smoothed) Wasserstein loss LD at the end of training since we
observed in early experiments that a low loss correlates with poor sample quality, suggesting that it is
not desirable for GO if the discriminator can distinguish well between generated and real samples.

Table 2: Hyperparameter study for DOG on QM9.
Default: 100 OneCycle Adam steps, 3 layer, 64
channels, WGAN-LP losses. °Not comparable be-
cause different loss functions or number of epochs
are used.

SETTING V & U. ↑ FINAL LD

DEFAULT DOG 91.7±0.9 -0.17±0.04

128 CH. 93.8 -0.08
6 LAY. 94.3 -0.21
128 CH., 6 LAY. 95.8 -0.14
200 STEPS 92.0 -0.07
50 STEPS 81.3 -0.79
25 STEPS 34.1 -44
MAX LR = 0.1 90.2 -0.29
ADAM → SGD 91.1 -0.16
NO ONECYCLE 56.9 -15
NO CONSTRAIN 81.8 -0.34
NS LOSSES 84.4 1.27°
1 EPOCH TRAINING 43.4 -0.04°

First, we investigate the model size by doubling
the number of channels and layers, both indepen-
dently and together. We find that models larger
than those used by the GAN baselines perform
better.

Next, we examine our choices for GO: While
increasing the number of steps T may result
in better convergence to local minima of LG
(maxima in D’s score surface), it also increases
the computational cost of DOG, posing a trade-
off. Doubling the number of steps to T = 200
results in higher discriminator losses but similar
quality, indicating that T = 100 is sufficient. In
contrast, halving the number of steps to T = 50
leads to worse performance. An even lower
number of steps (T = 25) leads to a failure
mode where GO ends before the discriminator
can be fooled, giving the discriminator a low
loss. Reducing the learning rate in GO by a
factor of 10 leads to only slightly worse results,
indicating that GO is not overly sensitive to learning rates, at least when using Adam with OneCycle
learning rate scheduling as the optimizer. However, not using learning rate scheduling (but tuned
lr = 0.1) significantly reduces the sample quality, suggesting that learning rate scheduling is crucial
for GO, as again implied by the low discriminator loss. Replacing Adam with stochastic gradient
descent (SGD) in the GO process performs similarly to the default setting but requires more learning
rate tuning (max lr = 100). Not constraining the edge matrix after each GO step has a negative effect,
demonstrating the benefit of staying within the target domain during GO.

Notably, replacing the WGAN losses with NS losses (but keeping λLP and other hyperparameters)
leads to only a moderate degradation, supporting our claim that DOG is flexible regarding the choice
of LD and LG.

While individual training steps of DOG take more time due to the iterative GO, we find that the
overall training nevertheless progresses faster compared to SPECTRE. Although SPECTRE trains by
default for 30 epochs (≈ 8 hours) on QM9, DOG achieves already better test performance after only
one epoch (< 0.5 hours), indicating faster convergence. We speculate that GO yields higher quality
generated samples for the discriminator early on: Unlike a generator model in a GAN, GO does not
have parameters that are adopted to the discriminator weights with a delay. This observation suggests
that in DOG, inner (generation) and outer (training) optimization are closely related.

Other Graph Datasets The results for other graph datasets also demonstrate DOG’s superior
graph generation performance compared to the baseline GG-GAN (RS)* and SPECTRE. This trend
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Table 4: Planar (top) and SBM (bottom) results.

