
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GENERALIZING LINEAR AUTOENCODER RECOM-
MENDERS WITH DECOUPLED EXPECTED QUADRATIC
LOSS

Anonymous authors
Paper under double-blind review

ABSTRACT

Linear autoencoders (LAEs) have gained increasing popularity in recommender
systems due to their simplicity and strong empirical performance. Most LAE
models, including the Emphasized Denoising Linear Autoencoder (EDLAE) in-
troduced by (Steck, 2020), use quadratic loss during training. However, the orig-
inal EDLAE only provides closed-form solutions for the hyperparameter choice
b = 0, which limits its capacity. In this work, we generalize EDLAE objec-
tive function into a Decoupled Expected Quadratic Loss (DEQL). We show that
DEQL simplifies the process of deriving EDLAE solutions and reveals solutions
in a broader hyperparameter range b > 0, which were not derived in Steck’s
original paper. Additionally, we propose an efficient algorithm based on Miller’s
matrix inverse theorem to ensure the computational tractability for the b > 0 case.
Empirical results on benchmark datasets show that the b > 0 solutions provided
by DEQL outperform the b = 0 EDLAE baseline, demonstrating that DEQL ex-
pands the solution space and enables the discovery of models with better testing
performance.

1 INTRODUCTION

In recent years, deep learning has emerged as the dominant paradigm in recommendation systems,
leading to increasingly complex models. However, a growing body of empirical evidence reveals
a surprising trend: simple linear models often perform comparably to, or even outperform, their
deep learning counterparts (Dacrema et al., 2019). In particular, linear autoencoder-based methods
such as SLIM (Ning & Karypis, 2011), EASE (Steck, 2019), EDLAE (Steck, 2020), ELSA(Vančura
et al., 2022), RALE and RDLAE (Moon et al., 2023) have demonstrated strong performance, often
exceeding that of more sophisticated deep models (Dacrema et al., 2021).

These methods typically aim to learn an item-to-item similarity matrix W ∈ Rn×n to reconstruct
the binary user-item interaction matrix R ∈ {0, 1}m×n with m users and n items. Each row Ri∗
encodes the interactions of user i; Rij = 1 indicates that user i has interacted with item j, while
Rij = 0 indicates no interaction. The reconstruction takes the form RW , or equivalently Ri∗W for
each user, and can be interpreted as a linear autoencoder (LAE), where W serves as both encoder and
decoder. One representative example is EASE (Steck, 2019), in which W is obtained by minimizing
the following objective function

f(W) = ∥R−RW∥2F s.t. diag(W) = 0 (1)

The zero diagonal constraint diag(W) = 0 is imposed to prevent W from overfitting towards
identity. Moreover, since the prediction of each interaction Rij is a weighted sum Ri∗W∗j =∑n

k=1 RikWkj , the zero diagonal constraint enforces Wjj = 0, such that the prediction becomes
Ri∗W∗j =

∑n
k=1,k ̸=j RikWkj . This means that the target Rij is masked out during prediction,

preventing the model from trivially using Rij to predict itself. This constraint distinguishes LAEs
from standard linear regression models and is widely adopted in models like EDLAE (Steck, 2020)
and ELSA (Vančura et al., 2022).

Despite their empirical success, these models optimize squared error on observed entries during
training, without explicitly considering the statistical nature of the evaluation process: In training,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

observed entries are treated as fixed values to be reconstructed; in evaluation, especially in the
strong/weak generalization settings (Steck, 2019; Moon et al., 2023), the model is evaluated on
randomly masked interactions in the test set. This motivates adopting a statistical viewpoint to
redesign the training objective, where interactions are treated as random variables sampled from a
distribution and the objective is defined in expectation, thereby aligning with the testing scenario.

EDLAE (Steck, 2020) provides an important precursor in this direction. By introducing dropout
and an emphasis weighting scheme, EDLAE effectively reshapes the loss to penalize reconstruction
of masked entries more heavily, thereby reducing overfitting to the identity function, see Eq (3).
We observe that considering the dropout matrix ∆ as a random variable allows the objective to be
expressed as an expected quadratic loss

f(W) = E∆

[
∥A⊙ (R− (∆⊙R)W)∥2F

]
, (2)

A ∈ {a, b}m×n is an emphasis matrix where a, b are hyperparameters. ∆ ⊙ R represents random
dropout applied to the fixed interaction matrix, mirroring the evaluation procedure. More impor-
tantly, ∆⊙R can itself be viewed as a random interaction matrix, providing the key insight that the
objective can be generalized to random interaction matrices following arbitrary distributions.

Although it improves empirical performance, the theoretical framework underlying this objective’s
construction remains largely underexplored. In particular, while Eq (3) is claimed to be applica-
ble for b ≥ 0, Steck (2020) only provides the solution for b = 0 case, which limits its capacity.
Motivated by this gap, this paper investigates how to obtain a closed-form solution for the EDLAE
objective under the full hyperparameter range b ≥ 0, and how to compute these solutions efficiently.

First, we generalize the EDLAE objective Eq (3) into a Decoupled Expected Quadratic Loss
(DEQL) and derive its closed-form minimizer, which subsumes EDLAE as a special case. This
generalization not only simplifies the derivation of EDLAE solutions but also extends them to the
previously unexplored regime of b > 0 (Steck, 2020) (Section 3).

Next, we find that the direct solutions for b > 0 have an O(n4) computational complexity, which
is prohibitively expensive for large-scale recommendation tasks. To overcome this challenge, we
develop an efficient algorithm based on Miller’s matrix inverse theorem (Miller, 1981), reducing the
complexity to O(n3). This makes computing solutions for the b > 0 case practical (Section 4).

Finally, we evaluate solutions derived from DEQL on real-world benchmark datasets. Our experi-
ments demonstrate that solutions with b > 0 consistently outperform the original EDLAE solutions
with b = 0, confirming that expanding the solution space leads to models with stronger testing
performance (Section 5).

We emphasize that DEQL is a general statistical loss function, of which EDLAE is only one special
case. Beyond providing theoretical clarity, DEQL offers a unifying framework for designing new
objectives for linear autoencoder (LAE) models, potentially enabling further advances in recom-
mendation system design.

The proofs of all theorems, lemmas and propositions are presented in Appendix A. Related works
are in Appendix C. Discussions are in Appendix E.

2 PRELIMINARIES

Implicit and Explicit Recommenders: Recommendation algorithms can generally be divided into
two categories: explicit and implicit methods. Explicit approaches focus on predicting unseen nu-
merical ratings that users might assign to items, whereas implicit approaches aim to predict user
behaviors such as clicks, add-to-cart actions, or purchases (Steck, 2019; Dacrema et al., 2019). In
this study, we focus on the implicit recommendation setting due to its greater economic significance.
Let n denote the number of items and m the number of users. We are given a binary interaction ma-
trix R ∈ {0, 1}m×n, where each entry Ri,j = 1 if user i has interacted with item j (e.g., through
a purchase or rating), and 0 otherwise. We note that despite the difference between explicit and
implicit settings; for recommendation models, both objectives aim to recover a real-valued score
matrix R̂ ∈ Rm×n. The performance of the model for implicit setting is typically evaluated using
information retrieval metrics such as Top-k Recall/Accuracy or Normalized Discounted Cumulative
Gain (nDCG) on test set.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

EDLAE Recommender System (Steck, 2020): Let ∆ ∈ {0, 1}m×n be a random matrix where each
∆ij is i.i.d. drawn from the Bernoulli distribution such that P (∆ij = 0) = p and P (∆ij = 1) =

1−p. Let ∆(k) denote a realization of ∆, and let ⊙ denote the Hadamard (element-wise) product, so
that ∆(k)⊙R applies dropout element-wise to R. Define the emphasis matrix A(k) where A(k)

ij = a

if ∆(k)
ij = 0 and A

(k)
ij = b if ∆(k)

ij = 1. Then, the EDLAE model is obtained by optimizing the
following objective function:

W ∗ = argminW lim
N→∞

1

N

N∑
k=1

∥A(k) ⊙ (R− (∆(k) ⊙R)W)∥2F (3)

under the hyperparameters a, b, p. Since the squared Frobenius norm in Eq (3) can be expanded into

the sum of weighted quadratic loss
∑m

i=1

∑n
j=1 A

(k)
ij

2
(Rij − (∆

(k)
i∗ ⊙Ri∗)W∗j)

2, if Rij is dropped,

its reconstruction loss (Rij − (∆
(k)
i∗ ⊙ Ri∗)W∗j)

2 is weighted by a2; otherwise, it is weighted by
b2. The hyperparameters a, b are typically set to a ≥ b ≥ 0, thereby placing greater emphasis on
dropped entries to prioritize reducing loss.

