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ABSTRACT

Linear autoencoders (LAEs) have gained increasing popularity in recommender
systems due to their simplicity and strong empirical performance. Most LAE
models, including the Emphasized Denoising Linear Autoencoder (EDLAE) in-
troduced by (Steck, 2020), use quadratic loss during training. However, the orig-
inal EDLAE only provides closed-form solutions for the hyperparameter choice
b = 0, which limits its capacity. In this work, we generalize EDLAE objec-
tive function into a Decoupled Expected Quadratic Loss (DEQL). We show that
DEQL simplifies the process of deriving EDLAE solutions and reveals solutions
in a broader hyperparameter range b > 0, which were not derived in Steck’s
original paper. Additionally, we propose an efficient algorithm based on Miller’s
matrix inverse theorem to ensure the computational tractability for the b > 0 case.
Empirical results on benchmark datasets show that the b > 0 solutions provided
by DEQL outperform the b = 0 EDLAE baseline, demonstrating that DEQL ex-
pands the solution space and enables the discovery of models with better testing
performance.

1 INTRODUCTION

In recent years, deep learning has emerged as the dominant paradigm in recommendation systems,
leading to increasingly complex models. However, a growing body of empirical evidence reveals
a surprising trend: simple linear models often perform comparably to, or even outperform, their
deep learning counterparts (Dacrema et al., 2019). In particular, linear autoencoder-based methods
such as SLIM (Ning & Karypis, 2011), EASE (Steck, 2019), EDLAE (Steck, 2020), ELSA(Vančura
et al., 2022), RALE and RDLAE (Moon et al., 2023) have demonstrated strong performance, often
exceeding that of more sophisticated deep models (Dacrema et al., 2021).

These methods typically aim to learn an item-to-item similarity matrix W ∈ Rn×n to reconstruct
the binary user-item interaction matrix R ∈ {0, 1}m×n with m users and n items. Each row Ri∗
encodes the interactions of user i; Rij = 1 indicates that user i has interacted with item j, while
Rij = 0 indicates no interaction. The reconstruction takes the form RW , or equivalently Ri∗W for
each user, and can be interpreted as a linear autoencoder (LAE), where W serves as both encoder and
decoder. One representative example is EASE (Steck, 2019), in which W is obtained by minimizing
the following objective function

f(W ) = ∥R−RW∥2F s.t. diag(W ) = 0 (1)

The zero diagonal constraint diag(W ) = 0 is imposed to prevent W from overfitting towards
identity. Moreover, since the prediction of each interaction Rij is a weighted sum Ri∗W∗j =∑n

k=1 RikWkj , the zero diagonal constraint enforces Wjj = 0, such that the prediction becomes
Ri∗W∗j =

∑n
k=1,k ̸=j RikWkj . This means that the target Rij is masked out during prediction,

preventing the model from trivially using Rij to predict itself. This constraint distinguishes LAEs
from standard linear regression models and is widely adopted in models like EDLAE (Steck, 2020)
and ELSA (Vančura et al., 2022).

Despite their empirical success, these models optimize squared error on observed entries during
training, without explicitly considering the statistical nature of the evaluation process: In training,
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observed entries are treated as fixed values to be reconstructed; in evaluation, especially in the
strong/weak generalization settings (Steck, 2019; Moon et al., 2023), the model is evaluated on
randomly masked interactions in the test set. This motivates adopting a statistical viewpoint to
redesign the training objective, where interactions are treated as random variables sampled from a
distribution and the objective is defined in expectation, thereby aligning with the testing scenario.

EDLAE (Steck, 2020) provides an important precursor in this direction. By introducing dropout
and an emphasis weighting scheme, EDLAE effectively reshapes the loss to penalize reconstruction
of masked entries more heavily, thereby reducing overfitting to the identity function, see Eq (3).
We observe that considering the dropout matrix ∆ as a random variable allows the objective to be
expressed as an expected quadratic loss

f(W ) = E∆

[
∥A⊙ (R− (∆⊙R)W )∥2F

]
, (2)

A ∈ {a, b}m×n is an emphasis matrix where a, b are hyperparameters. ∆ ⊙ R represents random
dropout applied to the fixed interaction matrix, mirroring the evaluation procedure. More impor-
tantly, ∆⊙R can itself be viewed as a random interaction matrix, providing the key insight that the
objective can be generalized to random interaction matrices following arbitrary distributions.

Although it improves empirical performance, the theoretical framework underlying this objective’s
construction remains largely underexplored. In particular, while Eq (3) is claimed to be applica-
ble for b ≥ 0, Steck (2020) only provides the solution for b = 0 case, which limits its capacity.
Motivated by this gap, this paper investigates how to obtain a closed-form solution for the EDLAE
objective under the full hyperparameter range b ≥ 0, and how to compute these solutions efficiently.

First, we generalize the EDLAE objective Eq (3) into a Decoupled Expected Quadratic Loss
(DEQL) and derive its closed-form minimizer, which subsumes EDLAE as a special case. This
generalization not only simplifies the derivation of EDLAE solutions but also extends them to the
previously unexplored regime of b > 0 (Steck, 2020) (Section 3).

Next, we find that the direct solutions for b > 0 have an O(n4) computational complexity, which
is prohibitively expensive for large-scale recommendation tasks. To overcome this challenge, we
develop an efficient algorithm based on Miller’s matrix inverse theorem (Miller, 1981), reducing the
complexity to O(n3). This makes computing solutions for the b > 0 case practical (Section 4).

Finally, we evaluate solutions derived from DEQL on real-world benchmark datasets. Our experi-
ments demonstrate that solutions with b > 0 consistently outperform the original EDLAE solutions
with b = 0, confirming that expanding the solution space leads to models with stronger testing
performance (Section 5).

We emphasize that DEQL is a general statistical loss function, of which EDLAE is only one special
case. Beyond providing theoretical clarity, DEQL offers a unifying framework for designing new
objectives for linear autoencoder (LAE) models, potentially enabling further advances in recom-
mendation system design.

The proofs of all theorems, lemmas and propositions are presented in Appendix A. Related works
are in Appendix C. Discussions are in Appendix E.

2 PRELIMINARIES

Implicit and Explicit Recommenders: Recommendation algorithms can generally be divided into
two categories: explicit and implicit methods. Explicit approaches focus on predicting unseen nu-
merical ratings that users might assign to items, whereas implicit approaches aim to predict user
behaviors such as clicks, add-to-cart actions, or purchases (Steck, 2019; Dacrema et al., 2019). In
this study, we focus on the implicit recommendation setting due to its greater economic significance.
Let n denote the number of items and m the number of users. We are given a binary interaction ma-
trix R ∈ {0, 1}m×n, where each entry Ri,j = 1 if user i has interacted with item j (e.g., through
a purchase or rating), and 0 otherwise. We note that despite the difference between explicit and
implicit settings; for recommendation models, both objectives aim to recover a real-valued score
matrix R̂ ∈ Rm×n. The performance of the model for implicit setting is typically evaluated using
information retrieval metrics such as Top-k Recall/Accuracy or Normalized Discounted Cumulative
Gain (nDCG) on test set.
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EDLAE Recommender System (Steck, 2020): Let ∆ ∈ {0, 1}m×n be a random matrix where each
∆ij is i.i.d. drawn from the Bernoulli distribution such that P (∆ij = 0) = p and P (∆ij = 1) =