METHOD DEG. ↓ CLUS. ↓ ORBIT ↓ SPEC. ↓ WAVELET ↓ RATIO ↓ V. ↑ U. ↑ N. ↑ V., U. & N. ↑
DIGRESS ≈0.00028 ≈0.0372 ≈0.00085 - - - - - - 75
SPECTRE 0.0005 0.0785 0.0012 0.0112 0.0059 2.9 25.0 100.0 100.0 25.0
GG-GAN (RS)* 0.1005 0.2571 1.0313 0.2040 0.3829 586.3 0.0 100.0 100.0 0.0
DOG (OURS) 0.00023 0.0827 0.0034 0.0067 0.0029 2.78 67.5 100.0 100.0 67.5

METHOD DEG. ↓ CLUS. ↓ ORBIT ↓ SPEC. ↓ WAVELET ↓ RATIO ↓ V. ↑ U. ↑ N. ↑ V., U. & N. ↑
DIGRESS ≈0.00128 ≈0.0498 ≈0.04335 - - - - - - 74
SPECTRE 0.0015 0.0521 0.0412 0.0056 0.0028 2.0 52.5 100.0 100.0 52.5
GG-GAN (RS)* 0.0338 0.0581 0.1019 0.0613 0.1749 61.5 0.0 100.0 100.0 0.0
GG-GAN* 0.0035 0.0699 0.0587 0.0094 0.0202 7.8 25.0 100.0 100.0 25.0
DOG (OURS) 0.0003 0.0508 0.0401 0.0039 0.0013 1.15 72.5 100.0 100.0 72.5

Table 5: Proteins results. °Note that novelty is severely limited for MolGAN* as discussed by
Martinkus et al. (2022).

METHOD DEG. ↓ CLUS. ↓ ORBIT ↓ SPEC. ↓ WAVELET ↓ RATIO ↓ U. ↑ N. ↑ U. & N. ↑
SPECTRE 0.0056 0.0843 0.0267 0.0052 0.0118 16.9 100.0 100.0 100.0
GG-GAN (RS)* 0.4727 0.1772 0.7326 0.4102 0.6278 875.8 100.0 100.0 100.0
MOLGAN* 0.0008 0.0644 0.0081 0.0021 0.0012 4.2 97.3 100.0° 97.3
DOG (OURS) 0.0022 0.0682 0.0202 0.0014 0.0023 6.75 100.0 100.0 100.0

can be observed in Tables 3 to 5, which present the results for Community-small, Planar, SBM
(max lr = 0.1), and Proteins (max lr = 0.1), respectively. Many of these results are on par with
DiGress. Notably, DOG achieves this high performance using only the simple GG-GAN (RS)*
discriminator, and we did not tune any GAN-specific hyperparameters. We only tuned the DOG-
specific max lr and kept T = 100 constant. For examples of both real and generated graphs, see
Figure 5.

4 RELATED WORK

Table 3: Community-small results. We explain the
extraordinarily small ratio of EMD scores by the
small number of test samples (and thus generated
samples), as well as the fact that we use the node
distribution of the test set to be consistent with
Martinkus et al. (2022). Our results, as well as
those of DiGress indicate that the performance is
saturated for this toy dataset.

METHOD DEG. ↓ CLUS. ↓ ORBIT ↓ RATIO ↓
DIGRESS ≈0.018 ≈0.0643 ≈0.006 1.0
SPECTRE 0.02 0.21 0.01 1.7
GG-GAN (RS)* 0.08 0.22 0.08 5.5
DOG (OURS) 0.003 0.006 0.002 0.16

Prior work that is conceptually similar to DOG
are EBMs Ackley et al. (1985); Du & Mordatch
(2019). EBMs train an energy estimation model
to assign a high energy score to real samples
and a low energy score to generated samples,
essentially using a Wasserstein loss Arjovsky
et al. (2017). This energy defines a density from
which one can sample using Langevin dynam-
ics Welling & Teh (2011). Langevin dynamics
use noise and the gradient of the energy score
with respect to the input sample to update the
input sample in several steps. A key difference
between DOG and EBMs is that DOG does not
use noise during GO, but only deterministic gra-
dient descent w.r.t. an explicit generation loss
LG, possibly paired with learning rate scheduling and momentum-based optimization. DOG’s sample
density is higher at local maxima in the discriminator’s score surface (minima of LG), as GO paths
ideally end there. Since a high gradient at a location usually causes the gradient-only GO to move
away from it, a high score from a DOG discriminator does not necessarily define a high density. Thus,
conceptually, the model in EBMs is an energy estimator that defines a (unnormalized) density, while
in DOG, it is a discriminator that should distinguish between generated and real samples. Another
difference between DOG and EBMs is the lack of a sample replay buffer, which EBMs use during
training to save expensive generation steps.