The original EDLAE paper (Steck, 2020) provides a closed-form solution to Eq (3) for the case
b = 0 and under the zero-diagonal constraint diag(W ∗) = 0, expressed as

W ∗ =
1

1− p

(
I − C · (I ⊙ C)−1

)
, where C =

(
RTR+

p

1− p
I ⊙RTR

)−1

(4)

While Eq (3) remains valid and meaningful for b > 0, the solution for this case is not addressed in
the original work.

3 DECOUPLED EXPECTED QUADRATIC LOSS FOR LINEAR AUTOENCODERS

In the EDLAE optimization problem Eq (3), let B denote the multivariate Bernoulli distribution of
∆, then by the law of large numbers, Eq (3) can be rewritten as

W ∗ = argminW lB(W), where

lB(W) = E∆∼B
[
∥A⊙ (R− (∆⊙R)W)∥2F

]
=

n∑
i=1

E∆∼B
[
∥A∗i ⊙ (R∗i − (∆⊙R)W∗i)∥2F

]
=

n∑
i=1

E∆∼B

[
∥A(i)R∗i −A(i)(∆⊙R)W∗i)∥2F

]
(5)

Here we denote A(i) = diagMat(A∗i). Since R is constant while both ∆ and A(i) are random,
define Y (i) = A(i)R and X(i) = A(i)(∆⊙R), then both X(i) and Y (i) are random. If we in further
denote D(i) as the distribution of the pair (X(i), Y (i)), then the objective function in Eq (5) can be
written as

lB(W) =

n∑
i=1

E(X(i),Y (i))∼D(i)

[
∥Y (i) −X(i)W∗i∥2F

]
(6)

Eq (6) decouples W into columns, with each column W∗i appearing in an expected quadratic loss
E(X(i),Y (i))∼D(i)

[
∥Y (i) −X(i)W∗i∥2F

]
. This formulation is general since each D(i) can be any

distribution, while Eq (5) is a special case where X(i) and Y (i) follow distributions induced by
applying random dropout to constants. We first derive the general closed-form solution of optimizing
Eq (6), then specialize it to EDLAE, and show that this reformulation simplifies the analysis and
reveals a broader class of solutions for b ≥ 0 compared Steck’s original solution for b = 0 (Steck,
2020).

3.1 DECOUPLED EXPECTED QUADRATIC LOSS AND ITS CLOSED-FORM SOLUTION

We formally define Eq (6) as follows:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Definition 3.1. Given a set of joint distributions D = {D(i)}ni=1 over the pair (X,Y), the decou-
pled expected quadratic loss is defined as

lD(W) =

n∑
i=1

hi
D(i)(W∗i), where

hi
D(i)(W∗i) = E(X,Y)∼D(i)

[
∥Y∗i −XW∗i∥2F

]
= WT

∗iE(X,Y)∼D(i)

[
XTX

]
W∗i − 2WT

∗iE(X,Y)∼D(i)

[
XTY∗i

]
+ E(X,Y)∼D(i)

[
Y T
∗iY∗i

]
(7)

Note that each hi
D(i) is a quadratic function of W∗i. Since E(X,Y)∼D(i)

[
XTX

]
is positive

semi-definite (as XTX is a random variable whose realizations are always positive semi-definite
matrices), hi

D(i) is convex for any i. Hence, let W ∗ = argminW lD(W), then W ∗
∗i =

argminW∗i
hi
D(i)(W∗i) for all i. Furthermore, if E(X,Y)∼D(i)

[
XTX

]
is positive definite for all

i, so that its inverse exists, then W ∗ can be computed as

W ∗
∗i = E(X,Y)∼D(i)

[
XTX

]−1 E(X,Y)∼D(i)

[
XTY∗i

]
for i = 1, 2, ..., n (8)

Eq (7) represents a general quadratic loss. A special case arises when taking D := D(1) = D(2) =
... = D(n), in which case Eq (7) reduces to

lD(W) = E(X,Y)∼D
[
∥Y −XW∥2F

]
Moreover, under certain condition that E(X,Y)∼D(i)

[
XTX

]
is independent of i for all i, Eq (7) with

low-rank constraints on W has a closed-form solution, which is discussed in Appendix B.

3.2 ADAPTATION TO EDLAE

This section derives the closed-from solution for EDLAE from Eq (7), which covers the case b ≥ 0.
We show that our solution is equivalent to Steck’s solution (Steck, 2020) for b = 0, and it extends to
the b > 0 case, which was not addressed in Steck’s work.

Remember that Eq (5) is a special case of Eq (7) by taking X = A(i)(∆ ⊙ R) and Y∗i = A(i)R∗i.
By Eq (8), the solution of Eq (5) is given by

W ∗
∗i = H(i)−1

v(i) for i = 1, 2, ..., n, where (9)

H(i) = E∆∼B

[
(∆⊙R)TA(i)2(∆⊙R)

]
, v(i) = E∆∼B

[
(∆⊙R)TA(i)2R∗i

]
(10)

The following lemma enables explicit computation of the expectations in Eq (10):

Lemma 3.2. The H(i) and v(i) in Eq (10) can be expressed as H(i) = G(i) ⊙ RTR and v(i) =
u(i) ⊙RTR∗i, where G(i) ∈ Rn×n and u(i) ∈ Rn satisfy

G
(i)
kl =


(1− p)b2 if k = l = i

(1− p)2b2 if k ̸= l = i or l ̸= k = i

(1− p)pa2 + (1− p)2b2 if k = l ̸= i

(1− p)2pa2 + (1− p)3b2 if i ̸= k ̸= l ̸= i

, u
(i)
k =

{
(1− p)b2 if k = i

(1− p)pa2 + (1− p)2b2 if k ̸= i

for k, l ∈ {1, 2, ..., n}.

Furthermore, the computation of Eq (9) requires the H(i)−1
, which exists only if H(i) is positive

definite. The following theorem establishes sufficient conditions to ensure this property.

Theorem 3.3. For any a, b satisfying a ≥ b > 0, G(i) is positive definite. Furthermore, H(i) is
positive definite if G(i) is positive definite and no column of R is a zero vector.

Therefore, b > 0 serves as a sufficient condition for the validity of Eq (9), implying that the optimal
W ∗ can be obtained using Eq (9) when b > 0.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Now we discuss the case when b = 0. In this setting, both the i-th row and i-th column of H(i) are
zero, and the i-th row of v(i) is also zero. Consequently, H(i) is singular and its inverse H(i)−1

does
not exist, making Eq (8) inapplicable for computing the optimal W ∗.

To proceed, we define submatrices and subvectors using the subscript −i notation: if Q is an n× n
matrix, then Q−i is a (n−1)× (n−1) matrix obtained by removing the i-th row and i-th column of
Q; if q is an n dimensional vector, then q−i is an n− 1 dimensional vector obtained by removing qi
from q. Under this notation, we can write H(i)

−i = G−⊙(RTR)−i, where G− is an (n−1)×(n−1)

matrix with diagonal elements (1−p)pa2 and off-diagonal elements (1−p)2pa2. It is easy to verify
that G− is positive definite, hence H

(i)
−i is positive definite. Likewise, v(i)−i = u− ⊙ (RTR∗i)−i,

where u− is an n− 1 dimensional vector with all elements being (1− p)pa2.