1−p. Let ∆(k) denote a realization of ∆, and let ⊙ denote the Hadamard (element-wise) product, so
that ∆(k)⊙R applies dropout element-wise to R. Define the emphasis matrix A(k) where A(k)

ij = a

if ∆(k)
ij = 0 and A

(k)
ij = b if ∆(k)

ij = 1. Then, the EDLAE model is obtained by optimizing the
following objective function:

W ∗ = argminW lim
N→∞

1

N

N∑
k=1

∥A(k) ⊙ (R− (∆(k) ⊙R)W )∥2F (3)

under the hyperparameters a, b, p. Since the squared Frobenius norm in Eq (3) can be expanded into

the sum of weighted quadratic loss
∑m

i=1

∑n
j=1 A

(k)
ij

2
(Rij − (∆

(k)
i∗ ⊙Ri∗)W∗j)

2, if Rij is dropped,

its reconstruction loss (Rij − (∆
(k)
i∗ ⊙ Ri∗)W∗j)

2 is weighted by a2; otherwise, it is weighted by
b2. The hyperparameters a, b are typically set to a ≥ b ≥ 0, thereby placing greater emphasis on
dropped entries to prioritize reducing loss.

The original EDLAE paper (Steck, 2020) provides a closed-form solution to Eq (3) for the case
b = 0 and under the zero-diagonal constraint diag(W ∗) = 0, expressed as

W ∗ =
1

1− p

(
I − C · (I ⊙ C)−1

)
, where C =

(
RTR+

p

1− p
I ⊙RTR

)−1

(4)

While Eq (3) remains valid and meaningful for b > 0, the solution for this case is not addressed in
the original work.

3 DECOUPLED EXPECTED QUADRATIC LOSS FOR LINEAR AUTOENCODERS

In the EDLAE optimization problem Eq (3), let B denote the multivariate Bernoulli distribution of
∆, then by the law of large numbers, Eq (3) can be rewritten as

W ∗ = argminW lB(W ), where

lB(W ) = E∆∼B
[
∥A⊙ (R− (∆⊙R)W )∥2F

]
=

n∑
i=1

E∆∼B
[
∥A∗i ⊙ (R∗i − (∆⊙R)W∗i)∥2F

]
=

n∑
i=1

E∆∼B

[
∥A(i)R∗i −A(i)(∆⊙R)W∗i)∥2F

]
(5)

Here we denote A(i) = diagMat(A∗i). Since R is constant while both ∆ and A(i) are random,
define Y (i) = A(i)R and X(i) = A(i)(∆⊙R), then both X(i) and Y (i) are random. If we in further
denote D(i) as the distribution of the pair (X(i), Y (i)), then the objective function in Eq (5) can be
written as

lB(W ) =

n∑
i=1

E(X(i),Y (i))∼D(i)

[
∥Y (i) −X(i)W∗i∥2F

]
(6)

Eq (6) decouples W into columns, with each column W∗i appearing in an expected quadratic loss
E(X(i),Y (i))∼D(i)

[
∥Y (i) −X(i)W∗i∥2F

]
. This formulation is general since each D(i) can be any

distribution, while Eq (5) is a special case where X(i) and Y (i) follow distributions induced by
applying random dropout to constants. We first derive the general closed-form solution of optimizing
Eq (6), then specialize it to EDLAE, and show that this reformulation simplifies the analysis and
reveals a broader class of solutions for b ≥ 0 compared Steck’s original solution for b = 0 (Steck,
2020).

3.1 DECOUPLED EXPECTED QUADRATIC LOSS AND ITS CLOSED-FORM SOLUTION

We formally define Eq (6) as follows:

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Definition 3.1. Given a set of joint distributions D = {D(i)}ni=1 over the pair (X,Y ), the decou-
pled expected quadratic loss is defined as

lD(W ) =

n∑
i=1

hi
D(i)(W∗i), where

hi
D(i)(W∗i) = E(X,Y )∼D(i)

[
∥Y∗i −XW∗i∥2F

]
= WT

∗iE(X,Y )∼D(i)

[
XTX

]
W∗i − 2WT

∗iE(X,Y )∼D(i)

[
XTY∗i

]
+ E(X,Y )∼D(i)

[
Y T
∗iY∗i

]
(7)

Note that each hi
D(i) is a quadratic function of W∗i. Since E(X,Y )∼D(i)

[
XTX

]
is positive

semi-definite (as XTX is a random variable whose realizations are always positive semi-definite
matrices), hi

D(i) is convex for any i. Hence, let W ∗ = argminW lD(W ), then W ∗
∗i =

argminW∗i
hi
D(i)(W∗i) for all i. Furthermore, if E(X,Y )∼D(i)

[
XTX

]
is positive definite for all

i, so that its inverse exists, then W ∗ can be computed as

W ∗
∗i = E(X,Y )∼D(i)

[
XTX

]−1 E(X,Y )∼D(i)

[
XTY∗i

]
for i = 1, 2, ..., n (8)

Eq (7) represents a general quadratic loss. A special case arises when taking D := D(1) = D(2) =
... = D(n), in which case Eq (7) reduces to

lD(W ) = E(X,Y )∼D
[
∥Y −XW∥2F

]
Moreover, under certain condition that E(X,Y )∼D(i)

[
XTX

]
is independent of i for all i, Eq (7) with

low-rank constraints on W has a closed-form solution, which is discussed in Appendix B.

3.2 ADAPTATION TO EDLAE

This section derives the closed-from solution for EDLAE from Eq (7), which covers the case b ≥ 0.
We show that our solution is equivalent to Steck’s solution (Steck, 2020) for b = 0, and it extends to
the b > 0 case, which was not addressed in Steck’s work.

Remember that Eq (5) is a special case of Eq (7) by taking X = A(i)(∆ ⊙ R) and Y∗i = A(i)R∗i.
By Eq (8), the solution of Eq (5) is given by

W ∗
∗i = H(i)−1

v(i) for i = 1, 2, ..., n, where (9)

H(i) = E∆∼B

[
(∆⊙R)TA(i)2(∆⊙R)

]
, v(i) = E∆∼B

[
(∆⊙R)TA(i)2R∗i

]
(10)

The following lemma enables explicit computation of the expectations in Eq (10):

Lemma 3.2. The H(i) and v(i) in Eq (10) can be expressed as H(i) = G(i) ⊙ RTR and v(i) =
u(i) ⊙RTR∗i, where G(i) ∈ Rn×n and u(i) ∈ Rn satisfy

G
(i)
kl =


(1− p)b2 if k = l = i

(1− p)2b2 if k ̸= l = i or l ̸= k = i

(1− p)pa2 + (1− p)2b2 if k = l ̸= i

(1− p)2pa2 + (1− p)3b2 if i ̸= k ̸= l ̸= i

, u
(i)
k =

{
(1− p)b2 if k = i

(1− p)pa2 + (1− p)2b2 if k ̸= i

for k, l ∈ {1, 2, ..., n}.

Furthermore, the computation of Eq (9) requires the H(i)−1
, which exists only if H(i) is positive

definite. The following theorem establishes sufficient conditions to ensure this property.

Theorem 3.3. For any a, b satisfying a ≥ b > 0, G(i) is positive definite. Furthermore, H(i) is
positive definite if G(i) is positive definite and no column of R is a zero vector.

