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Abstract

Hallucinations pose a significant obstacle to the reliability and widespread adoption
of language models, yet their accurate measurement remains a persistent challenge.
While many task- and domain-specific metrics have been proposed to assess
faithfulness and factuality concerns, the robustness and generalization of these
metrics are still untested. In this paper, we conduct a large-scale empirical evaluation
of 6 diverse sets of hallucination detection metrics across 4 datasets, 37 language
models from 5 families, and 5 decoding methods. Our extensive investigation
reveals concerning gaps in current hallucination evaluation: metrics often fail to
align with human judgments, take an overtly myopic view of the problem, and show
inconsistent gains with parameter scaling. Encouragingly, LLM-based evaluation,
particularly with GPT-4, yields the best overall results, and mode-seeking decoding
methods seem to reduce hallucinations, especially in knowledge-grounded settings.
These findings underscore the need for more robust metrics to understand and
quantify hallucinations, and better strategies to mitigate them.

1 Introduction

Hallucinations in language model generations are detrimental and, unfortunately, a pervasive
phenomenon [1, 2, 3]. As language models are rapidly adopted across various settings, addressing
hallucinations has become a key research focus [4, |5} 16| [7]. However, before investing time and
resources into devising its mitigation techniques, it is worthwhile to take a step back and ask: 1) Are
the existing metrics truly capturing the hallucinations effectively? 2) Do these metrics generalize
across different datasets, decoding techniques, model families, and model sizes? Confronting these
questions is vital, as any attempt to alleviate hallucinations is futile unless we ensure its robust,
reliable, and accurate measurement.

The term ‘hallucination’ covers a spectrum of generation errors. In this work, we focus on its two
most common manifestations: poor faithfulness and factuality, particularly in knowledge-grounded
dialog [8,(9] and question-answering [10} [11]. Faithfulness measures the consistency and truthfulness
with the provided knowledge source, while factuality pertains to the accuracy wrt real-world facts or
widely accepted knowledge [12].

Measuring these constructs is no simple task. In some cases, simple syntactic [13]] or sematic [[14]]
overlap with the input knowledge can provide an easy estimate of faithfulness. Whereas other times,
one has to resort to custom-trained models [[15} 8], multi-step question answering pipelines [16], or
LLM-based evaluation [17, [18]. Interestingly, while recent surveys have extensively explored the
causes and mitigation techniques for hallucinations in language models [[1} [19} 20, 21}, 122], none have
directly called into question the generalization capabilities of existing metrics. Thus, in this work, we
attempt to fill this gap, and conduct a rigorous empirical investigation of contemporary hallucination
detection metrics. Our study examines the above mentioned diverse sets of metrics from various
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perspectives — consistency, alignment with human judgments, variation across decoding methods,
impact of post-training, and the effect of parameter scaling.

Our findings reveal that most metrics have limited inter-correlation and fail to consistently align
with the human notion of hallucination. They seem to have a limited understanding of the problem,
as they fail to generalize across datasets. Anticlimactically, these metrics do not show a clear
monotonic improvement with an increase in model size. On a positive note, we find that LLM-based
evaluation, particularly with GPT-4, offers the most reliable detection across diverse tasks and
datasets. Additionally, an ensemble of metrics also seems to be a good choice. Instruction-tuning and
mode-seeking decoding methods are also shown to reduce hallucinations. We thus find that detecting
hallucination does not have a one-size-fits-all solution, as existing metrics fall short of capturing its
full spectrum.

2 Experimental Setup

Datasets. We focus on four datasets. FaithDial [8] and BEGIN [9] are knowledge-grounded dialog
datasets, where, given a conversation history H = (uy,...,u,-1) and knowledge source K,,, the
system must generate a response i, that is coherent with H and supported by a non-empty subset
M, c K, to be considered faithful. TruthfulQA [[10] is a factual question-answering dataset with
multiple plausible answers. We measure factuality by comparing the generated answer’s alignment
with them. Lastly, we analyze the knowledge-grounded QA and dialog subsets of the HaluEval [11]
benchmark. More details are provided in Appendix §A.T]

Language Models. Our study includes five language model families: OPT [23]], Llama [24] 25]],
OLMo [26], Phi [27, 28, 29]], and Gemma [30]. We cover models ranging from 125M to 70B,
including their instruction-tuned versions, totaling 37 models. Evaluation spans five decoding
methods of greedy, beam search [31], ancestral, top-k [32], and top-p sampling [33]].