Denote the vector (W∗i)−i as W∗i,−i, then Eq (5) can be written as

lB(W) =

n∑
i=1

WT
∗iH

(i)W∗i − 2WT
∗iv

(i) + E∆∼B

[
RT

∗iA
(i)2R∗i

]
(11)

=

n∑
i=1

WT
∗i,−iH

(i)
−iW∗i,−i − 2WT

∗i,−iv
(i)
−i + E∆∼B

[
RT

∗iA
(i)2R∗i

]
(12)

Therefore, the solution W ∗ = argminW lB(W) is expressed as

W ∗
∗i,−i = (H

(i)
−i)

−1v
(i)
−i and W ∗

ii ∈ R for i = 1, 2, ..., n (13)

Eq (13) reveals that, the optimal W ∗ is not unique, belongs to an infinite set of solutions. All such
solutions share the same off-diagonal entries, while the diagonal elements can take arbitrary values.
The following theorem shows that Steck’s solution Eq (4) is a special case of Eq (13), corresponding
to the choice of zero diagonal.
Theorem 3.4. Suppose no column of R is a zero vector. If taking Wii = 0 for all i in Eq (13), then
Eq (13) and Eq (4) are equivalent.

It is important to note that varying the diagonal of W ∗ can lead to different performance on test data,
and Eq (13) does not provide theoretical guidance on which choice of diagonal elements gives the
best performance. However, empirical results suggest that a W ∗ with non-zero diagonal elements
can outperform the zero-diagonal solution in certain cases (Moon et al., 2023).

3.3 ADDING L2 REGULARIZER AND ZERO-DIAGONAL CONSTRAINT

In LAE-based recommender systems, L2 regularizer and zero diagonal constraint are commonly
applied to the objective function, as they are established techniques for improving test performance.
This section discusses the closed-form solution of the optimization problem Eq (5) when the L2

regularizer or the zero-diagonal constraint is applied.

Adding L2 Regularizer: Given λ > 0, Eq (5) with L2 regularizer is expressed as
W ∗ = argminW lB(W) + λ∥W∥2F (14)

Adding Zero-diagonal Constraint: Eq (5) with zero-diagonal constraint is expressed as
W ∗ = argminW lB(W) s.t. diag(W) = 0 (15)

In these cases, the solution Eq (9) is modified accordingly, as presented below.
Proposition 3.5. (a) The solution of Eq (14) is

W ∗
∗i =

(
H(i) + λI

)−1

v(i) for i = 1, 2, ..., n (16)

(b) The solution of Eq (15) is

W ∗
∗i = H(i)−1

v(i) − (H(i)−1
v(i))i

(H(i)−1
l(i))i

H(i)−1
l(i) for i = 1, 2, ..., n (17)

where l(i) is an n-dimensional vector with l
(i)
i = 1 and l

(i)
j = 0 for all j ̸= i.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4 AN EFFICIENT ALGORITHM FOR THE CLOSED-FORM SOLUTION

Recall from Theorem 3.3 that the optimal W ∗ for the b > 0 case of EDLAE can be computed by
Eq (9). However, a major challenge with Eq (9) is its high computational complexity: since H(i)

differs for each i, computing each inverse H(i)−1
costs O(n3), resulting in a total cost of O(n4) for

all i, which is computationally impractical.

In this section, we propose a practical algorithm to reduce the overall complexity of computing Eq
(9). Our algorithm is based on Miller’s matrix inverse theorem:
Theorem 4.1. ((Miller, 1981)) Let G and G + Q be non-singular matrices. Suppose Q is of rank
r and can be decomposed as Q = E1 + E2 + ... + Er, where each Ek is of rank 1, and Pk+1 =
G+ E1 + E2 + ...+ Ek is non-singular for k = 1, 2, ..., r. Let P1 = G, then

P−1
k+1 = P−1

k − 1

1 + tr
(
P−1
k Ek

)P−1
k EkP

−1
k

In Lemma 3.2, we define H(i) = G(i) ⊙RTR, which can be decomposed as

H(i) = G0 ⊙RTR+G
(i)
1 ⊙RTR+G

(i)
2 ⊙RTR

where G0 is a matrix with diagonal elements equal to (1 − p)pa2 + (1 − p)2b2 and off-diagonal
elements equal to (1− p)2pa2 + (1− p)3b2; G(i)

1 is a matrix with (G
(i)
1)ji = −(1− p)2p(a2 − b2)

for j ̸= i, (G(i)
1)ii = −(1 − p)p(a2 − b2), and all other elements zero; G

(i)
2 is a matrix with

(G
(i)
2)ij = −(1− p)2p(a2 − b2) for j ̸= i and all other elements zero.

Denote H0 = G0 ⊙RTR, E(i)
1 = G

(i)
1 ⊙RTR and E

(i)
2 = G

(i)
2 ⊙RTR, then H(i) = H0 +E

(i)
1 +

E
(i)
2 . Note that H0 is positive definite and independent of i, E(i)

1 is of rank 1 with only the i-th
column being nonzero, and E

(i)
2 is of rank 1 with the i-th row (excluding (E

(i)
2)ii) being nonzero.

Applying Theorem 4.1, H(i)−1
can be computed with the following two steps:

H
(i)
+

−1
= (H0 + E

(i)
1)−1 = H−1

0 − 1

1 + tr(H−1
0 E

(i)
1)

H−1
0 E

(i)
1 H−1

0 (18)

H(i)−1
= (H0 + E

(i)
1 + E

(i)
2)−1 = H−1

+ − 1

1 + tr(H−1
+ E

(i)
2)

H−1
+ E

(i)
2 H−1

+ (19)

Let e(i)1 be the i-th column of E(i)
1 , e(i)2

T
be the i-th row of E(i)

2 , then Eq (18) and Eq (19) can be
simplified as

H
(i)
+

−1
= H−1

0 − 1

1 + (H−1
0)i∗e

(i)
1

(H−1
0 e

(i)
1)(H−1

0)i∗ (20)

H(i)−1
= H

(i)
+

−1
− 1

1 + e
(i)
2

T
(H

(i)
+

−1
)∗i

(H
(i)
+

−1
)∗i(e

(i)
2

T
H

(i)
+

−1
) (21)

Observe that, given H−1
0 , the computation of each H(i)−1

using Eq (20) and Eq (21) requires only
O(n2) operations, resulting in a total cost of O(n3) for all i. This significantly reduces the original
O(n4) complexity of computing Eq (9).

Moreover, the computation can be further simplified by directly computing H(i)−1
v(i) without ex-

plicitly forming H(i)−1
. By Eq (20) and Eq (21),

H
(i)
+

−1
v(i) = H−1

0 v(i) − 1

1 + (H−1
0)i∗e

(i)
1

(H−1
0 e

(i)
1)

[
(H−1

0)i∗v
(i)
]

(22)

H(i)−1
v(i) = H

(i)
+

−1
v(i) − 1

1 + e
(i)
2

T
(H

(i)
+

−1
)∗i

(H
(i)
+

−1
)∗i

[
(e

(i)
2

T
H

(i)
+

−1
)v(i)

]
(23)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

in which the scalars (H−1
0)i∗v

(i) and (e
(i)
2

T
H

(i)
+

−1
)v(i) can be computed first. In Eq (23), the

(H
(i)
+

−1
)∗i term can be computed by Eq (20),

(H
(i)
+

−1
)∗i = (H−1

0)∗i −
(H−1

0)ii

1 + (H−1
0)i∗e

(i)
1

(H−1
0 e

(i)
1)

Denote s = H
(i)
+

−1
v(i), t = (H

(i)
+

−1
)∗i. Let U be an n× n matrix with diagonal elements equal to

(1 − p)b2 and off-diagonal elements equal to (1 − p)pa2 + (1 − p)2b2, let G1 be an n × n matrix
with diagonal elements −(1− p)p(a2 − b2) and off-diagonal elements −(1− p)2p(a2 − b2), and let
G2 be an n× n matrix with zeros on the diagonal and off-diagonal elements −(1− p)2p(a2 − b2).
Then we can summarize our computation as follows.