Therefore, b > 0 serves as a sufficient condition for the validity of Eq (9), implying that the optimal
W ∗ can be obtained using Eq (9) when b > 0.
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Now we discuss the case when b = 0. In this setting, both the i-th row and i-th column of H(i) are
zero, and the i-th row of v(i) is also zero. Consequently, H(i) is singular and its inverse H(i)−1

does
not exist, making Eq (8) inapplicable for computing the optimal W ∗.

To proceed, we define submatrices and subvectors using the subscript −i notation: if Q is an n× n
matrix, then Q−i is a (n−1)× (n−1) matrix obtained by removing the i-th row and i-th column of
Q; if q is an n dimensional vector, then q−i is an n− 1 dimensional vector obtained by removing qi
from q. Under this notation, we can write H(i)

−i = G−⊙(RTR)−i, where G− is an (n−1)×(n−1)

matrix with diagonal elements (1−p)pa2 and off-diagonal elements (1−p)2pa2. It is easy to verify
that G− is positive definite, hence H

(i)
−i is positive definite. Likewise, v(i)−i = u− ⊙ (RTR∗i)−i,

where u− is an n− 1 dimensional vector with all elements being (1− p)pa2.

Denote the vector (W∗i)−i as W∗i,−i, then Eq (5) can be written as

lB(W ) =

n∑
i=1

WT
∗iH

(i)W∗i − 2WT
∗iv

(i) + E∆∼B

[
RT

∗iA
(i)2R∗i

]
(11)

=

n∑
i=1

WT
∗i,−iH

(i)
−iW∗i,−i − 2WT

∗i,−iv
(i)
−i + E∆∼B

[
RT

∗iA
(i)2R∗i

]
(12)

Therefore, the solution W ∗ = argminW lB(W ) is expressed as

W ∗
∗i,−i = (H

(i)
−i )

−1v
(i)
−i and W ∗

ii ∈ R for i = 1, 2, ..., n (13)

Eq (13) reveals that, the optimal W ∗ is not unique, belongs to an infinite set of solutions. All such
solutions share the same off-diagonal entries, while the diagonal elements can take arbitrary values.
The following theorem shows that Steck’s solution Eq (4) is a special case of Eq (13), corresponding
to the choice of zero diagonal.
Theorem 3.4. Suppose no column of R is a zero vector. If taking Wii = 0 for all i in Eq (13), then
Eq (13) and Eq (4) are equivalent.

It is important to note that varying the diagonal of W ∗ can lead to different performance on test data,
and Eq (13) does not provide theoretical guidance on which choice of diagonal elements gives the
best performance. However, empirical results suggest that a W ∗ with non-zero diagonal elements
can outperform the zero-diagonal solution in certain cases (Moon et al., 2023).

3.3 ADDING L2 REGULARIZER AND ZERO-DIAGONAL CONSTRAINT

In LAE-based recommender systems, L2 regularizer and zero diagonal constraint are commonly
applied to the objective function, as they are established techniques for improving test performance.
This section discusses the closed-form solution of the optimization problem Eq (5) when the L2

regularizer or the zero-diagonal constraint is applied.

Adding L2 Regularizer: Given λ > 0, Eq (5) with L2 regularizer is expressed as
W ∗ = argminW lB(W ) + λ∥W∥2F (14)

Adding Zero-diagonal Constraint: Eq (5) with zero-diagonal constraint is expressed as
W ∗ = argminW lB(W ) s.t. diag(W ) = 0 (15)

In these cases, the solution Eq (9) is modified accordingly, as presented below.
Proposition 3.5. (a) The solution of Eq (14) is

W ∗
∗i =

(
H(i) + λI

)−1

v(i) for i = 1, 2, ..., n (16)

(b) The solution of Eq (15) is

W ∗
∗i = H(i)−1

v(i) − (H(i)−1
v(i))i

(H(i)−1
l(i))i

H(i)−1
l(i) for i = 1, 2, ..., n (17)

where l(i) is an n-dimensional vector with l
(i)
i = 1 and l

(i)
j = 0 for all j ̸= i.

5
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4 AN EFFICIENT ALGORITHM FOR THE CLOSED-FORM SOLUTION

Recall from Theorem 3.3 that the optimal W ∗ for the b > 0 case of EDLAE can be computed by
Eq (9). However, a major challenge with Eq (9) is its high computational complexity: since H(i)

differs for each i, computing each inverse H(i)−1
costs O(n3), resulting in a total cost of O(n4) for

all i, which is computationally impractical.

In this section, we propose a practical algorithm to reduce the overall complexity of computing Eq
(9). Our algorithm is based on Miller’s matrix inverse theorem:
Theorem 4.1. ((Miller, 1981)) Let G and G + Q be non-singular matrices. Suppose Q is of rank
r and can be decomposed as Q = E1 + E2 + ... + Er, where each Ek is of rank 1, and Pk+1 =
G+ E1 + E2 + ...+ Ek is non-singular for k = 1, 2, ..., r. Let P1 = G, then

P−1
k+1 = P−1

k − 1

1 + tr
(
P−1
k Ek

)P−1
k EkP

−1
k

In Lemma 3.2, we define H(i) = G(i) ⊙RTR, which can be decomposed as

H(i) = G0 ⊙RTR+G
(i)
1 ⊙RTR+G

(i)
2 ⊙RTR

where G0 is a matrix with diagonal elements equal to (1 − p)pa2 + (1 − p)2b2 and off-diagonal
elements equal to (1− p)2pa2 + (1− p)3b2; G(i)

1 is a matrix with (G
(i)
1 )ji = −(1− p)2p(a2 − b2)

for j ̸= i, (G(i)
1 )ii = −(1 − p)p(a2 − b2), and all other elements zero; G

(i)
2 is a matrix with

(G
(i)
2 )ij = −(1− p)2p(a2 − b2) for j ̸= i and all other elements zero.

Denote H0 = G0 ⊙RTR, E(i)
1 = G

(i)
1 ⊙RTR and E

(i)
2 = G

(i)
2 ⊙RTR, then H(i) = H0 +E

(i)
1 +

E
(i)
2 . Note that H0 is positive definite and independent of i, E(i)

1 is of rank 1 with only the i-th
column being nonzero, and E

(i)
2 is of rank 1 with the i-th row (excluding (E

(i)
2 )ii) being nonzero.

Applying Theorem 4.1, H(i)−1
can be computed with the following two steps:

H
(i)
+

−1
= (H0 + E

(i)
1 )−1 = H−1

0 − 1

1 + tr(H−1
0 E

(i)
1 )

H−1
0 E

(i)
1 H−1

0 (18)

H(i)−1
= (H0 + E

(i)
1 + E

(i)
2 )−1 = H−1

+ − 1

1 + tr(H−1
+ E

(i)
2 )

H−1
+ E

(i)
2 H−1

+ (19)

Let e(i)1 be the i-th column of E(i)
1 , e(i)2

T
be the i-th row of E(i)

2 , then Eq (18) and Eq (19) can be
simplified as

H
(i)
+

−1
= H−1

0 − 1

1 + (H−1
0 )i∗e

(i)
1

(H−1
0 e

(i)
1 )(H−1

0 )i∗ (20)

H(i)−1
= H

(i)
+

−1
− 1

1 + e
(i)
2

T
(H

(i)
+

−1
)∗i

(H
(i)
+

−1
)∗i(e

(i)
2

T
H

(i)
+

−1
) (21)

Observe that, given H−1
0 , the computation of each H(i)−1

using Eq (20) and Eq (21) requires only
O(n2) operations, resulting in a total cost of O(n3) for all i. This significantly reduces the original
O(n4) complexity of computing Eq (9).