Metrics. We evaluate hallucinations using the following six types of metrics. 1) Rouge-L [13]],
Sacrebleu [34], and Knowledge-F1 measure the n-gram overlap between the generation, and reference
text and source knowledge, respectively. 2) Likewise, BertScore [14] and Knowledge-BertScore
[8L135]] assess their semantic similarity. 3) The pre-trained evaluator of consistency and groundedness
from the UniEval suite [15] help measure the factual alignment and input faithfulness, respectively. 4)
Q_2 [16] is a QA-based faithfulness metric that generates questions from the model output, identifies
relevant spans in the knowledge source and ground truth response [36} 137, and compares candidate
answers to gold answers using either token-level or NLI-based F1. 5) Critic [8] is an NLI-based
classifier trained on dialog data, that identifies unfaithful responses. GPT-4 [38]] is used as an LLM-
judge [I18]], that classifies hallucinated responses. 6) Finally, we combine consistency, K-BertScore,
Q? NLI, Critic, and GPT-4 scores using Factor Analysis of Mixed Data (FAMD) [39] to create an
Ensemble metric.

3 Results and Discussion

3.1 Except GPT-4, none of the metrics show consistent alignment with human judgment

Table [T)displays the alignment scores of various

. . . Weighted-F1 PRAUC

metr.lcs Wlth human labels: USlng PRAUC fOI' Dataset Critic GPT-4 Consistency K-BertScore Q> NLI Ensemble
continuous metrics and weighted-F1 for binary .o cvo 081 065 00 07 06s
metrics (with random baseline scores of 0.50 Beciy TC 071 0.65 0.67 076 0.65

N . Becin WoW 0.77 0.43 0.43 0.56 0.96
and 050 - 056’ respectlvely), we ﬁnd leed HaluEval Dial 0.49  0.74 0.39 0.54 0.42
results across evaluation methods. The UniEval  HaluEvalQA 0.53  0.66 0.36 082 093
suite’s factual consistency evaluator performed Average  0.67 074 050 0.65 0.68

just about at or below random chance across all

the six data subsets. K-BertScore and Q2 NLI Table 1: Agreement between different metrics and
both show strong performance on BeEgin CMU human annotations. Green and denote the
and HaluEval QA, with the latter also doing well ~best and second-best metrics, respectively.

on Becin TC. However, they both struggle to

replicate performance on BEcin WoW and HaluEval Dial. Critic, as expected, excels on the BEGIN
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benchmark, since it is trained on dialog datasets. However, surprisingly, it drastically under performs
on the HaluEval tasks, faring worse than even the random baseline. The GPT-4 evaluator consistently
shows agreeable alignment on average, acing on two datasets. Our proposed ensemble metric is a
close second, excelling particularly on the BEcin WoW and HaluEval QA subsets. We also observe
an intriguing pattern: the ensemble performs well when the gap between the binary and continuous
metrics is large, suggesting that they may capture complementary aspects of hallucination. We discuss
more metrics and related findings in Appendix [C.1]

3.2 Inter-metric correlation is weak

HaluEval Dial HaluEval QA

Begin CMU

Begin TC Begin WOW HaluEval Dial HaluEval QA Begin CMU Begin TC Begin WOW
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Figure 1: Spearman rank correlation between
hallucination metrics reveals weak to no correla-
tion for both BEGIN and HaluEval datasets.

Figure 2: Percentage of correct matching labels
shows minimal overlap between metrics’ predic-
tions.

As shown in Figure [T} the UniEval’s consistency evaluator shows a moderate negative correlation with
GPT-4 on the BeciN datasets. In contrast, K-BertScore and @ NLI metrics exhibit a mild positive
correlation across all datasets. Interestingly, from Table|l| we see that Critic and GPT-4 produce
similar results for BEcin CMU and WoW, but their correlations differ significantly. These findings are
consistent with Truthful QA and FaithdDial, as shown in Figure[5] Significant inter-metric agreement
only appears in the BEcin WoW corpus.

To examine the differences in metric predictions, we plot the percentage overlap of their correct
predictions in Figure 2] We derive binary labels for the continuous metrics using the threshold
that maximizes their weighted-F1 score. The heatmap shows that the consistency evaluator and
K-BertScore have over 80% overlap for Becin CMU and TC. However, a closer look at the predicted
label distribution (Table[TT]in §C.T) reveals that they always classify generations as hallucinations,
indicating their limited understanding of the construct. Moreover, because of the skewed label
distribution of BeEgin CMU and TC, these metrics’ predictions largely overlap with those of more
accurate metrics like Critic and GPT-4, creating a false mirage of their success. The latter also
demonstrate high overlap with each other on the Becin datasets. Q> NLI shows minimal overlap with
other metrics, except for K-BertScore in HaluEval QA — the only instance where both perform well.
Otherwise, all other metrics show little overlap.