Fast Algorithm for Computing Eq (9): First, precompute these matrices

RTR, H−1
0 =

(
G0 ⊙RTR

)−1
, [v(1), v(2), ...v(n)] = U ⊙RTR,

[e
(1)
1 , e

(2)
1 , ..., e

(n)
1] = G1 ⊙RTR, [e

(1)
2 , e

(2)
2 , ..., e

(n)
2] = G2 ⊙RTR,

Then for i = 1, 2, ..., n, compute each W ∗
∗i = H(i)−1

v(i) as follows:

r = H−1
0 v(i), w = H−1

0 e
(i)
1

s = r − 1

1 + wi
riw, t = (H−1

0)∗i −
(H−1

0)ii
1 + wi

w

H(i)−1
v(i) = s− 1

1 + e
(i)
2

T
t
(e

(i)
2

T
s)t

We now analyze the computational complexity of the above algorithm. In the precomputing stage,
RTR costs O(mn2), H−1

0 costs O(n3), and U ⊙ RTR,G1 ⊙ RTR,G2 ⊙ RTR cost O(n2) re-
spectively. In the computing stage, each W ∗

∗i is obtained via matrix-vector or vector-vector multi-
plications with a complexity of O(n2), resulting in an overall complexity of O(n3) for the entire
W ∗. Therefore, the total complexity of the algorithm is O

(
max(m+ n)n2

)
. This complexity is

the same as the closed-form solutions of EASE (Steck, 2019) and EDLAE (Steck, 2020).

Complexity for Sparse Matrix: One computational bottleneck in the above algorithm is the compu-
tation of RTR. If R is sparse and all its entries are integers, then the algorithm’s complexity can be
further reduced. Suppose R contains k non-zeros. The multiplication RTR takes two matrices RT

and R as input, which together contain 2k non-zeros; the output is an n×n matrix containing at most
n2 nonzeros. By (Abboud et al., 2024), the complexity of computing RTR is O((2k + n2)1.346).
Hence, the total complexity reduces to O((2k + n2)1.346 + n3), where the n3 term comes from
inverting H0.

Adapting the Algorithm to the L2 regularizer and Zero-diagonal Constraint Cases: In Eq (16),
note that H(i)+λI = (H0+λI)+E

(i)
1 +E

(i)
2 , where H0+λI is independent of i. This means that

we can compute Eq (16) using the above algorithm by replacing H0 with H0 + λI . In Eq (17), we
first compute H(i)−1

v(i) with the algorithm; then, by replace v(i) with l(i), we compute H(i)−1
l(i)

with the same method. Once H(i)−1
v(i) and H(i)−1

l(i) are obtained, Eq (17) can be computed
accordingly.

5 EXPERIEMENTS

This section provides experimental results comparing DEQL with state-of-the-art collaborative fil-
tering models, including linear models and deep learning based models. Additional experiments on
tim and space costs can be found in Appendix D.

5.1 EXPERIMENTAL SET-UP

Datasets: We conduct extensive experiments to verify our theorical claims. Specifically, we employ
six publicly available datasets, from small to large, including Games, Beauty, Gowalla, ML-20M,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison and dataset statistics across six different datasets under strong
generalization setting. We highlight the best results in bold. DEQL refer to Eq (9), DEQL(L2+zero-
diag) refers to combining Eq (16) and Eq (17), and DEQL(L2) refers to Eq (16) solely.

Model Games Beauty Gowalla ML20M Netflix MSD

R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20

DLAE 0.2771 0.1664 0.1329 0.0886 0.2143 0.1916 0.3924 0.3409 0.3620 0.3395 0.3290 0.3210
EASE 0.2733 0.1640 0.1323 0.0875 0.2230 0.1988 0.3905 0.3390 0.3618 0.3388 0.3332 0.3261

EDLAE 0.2851 0.1681 0.1324 0.0850 0.2268 0.2012 0.3925 0.3421 0.3656 0.3427 0.3336 0.3258
DEQL 0.2524 0.1565 0.1093 0.0670 0.2149 0.1909 0.3844 0.3347 0.3606 0.3382 0.3329 0.3256

DEQL(L2+zero-diag) 0.2872 0.1704 0.1388 0.0898 0.2278 0.2027 0.3934 0.3429 0.3656 0.3423 0.3344 0.3268
DEQL(L2) 0.2998 0.1842 0.1391 0.0881 0.2288 0.2033 0.3934 0.3426 0.3658 0.3428 0.3340 0.3265

items 896 4,394 13,681 20,108 17,769 41,140
users 1,006 17,971 29,243 136,677 463,435 571,353
inter. 15,276 75,472 677,956 9,990,682 56,880,037 33,633,450

Netflix, and MSD (Steck, 2019; Ni et al., 2019; Seol et al., 2024) to compare with LAE based mod-
els under strong generalization setting where test users do not appear in training dataset. When
comparing with modern deep learning based models, since most of these models rely on user and
item embeddings to make prediction and require users appear in training dataset, we further eval-
uate our methods on 3 additional widely used datasets: Amazonbook, Yelp2018 and Gowalla He
et al. (2020) under weak generalization setting. For better generalization, we preprocess the data
following (Steck, 2020; He et al., 2020).

Baseline models and Evaluation Metrics: We compare it against the following state-of-the-art
linear autoencoder-based recommendation models: EASE (Steck, 2019), DLAE (Steck, 2020), ED-
LAE (Steck, 2020) and recent deep learning based models: PinSage (Ying et al., 2018), LightGCN
(He et al., 2020), DGCF (Wang et al., 2020), SimpleX (Mao et al., 2021), SGL-ED (Wu et al., 2021)
and SSM (Wu et al., 2024a). We evaluate model performance using widely adopted ranking metrics:
Recall@20 and NDCG@20.

5.2 REPRODUCIBILITY

For hyper-parameter tuning, We performed a grid search to optimize the hyperparameters of the
linear autoencoder models. Since in the objective function, all quadratic entries are equipped
with either a or b and the solution to it is scalar invariant (e.g., in Eq 3, although (a, b) =
(1, 0.1) and (a, b) = (10, 1) gives different Loss value, the obtained W ∗ will always be the
same), only the ratio b/a affects the closed-form solution. Therefore, we fix a = 1 and
search b over the range [0.1,0.25,. . . ,2.0]. The L2 regularization coefficient is searched over
[10.0,20.0,...50,100.0,300.0,500.0], and the dropout rate p is varied across [0.1,0.2,. . . ,0.5,0.8]. All
experiments are conducted on a Linux server equipped with 500 GB of memory, four NVIDIA 3090
GPUs, and a 96-core Intel(R) Xeon(R) Platinum 8268 CPU @ 2.90GHz. Our code is available at
https://anonymous.4open.science/r/ICLR2026_DEQL_new-441D/README.md

5.3 EXPERIMENTAL RESULTS

In this section, we present the experimental results over two evaluation metrics. Specifically, we
would answer the following research questions:
RQ1 Can the generalized quadratic loss DEQL(L2)/DEQL(L2+zero-diag) improve recommenda-
tion performance over existing linear autoencoder-based models?
RQ2 Is the zero diagonal constraint necessary for optimal performance, or can models benefit from
non-zero diagonals as suggested by DEQL(L2)?
RQ3: How does DEQL families perform compared with modern deep learning based models?