Moreover, the computation can be further simplified by directly computing H(i)−1
v(i) without ex-

plicitly forming H(i)−1
. By Eq (20) and Eq (21),

H
(i)
+

−1
v(i) = H−1

0 v(i) − 1

1 + (H−1
0 )i∗e

(i)
1

(H−1
0 e

(i)
1 )

[
(H−1

0 )i∗v
(i)
]

(22)

H(i)−1
v(i) = H

(i)
+

−1
v(i) − 1

1 + e
(i)
2

T
(H

(i)
+

−1
)∗i

(H
(i)
+

−1
)∗i

[
(e

(i)
2

T
H

(i)
+

−1
)v(i)

]
(23)

6
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in which the scalars (H−1
0 )i∗v

(i) and (e
(i)
2

T
H

(i)
+

−1
)v(i) can be computed first. In Eq (23), the

(H
(i)
+

−1
)∗i term can be computed by Eq (20),

(H
(i)
+

−1
)∗i = (H−1

0 )∗i −
(H−1

0 )ii

1 + (H−1
0 )i∗e

(i)
1

(H−1
0 e

(i)
1 )

Denote s = H
(i)
+

−1
v(i), t = (H

(i)
+

−1
)∗i. Let U be an n× n matrix with diagonal elements equal to

(1 − p)b2 and off-diagonal elements equal to (1 − p)pa2 + (1 − p)2b2, let G1 be an n × n matrix
with diagonal elements −(1− p)p(a2 − b2) and off-diagonal elements −(1− p)2p(a2 − b2), and let
G2 be an n× n matrix with zeros on the diagonal and off-diagonal elements −(1− p)2p(a2 − b2).
Then we can summarize our computation as follows.

Fast Algorithm for Computing Eq (9): First, precompute these matrices

RTR, H−1
0 =

(
G0 ⊙RTR

)−1
, [v(1), v(2), ...v(n)] = U ⊙RTR,

[e
(1)
1 , e

(2)
1 , ..., e

(n)
1 ] = G1 ⊙RTR, [e

(1)
2 , e

(2)
2 , ..., e

(n)
2 ] = G2 ⊙RTR,

Then for i = 1, 2, ..., n, compute each W ∗
∗i = H(i)−1

v(i) as follows:

r = H−1
0 v(i), w = H−1

0 e
(i)
1

s = r − 1

1 + wi
riw, t = (H−1

0 )∗i −
(H−1

0 )ii
1 + wi

w

H(i)−1
v(i) = s− 1

1 + e
(i)
2

T
t
(e

(i)
2

T
s)t

We now analyze the computational complexity of the above algorithm. In the precomputing stage,
RTR costs O(mn2), H−1

0 costs O(n3), and U ⊙ RTR,G1 ⊙ RTR,G2 ⊙ RTR cost O(n2) re-
spectively. In the computing stage, each W ∗

∗i is obtained via matrix-vector or vector-vector multi-
plications with a complexity of O(n2), resulting in an overall complexity of O(n3) for the entire
W ∗. Therefore, the total complexity of the algorithm is O

(
max(m+ n)n2

)
. This complexity is

the same as the closed-form solutions of EASE (Steck, 2019) and EDLAE (Steck, 2020).

Complexity for Sparse Matrix: One computational bottleneck in the above algorithm is the compu-
tation of RTR. If R is sparse and all its entries are integers, then the algorithm’s complexity can be
further reduced. Suppose R contains k non-zeros. The multiplication RTR takes two matrices RT

and R as input, which together contain 2k non-zeros; the output is an n×n matrix containing at most
n2 nonzeros. By (Abboud et al., 2024), the complexity of computing RTR is O((2k + n2)1.346).
Hence, the total complexity reduces to O((2k + n2)1.346 + n3), where the n3 term comes from
inverting H0.

Adapting the Algorithm to the L2 regularizer and Zero-diagonal Constraint Cases: In Eq (16),
note that H(i)+λI = (H0+λI)+E

(i)
1 +E

(i)
2 , where H0+λI is independent of i. This means that

we can compute Eq (16) using the above algorithm by replacing H0 with H0 + λI . In Eq (17), we
first compute H(i)−1

v(i) with the algorithm; then, by replace v(i) with l(i), we compute H(i)−1
l(i)

with the same method. Once H(i)−1
v(i) and H(i)−1

l(i) are obtained, Eq (17) can be computed
accordingly.

5 EXPERIEMENTS

This section provides experimental results comparing DEQL with state-of-the-art collaborative fil-
tering models, including linear models and deep learning based models. Additional experiments on
tim and space costs can be found in Appendix D.

5.1 EXPERIMENTAL SET-UP

Datasets: We conduct extensive experiments to verify our theorical claims. Specifically, we employ
six publicly available datasets, from small to large, including Games, Beauty, Gowalla, ML-20M,
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Table 1: Performance comparison and dataset statistics across six different datasets under strong
generalization setting. We highlight the best results in bold. DEQL refer to Eq (9), DEQL(L2+zero-
diag) refers to combining Eq (16) and Eq (17), and DEQL(L2) refers to Eq (16) solely.

Model Games Beauty Gowalla ML20M Netflix MSD

R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20

DLAE 0.2771 0.1664 0.1329 0.0886 0.2143 0.1916 0.3924 0.3409 0.3620 0.3395 0.3290 0.3210
EASE 0.2733 0.1640 0.1323 0.0875 0.2230 0.1988 0.3905 0.3390 0.3618 0.3388 0.3332 0.3261

EDLAE 0.2851 0.1681 0.1324 0.0850 0.2268 0.2012 0.3925 0.3421 0.3656 0.3427 0.3336 0.3258
DEQL 0.2524 0.1565 0.1093 0.0670 0.2149 0.1909 0.3844 0.3347 0.3606 0.3382 0.3329 0.3256

DEQL(L2+zero-diag) 0.2872 0.1704 0.1388 0.0898 0.2278 0.2027 0.3934 0.3429 0.3656 0.3423 0.3344 0.3268
DEQL(L2) 0.2998 0.1842 0.1391 0.0881 0.2288 0.2033 0.3934 0.3426 0.3658 0.3428 0.3340 0.3265

# items 896 4,394 13,681 20,108 17,769 41,140
# users 1,006 17,971 29,243 136,677 463,435 571,353
# inter. 15,276 75,472 677,956 9,990,682 56,880,037 33,633,450

Netflix, and MSD (Steck, 2019; Ni et al., 2019; Seol et al., 2024) to compare with LAE based mod-
els under strong generalization setting where test users do not appear in training dataset. When
comparing with modern deep learning based models, since most of these models rely on user and
item embeddings to make prediction and require users appear in training dataset, we further eval-
uate our methods on 3 additional widely used datasets: Amazonbook, Yelp2018 and Gowalla He
et al. (2020) under weak generalization setting. For better generalization, we preprocess the data
following (Steck, 2020; He et al., 2020).