Other approaches related to EBMs and DOG include score-based generative modeling Song & Ermon
(2019); Song et al. (2021) and denoising diffusion approaches Sohl-Dickstein et al. (2015); Ho et al.
(2020). All of these methods generate samples incrementally by making dense predictions on the
input, starting from pure noise. They allow for corrections of previous inaccuracies during generation,
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unlike GANs, which generally generate samples in a one-shot fashion. Diffusion models typically
predict the remaining noise, while score-based models estimate the gradient of the energy surface.
Unlike for EBMs and DOG, the dense prediction in these methods does not come from a backward
pass through a scalar prediction model but from a forward pass through a dense prediction model. In
addition, the settings do not require expensive sample generation during training.

Other approaches, such as DiffusionGANs Wang et al. (2022) and discriminator guidance Kim et al.
(2022), combine ideas from diffusion and GANs by using a discriminator to refine partially denoised
samples generated by a diffusion model. EBMs and GANs are also related. While combinations
were proposed early on Zhao et al. (2017), Che et al. (2020) show how a GAN can be interpreted
as an EBM, and Xiao et al. (2021) indicate that EBMs are self-adversarial like DOG. Additionally,
Ansari et al. (2020) show how to use the gradient of a discriminator to refine the generation, which
may come from a GAN generator. Besides these, a range of other popular generative approaches
have been explored, including normalizing flows Rezende & Mohamed (2015); Kobyzev et al.
(2019), variational autoencoders Kingma & Welling (2014); Vahdat & Kautz (2020), autoregressive
generation Brown et al. (2020); Lee et al. (2022), and masked modeling Chang et al. (2022; 2023).

DOG is also related to adversarial robustness Song et al. (2018); Dong et al. (2020): Both settings use
the gradient of a model’s input to perturb samples, resulting in a change of the model’s predictions.
However, the goal of DOG is different: it aims at de novo content generation and receives only noise
as an input during inference, no adversarially perturbed samples.

Specifically for the graph domain, besides the multi-step GAN-based SPECTRE Martinkus et al.
(2022) and the state-of-the-art diffusion-based DiGress Vignac et al. (2023), other methods have
been proposed. These include score-based generative modeling Niu et al. (2020); Jo et al. (2022) and
autoregressive models Liao et al. (2019). Earlier graph GANs are based on recursive neural networks
You et al. (2018) or random walks Bojchevski et al. (2018). Other approaches utilize normalizing
flows Madhawa et al. (2020) or focus on permutation invariance Vignac & Frossard (2022). Note that
all of these approaches are tailored to graphs, sometimes even limited to molecule graphs. In contrast,
DOG is a general approach that can be applied to various domains, including graphs.

5 DISCUSSION

5.1 TRAINING EFFICIENCY

While DOG already shows advantages over GANs in certain domains such as graphs, its current
limitations are apparent for images (Figure 3). This could be due to the expensive training steps that
include GO. A detailed analysis of the computational cost can be found in Appendix D.

A potential solution to improve training efficiency is to reuse generated samples during training: by
using a sample replay buffer, such as Du & Mordatch (2019), the starting point for GO could be
closer to realistic samples, thus requiring fewer GO steps to achieve convergence. Another solution
would be to use the intermediate samples and their gradients, instead of discarding them altogether
with the stop gradient operator, to regularize and potentially shorten the GO paths. Additionally,
we expect that more hyperparameter tuning for Adam and OneCycle, or using a more suitable GO
approach, could further reduce T . By analogy, note that earlier denoising diffusion approaches used
thousands of steps, which could be reduced to only a handful by skipping steps and increasing the
step size Meng et al. (2022). Another potential way to speed up training and inference would be to
operate in latent space instead of image space Rombach et al. (2022).