RQ1: DEQL(L2) substantially improves recommendation performance over state-of-the-art linear
autoencoder models across a diverse set of benchmarks. We evaluate DEQL against three widely
recognized baselines:DLAE, EASE, and EDLAE (Steck et al., 2024)(Jin et al., 2021)on six public
datasets: Games, Beauty, Gowalla, ML-20M, Netflix, and MSD. As shown in Table 1, DEQL(L2)
achieves the highest Recall and NDCG on 5 out of the 6 datasets, often with a significant margin. For
instance, on the Games dataset, DEQL(L2) improves Recall@20 from 0.2851 (EDLAE) to 0.2998,
and NDCG@20 from 0.1681 to 0.1842, showing that our framework provides better ranking quality
even in small-scale, sparse interaction settings. On large-scale datasets like ML-20M, DEQL main-

8

https://anonymous.4open.science/r/ICLR2026_DEQL_new-441D/README.md

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison and dataset statistics for LAE-based model and advanced deep
learning based model under weak generalization setting.

Model Amazon-Books Yelp2018 Gowalla

R@20 N@20 R@20 N@20 R@20 N@20

Deep learning based models
PinSage 0.0282 0.0219 0.0471 0.0393 0.1380 0.1196
LightGCN 0.0411 0.0315 0.0649 0.0530 0.1830 0.1554
DGCF 0.0422 0.0324 0.0654 0.0534 0.1842 0.1561
SGL-ED 0.0478 0.0379 0.0675 0.0555 – –
SimpleX 0.0583 0.0468 0.0701 0.0575 0.1872 0.1557
SSM (MF) 0.0473 0.0367 0.0509 0.0404 0.1231 0.0878
SSM (GNN) 0.0590 0.0459 0.0737 0.0609 0.1869 0.1571

LAE-based models
DLAE 0.0751 0.0610 0.0678 0.0570 0.1839 0.1533
EASE 0.0710 0.0566 0.0657 0.0552 0.1765 0.1467
EDLAE 0.0711 0.0566 0.0673 0.0565 0.1844 0.1539
DEQL 0.0695 0.0537 0.0647 0.0543 0.1749 0.1453
DEQL(L2+zero-diag) 0.0711 0.0567 0.0672 0.0565 0.1844 0.1539
DEQL(L2) 0.0751 0.0613 0.0685 0.0576 0.1845 0.1540

items 91,599 38,048 40,981
users 52,643 31,668 29,858
inter. 2,984,108 1,561,406 1,027,370

tains top performance (Recall@20 = 0.3934, NDCG@20 = 0.3426) that matches and even improves
upon the best baseline (EDLAE: Recall@20 = 0.3925, NDCG@20 = 0.3421). This suggests that
our framework retains its effectiveness when scaled to millions of interactions and hundreds of thou-
sands of users due to its low complexity. These consistent improvements across datasets of varying
sparsity and scale demonstrate the robustness of the DEQL formulation. These gains stem from our
theoretical insight: by generalizing the EDLAE formulation to allow b > 0, our framework explores
a richer solution space with closed-form solvability.

RQ2: When b = 0, the training loss does not constrain the diagonal of W , leading to non-uniqueness
in the optimal solution. Instead of enforcing zero diagonals as in EASE/EDLAE/DEQL(L2+zero-
diag), DEQL(L2) allows the diagonal to be arbitry real number, allowing us to explore richer search-
ing space. Our empirical results support this design. On Gowalla, DEQL(L2)achieves Recall@20
= 0.2288 and NDCG@20 = 0.2033, outperforming DEQL(L+zero-diag) (0.2278 / 0.2027) and ED-
LAE (0.2268 / 0.2012). On ML20M, DEQL reaches Recall@20 = 0.3934 and NDCG@20 = 0.3426,
closely matching DEQL(L2+zero-diag) (0.3934 / 0.3429) and surpassing EDLAE (0.3925 / 0.3421).
These results demonstrate that adjusting b alone is sufficient to ensure strong generalization ability
without a hard constraint as zero-diagonal constraints. These findings indicate that the diagonal
constraint in EDLAE is NOT necessary and by introducing non-zero b, LAEs can still achieve com-
petitive performance. An explanation of these results can be found in Appendix E.2.

RQ3: In Table 2 we report the results compared with recent deep learning based models. Our pro-
posed DEQL(L2) and DEQL(L2+zero-diag) not only achieves better performance than most classic
baselines, in some cases we can surpasses the most recent deep learning–based recommendation
models. For example, when comparing with a recent strong benchmark SSM, DEQL(L2) attains
comparable results on Yelp2018/Gowalla even superior to it on Amazonbook dataset with as large
as 27% and 34% margin on R@20 and N@20 respectively. Overall, these results demonstrate the
robustness and strong empirical performance of our generalized quadratic loss.

6 CONCLUSIONS

This paper aims to advance the EDLAE recommender system by extending its closed-form solution
to a broader range of hyperparameter choices, and develop an efficient algorithm to compute these
solutions. We first generalize the EDLAE objective function into the Decoupled Expected Quadratic
Loss (DEQL), derive its closed-form solutions, and then apply them back to EDLAE. We show that,
through DEQL, the original EDLAE solution for b = 0 can be extended to the wider range b ≥ 0,
enabling exploration of a larger solution space. To address the high computational complexity of
solutions for b > 0, we develop an efficient algorithm based on Miller’s matrix inverse theorem,
reducing the complexity from O(n4) to O(n3). Experimental results demonstrate that most solutions
for b > 0 outperform the b = 0 baseline, showing that DEQL expands the solution space and
enables the discovery of models with better testing performance. Furthermore, DEQL is a general
loss function that may inspire the construction of other specialized objectives for LAE models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Amir Abboud, Karl Bringmann, Nick Fischer, and Marvin Künnemann. The time complexity of
fully sparse matrix multiplication. In Proceedings of the 2024 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 4670–4703. SIAM, 2024.

Emmanuel J Candès and Terence Tao. The power of convex relaxation: Near-optimal matrix com-
pletion. IEEE transactions on information theory, 56(5):2053–2080, 2010.

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye,
Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al. Wide & deep learning for recom-
mender systems. In Proceedings of the 1st workshop on deep learning for recommender systems,
pp. 7–10, 2016.

Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. Are we really making much
progress? a worrying analysis of recent neural recommendation approaches. In Proceedings of
the 13th ACM Conference on Recommender Systems, pp. 101–109, 2019.

Maurizio Ferrari Dacrema, Simone Boglio, Paolo Cremonesi, and Dietmar Jannach. A troubling
analysis of reproducibility and progress in recommender systems research. ACM Trans. Inf. Syst.,
39(2), January 2021.

Rina Foygel, Ohad Shamir, Nati Srebro, and Russ R Salakhutdinov. Learning with the weighted
trace-norm under arbitrary sampling distributions. Advances in neural information processing
systems, 24, 2011.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. Deepfm: a factorization-
machine based neural network for ctr prediction. arXiv preprint arXiv:1703.04247, 2017.

Xiangnan He, L. Liao, H. Zhang, L. Nie, X. Hu, and T. Chua. Neural collaborative filtering. In
WWW’17, 2017.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In Proceedings of the
43rd International ACM SIGIR conference on research and development in Information Retrieval,
pp. 639–648, 2020.

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit feedback datasets.
In IEEE International Conference on Data Mining, pp. 263–272. IEEE, 2008.

Dietmar Jannach, Markus Zanker, Alexander Felfernig, and Gerhard Friedrich. Recommender sys-
tems: an introduction. Cambridge university press, 2010.

Ruoming Jin, Dong Li, Jing Gao, Zhi Liu, Li Chen, and Yang Zhou. Towards a better understanding
of linear models for recommendation. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, pp. 776–785, 2021.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender
systems. Computer, 42(8):30–37, August 2009.