Baseline models and Evaluation Metrics: We compare it against the following state-of-the-art
linear autoencoder-based recommendation models: EASE (Steck, 2019), DLAE (Steck, 2020), ED-
LAE (Steck, 2020) and recent deep learning based models: PinSage (Ying et al., 2018), LightGCN
(He et al., 2020), DGCF (Wang et al., 2020), SimpleX (Mao et al., 2021), SGL-ED (Wu et al., 2021)
and SSM (Wu et al., 2024a). We evaluate model performance using widely adopted ranking metrics:
Recall@20 and NDCG@20.

5.2 REPRODUCIBILITY

For hyper-parameter tuning, We performed a grid search to optimize the hyperparameters of the
linear autoencoder models. Since in the objective function, all quadratic entries are equipped
with either a or b and the solution to it is scalar invariant (e.g., in Eq 3, although (a, b) =
(1, 0.1) and (a, b) = (10, 1) gives different Loss value, the obtained W ∗ will always be the
same), only the ratio b/a affects the closed-form solution. Therefore, we fix a = 1 and
search b over the range [0.1,0.25,. . . ,2.0]. The L2 regularization coefficient is searched over
[10.0,20.0,...50,100.0,300.0,500.0], and the dropout rate p is varied across [0.1,0.2,. . . ,0.5,0.8]. All
experiments are conducted on a Linux server equipped with 500 GB of memory, four NVIDIA 3090
GPUs, and a 96-core Intel(R) Xeon(R) Platinum 8268 CPU @ 2.90GHz. Our code is available at
https://anonymous.4open.science/r/ICLR2026_DEQL_new-441D/README.md

5.3 EXPERIMENTAL RESULTS

In this section, we present the experimental results over two evaluation metrics. Specifically, we
would answer the following research questions:
RQ1 Can the generalized quadratic loss DEQL(L2)/DEQL(L2+zero-diag) improve recommenda-
tion performance over existing linear autoencoder-based models?
RQ2 Is the zero diagonal constraint necessary for optimal performance, or can models benefit from
non-zero diagonals as suggested by DEQL(L2)?
RQ3: How does DEQL families perform compared with modern deep learning based models?

RQ1: DEQL(L2) substantially improves recommendation performance over state-of-the-art linear
autoencoder models across a diverse set of benchmarks. We evaluate DEQL against three widely
recognized baselines:DLAE, EASE, and EDLAE (Steck et al., 2024)(Jin et al., 2021)on six public
datasets: Games, Beauty, Gowalla, ML-20M, Netflix, and MSD. As shown in Table 1, DEQL(L2)
achieves the highest Recall and NDCG on 5 out of the 6 datasets, often with a significant margin. For
instance, on the Games dataset, DEQL(L2) improves Recall@20 from 0.2851 (EDLAE) to 0.2998,
and NDCG@20 from 0.1681 to 0.1842, showing that our framework provides better ranking quality
even in small-scale, sparse interaction settings. On large-scale datasets like ML-20M, DEQL main-
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Table 2: Performance comparison and dataset statistics for LAE-based model and advanced deep
learning based model under weak generalization setting.

Model Amazon-Books Yelp2018 Gowalla

R@20 N@20 R@20 N@20 R@20 N@20

Deep learning based models
PinSage 0.0282 0.0219 0.0471 0.0393 0.1380 0.1196
LightGCN 0.0411 0.0315 0.0649 0.0530 0.1830 0.1554
DGCF 0.0422 0.0324 0.0654 0.0534 0.1842 0.1561
SGL-ED 0.0478 0.0379 0.0675 0.0555 – –
SimpleX 0.0583 0.0468 0.0701 0.0575 0.1872 0.1557
SSM (MF) 0.0473 0.0367 0.0509 0.0404 0.1231 0.0878
SSM (GNN) 0.0590 0.0459 0.0737 0.0609 0.1869 0.1571

LAE-based models
DLAE 0.0751 0.0610 0.0678 0.0570 0.1839 0.1533
EASE 0.0710 0.0566 0.0657 0.0552 0.1765 0.1467
EDLAE 0.0711 0.0566 0.0673 0.0565 0.1844 0.1539
DEQL 0.0695 0.0537 0.0647 0.0543 0.1749 0.1453
DEQL(L2+zero-diag) 0.0711 0.0567 0.0672 0.0565 0.1844 0.1539
DEQL(L2) 0.0751 0.0613 0.0685 0.0576 0.1845 0.1540

# items 91,599 38,048 40,981
# users 52,643 31,668 29,858
# inter. 2,984,108 1,561,406 1,027,370

tains top performance (Recall@20 = 0.3934, NDCG@20 = 0.3426) that matches and even improves
upon the best baseline (EDLAE: Recall@20 = 0.3925, NDCG@20 = 0.3421). This suggests that
our framework retains its effectiveness when scaled to millions of interactions and hundreds of thou-
sands of users due to its low complexity. These consistent improvements across datasets of varying
sparsity and scale demonstrate the robustness of the DEQL formulation. These gains stem from our
theoretical insight: by generalizing the EDLAE formulation to allow b > 0, our framework explores
a richer solution space with closed-form solvability.

RQ2: When b = 0, the training loss does not constrain the diagonal of W , leading to non-uniqueness
in the optimal solution. Instead of enforcing zero diagonals as in EASE/EDLAE/DEQL(L2+zero-
diag), DEQL(L2) allows the diagonal to be arbitry real number, allowing us to explore richer search-
ing space. Our empirical results support this design. On Gowalla, DEQL(L2)achieves Recall@20
= 0.2288 and NDCG@20 = 0.2033, outperforming DEQL(L+zero-diag) (0.2278 / 0.2027) and ED-
LAE (0.2268 / 0.2012). On ML20M, DEQL reaches Recall@20 = 0.3934 and NDCG@20 = 0.3426,
closely matching DEQL(L2+zero-diag) (0.3934 / 0.3429) and surpassing EDLAE (0.3925 / 0.3421).
These results demonstrate that adjusting b alone is sufficient to ensure strong generalization ability
without a hard constraint as zero-diagonal constraints. These findings indicate that the diagonal
constraint in EDLAE is NOT necessary and by introducing non-zero b, LAEs can still achieve com-
petitive performance. An explanation of these results can be found in Appendix E.2.

RQ3: In Table 2 we report the results compared with recent deep learning based models. Our pro-
posed DEQL(L2) and DEQL(L2+zero-diag) not only achieves better performance than most classic
baselines, in some cases we can surpasses the most recent deep learning–based recommendation
models. For example, when comparing with a recent strong benchmark SSM, DEQL(L2) attains
comparable results on Yelp2018/Gowalla even superior to it on Amazonbook dataset with as large
as 27% and 34% margin on R@20 and N@20 respectively. Overall, these results demonstrate the
robustness and strong empirical performance of our generalized quadratic loss.