5.2 IMPLICATIONS OF A MISSING GENERATOR

While DOG is seemingly parameter-efficient compared to GANs since it does not require the
parameters of a generator, the DOG discriminator has a different task to solve. Note that GO can
start anywhere and, assuming convergence, will eventually also reach all local maxima in the score
surface of D. Thus, a good discriminator should have local maxima only at realistic samples. This
observation suggests that the score surface of a DOG discriminator must give meaningful gradients
over the entire target domain for the GO path from each noisy sample to a realistic one. This is
in contrast to the score surface of a GAN discriminator, which only needs to provide meaningful
gradients on the subset of the domain currently covered by the generator. For example, for FFHQ,
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after teaching the generator the global structure of a face, the GAN discriminator could adapt to
focus on the local texture. Therefore, we speculate that a DOG discriminator might benefit from an
architecture and regularization techniques that are optimized to accommodate this difference.

5.3 CONCEPTUAL ADVANTAGES

One of the primary conceptual advantages of DOG is its ability to instantly update GO with D,
providing high-quality training samples toD directly. This is in contrast to GANs, where the generator
model must first learn from the discriminator and always lags behind. As a result, DOG may require
fewer training steps to achieve good performance, as demonstrated on QM9 (Section 3.3).

In the graph domain, DOG outperforms approaches like SPECTRE Martinkus et al. (2022) by not
requiring a complicated multi-step approach where some generators and discriminators need to be
trained before others. This greatly simplifies the setting by using only a single discriminator model.
Moreover, unlike the extensive journey of different generators from GraphGAN Wang et al. (2018) to
SPECTRE, there is no need to tune the generator architecture for DOG. However, the tuning of the
discriminator architecture and regularization techniques remains.

Overall, DOG’s ability to provide high-quality training samples toD directly and its simplified setting
without the need to tune the generator architecture make it a promising generative approach.

6 CONCLUSION

The self-adversarial DOG shows that high-quality sample generation is possible with a discriminator-
only approach on graphs, outperforming GANs while being on par with state-of-the-art diffusion
approaches. DOG is conceptually simple and not limited to a specific domain. Making DOG faster
and further tuning of the discriminator architecture as well as regularization techniques may also
enable competitive performance in other domains.
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Figure 3: Generated samples for FFHQ using a DOG-trained discriminator.
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Figure 5: Uncurated set of DOG generated and real samples for Community-small, Planar, SBM and
Proteins (from top to bottom). Many properties of the real data are covered by the generated samples,
but for example for Proteins, disconnected components can occur.

A LIMITATIONS & SOCIETAL IMPACT

DOG harbors the same dangers of deception as other generative approaches such as GANs or
denoising diffusion approaches. However, the quality of the generated samples is currently still
limited in the image domain and on par with other approaches in the graph domain. Furthermore,
DOG training is computationally expensive compared to competitive approaches.

B IMAGE DOMAIN DISCUSSION

We acknowledge that the quality of images generated by DOG is currently low, highlighting the need
for different optimizations in the graph and image domains.

It is important to note the significant progress that has been made in generative modeling over the
years, with numerous innovations required from early GANs Goodfellow et al. (2014) to GigaGAN
Kang et al. (2023), and from early diffusion models Sohl-Dickstein et al. (2015) to simple diffusion
Hoogeboom et al. (2023). Given the heavily studied field of image generation, we would be surprised
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to see near state-of-the-art results in the first paper exploring an innovative generative modeling
approach. We argue that extensive hyperparameter tuning, including architecture and regularization
techniques, may be required for DOG. For this demonstration, we have only used StyleNAT’s GAN-
specific hyperparameters without modification and a slim version of the discriminator architecture.