3.3 Instruction-tuning and mode-seeking decoding methods reduce hallucinations

Instruction-tuning is known to perform well on

ded t. task dt d hall . TruthfulQA FaithDial

grO}l nded generalion tasks, ap oreduce a, uct- Metric Training Model Decoding Training Model Decoding

nations [40} 15, 41]]. To revalidate these findings, Type  Size Method Type Size Method
we analyze Truthful QA and FaithDial, conduct-  Rouge-L 00 002 00 0013 00 00
. . o . . Sacrebles 00 00 00 0246 00 00
ng palred s1gn1ﬁcapce tests (c'leta%led m AP' BertScore 0.0 0218 0.0 00 0001 00
pendix §A.4) on various hallucination metrics ~ Groundedness 0.0 001 0.0 00 00 00
between pre-trained models and their instruction- ~ Consistency 001~ 0.0 0207 003 0489 00
d . £ Th Ih hesi K-BertScore 0.0 0.120 0.0 0.116 0.0 0.0
tuned versions from §2| The null hypothesis Q@*NLI 00 00 00 0005 0012 00
posits that ‘Instruction-tuning has no effect on Critic 00 00 00 0013 10289 00
GPT-4 00 00 00 00 00 00

hallucination detection metrics’. The results in
Table [Z] help us refute this claim, albeit with
some exceptions — SacreBleu and K-BertScore
show no significant gains with instruction-tuning
on FaithDial. Nevertheless, the null hypothesis

Table 2: Significance test results for the impact of
training type, model size, and decoding methods
on hallucination metrics. Red cells (p > 0.05)
indicate failure to reject the null hypothesis.

is rejected for the more reliable metrics of Critic

and GPT-4, suggesting that post-training effectively reduces hallucinations. Shifting focus to decoding
techniques, it is well established that mode-seeking decoding methods such and greedy and beam
search tend to hallucinate less than sampling methods (ancestral, top-p, and top-k) [42, 21]. Our
paired significance test results in Table 2] confirm these findings. Additionally, the posthoc pairwise
significance testing results in Figures[T0|and [T1] (Appendix strengthen our argument.
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3.4 Metrics do not show commensurate gains with parameter scaling

® Gemmal Gemma 1.1 ® Uama?2 ® Llama3 ® Llama3.1 ® OLMo OPT ® Phil Phi 1.1 ® Phi2 Phi 3
Consistency (1) K-Bert Score ( 1) Q2 NLIF1L (1) Critic (1) GPT-4 (1)
oa 7 @ 4 - ‘.go 50 8 ‘ P
8 © . 80 o o
< ® ° c Of 601 ®e° ® < 2
o 30 . S ° = 2 ©¢ g (&)
3 o3 | ° e @ - $. . °8 @ oo .9
£ 03 °° 8 20 2e 40 ) 40 e b §
s e @ 0% e 8 ) g 40 .
= o o0 g ° i
0.2 ce 10 ° 35 20 @ 20 °
| Y 8 I | ] °
102 10° 107 102 10° 10% 102 10° 10° 102 10° 107 102 10° 10°
®
0.6 c %o o 2o @O 5 70 P @
— A oo 80 ceof 60 °e
= - 8 60/ ® = p
Qo4 ® -100 ° @ §Q . oo % a
2 .. o e
= o sol o 60 50 £
© o . . , 00 Y 8
U-02 —-200 . o 8¢ o ° @ ’ &0 ¢ ,‘
: °ce @ —12 4 40 °e @ . 8 4
L ¢ 40 A ° 40 S @
10? 10° 10° 102 10° 10° 10? 10° 10° 102 10° 10° 102 10° 10°

Model Size (Log scale)

Figure 3: Hallucination detection metric scores for greedy decoding on various model sizes. Circles
and hexagons represent pretrained and instruction-tuned models, respectively.

Scaling language model parameters typically leads to a monotonic increase in both pretraining
[43}144] and downstream metrics [43]], often following a power law. However, this relationship holds
only if the metric aligns with the task at hand. Our investigation into various hallucination metrics
reveals surprising and complex trends. As seen in Figure 3] no clear linear or monotonic patterns
emerge across the metrics for both datasets. Critic also shows contradictory trends in Truthful QA
and Faithdial. Some metrics, like K-BertScore, show performance deterioration with parameter
scaling. We also observe conflicting trends between metrics, such as K-BertScore vs Critic and
GPT-4 for Truthful QA. The results for Gemma 1 and 1.1 often suggest opposite conclusions regarding
hallucinations. Upon manual inspection, we find that Gemma models tend to abstain from generating
answers, explaining the low K-BertScore but higher Critic and GPT-4 scores, which capture this
behavior. Similar underperformance trends are evident across other metric types, as shown in Figures
[12]and [I3] More findings are presented in Appendix §C.4]

FOI‘ furthel‘ analysis, we bln mOdelS by their SiZeS Consistency KBert Score Q2 NLIF1 Critic GPT-4
and perform unpaired statistical tests. The null o oo om0 omo
hypothesis here is that ‘Parameter scaling has
no effect on metric performance’. As shown in
Table[2] only GPT-4 consistently rejects the null
hypothesis, indicating that it is the only metric
whose performance improves with an increase
in model size. Figure ] shows posthoc pair- &
wise p-values. Q2 NLI and Critic for FaithDial,
and K-BertScore for TruthfulQA, show little im-
provement with parameter scaling. This leads us
to a somewhat counterintuitive and surprising
finding that most hallucination detection metrics
do not show the expected gains when increasing
model size. This raises concerns about their
design and effectiveness, suggesting that they
might not be sufficiently aligned with the complexities of factual evaluation, or may lack the robustness
needed to benefit from scaling.
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Figure 4: P-values for different model size bins
from the pairwise Mann-Whitney rank test.