6 CONCLUSIONS

This paper aims to advance the EDLAE recommender system by extending its closed-form solution
to a broader range of hyperparameter choices, and develop an efficient algorithm to compute these
solutions. We first generalize the EDLAE objective function into the Decoupled Expected Quadratic
Loss (DEQL), derive its closed-form solutions, and then apply them back to EDLAE. We show that,
through DEQL, the original EDLAE solution for b = 0 can be extended to the wider range b ≥ 0,
enabling exploration of a larger solution space. To address the high computational complexity of
solutions for b > 0, we develop an efficient algorithm based on Miller’s matrix inverse theorem,
reducing the complexity from O(n4) to O(n3). Experimental results demonstrate that most solutions
for b > 0 outperform the b = 0 baseline, showing that DEQL expands the solution space and
enables the discovery of models with better testing performance. Furthermore, DEQL is a general
loss function that may inspire the construction of other specialized objectives for LAE models.
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A MATHEMATICAL PROOFS

Proof of Lemma 3.2: H(i) can be computed as follows. For any k, l,

H
(i)
kl = E∆[(∆⊙R)T∗kA

(i)2(∆⊙R)∗l] = E∆[

m∑
s=1

∆skRskA
(i)
ss

2
∆slRsl]

=

m∑
s=1

E∆[∆skRskA
(i)
ss

2
∆slRsl] =

m∑
s=1

E∆[∆sk∆slA
(i)
ss

2
]RskRsl (24)

Note that A(i)
ss = Asi, which depends on ∆si. Since we assume each ∆ij is an i.i.d. Bernoulli

random variable, E∆[∆sk∆slA
2
si] is independent of s. Thus we can let a z be a specific value of s

and rewrite Eq (24) as

H
(i)
kl = E∆[∆zk∆zlA

2
zi]

m∑
s=1

RskRsl = E∆[∆zk∆zlA
2
zi]R

T
∗kR∗l

Define G(i) ∈ Rn×n where G
(i)
kl = E∆[∆zk∆zlA

2
zi], then H(i) = G(i) ⊙ RTR. G(i) can be

computed as follows: Given i, for any k, l,

∆zk∆zlA
2
zi =


a2 if ∆zk = 1 and ∆zl = 1 and ∆zi = 0

b2 if ∆zk = 1 and ∆zl = 1 and ∆zi = 1

0 otherwise

Since

P (∆zk = 1 and ∆zl = 1 and ∆zi = 0) =

{
(1− p)p if k = l ̸= i

(1− p)2p if i ̸= k ̸= l ̸= i

P (∆zk = 1 and ∆zl = 1 and ∆zi = 1) =


1− p if k = l = i

(1− p)2 if k = l ̸= i or k ̸= l = i or l ̸= k = i

(1− p)3 if i ̸= k ̸= l ̸= i

we have

G
(i)
kl = E∆[∆zk∆zlA

2
zi] =


(1− p)b2 if k = l = i

(1− p)2b2 if k ̸= l = i or l ̸= k = i

(1− p)pa2 + (1− p)2b2 if k = l ̸= i

(1− p)2pa2 + (1− p)3b2 if i ̸= k ̸= l ̸= i

On the other hand, v(i) can be computed as follows. For any k,

v
(i)
k = E∆[(∆⊙R)T∗kA

(i)2R∗i] = E∆[

m∑
s=1

∆skRskA
(i)
ss

2
Rsi] =

m∑
s=1

E∆[∆skA
2
si]RskRsi

= E∆[∆zkA
2
zi]R

T
∗kR∗i

Define u(i) ∈ Rn where u
(i)
k = E∆[∆zkA

2
zi], then we can write v(i) = u(i) ⊙ RTR∗i. u(i) can be

computed as follows: Given any k,

u
(i)
k = E∆[∆zkA

2
zi] =

{
(1− p)b2 if k = i

(1− p)pa2 + (1− p)2b2 if k ̸= i

Proof of Theorem 3.3: Observe that G(i) can be decomposed as the sum of three matrices:

G(i) = (1− p)2b2J + ((1− p)2p(a2 − b2))J (i) + Λ(i)

13
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where J is an n × n matrix of all 1s, J (i) is an n × n matrix that its elements on i-th row and i-th
column are 0s while all other elements are 1s. Λ(i) is an n×n diagonal matrix with Λ

(i)
ii = (1−p)pb2

and Λ
(i)
jj = (1− p)p2a2 + (1− p)2pb2 for all j ̸= i.

It is easy to prove the positive semi-definiteness of J and J (i). Thus, when a ≥ b > 0, (1− p)2b2J
and ((1− p)2p(a2 − b2))J (i) are positive semi-definite. Moreover, Λ(i) is positive definite because
all its diagonal elements are positive. Therefore, G(i) is positive definite.

RTR is a positive semi-definite matrix. If no column of R is a zero vector, then all diagonal elements
of RTR are positive. By the Schur product theorem (Theorem 7.5.3 (b), (Horn & Johnson, 2012)), if
G(i) is positive definite and the diagonal elements of RTR are all positive, then H(i) = G(i)⊙RTR
is positive definite.

Proof of Theorem 3.4: Since the W ∗ in Eq (13) has zero diagonal, we only need to verify the
equivalence of non-diagonal elements. Let us write (C∗i)−i as C∗i,−i, then W∗i,−i by Eq (13) is
expressed as

W∗i,−i = − 1

1− p

1

Cii
C∗i,−i

Thus, our goal is to prove

(H
(i)
−i )

−1v
(i)
−i = − 1

1− p

1

Cii
C∗i,−i for any i ∈ {1, 2, ..., n} (25)

To show this, first,

(H
(i)
−i )

−1v
(i)
−i =

(
G− ⊙ (RTR)−i

)−1 · (1− p)pa2(RTR∗i)−i

=

(
1

(1− p)pa2
G− ⊙ (RTR)−i

)−1

(RTR∗i)−i

=
1

1− p

(
(RTR)−i +

p

1− p
I ⊙ (RTR)−i

)−1

(RTR∗i)−i (26)

Next, remember that C−1 = RTR + p
1−pI ⊙ RTR. Since no column of R is a zero vector, I ⊙

RTR is positive definite, thus C−1 is positive definite. By the properties of matrix inverse, for an
invertible matrix E, if we swap the i-th and j-th rows (or columns) of E and get E′, then E′−1 is
equivalent to the matrix formed by swapping the i-th and j-th columns (or rows) of E−1. Therefore,
suppose (C−1)⟨i⟩ is obtained from C−1 by first swapping the kth row with the (k + 1)th row for
k = i, i + 1, ..., n − 1 sequentially, then swapping the kth column with the (k + 1)th column for
k = i, i+ 1, ..., n− 1 sequentially. We have

(C−1)⟨i⟩ =

(RTR)−i +
p

1−pI ⊙ (RTR)−i (RTR∗i)−i

(RTR∗i)
T
−i

1
1−p (R

TR)ii


and (

(C−1)⟨i⟩
)−1

= C⟨i⟩ =

[
M C∗i,−i

CT
∗i,−i Cii

]
where M is an (n− 1)× (n− 1) matrix that we are not interested in.

By the symmetric block matrix inverse (0.7.3, (Horn & Johnson, 2012)), we know that[
A BT

B D

]−1

=

[
A−1 +A−1BTS−1BA−1 −A−1BTS−1

−S−1BA−1 S−1

]
where S = D −BA−1BT .

14
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Let A = (RTR)−i +
p

1−p (I ⊙ (RTR)−i), BT = (RTR∗i)−i and S−1 = Cii, we have

C∗i,−i = −A−1BTS−1 = −
(
(RTR)−i +

p

1− p
I ⊙ (RTR)−i

)−1

(RTR∗i)−i · Cii (27)

Combining Eq (27) and Eq (26), we get Eq (25), thereby completing the proof.