Figure 4: Uncurated set of DOG generated samples
for QM9. Like Martinkus et al. (2022), we also
count disconnected graphs (like the bottom middle
one) as valid for QM9.

Although some approaches developed for im-
age GANs may be transferable to DOG, an ex-
haustive evaluation of them is beyond the scope
of this paper. We believe that this should be
addressed after making DOG faster by find-
ing ways to reduce the number of GO steps T .
While most generative approaches are general
in theory, some are better suited for specific do-
mains than others. For example, GANs work
well for images Kang et al. (2023), but currently
not for text Alvarez-Melis et al. (2022). There-
fore, we believe that showcasing what works
well with DOG (graph generation) and what
doesn’t work well (image generation) strength-
ens - not weakens - the paper.

Similar to early visualization techniques Mord-
vintsev et al. (2015), we establish a baseline for
DOG’s performance by using a discriminator that was trained in the default StyleNAT (GAN) set-
ting without any further training for sampling with DOG’s GO without constraints. The results
(Adam+OneCycle, max lr = 1.0, T = 100) can be observed in Figure 6 (other max lr lead to similar
results). We see that a GAN-trained discriminator does not produce meaningful images, indicating
that DOG’s gradient-based GO struggles to find a path to a realistic sample when using a GAN-trained
discriminator. However, this result is intriguing because it suggests that the DOG training process
leads to a fundamentally different discriminator that enables GO paths to more realistic samples as
seen in Figure 3.

Figure 6: Generated samples for FFHQ using a (fixed) GAN-trained discriminator.

Currently, DOG outperforms GANs on graphs, but not on images. We offer two reasons for this.
First, graph discriminators are much lighter than image discriminators, which means that we are not
computationally limited by slow training steps. In fact, we trained DOG for the same number of steps,
sometimes even using larger discriminators than the best graph GAN (SPECTRE) for QM9. However,
for FFHQ, we used an order of magnitude fewer training steps and a much smaller discriminator
than the best GAN, as we trained on a single Nvidia A40 for about a week. The second reason is
that, given our assumptions, the GO process prefers to reach strict local maxima. Therefore, DOG
may be better suited for generating discrete data (such as graphs where there is either an edge or
none between two nodes) rather than continuous data such as images. There, a small amount of noise
ϵ added to an image x would still be considered a valid sample, whereas DOG would only return
x+ ϵ for a fixed subset of ϵ, where x+ ϵ is a local maximum in the discriminator’s score surface. To
address this limitation, there are two potential remedies that can be explored in future work. One
option is to use inference-time dropout in D to create different local maxima for each GO. Another
approach is to model pixel values as discrete rather than continuous.

Overall, we believe that DOG’s strengths in graph generation showcase the potential of this innovative
generative modeling approach, and we hope that our discussion of its current limitations will inspire
further research and development in this area.
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C METHOD ANALYSIS

This section provides theoretical insights into DOG’s workings. While we utilize Wasserstein GAN
loss terms Arjovsky et al. (2017) for simplicity, similar derivations are also applicable to other terms.

For Wasserstein losses, DOG’s update rule (Equation (3)) can be simplified to:

xgen
t+1 = xgen

t + η∇xgen
t
D(xgen

t ) (4)

C.1 MIN-MAX OPTIMIZATION

To better understand DOG from the perspective of saddle-point min-max optimization Yadav et al.
(2018), we again consider the Wasserstein GAN. The optimization problem is defined with ψ and θ
representing the generator and discriminator parameters respectively, and Z and R representing the
latent and real data distribution respectively:

minψmaxθEx∼R[Dθ(x)]− Ez∼Z [Dθ(Gψ(z))] (5)

We could replace G with a perfect adversary of D, which always finds a global maximum in the score
surface of D (global minimum for LG). This adversary thus acts as a better G, knowing directly
everything that D has learned:

maxθEx∼R[Dθ(x)]−Dθ(argmaxxDθ(x)) (6)

Since perfect adversaries are not practical, we use a GO to approximate argmaxxDθ(x):

maxθEx∼R[Dθ(x)]− Exgen
0 ∼P [Dθ(sg(GO(Dθ, x

gen
0 ))] (7)

In practice, we alternate between obtaining a xgen = GO(Dθ, x
gen
0 ) and optimizing θ with a gradient

descent step. As described in Section 2, during training, we must prevent gradient computation
through GO to ensure that GO remains a good approximator for the argmax.