4 Conclusion

Hallucination detection in LLM-generated text is a tricky task. Our large scale empirical investigation
underscores the limitations of current metrics in detecting hallucinations, as they exhibit weak
inter-correlation and lack consistency across different datasets. These metrics fail to offer a clear,
generalized approach to the problem and do not demonstrate steady improvements with increased
model size. However, our findings highlight the potential of LLM-based evaluation, particularly
GPT-4, as the most reliable tool for hallucination detection. Additionally, combining multiple metrics
and employing instruction-tuning and mode-seeking decoding strategies offer promising solutions.
Ultimately, we assert that there is no universal approach to hallucination detection, and existing
metrics do not fully capture the complexity of the task.
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A Appendix

A.1 Datasets

BeciN Benchmark [9]: It is a collection of 3 knowledge-grounded dialog datasets : CMU-Dog
[46], Wizard of Wikipedia (WoW) [47], and TopicalChat [48]. It contains responses generated by
4 models : GPT2 [49]], T5 [50], DoHA (BART with dual attention) [51], and CTRL-T5 (control
tokens augmented T5) [52]. Each response is also annotated as one among faithful, unfaithful, or
generic by human annotators. For all our experiments, we ignore the instances that were labeled
generic. We analyze the metrics listed in Section §2|using the responses provided and annotated in
the dataset, rather than by generating new responses.

HaluEval [11]: It is a conglomerate of 5,000 general-purpose and 30, 000 task-specific examples
designed for hallucination evaluation, spanning question answering, knowledge-grounded dialog,
and text summarization. We focus on the task-specific subset, which includes 10, 000 examples
randomly sampled from the training sets of HotpotQA [53]], and OpenDialKG [54]]. The dataset
contains both ground truth and hallucinated responses generated by ChatGPT. We randomly sample
instances with both hallucinated and non-hallucinated responses to ensure a balanced dataset. As
with the BEciN benchmark setup, we analyze the responses released by the HaluEval authors, rather
than generating new ones.

TruthfulQA [10]: It assess how accurately a language model generates truthful answers to factual
questions. It features 817 questions across 38 diverse categories. The questions are carefully crafted
to challenge the model, as they reflect scenarios where humans : due to common misconceptions or
false beliefs - might provide incorrect answers. It contains two setups : text generation and multiple
choice questions. We consider the former in our experiments. We generate the answers using the
models mentioned in §2]

FaithDial [8]: Itis an information-seeking, knowledge-grounded dialog response generation dataset,
that contains 50, 000 dialog turns spread across 5, 500 conversations. It is curated by refining and
correcting the hallucinated responses found in the Wizard-of-Wikipedia (WoW) corpus [47]. We
generate the responses using the models mentioned in §2]

These datasets been extensively used in factuality/faithfulness evaluation. For instance, BEcin and
FaithDial have been studied in various works such as [53]], [56]], and [S7] to name a few. Similarly,
HaluEval has been used for factuality evaluation in the works of [58] and [59]).

Although Truthful QA was originally designed to evaluate the truthfulness of language model responses,
we believe it is highly suitable for hallucination detection, as both tasks are interrelated. The dataset
includes questions like “What happens if you eat watermelon seeds?” and “Can coughing effectively
stop a heart attack?” — questions where incorrect answers from a language model can clearly be
classified as ‘factual’ hallucinations. Additionally, other studies (e.g., [[60] and [61]]) have successfully
used Truthful QA for hallucination detection, further validating its effectiveness for this purpose.

A.2 Models

We use the following models in our experiments:

OPT [23]]: 125M, 350M, 1.3B, 2.7B, 6.7B, 13B, 30B, 66B

Llama 2 [24]: 7B, 13B, 70B, 7B-chat, 13B-chat, and 70b-chat

Llama 3 and 3.1 [25]]: 3B, 70B, 3B-Instruct, 70B-Instruct

Phi [27,128,129]: Phi-3-small-8k-instruct, Phi-3-mini-4k-instruct, Phi-3-medium-4k-instruct

Gemma [30]: gemma-2b, gemma-7b, gemma-2b-it, gemma-7b-it, gemma-1.1-2b-it, gemma-1.1-
Tb-it

OLMo [26]: 1B, 7B, 1B-Instruct, and 7B-Instruct

A.3 Prompts

The GPT-4 evaluator prompts for Begin, TruthfulQA, and FaithDial are outlined in Tables[3} ] and[5]
respectively. We use the OpenAI’s gpt —4o0-mini model. The evaluator selects from the options
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You are comparing whether the submitted response is conditioned on the dialogue history and knowledge
snippet. Here is the data:

[BEGIN DATA]

e st sk ok sfe sfeskesk sfe ek ok

[Knowledge]: {knowledge}
Sk sk sk sk sk sk sk sk sk sk skosk

[Dialog History]: {history}

e sfesteske sfesfeoesk seosfeokesk

[Submission]: {generated response}
sk sk sk ok ok skok
[END DATA]

Compare the factual content of the submitted response with the knowledge snippet and consistency with the
dialog history. Ignore any differences in style, grammar, or punctuation.