Proof of Proposition 3.5:

(a) Similar to Eq (11), we can expand objective function of Eq (14) as

lB(W ) + λ∥W∥2F =

n∑
i=1

h
(i)
B (W∗i), where

h
(i)
B (W∗i) = WT

∗iH
(i)W∗i − 2WT

∗iv
(i) + λ∥W∗i∥2F + E∆∼B

[
RT

∗iA
(i)2R∗i

]

Hence,
[

∂h
(i)
B

∂W∗i

]T
= 2H(i)W∗i − 2v(i) + 2λW∗i, and the solution of

[
∂h

(i)
B

∂W∗i

]T
= 0 becomes

W ∗
∗i =

(
H(i) + λI

)−1

v(i) (28)

The optimal W ∗ is obtained by solving W ∗
∗i via Eq (28) for all i. The solution is unique since each

h
(i)
B is strictly convex.

(b) Eq (15) is equivalent to solving for the stationary points of the following a Lagrangian function

L(W, µ) = lB(W ) + µT diag(W )

where µ ∈ Rn. Since

L(W, µ) =

n∑
i=1

h̄
(i)
B (W∗i, µi), where

h̄
(i)
B (W∗i, µi) = WT

∗iH
(i)W∗i − 2WT

∗iv
(i) + µiWii + E∆∼B

[
RT

∗iA
(i)2R∗i

]
the solution (W,µ) of the system of equations[
∂L
∂W

]T
=

[[
∂L

∂W∗1

]T
,

[
∂L

∂W∗2

]T
, ...,

[
∂L

∂W∗n

]T]
=

[ ∂h̄
(1)
B

∂W∗1

]T

,

[
∂h̄

(2)
B

∂W∗2

]T

, ...,

[
∂h̄

(n)
B

∂W∗n

]T
 = 0

[
∂L
∂µ

]T
=

[
∂L
∂µ1

,
∂L
∂µ2

, ...,
∂L
∂µn

]T
=

[
∂h̄

(1)
B

∂µ1
,
∂h̄

(2)
B

∂µ2
, ...,

∂h̄
(n)
B

∂µn

]T

= 0

is given by taking [
∂h̄

(i)
B

∂W∗i

]T

= 2H(i)W∗i − 2v(i) + µil
(i) = 0 (29)

∂h̄
(i)
B

∂µi
= Wii = 0 (30)

for i = 1, 2, ..., n. Solving Eq (29), we get

W∗i = H(i)−1
(vi −

1

2
µil

(i)) (31)

15
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Combining Eq (30) and Eq (31), we have

Wii = (H(i)−1
v(i))i −

1

2
µi(H

(i)−1
l(i))i = 0 =⇒ µi = 2

(H(i)−1
v(i))i

(H(i)−1
l(i))i

(32)

Finally, plugging Eq (33) into Eq (31), we get the solution of W ∗: For any i,

W ∗
∗i = H(i)−1

(v(i) − (H(i)−1
v(i))i

(H(i)−1
l(i))i

l(i)) = H(i)−1
v(i) − (H(i)−1

v(i))i

(H(i)−1
l(i))i

H(i)−1
l(i) (33)

The solution Eq (33) is unique. By second order sufficiency conditions (Section 11.5, (Luenberger
& Ye, 2008)), one can show that any W ∗ that minimizes L(W, µ) is a strict local minimizer. Thus,
the solution Eq (33) gives the global minimizer.

B DECOUPLED EXPECTED QUADRATIC LOSS WITH LOW-RANK
CONSTRAINT

This section discusses the closed-form solution of Eq (7) under low-rank constraint of W . Given the
rank k (k ≤ n), we would like to solve

argmin
W

lD(W ) =

n∑
i=1

E(X,Y )∼D(i)

[
∥Y∗i −XW∗i∥2F

]
s.t. rank(W ) ≤ k (34)

Theorem B.1. Suppose E(X,Y )∼D(i) [XTX] is independent of i, and denote

Σxx = E(X,Y )∼D(i) [XTX]

Σxy =
[
E(X,Y )∼D(1) [XTY∗1],E(X,Y )∼D(2) [XTY∗2], ...,E(X,Y )∼D(n) [XTY∗n]

]
If Σxx is non-singular, then the closed-form solution of Eq (34) is given by

W ∗ = Σ−1/2
xx

[
Σ−1/2

xx Σxy

]
k

(35)

Here, let Σ−1/2
xx Σxy = U

σ1

σ2

...
σn

V T be the singular value decomposition where σ1 ≥

σ2... ≥ σn, we denote
[
Σ

−1/2
xx Σxy

]
k
=

∑k
i=1 σiU∗iV

T
∗i .

Proof : Denote y(i) = E(X,Y )∼D(i) [Y T
∗iY∗i]. By Eq (7),

lD(W ) =

n∑
i=1

WT
∗iΣxxW∗i − 2WT

∗i (Σxy)∗i + y(i)

=

n∑
i=1

(
Σ1/2

xx W∗i

)T

Σ1/2
xx W∗i − 2

(
Σ1/2

xx W∗i

)T

Σ−1/2
xx (Σxy)∗i + y(i)

=

n∑
i=1

∥∥∥Σ1/2
xx W∗i − Σ−1/2

xx (Σxy)∗i

∥∥∥2
F
+ y(i) − (Σxy)

T
∗i Σ

−1
xx (Σxy)∗i

=
∥∥∥Σ1/2

xx W − Σ−1/2
xx Σxy

∥∥∥2
F
+

n∑
i=1

y(i) − (Σxy)
T
∗i Σ

−1
xx (Σxy)∗i

By Eckart–Young–Mirsky theorem,
[
Σ

−1/2
xx Σxy

]
k
= argmin

rank(Q)≤k

∥∥∥Q− Σ
−1/2
xx Σxy

∥∥∥2
F

for any Q ∈

Rn×n. Therefore, Σ1/2
xx W ∗ =

[
Σ

−1/2
xx Σxy

]
k
=⇒ W ∗ = Σ

−1/2
xx

[
Σ

−1/2
xx Σxy

]
k
.
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Note that the low-rank solution Eq (35) is not applicable when Σxx = E(X,Y )∼D(i) [XTX] de-

pends on i: If Σxx varies with i, then in the proof
∑n

i=1

∥∥∥Σ1/2
xx W∗i − Σ

−1/2
xx (Σxy)∗i

∥∥∥2
F

cannot be

combined into
∥∥∥Σ1/2

xx W − Σ
−1/2
xx Σxy

∥∥∥2
F

.

The low-rank solution Eq (35) is applicable to EDLAE only when taking a = b: by Eq (10), Σxx is
represented by H(i); by Lemma 3.2, if a = b, H(i) will have all diagonal entries being (1 − p)b2

and all off-diagonal entries being (1− p)2b2 for any i, thus being independent of i. However, when
a ̸= b, H(i) will depend on i, making Eq (34) not applicable.

C RELATED WORKS

The evolution of collaborative filtering (CF) in recommendation systems has undergone several
key paradigm shifts. In its early stages, neighborhood-based methods dominated the field, with
influential works such as user-item KNN approaches (Hu et al., 2008) and sparse linear models
(SLIM) (Ning & Karypis, 2011) setting the foundation. However, the Netflix Prize competition
marked a turning point, accelerating the adoption of matrix factorization (MF) techniques, which
offered improved scalability and latent feature learning (Koren et al., 2009). These models aim to
solve a matrix completion problem, which has been extensively studied theoretically (Candès & Tao,
2010; Recht, 2011; Foygel et al., 2011; Shamir & Shalev-Shwartz, 2011).