C.2 CONVERGENCE ANALYSIS

For additional insight, we provide a convergence analysis of DOG, analogous to similar analyses
for GANs Mescheder et al. (2018), for a simple 1-D dataset and a simple D with only a single
(strict) local maximum. Consider Wasserstein losses and the following data distribution: p(x) = δ(x)
(where δ is the Dirac delta function), i.e., the samples are only at xreal = 0. Furthermore, consider the
following discriminator with a single learnable scalar parameter θ: Dθ(x) = −(x− θ)2.

Suppose DOG’s T is large enough and the learning rate η in GO is small enough. Then we always
converge to the local (and global) maximum in the score surface of the discriminator (minimum for
LG ), i.e., xgen = GO(Dθ, x

gen
0 ) = θ + ϵ (with ϵ arbitrarily close to 0 and numerically equal to 0 for

all practical purposes).

Then we have:

LD = Dθ(x
gen)−Dθ(x

real) = Dθ(θ)−Dθ(0) = 0 + θ2 = θ2 (8)

This is minimized by training with gradient descent using a learning rate ν : θ′ = θ − νdL/dθ =
θ − ν2θ, which converges to 0. Therefore, a trained D would have θ = 0 and the sampling would
cover the distribution perfectly: GO(Dθ, x

gen
0 ) = 0.

Regarding generalization, consider a new 1-D underlying data distribution where the samples lie
on a grid xreal ∈ X real ⊆ {kn|n ∈ Z} (for some fixed scalar k). Suppose we have only two real
datapoints, xreal

0 = 0 and xreal
1 = 2π. For the discriminator, we choose D(x) = cos(θx). Assuming a

broad uniform distribution P for xgen
0 and appropriate T and η, GO will converge to the nearest local

maximum of D to xgen
0 , i.e. xgen ∈ {2πn/θ|n ∈ Z}.

The expected value of the loss function can be calculated as

E[LD] = E[D(xgen)]− 0.5D(xreal
0 )− 0.5D(xreal

1 ) (9)
= E[1]− 0.5D(0)− 0.5D(2π) = 1− 0.5− 0.5cos(θ2π). (10)
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Taking the derivative of E[LD] with respect to θ yields dE[LD]/dθ = πsin(θ2π), where gradient
descent on θ converges to θ = 1 if appropriate learning rates are used and GO starts sufficiently
close.1 Then, DOG generalizes to the underlying (grid) data distribution, because we can also
generate samples that are not among the real samples: For example, xgen = GO(D1, 4π + ϵ) = 4π
for xgen

0 = 4π + ϵ and a small ϵ.

We can now extend this example to higher dimensions by overlaying independent distributions and
discriminators. For 2 dimensions, we have xreal = (xreal

1 , xreal
2 ) ∈ X real ⊆ {(k1n1, k2n2)|n1, n2 ∈ Z}

with D(x) = cos(θ1x2)cos(θ2x2). Convergence and generalization follow the same pattern as in the
1-D case.

C.3 SCORE SURFACE

Consider the score surface defined by D (see Figure 2(a)) to gain another perspective. Assuming a
smooth surface and converging GO, the generated samples lie at local maxima of the score surface
(local minima of the LG surface). LD increases the scores of the real samples, potentially creating
new local maxima, while it decreases the scores of the generated samples, potentially destroying their
corresponding local maxima. While this process could introduce new local maxima elsewhere, which
might then be destroyed again, it is worth considering a situation where there is exactly one strict
local maximum at each real sample, and no other local maxima after training. This means that D has
memorized every sample in the training set, since by assumption GO always ends at local maxima.