Aravindh Krishnamoorthy and Deepak Menon. Matrix inversion using cholesky decomposition.
In 2013 signal processing: Algorithms, architectures, arrangements, and applications (SPA), pp.
70–72. IEEE, 2013.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Dong Li, Ruoming Jin, and Bin Ren. Revisiting recommendation loss functions through contrastive
learning (technical report). arXiv preprint arXiv:2312.08520, 2023.

Zhuang Liu, Yunpu Ma, Yuanxin Ouyang, and Zhang Xiong. Contrastive learning for recommender
system. arXiv preprint arXiv:2101.01317, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

David G Luenberger and Yinyu Ye. Linear and nonlinear programming, 3rd Edition. Springer,
2008.

Kelong Mao, Jieming Zhu, Jinpeng Wang, Quanyu Dai, Zhenhua Dong, Xi Xiao, and Xiuqiang He.
Simplex: A simple and strong baseline for collaborative filtering. In Proceedings of the 30th ACM
international conference on information & knowledge management, pp. 1243–1252, 2021.

Kenneth S Miller. On the inverse of the sum of matrices. Mathematics magazine, 54(2):67–72,
1981.

Jaewan Moon, Hye-young Kim, and Jongwuk Lee. It’s enough: Relaxing diagonal constraints in
linear autoencoders for recommendation. In Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 1639–1648, 2023.

Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using distantly-labeled
reviews and fine-grained aspects. In Proceedings of the 2019 conference on empirical methods
in natural language processing and the 9th international joint conference on natural language
processing (EMNLP-IJCNLP), pp. 188–197, 2019.

Xia Ning and George Karypis. Slim: Sparse linear methods for top-N recommender systems. In
2011 IEEE 11th International Conference on Data Mining, pp. 497–506. IEEE, 2011.

Benjamin Recht. A simpler approach to matrix completion. Journal of Machine Learning Research,
12(12), 2011.

Steffen Rendle. Factorization machines. In 2010 IEEE International Conference on Data Mining,
pp. 995–1000. IEEE, 2010.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr: Bayesian
personalized ranking from implicit feedback. UAI ’09, 2009.

Jinseok Seol, Minseok Gang, Sang-goo Lee, and Jaehui Park. Proxy-based item representation
for attribute and context-aware recommendation. In Proceedings of the 17th ACM International
Conference on Web Search and Data Mining, pp. 616–625, 2024.

Ohad Shamir and Shai Shalev-Shwartz. Collaborative filtering with the trace norm: Learning,
bounding, and transducing. In Proceedings of the 24th Annual Conference on Learning Theory,
pp. 661–678. JMLR Workshop and Conference Proceedings, 2011.

Harald Steck. Embarrassingly shallow autoencoders for sparse data. In The World Wide Web Con-
ference, pp. 3251–3257, 2019.

Harald Steck. Autoencoders that don’t overfit towards the identity. In Advances in Neural Informa-
tion Processing Systems, volume 33, pp. 19598–19608, 2020.

Harald Steck, Chaitanya Ekanadham, and Nathan Kallus. Is cosine-similarity of embeddings really
about similarity? In Companion Proceedings of the ACM Web Conference 2024, pp. 887–890,
2024.

Juan Terven, Diana-Margarita Cordova-Esparza, Julio-Alejandro Romero-González, Alfonso
Ramı́rez-Pedraza, and EA Chávez-Urbiola. A comprehensive survey of loss functions and metrics
in deep learning. Artificial Intelligence Review, 58(7):195, 2025.

Vojtěch Vančura, Rodrigo Alves, Petr Kasalickỳ, and Pavel Kordı́k. Scalable linear shallow autoen-
coder for collaborative filtering. In Proceedings of the 16th ACM Conference on Recommender
Systems, pp. 604–609, 2022.

Vladimir Vapnik. The nature of statistical learning theory. Springer science & business media,
1999.

Chenyang Wang, Yuanqing Yu, Weizhi Ma, Min Zhang, Chong Chen, Yiqun Liu, and Shaoping Ma.
Towards representation alignment and uniformity in collaborative filtering. In Proceedings of the
28th ACM SIGKDD conference on knowledge discovery and data mining, pp. 1816–1825, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Feng Wang and Huaping Liu. Understanding the behaviour of contrastive loss. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 2495–2504, 2021.

Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. Deep & cross network for ad click predictions.
In Proceedings of the ADKDD’17, pp. 1–7. 2017.

Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. Neural graph collaborative
filtering. In Proceedings of the 42nd international ACM SIGIR conference on Research and
development in Information Retrieval, pp. 165–174, 2019.

Xiang Wang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, and Tat-Seng Chua. Disentangled
graph collaborative filtering. In Proceedings of the 43rd international ACM SIGIR conference on
research and development in information retrieval, pp. 1001–1010, 2020.

Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian, and Xing Xie. Self-
supervised graph learning for recommendation. In Proceedings of the 44th international ACM
SIGIR conference on research and development in information retrieval, pp. 726–735, 2021.

Jiancan Wu, Xiang Wang, Xingyu Gao, Jiawei Chen, Hongcheng Fu, and Tianyu Qiu. On the effec-
tiveness of sampled softmax loss for item recommendation. ACM Transactions on Information
Systems, 42(4):1–26, 2024a.

Junkang Wu, Jiawei Chen, Jiancan Wu, Wentao Shi, Jizhi Zhang, and Xiang Wang. Bsl: Un-
derstanding and improving softmax loss for recommendation. In 2024 IEEE 40th International
Conference on Data Engineering (ICDE), pp. 816–830. IEEE, 2024b.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 974–
983, 2018.

Chang Zhou, Jianxin Ma, Jianwei Zhang, Jingren Zhou, and Hongxia Yang. Contrastive learning for
debiased candidate generation in large-scale recommender systems. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3985–3995, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A MATHEMATICAL PROOFS

Proof of Lemma 3.2: H(i) can be computed as follows. For any k, l,

H
(i)
kl = E∆[(∆⊙R)T∗kA

(i)2(∆⊙R)∗l] = E∆[

m∑
s=1

∆skRskA
(i)
ss

2
∆slRsl]

=

m∑
s=1

E∆[∆skRskA
(i)
ss

2
∆slRsl] =

m∑
s=1

E∆[∆sk∆slA
(i)
ss

2
]RskRsl (24)

Note that A(i)
ss = Asi, which depends on ∆si. Since we assume each ∆ij is an i.i.d. Bernoulli

random variable, E∆[∆sk∆slA
2
si] is independent of s. Thus we can let a z be a specific value of s

and rewrite Eq (24) as

H
(i)
kl = E∆[∆zk∆zlA

2
zi]

m∑
s=1

RskRsl = E∆[∆zk∆zlA
2
zi]R

T
∗kR∗l

Define G(i) ∈ Rn×n where G
(i)
kl = E∆[∆zk∆zlA

2
zi], then H(i) = G(i) ⊙ RTR. G(i) can be

computed as follows: Given i, for any k, l,

∆zk∆zlA
2
zi =


a2 if ∆zk = 1 and ∆zl = 1 and ∆zi = 0

b2 if ∆zk = 1 and ∆zl = 1 and ∆zi = 1

0 otherwise

Since

P (∆zk = 1 and ∆zl = 1 and ∆zi = 0) =

{
(1− p)p if k = l ̸= i

(1− p)2p if i ̸= k ̸= l ̸= i

P (∆zk = 1 and ∆zl = 1 and ∆zi = 1) =


1− p if k = l = i

(1− p)2 if k = l ̸= i or k ̸= l = i or l ̸= k = i

(1− p)3 if i ̸= k ̸= l ̸= i

we have

G
(i)
kl = E∆[∆zk∆zlA

2
zi] =


(1− p)b2 if k = l = i

(1− p)2b2 if k ̸= l = i or l ̸= k = i

(1− p)pa2 + (1− p)2b2 if k = l ̸= i

(1− p)2pa2 + (1− p)3b2 if i ̸= k ̸= l ̸= i

On the other hand, v(i) can be computed as follows. For any k,

v
(i)
k = E∆[(∆⊙R)T∗kA

(i)2R∗i] = E∆[

m∑
s=1

∆skRskA
(i)
ss

2
Rsi] =

m∑
s=1

E∆[∆skA
2
si]RskRsi

= E∆[∆zkA
2
zi]R

T
∗kR∗i

Define u(i) ∈ Rn where u
(i)
k = E∆[∆zkA

2
zi], then we can write v(i) = u(i) ⊙ RTR∗i. u(i) can be

computed as follows: Given any k,

u
(i)
k = E∆[∆zkA

2
zi] =

{
(1− p)b2 if k = i

(1− p)pa2 + (1− p)2b2 if k ̸= i

Proof of Theorem 3.3: Observe that G(i) can be decomposed as the sum of three matrices:

G(i) = (1− p)2b2J + ((1− p)2p(a2 − b2))J (i) + Λ(i)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

where J is an n × n matrix of all 1s, J (i) is an n × n matrix that its elements on i-th row and i-th
column are 0s while all other elements are 1s. Λ(i) is an n×n diagonal matrix with Λ

(i)
ii = (1−p)pb2

and Λ
(i)
jj = (1− p)p2a2 + (1− p)2pb2 for all j ̸= i.

It is easy to prove the positive semi-definiteness of J and J (i). Thus, when a ≥ b > 0, (1− p)2b2J
and ((1− p)2p(a2 − b2))J (i) are positive semi-definite. Moreover, Λ(i) is positive definite because
all its diagonal elements are positive. Therefore, G(i) is positive definite.

RTR is a positive semi-definite matrix. If no column of R is a zero vector, then all diagonal elements
of RTR are positive. By the Schur product theorem (Theorem 7.5.3 (b), (Horn & Johnson, 2012)), if
G(i) is positive definite and the diagonal elements of RTR are all positive, then H(i) = G(i)⊙RTR
is positive definite.

Proof of Theorem 3.4: Since the W ∗ in Eq (13) has zero diagonal, we only need to verify the
equivalence of non-diagonal elements. Let us write (C∗i)−i as C∗i,−i, then W∗i,−i by Eq (13) is
expressed as

W∗i,−i = − 1

1− p

1

Cii
C∗i,−i

Thus, our goal is to prove

(H
(i)
−i)

−1v
(i)
−i = − 1

1− p

1

Cii
C∗i,−i for any i ∈ {1, 2, ..., n} (25)

To show this, first,

(H
(i)
−i)

−1v
(i)
−i =

(
G− ⊙ (RTR)−i

)−1 · (1− p)pa2(RTR∗i)−i

=

(
1

(1− p)pa2
G− ⊙ (RTR)−i

)−1

(RTR∗i)−i

=
1

1− p

(
(RTR)−i +

p

1− p
I ⊙ (RTR)−i

)−1

(RTR∗i)−i (26)

Next, remember that C−1 = RTR + p
1−pI ⊙ RTR. Since no column of R is a zero vector, I ⊙

RTR is positive definite, thus C−1 is positive definite. By the properties of matrix inverse, for an
invertible matrix E, if we swap the i-th and j-th rows (or columns) of E and get E′, then E′−1 is
equivalent to the matrix formed by swapping the i-th and j-th columns (or rows) of E−1. Therefore,
suppose (C−1)⟨i⟩ is obtained from C−1 by first swapping the kth row with the (k + 1)th row for
k = i, i + 1, ..., n − 1 sequentially, then swapping the kth column with the (k + 1)th column for
k = i, i+ 1, ..., n− 1 sequentially. We have

(C−1)⟨i⟩ =

(RTR)−i +
p

1−pI ⊙ (RTR)−i (RTR∗i)−i

(RTR∗i)
T
−i

1
1−p (R

TR)ii


and (

(C−1)⟨i⟩
)−1

= C⟨i⟩ =

[
M C∗i,−i

CT
∗i,−i Cii

]
where M is an (n− 1)× (n− 1) matrix that we are not interested in.

By the symmetric block matrix inverse (0.7.3, (Horn & Johnson, 2012)), we know that[
A BT

B D

]−1

=

[
A−1 +A−1BTS−1BA−1 −A−1BTS−1

−S−1BA−1 S−1

]
where S = D −BA−1BT .

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Let A = (RTR)−i +
p

1−p (I ⊙ (RTR)−i), BT = (RTR∗i)−i and S−1 = Cii, we have

C∗i,−i = −A−1BTS−1 = −
(
(RTR)−i +

p

1− p
I ⊙ (RTR)−i

)−1

(RTR∗i)−i · Cii (27)

Combining Eq (27) and Eq (26), we get Eq (25), thereby completing the proof.

Proof of Proposition 3.5:

(a) Similar to Eq (11), we can expand objective function of Eq (14) as

lB(W) + λ∥W∥2F =

n∑
i=1

h
(i)
B (W∗i), where

h
(i)
B (W∗i) = WT

∗iH
(i)W∗i − 2WT

∗iv
(i) + λ∥W∗i∥2F + E∆∼B

[
RT

∗iA
(i)2R∗i

]

Hence,
[

∂h
(i)
B

∂W∗i

]T
= 2H(i)W∗i − 2v(i) + 2λW∗i, and the solution of

[
∂h

(i)
B

∂W∗i

]T
= 0 becomes

W ∗
∗i =

(
H(i) + λI

)−1

v(i) (28)

The optimal W ∗ is obtained by solving W ∗
∗i via Eq (28) for all i. The solution is unique since each

h
(i)
B is strictly convex.

(b) Eq (15) is equivalent to solving for the stationary points of the following a Lagrangian function

L(W, µ) = lB(W) + µT diag(W)

where µ ∈ Rn. Since

L(W, µ) =

n∑
i=1

h̄
(i)
B (W∗i, µi), where

h̄
(i)
B (W∗i, µi) = WT

∗iH
(i)W∗i − 2WT

∗iv
(i) + µiWii + E∆∼B

[
RT

∗iA
(i)2R∗i

]
the solution (W,µ) of the system of equations[
∂L
∂W

]T
=

[[
∂L

∂W∗1

]T
,

[
∂L

∂W∗2

]T
, ...,

[
∂L

∂W∗n

]T]
=

[∂h̄
(1)
B

∂W∗1

]T

,

[
∂h̄

(2)
B

∂W∗2

]T

, ...,

[
∂h̄

(n)
B

∂W∗n

]T
 = 0

[
∂L
∂µ

]T
=

[
∂L
∂µ1

,
∂L
∂µ2

, ...,
∂L
∂µn

]T
=

[
∂h̄

(1)
B

∂µ1
,
∂h̄

(2)
B

∂µ2
, ...,

∂h̄
(n)
B

∂µn

]T

= 0

is given by taking [
∂h̄

(i)
B

∂W∗i

]T

= 2H(i)W∗i − 2v(i) + µil
(i) = 0 (29)

∂h̄
(i)
B

∂µi
= Wii = 0 (30)

for i = 1, 2, ..., n. Solving Eq (29), we get

W∗i = H(i)−1
(vi −

1

2
µil

(i)) (31)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Combining Eq (30) and Eq (31), we have

Wii = (H(i)−1
v(i))i −

1

2
µi(H

(i)−1
l(i))i = 0 =⇒ µi = 2

(H(i)−1
v(i))i

(H(i)−1
l(i))i

(32)

Finally, plugging Eq (33) into Eq (31), we get the solution of W ∗: For any i,

W ∗
∗i = H(i)−1

(v(i) − (H(i)−1
v(i))i

(H(i)−1
l(i))i

l(i)) = H(i)−1
v(i) − (H(i)−1

v(i))i

(H(i)−1
l(i))i

H(i)−1
l(i) (33)

The solution Eq (33) is unique. By second order sufficiency conditions (Section 11.5, (Luenberger
& Ye, 2008)), one can show that any W ∗ that minimizes L(W, µ) is a strict local minimizer. Thus,
the solution Eq (33) gives the global minimizer.