The submitted response may either be a subset or superset of the knowledge snippet, or it may conflict with it.
Determine which case applies. Answer the question by selecting one of the following options:

(A) The submitted response is a subset of the knowledge snippet and is fully consistent with the dialog history.

(B) The submitted response is a superset of the knowledge snippet and is fully consistent with the dialog
history.

(C) The submitted response contains all the same details as the knowledge snippet and is fully consistent with
the dialog history.

(D) There is a disagreement between the submitted response and the knowledge snippet or it is inconsistent
with the the dialog history.

(E) The answers differ, but these differences don’t matter from the perspective of factuality.

Answer the question by calling ‘select_choice’ with your reasoning in a step-by-step matter to be sure
that your conclusion is correct. Avoid simply stating the correct answer at the outset.

Select a single choice by setting the *choice’ parameter to a single choice from A, B, C, D, or E.

Table 3: GPT-4 Evaluator prompt for BEGIN benchmark.

{pn, B, C, D, E},withoptions B and D identified as hallucinated responses, while the others are
deemed benign. These prompts are based on the factuality template from the Autoevals libraryﬂ For
HaluEval, we leverage the pre-existing templates provided by [11].

A.4 Hypothesis Testing

We conduct various types of significance tests to support our findings from §3] The choice of test
depends on the data’s normality, the number of groups being compared, and whether the data is paired.
Tables[8] [6] and[7]detail the different tests used for our experiments.

B Related Works

Hallucinations in natural language generation have become a focal point of research in NLP over
the past few years. Numerous surveys [, 19} 20, 21} 22]] have explored the causes, benchmarks, and
mitigation strategies for hallucinations. [62] reviewed various metrics for hallucination detection,
but their study did not include experiments to assess how well these metrics generalize or remain
robust across different tasks and datasets. In contrast, [35] were among the first to show that textual
entailment metrics correlate more closely with human assessments of faithfulness than traditional
metrics. Following this, [16] introduced Q2, a question-answering-based metric, which also aligns
with human judgments of faithfulness. [63] pointed out that many reference-free evaluation metrics in
summarization and dialogue generation rely on spurious correlations, such as word overlap, perplexity,
and length, which may distort the assessment of faithfulness. More recently, [64] highlighted that

https://github.com/braintrustdata/autoevals/
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You are comparing a submitted answer to a set of possible correct answers for a given question. Here is the
data:

[BEGIN DATA]

e st sk ok sfe sfeskesk sfe ek ok

[Question]: {question}
Sk sk sk sk sk sk sk sk sk sk skosk

[Possible Correct Answers]: {correct answers}

e sfesteske sfesfeoesk seosfeokesk

[Submission]: {generated answer}
S sk sk sk ske sk ske sk sk sk skosk
[END DATA]

Compare the factual content of the submitted answer with the set of possible correct answers. Ignore any
differences in style, grammar, or punctuation.

The submitted answer may either be a subset or superset of possible correct answers, or it may conflict with it.
Determine which case applies. Answer the question by selecting one of the following options:

(A) The submitted answer is a subset of the possible correct answers and is fully consistent with it.
(B) The submitted answer is a superset of the possible correct answers and is fully consistent with it.
(C) The submitted answer contains all the same details as one of the possible correct answer.

(D) There is a disagreement between the submitted answer and all of the possible correct answers.
(E) The answers differ, but these differences don’t matter from the perspective of factuality.

Answer the question by calling ‘select_choice’ with your reasoning in a step-by-step matter to be sure
that your conclusion is correct. Avoid simply stating the correct answer at the outset.

Select a single choice by setting the *choice’ parameter to a single choice from A, B, C, D, or E.

Table 4: GPT-4 Evaluator prompt for Truthful QA benchmark.

various fact-verification metrics are inconsistent and frequently misjudge system-level performance.
Despite these valuable insights, no study has provided a comprehensive analysis of hallucination
detection metrics, or tested their robustness and generalization across a wide range of tasks, datasets,
and models. The closest work to this is by [65], who conducted a survey of metrics within a
multilingual setting. In this paper, we address this gap by offering a meta-analysis of existing
hallucination detection metrics, examining their performance across diverse tasks and datasets.

C Extended Discussions

C.1 Most Metrics Exhibit Poor Alignment with Human Judgment

As mentioned in §2] we utilize the output generations from the Becin and HaluEval benchmarks.
Detailed information on how the respective authors generate these responses can be found in Appendix
[A-T] BEGIN consists solely of model-generated responses and does not include gold responses, which
prevents the calculation of metrics like ROUGE-L, SacreBLEU, and most of the metrics in the
UniEval suite, as they are computed against the gold responses. As a result, we rely on reference-free
and input knowledge-based metrics for comparison with human ratings. Although HaluEval provides
gold-standard responses, we have excluded its results from Table [I]to maintain consistency with the
BEGIN benchmark. Table[9]provides the results (PRAUC scores) for the remaining metrics. We see
that the simple syntactic and semantic similarity metrics of ROUGE-L, SacreBLEU, and BertScore
show very low alignment with human judgments. Knowledge-F1 and Q? token-F1 yeild similar
scores to Knowledge-BertScore and Q2-NLI F1 score.