Note that GAN optimization seeks a Nash equilibrium Heusel et al. (2017) between G and D,
where neither has an advantage by changing its weights. Suppose further that all local maxima are
sampled with equal probability for DOG, i.e., the real and generated samples are drawn from the
same distribution of real samplesR. In this situation, we would have reached such a Nash equilibrium
between GO and D: GO has no learnable parameters and therefore cannot reduce any loss, and for
Dθ the terms of LD cancel out and there is no incentive for D to change its weights. In this game,
only one player, D, can choose its action (by changing its weights) and the other player, GO, is fixed
given D. For example, for Wasserstein losses, we have in expectation

LD = Exgen
0 ∼P [Dθ(sg(GO(Dθ, x

gen
0 )]))]− Exreal∼R[Dθ(x

real)] (11)

= Exgen∼R[Dθ(x
gen)]− Exreal∼R[Dθ(x

real)] = 0 (12)

and hence ∇θLD = 0.

However, in practice, pure memorization of the training samples is not desirable, as we want the
distribution of the generated samples from GO(D,P ) to match the underlying distribution of the real
samples. We are interested in generating new samples from the domain and thus in generalization.
For GANs, generalization comes from an imperfect discriminator or an imperfect generator Zhang
et al. (2018); Brock et al. (2019). Similarly, generalization in DOG must originate from an imperfect
D that also has other local maxima at other realistic samples from the domain or from an imperfect
GO that does not converge to local maxima but still ends at a realistic sample.

C.4 DENSITY

We can obtain the density p(xgen) of a generated sample xgen by counting the GO paths that end there
and weighting them by the density of xgen

0 :

p(xgen) ∝ Exgen
0 ∼N(0,I)[I(GO(Dθ, x

gen
0 ), xgen)] (13)

Here, I(a, b) is the indicator function that returns 1 if a = b and 0 otherwise.

The set of local maxima of the discriminator D can be defined as locmax(D) :=
{x|x is a local maximum of D(x)}. Assuming that the gradient descent GO always converges to a
local maximum x ∈ locmax(D), we can partition the space of starting locations according to the

1Note that other values, such as θ = 2 would also minimize LD , which can be reached by starting the
training close to these values. The choice of the discriminator as well as the initialization leads to different
generalization patterns.
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local maxima that are reached, turning the density p into a probability if the set is discrete (i.e., if all
local maxima are strict).

If we further assume that D is smooth, all local maxima are strict, and η is sufficiently small, then
there exists a small radius r around each x ∈ locmax(D) such that for every xgen

0 in this radius
(||xgen

0 − x||2 < r), we have I(GO(D,xgen
0 ), x) = 1, i.e. the GO paths lead to the closest local

maximum. This implies that ∀x ∈ locmax(D) : p(x) > 0, since the starting distribution P = N(0, I)
is positive everywhere, i.e., every local maximum will eventually be sampled. This affects both
training and inference: Only those local maxima that actually receive samples xgen can be used by
the loss function LD during training and are relevant for inference.

Note, however, that p(x) may be higher for some x than for others, meaning that more gradient
descent paths (weighted by their starting density P (xgen

0 )) end at some x than at others. Assuming
good performance, where all samples are realistic and p(x) largely follows the real data distribution,
the paths that emerge are meaningful. The emergence of these paths is non-trivial: it is not enough
to have realistic samples at local maxima; they must also be reachable via the GO paths with an
appropriate probability. In particular, the loss function LD only applies directly at the real and
generated samples, not at distant locations (i.e., xgen

0 ). However, the gradient at these locations may
already determine the general direction of many GO paths. Investigating why and how exactly these
paths emerge to follow the underlying data distribution using only LD is an interesting direction for
future work.