The rise of deep learning (LeCun et al., 2015) further revolutionized the landscape, introducing
more expressive neural architectures. Among these, graph-based models gained prominence, in-
cluding Neural Collaborative Filtering (NCF) (He et al., 2017), which replaced traditional MF with
neural networks, and later refinements like Neural Graph Collaborative Filtering (NGCF) (Wang
et al., 2019) and LightGCN (He et al., 2020), which explicitly leveraged graph structures for higher-
order user-item relationship modeling. Simultaneously, industry-scale solutions emerged, blending
memorization and generalization through hybrid architectures such as Wide & Deep (Cheng et al.,
2016), DeepFM (Guo et al., 2017), and Deep & Cross Networks (DCN) (Wang et al., 2017), which
automated feature interactions while maintaining interpretability.

Alongside the ongoing research that explores various models to enhance recommendation perfor-
mance, the research community has gradually recognized the importance of gaining a deeper the-
oretical understanding of loss functions (Terven et al., 2025; Wu et al., 2024b). These theoretical
investigations seek to reveal the fundamental principles and mathematical underpinnings that govern
the behavior and optimization direction of recommendation systems, thereby advancing our over-
all understanding of how these systems function. BPR (Rendle et al., 2009). Early methods often
adopted pointwise L2 loss over observed ratings or implicit feedback (Hu et al., 2008), which is
simple and analytically tractable. Later, pairwise ranking losses such as BPR (Rendle et al., 2009)
became popular for top-N recommendation, optimizing relative preferences between positive and
negative items. Softmax-based listwise losses, such as sampled softmax (Jannach et al., 2010) were
introduced to better align with ranking metrics like NDCG. In recent years, contrastive learning
frameworks (Zhou et al., 2021; Wang et al., 2022) have gained prominence as a powerful and effec-
tive approach, particularly in unsupervised recommendation scenarios. Notable studies such as (Li
et al., 2023; Liu et al., 2021) have further showcased their effectiveness in this domain.

Notably, recent studies (Rendle, 2010) have shown that well-tuned linear models can outperform
more complex deep architectures on sparse implicit data, challenging the assumption that greater
model expressiveness always yields better performance. At the same time, alternative objectives
such as pairwise ranking losses (Rendle et al., 2009), listwise softmax, and contrastive formulations
(Zhou et al., 2021; Wang & Liu, 2021)—though popular—often suffer from instability, sensitivity
to negative sampling, and increased computational overhead. Motivated by these findings, we adopt
a different perspective: rather than seeking more complex losses or models, we focus on refining
linear models under the classical L2 loss.

LAEs are one type of the linear recommender models. One of the earliest LAE model is SLIM (Ning
& Karypis, 2011), which trains the loss ∥R−RW∥2F with L1 and L2 regularizers. The zero-diagonal
constraint was first introduced in EASE (Steck, 2019) to prevent solutions from overfitting toward
the identity matrix. EDLAE (Steck, 2020) instead employs dropout and emphasis as an alternative
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strategy to mitigate overfitting. ELSA (Vančura et al., 2022) construct the model W with a zero
diagonal by enforcing W = AAT − I for some matrix A subject to ∥Ai∗∥22 = 1 for all i. (Moon
et al., 2023) shows that a strict zero-diagonal constraint does not always yield the best performance,
and that replacing it with a diagonal bounded by a small norm during training can improve results.

D SUPPLEMENTAL EXPERIMENTS ON TIME AND MEMORY COST

In this section, we provided more experimental details and results (as in Table 3) regarding training
time and memory usage.

Table 3 compares the time and memory costs of deep learning models and LAEs. It shows that for
large datasets like Yelp 2018, DEQL families finish training in just 8 minutes on a CPU, which is
much faster than all other advanced deep learning baselines.

The primary reason LAE-based methods (e.g., DEQL) exhibit higher memory cost but lower training
time than deep learning-based methods is due to their computational paradigm: deep learning-based
models train via batch gradient descent, loading only small batches into GPU memory at each step,
which keeps memory usage around 3GB but requires many iterations, leading to longer training
time. In contrast, LAE-based methods load the entire matrix into memory to compute its inverse as
part of a closed-form solution, which may require 80GB for datasets like Yelp2018. This space-time
trade-off enables the entire training process to finish much faster, as shown in our experiments.

Unlike GPU-intensive GNN-based models such as LightGCN or SSM (GNN), DEQL families are
particularly suitable for deployment in memory-limited or CPU-only environments, making it highly
practical. In practice, modern CPU servers often equip with 500 GB – 1 TB RAM, mitigating this
issue.

Table 3: Approximate Training time and memory usage on Yelp2018. Deep based models mainly
consume GPU memory, while others rely on CPU memory.

Model Time (min) Memory (GB) Memory Type

LightGCN 30 1 GPU
SimpleX (GNN) 130 1 GPU
SSM (MF) 13 1 GPU
SSM (GNN) 13 1 GPU
DLAE 2 70 CPU
EASE 2 60 CPU
EDLAE 4 70 CPU
DEQL 6 80 CPU
DEQL (L2+zero-diag) 8 80 CPU
DEQL (L2) 8 80 CPU

E DISCUSSIONS

E.1 LIMITATIONS

One limitation of our work is that DEQL is currently used only as an optimization tool, providing
closed-form solutions under given hyperparameters. However, it does not offer guidance on which
hyperparameter choices lead to improved testing performance. As a result, hyperparameter selection
still relies on empirical tuning, and its theoretical understanding remains underexplored.

Another limitation lies in the computational complexity of the Algorithm in Section 4. Even when
R is sparse, this algorithm still has an O(n3) complexity bottleneck due to the need to compute
the inverse of H0. By Theorem 3.3, H0 is positive definite if no columns of R is a zero vector. In
this case, the inverse of H0 is typically performed by Cholesky decomposition (Krishnamoorthy &
Menon, 2013), but it still costs O(n3).
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E.2 EXPLANATION FOR THE PERFORMANCE GAINS FROM REGULARIZATION

Here we provide a possible explanation for the experimental results in Table 1 and Table 2, which
show why the performance of DEQL(L2) and DEQL(L2 + zero-diag) surpasses that of plain DEQL.
According to statistical learning theory (Vapnik, 1999), searching for solutions within a large hy-
pothesis space often leads to overfitting, while searching in a small hypothesis space may cause
underfitting – both cases resulting in poor testing performance. Structural risk minimization (SRM)
(Vapnik, 1999) addresses this trade-off by controlling the size of the hypothesis space. In this con-
text, both the L2 regularizer and the zero-diagonal constraint can be interpreted as SRM techniques
that restrict the hypothesis space. Let UDEQL,UDEQL(L2) and UDEQL(L2 + zero-diag) denote the hypothesis
spaces of DEQL, DEQL(L2) and DEQL(L2 + zero-diag), respectively. Then we have the nested
relationship UDEQL(L2 + zero-diag) ⊂ UDEQL(L2) ⊂ UDEQL. However, the hypothesis space that yields the
best performance depends on the dataset, as reflected in the results: on some datasets DEQL(L2 +
zero-diag) performs better, while on others DEQL(L2) performs better.

LLM USAGE STATEMENT

We use ChatGPT solely for polishing writing at the sentence and paragraph level. The content and
contributions of this paper were created by the authors. All text refined with ChatGPT has been
carefully checked to avoid errors.
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