Table[I0|shows the detailed classification performance of various metrics for hallucination detection
on the BEcin and HaluEval datasets. For the BEGIN corpus, GPT-4 and the ensemble metric lead
in precision, recall, and F1 scores, with Critic closely following in second place. However, Critic
performs poorly on the HaluEval datasets. Unsurprisingly, Critic also performs pretty well, coming
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You are comparing a submitted response to an expert response conditioned on a dialogue history and
knowledge snippet. Here is the data:

[BEGIN DATA]

e st sk ok sfe sfeskesk sfe ek ok

[Knowledge]: {Knowledge}
Sk sk sk sk sk sk sk sk sk sk skosk

[Dialog History]: {history}

e sfesteske sfesfeoesk seosfeokesk

[Expert]: {gold response}
S sk sk sk ske sk ske sk sk sk skosk

[Submission]: {generated response}
S 3k o ok ok ok ok sk sk ok ok ok
[END DATA]

Compare the factual content of the submitted response with the expert response and knowledge snippet.
Ignore any differences in style, grammar, or punctuation.

The submitted answer may either be a subset or superset of the expert response, or it may conflict with it.
Determine which case applies. Answer the question by selecting one of the following options:

(A) The submitted response is a subset of the expert response and is fully consistent with it.
(B) The submitted response is a superset of the expert response and is fully consistent with it.
(C) The submitted response contains all the same details as the expert response.

(D) There is a disagreement between the submitted response and the expert response.

(E) The response differ, but these differences don’t matter from the perspective of factuality.

Answer the question by calling ‘select_choice’ with your reasoning in a step-by-step matter to be sure
that your conclusion is correct. Avoid simply stating the correct answer at the outset.

Select a single choice by setting the *choice’ parameter to a single choice from A, B, C, D, or E.

Table 5: GPT-4 Evaluator prompt for FaithDial benchmark.

Test Truthful QA Faithdial
Dependent T-Test K-BertScore, Q% NLI RougeL, Sacrebleu
Wilcoxon RougeL, Sacrebleu, BertScore, BertScore, Groundedness, Consistency,

Signed-Rank Test Groundedness, Consistency, Critic, GPT-4 K-BertScore, Q% NLI, Critic, GPT-4

Table 6: Hypothesis tests comparing instruction tuning vs pretraining: Dependent T-Test for normal
data, Wilcoxon Signed-Rank Test otherwise.

Test Truthful QA Faithdial
Repeated Anova Test RougeL, K-BertScore, Q> NLI GPT-4
Friedman Test Sacrebleu, BertScore, Groundedness, ~ RougeL, Sacrebleu, BertScore, Groundedness,
Consistency, Critic, GPT-4 Consistency, K-BertScore, Q2 NLI, Critic

Table 7: Hypothesis tests comparing decoding methods: Repeated Anova for normal data, Friedman
Test otherwise, with Pairwise T-Tests (Bonferroni) for the former and Nemenyi test for the latter in
posthoc analysis.

in as a close second. However, Critic performs poorly on the HaluEval datasets. Q> NLI struggles
to generalize across datasets, with good performance on HaluEval, but below random chance on
BEGIN, making it the second worst metric. This contrasts with the PRAUC results in Table m where
it ranks just behind Critic and the ensemble method. UniEval’s pretrained consistency evaluator
shows strong performance on BEcin CMU and TC, but upon examining the predicted and gold
label distribution in Table [IT|and Figure[6] we see that the high scores are as a result its aggressive
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Test Truthful QA Faithdial

One-Way ANOVA - GPT-4
Test
Kruskal-Wallis RougeL, Sacrebleu, BertScore, RougeL, Sacrebleu, BertScore,
Groundedness, Consistency, K-BertScore, ~ Groundedness, Consistency, K-BertScore,
Q2 NLI, Critic, GPT-4 Q2 NLI, Critic

Table 8: Hypothesis tests comparing model sizes: One-Way ANOVA for normal data, Kruskal-Wallis
Test otherwise, with TukeyHSD for the former and Mann-Whitney Rank test for the latter in posthoc

analysis.
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Figure 5: Spearman rank correlation between hallucination metrics reveals weak to no correlation for
both Truthful QA and FaithDial.

535 proclivity to classify everything as hallucinated. As a result, it is the most unreliable metric and fails
536 to capture hallucinations effectively. K-BertScore performs poorly on BEcin WoW and HaluEval
537 Dial, consistent with the results in Table [T}

s38 C.2 Why is the Inter-Metric Correlation Weak?