C.5 ASSUMPTIONS

We will now assess the validity of the previously made assumptions.

Firstly, the assumption of smoothness holds for all discriminators that utilize differentiable activation
functions. Furthermore, for discriminators that are almost everywhere differentiable, such as those
using ReLUs, it is unlikely to encounter non-differentiable points due to numerical reasons.

Regarding the assumption of GO convergence, as long as η is appropriately small and T is sufficiently
large, the GO process will come arbitrarily close to a local maximum in the score surface. In practice,
however, we often empirically select η and T for good generation performance without necessarily
achieving full convergence.

Finally, we assume the absence of non-strict local maxima, which can be avoided by training
discriminators with a gradient penalty Gulrajani et al. (2017). With this technique, the gradients
provided by the discriminator on its inputs maintain specific values almost everywhere, thus preventing
the existence of flat regions required for non-strict local maxima.

While these assumptions are useful for theoretical analyses, they may not always hold true in practice.
Nonetheless, as discussed in Appendix C.3, an imperfect GO for example might even be a requirement
for generalization.

C.6 TRAINING DYNAMICS

Note that for successful DOG training runs, we are usually able to obtain samples with realness
scores close to random guessing. For example, in Figure 2(c) and Table 2, the Wasserstein LD is
close to zero but not substantially below it, indicating that the generated and real samples receive
similar scores. If the generated samples were given low scores by the discriminator, the training
would collapse because the discriminator would only be trained to assign low scores to samples it had
already assigned low scores to before. However, if GO can find holes in the loss surface by achieving
higher realness scores than real samples, there is an incentive for the discriminator to fill the holes by
ignoring the input or by outputting a score close to random guessing.

These considerations further motivate the use of gradient penalty Gulrajani et al. (2017) or spectral
norms Miyato et al. (2018) in the discriminator to avoid having zero gradients on its input for GO.
In practice, we also observe that the loss of the DOG discriminator varies less compared to GAN
training, which is potentially relevant for tuning the weights of regularization terms such as bCR.
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D COMPUTATIONAL COST

To obtain an approximate comparison for the computational cost of DOG and GANs, we assume
that the cost of each optimizer (i.e., weight/sample and momentum updates) is negligible. We also
assume that the cost of a forward pass through D is equal to the cost of a forward pass through a
corresponding GAN generator model G, as G and D are often designed to be similar in size Karras
et al. (2020). Additionally, we assume that a backward pass is twice as expensive as a forward pass.

For inference, a DOG GO requires T forward and backward passes through D. Therefore, a single
DOG generation costs 3T times as much as a generation with a G that requires only a single forward
pass through G. This brings the DOG inference cost closer to the cost of denoising diffusion models
that perform dozens to thousands of forward passes.

When it comes to training, assuming a vanilla GAN with no augmentations or regularizations, we
have a G update step with one forward and backward pass through G and D (cost 6), and a D update
step with one forward pass through G and two forward and backward passes through D, one for xgen

and one for xreal (cost 7). DOG does not perform a generator update step like GANs since there is no
G. The discriminator update step includes a GO to obtain xgen (3T passes) and again two forward
and backward passes through D (cost 6). In total, we have 13 passes for a GAN training step versus
3T + 6 passes for a DOG training step. For a typical T = 100, this theoretically makes DOG ≈ 23.5
times slower than GANs.

In practice, we may need to use larger discriminators for DOG, since they have to solve different
tasks. However, we could also achieve higher accelerator utilization since no data loading bottlenecks
can occur in the DOG GO. Additionally, as quantified in the hyperparameter study (Section 3.3),
overall fewer training steps (and less time) might be needed for DOG, because there is no generator
whose updates lag behind D, providing high quality xgen for training D directly. While a longer
overall training time is acceptable for domains that are currently not computationally constrained
(such as graphs with GANs), this becomes problematic for the image domain. Finding ways to reduce
T should be the focus of future work.
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