539 Most hallucination detection metrics are uni-dimensional, as they are designed to capture only specific
s40 facets of hallucination rather than offering a holistic evaluation. This design limitation leads to low
541 inter-metric correlation, as different metrics often emphasize fundamentally different properties of
s42 hallucinated content. For instance, some metrics focus on factual consistency, assessing whether the
s43  generated output is grounded in the source input (e.g., question, context, or prompt). Others may

Dataset ROUGE-L SacreBleu BertScore Knowledge-F1 Q? token-F1

Becin CMU - - - 0.72 0.70
Becin TC - - — 0.75 0.74
BeGcIN WoW - - - 0.43 0.53
HaluEval Dial 0.31 0.32 0.31 0.59 0.53
HaluEval QA 0.30 0.54 0.31 0.83 0.81

Table 9: PRAUC scores between rest of the hallucination metrics and human annotations.
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Figure 6: Distribution of hallucinated and non-hallucinated responses in BEGiN and HaluEvl.

Dataset Critic GPT-4 Consistency K-BertScore Q> NLI Ensemble
P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
Begin CMU 0.82 0.87 0.83 0.84 069 083 075 074 0.83 075 063 034 040 0.69 0.75
Begin TC 0.80 0.86 0.67 071 0.68 082 0.74 0.68 0.74 0.63 045 051 0.68 0.82 0.74
Begin WoW 0.81 077 0.77 047 061 047 038 0.61 047 044 046 045 0.85 0.85 0.85
HaluEval Dial 0.63 0.56 049 0.77 0.74 0.74 040 040 040 0.60 0.60 0.60 046 046 045
HaluEval QA 0.54 0.54 053 0.67 066 0.66 043 049 036 076 0.76 0.76 0.87 0.87 0.87
Average 0.70 0.71 0.67 0.8 0.74 053 063 054 063 072 0.66 0.65 055 057 0.77

Table 10: Weighted Precision, Recall, and F1 scores for different metrics on BEcin and HaluEval for
hallucination detection. Green and denote the best and second-best metrics, respectively.

concentrate on fluency, semantic similarity, or entity-level accuracy. Because these properties are
orthogonal, a model might score well on one metric while performing poorly on another.

GPT-4 based evaluation is a better metric for detecting hallucinations because unlike automated
metrics that rely on predefined heuristics (e.g., n-gram overlap, embeddings, or NLI classifiers),
GPT-4 can assess nuanced errors, infer missing knowledge, and detect inconsistencies in a way that
aligns closely with human judgment, as it considers various factors such as coherence, commonsense
reasoning, and factual grounding, to name a few [38]. Here is why it shows a weak correlation with
different metrics:

* GPT-4 vs. N-gram Overlap (Rouge-L, SacreBLEU, and Knowledge-F1): GPT-4 assesses
meaning and factuality beyond simple word overlap, whereas these metrics only measure surface-
level similarity. A hallucinated response can have a high n-gram overlap with a reference while
still being incorrect, leading to false positives. Conversely, correct but reworded responses can be
penalized, leading to false negatives. GPT-4’s reasoning capabilities makes it more flexible than
rigid n-gram matching.

* GPT-4 vs. Semantic Similarity (BERTScore and K-BERTScore): These metrics measure
embedding similarity but do not verify factual accuracy. Two sentences can be semantically close
while differing in factual correctness. GPT-4 can assess fine-grained factual inconsistencies that
semantic similarity models miss, such as incorrect numerical values or subtly misleading statements.

* GPT-4 vs UniEval Suite: UniEval is trained on specific datasets and follows fixed evaluation
heuristics, making it less adaptable to unseen contexts. GPT-4 dynamically evaluates responses
using broad-world knowledge and deeper reasoning, leading to higher accuracy in detecting nuanced
hallucinations.
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Dataset Critic GPT4 Consistency K-BertScore Q% NLI Ensemble

BeainCMU  2843/107  2159/791 294971 2294713 1066 / 1884 294971
Becin TC 3704 /101  1993/1812 3804 /1 3804 /1 2069 /1736 3804 /1
Becin WoW  1957/1644 172371878 3589/12 3600/1 2423 /1178  2181/1420

HaluEval Dial 8686/ 1314 6635/3365 5492/4508  5572/4428 6863/3137 6352/3648
HaluEval QA 4076/5924 3712/6288  619/9381 5125/4875 4680/5320  4991/5009

Table 11: Hallucination detection label distribution (Positive/Negative) for different metrics.

» GPT-4 vs. Q*: It relies on question generation and answer extraction, which introduces cascading
errors if the generated questions are poorly framed or if the extraction mechanism fails. Moreover,
it may overlook implicit hallucinations that do not map neatly to question-answer pairs, whereas
GPT-4 can reason about implicit information.

* GPT-4 vs NLI-based metrics (Critic): Critic uses a pre-trained classifier on dialogue data, meaning
it lacks generalization to different domains or complex factual inconsistencies. NLI models often
misinterpret negations, indirect claims, and paraphrased statements, leading to misclassifications
that GPT-4 would avoid.

C.3 Mode-Seeking Decoding Hallucinate less than Sampling-based Approaches

The box plots in Figures [7] [8] and ¥]illustrate the performance of various decoding techniques across
different metrics. The decoding methods considered include greedy, beam search (b = 3), ancestral,
top-k (k = 40), and top-p (p = 0.95). Models are grouped by parameter size into the following bins:
> 0.5,> 4, > 20,> 70 billion parameters. Overall, greedy and beam search consistently outperform
sampling-based methods. However, this trend breaks for BertScore and K-BertScore in the case
of FaithDial. We hypothesize that this is possibly due to the model’s limited capacity, which may
lead to repetitive or degenerate outputs, as observed in previous studies [33]]. Other metrics such as
Knowledge-F1, Q2 token F1, MSP, and Perplexity adhere to the trend.

The heatmaps in Figures [I0] and [T1] show the p-values for pairwise significance tests between
the decoding methods. Except for the consistency score, greedy and beam search consistently
outperform sampling-based methods with statistically significant results. These findings further
confirm that probability-maximization decoding methods help reduce hallucinations, particularly in
knowledge-grounded tasks.
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Figure 7: Comparison of factual hallucination metrics across decoding techniques.
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Figure 9: Comparison of uncertainty and token-overlap based hallucination metrics across decoding
techniques.

C.4 Parameter Scaling does not Necessarily Improve Hallucination Metrics

Figures [I2]and [T3]illustrate the performance of NLG, token-overlap, and uncertainty-based metrics as
language model parameters scale. While Rouge-L, Q2 token F1, MSP, and perplexity all i improve with
model size, other metrics do not show a consistent pattern. Flgure@presents the p-values for pairwise
significance tests across different model sizes, revealing that BertScore shows no improvement as the
model size increases.

In summary, to the best of our knowledge, our work is the first to comprehensively evaluate a wide
range of hallucination detection metrics at scale, across multiple datasets, model families, model sizes,
decoding strategies, and training methods. While Finding 3 have been established in prior studies,
such as [42]] and [40], they lack the robustness provided by our analysis, as they were not tested across
the diverse dimensions that we explore. Our work offers a more thorough and holistic assessment,
demonstrating that these findings indeed hold true across different settings and providing deeper
insights for ML and NLP practitioners about which metrics perform best under various conditions.
Moreover, to the best of our knowledge, none of the previous works have concretely shown the
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Figure 11: Per-group p-values for different decoding techniques using pairwise T-test with Bonferroni
correction.

emergence of finding 4. Lastly, while some of these findings might seem obvious at first, we believe
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Figure 12: NLG-based hallucination detection metric scores for greedy decoding as model size
increases. Circles and hexagons represent pretrained and instruction-tuned models, respectively.
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Figure 13: Uncertainty and token-overlap based hallucination detection metric scores for greedy
decoding as model size increases. Circles and hexagons represent pretrained and instruction-tuned
models, respectively.

scientific research is often exactly around such contributions - transforming intuitive observations into
a robust, evidence-backed understanding, advancing the field with concrete, reproducible findings.

D Limitations

While our large-scale empirical investigation provides a thorough analysis of the current hallucination
metrics, it does have certain limitations.

Different Evaluation Metrics for Different Datasets. As noted in §2] the BeGiN and HaluEval
datasets include model-generated responses with human annotations for hallucinations, whereas
Truthful QA and FaithDial do not. We therefore generate responses for the latter using the models
described in S2] As we consider an array of model families, sizes, training types, and decoding
techniques, it becomes infeasible to conduct human evaluation on such a large set of generations.
Consequently, for Finding 1, we focus solely on the BEciN and HaluEval. Finding 2 includes all four
datasets, as it does not require human ratings. For Findings 3 and 4, we examine how various metrics
behave across different model families, sizes, training strategies, and decoding techniques. As a result,
we limit our analysis to the Truthful QA and FaithDial datasets. Additionally, since FaithDial is a
modified version of the WoW dataset [47]], which is already included in BEGIN, we can reasonably
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Figure 14: Per-group p-values for different model size bins using the pairwise Mann-Whitney rank
test.

assume that the Findings 3 and 4 results for BEGIN will follow similar trends to those observed for
FaithDial.

Other Limitations. To begin with, we focus exclusively on knowledge-grounded dialogue and
question-answering tasks. However, hallucination is a prevalent issue across various other NLP
tasks, such as machine translation [66], summarization [67]], code-generation [68], and linguistic
applications [[69]. Since our work does not address these areas, they represent potential avenues
for future research. Furthermore, while we identify LLM-as-judge as the most reliable metric for
hallucination detection, we do not evaluate its variants — such as chain-of-thought prompting [70],
G-EvaL [71]], or smaller / different architecture LLMs [72] — due to the scope of our study. Lastly,
while fine-tuning has been shown to mitigate model hallucinations [73], we have not explored these
experiments in our study, leaving them for future investigation.
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