B DECOUPLED EXPECTED QUADRATIC LOSS WITH LOW-RANK
CONSTRAINT

This section discusses the closed-form solution of Eq (7) under low-rank constraint of W . Given the
rank k (k ≤ n), we would like to solve

argmin
W

lD(W) =

n∑
i=1

E(X,Y)∼D(i)

[
∥Y∗i −XW∗i∥2F

]
s.t. rank(W) ≤ k (34)

Theorem B.1. Suppose E(X,Y)∼D(i) [XTX] is independent of i, and denote

Σxx = E(X,Y)∼D(i) [XTX]

Σxy =
[
E(X,Y)∼D(1) [XTY∗1],E(X,Y)∼D(2) [XTY∗2], ...,E(X,Y)∼D(n) [XTY∗n]

]
If Σxx is non-singular, then the closed-form solution of Eq (34) is given by

W ∗ = Σ−1/2
xx

[
Σ−1/2

xx Σxy

]
k

(35)

Here, let Σ−1/2
xx Σxy = U

σ1

σ2

...
σn

V T be the singular value decomposition where σ1 ≥

σ2... ≥ σn, we denote
[
Σ

−1/2
xx Σxy

]
k
=

∑k
i=1 σiU∗iV

T
∗i .

Proof : Denote y(i) = E(X,Y)∼D(i) [Y T
∗iY∗i]. By Eq (7),

lD(W) =

n∑
i=1

WT
∗iΣxxW∗i − 2WT

∗i (Σxy)∗i + y(i)

=

n∑
i=1

(
Σ1/2

xx W∗i

)T

Σ1/2
xx W∗i − 2

(
Σ1/2

xx W∗i

)T

Σ−1/2
xx (Σxy)∗i + y(i)

=

n∑
i=1

∥∥∥Σ1/2
xx W∗i − Σ−1/2

xx (Σxy)∗i

∥∥∥2
F
+ y(i) − (Σxy)

T
∗i Σ

−1
xx (Σxy)∗i

=
∥∥∥Σ1/2

xx W − Σ−1/2
xx Σxy

∥∥∥2
F
+

n∑
i=1

y(i) − (Σxy)
T
∗i Σ

−1
xx (Σxy)∗i

By Eckart–Young–Mirsky theorem,
[
Σ

−1/2
xx Σxy

]
k
= argmin

rank(Q)≤k

∥∥∥Q− Σ
−1/2
xx Σxy

∥∥∥2
F

for any Q ∈

Rn×n. Therefore, Σ1/2
xx W ∗ =

[
Σ

−1/2
xx Σxy

]
k
=⇒ W ∗ = Σ

−1/2
xx

[
Σ

−1/2
xx Σxy

]
k
.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Note that the low-rank solution Eq (35) is not applicable when Σxx = E(X,Y)∼D(i) [XTX] de-

pends on i: If Σxx varies with i, then in the proof
∑n

i=1

∥∥∥Σ1/2
xx W∗i − Σ

−1/2
xx (Σxy)∗i

∥∥∥2
F

cannot be

combined into
∥∥∥Σ1/2

xx W − Σ
−1/2
xx Σxy

∥∥∥2
F

.

The low-rank solution Eq (35) is applicable to EDLAE only when taking a = b: by Eq (10), Σxx is
represented by H(i); by Lemma 3.2, if a = b, H(i) will have all diagonal entries being (1 − p)b2

and all off-diagonal entries being (1− p)2b2 for any i, thus being independent of i. However, when
a ̸= b, H(i) will depend on i, making Eq (34) not applicable.

C RELATED WORKS

The evolution of collaborative filtering (CF) in recommendation systems has undergone several
key paradigm shifts. In its early stages, neighborhood-based methods dominated the field, with
influential works such as user-item KNN approaches (Hu et al., 2008) and sparse linear models
(SLIM) (Ning & Karypis, 2011) setting the foundation. However, the Netflix Prize competition
marked a turning point, accelerating the adoption of matrix factorization (MF) techniques, which
offered improved scalability and latent feature learning (Koren et al., 2009). These models aim to
solve a matrix completion problem, which has been extensively studied theoretically (Candès & Tao,
2010; Recht, 2011; Foygel et al., 2011; Shamir & Shalev-Shwartz, 2011).

The rise of deep learning (LeCun et al., 2015) further revolutionized the landscape, introducing
more expressive neural architectures. Among these, graph-based models gained prominence, in-
cluding Neural Collaborative Filtering (NCF) (He et al., 2017), which replaced traditional MF with
neural networks, and later refinements like Neural Graph Collaborative Filtering (NGCF) (Wang
et al., 2019) and LightGCN (He et al., 2020), which explicitly leveraged graph structures for higher-
order user-item relationship modeling. Simultaneously, industry-scale solutions emerged, blending
memorization and generalization through hybrid architectures such as Wide & Deep (Cheng et al.,
2016), DeepFM (Guo et al., 2017), and Deep & Cross Networks (DCN) (Wang et al., 2017), which
automated feature interactions while maintaining interpretability.

Alongside the ongoing research that explores various models to enhance recommendation perfor-
mance, the research community has gradually recognized the importance of gaining a deeper the-
oretical understanding of loss functions (Terven et al., 2025; Wu et al., 2024b). These theoretical
investigations seek to reveal the fundamental principles and mathematical underpinnings that govern
the behavior and optimization direction of recommendation systems, thereby advancing our over-
all understanding of how these systems function. BPR (Rendle et al., 2009). Early methods often
adopted pointwise L2 loss over observed ratings or implicit feedback (Hu et al., 2008), which is
simple and analytically tractable. Later, pairwise ranking losses such as BPR (Rendle et al., 2009)
became popular for top-N recommendation, optimizing relative preferences between positive and
negative items. Softmax-based listwise losses, such as sampled softmax (Jannach et al., 2010) were
introduced to better align with ranking metrics like NDCG. In recent years, contrastive learning
frameworks (Zhou et al., 2021; Wang et al., 2022) have gained prominence as a powerful and effec-
tive approach, particularly in unsupervised recommendation scenarios. Notable studies such as (Li
et al., 2023; Liu et al., 2021) have further showcased their effectiveness in this domain.

Notably, recent studies (Rendle, 2010) have shown that well-tuned linear models can outperform
more complex deep architectures on sparse implicit data, challenging the assumption that greater
model expressiveness always yields better performance. At the same time, alternative objectives
such as pairwise ranking losses (Rendle et al., 2009), listwise softmax, and contrastive formulations
(Zhou et al., 2021; Wang & Liu, 2021)—though popular—often suffer from instability, sensitivity
to negative sampling, and increased computational overhead. Motivated by these findings, we adopt
a different perspective: rather than seeking more complex losses or models, we focus on refining
linear models under the classical L2 loss.

LAEs are one type of the linear recommender models. One of the earliest LAE model is SLIM (Ning
& Karypis, 2011), which trains the loss ∥R−RW∥2F with L1 and L2 regularizers. The zero-diagonal
constraint was first introduced in EASE (Steck, 2019) to prevent solutions from overfitting toward
the identity matrix. EDLAE (Steck, 2020) instead employs dropout and emphasis as an alternative

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

strategy to mitigate overfitting. ELSA (Vančura et al., 2022) construct the model W with a zero
diagonal by enforcing W = AAT − I for some matrix A subject to ∥Ai∗∥22 = 1 for all i. (Moon
et al., 2023) shows that a strict zero-diagonal constraint does not always yield the best performance,
and that replacing it with a diagonal bounded by a small norm during training can improve results.

D SUPPLEMENTAL EXPERIMENTS ON TIME AND MEMORY COST

In this section, we provided more experimental details and results (as in Table 3) regarding training
time and memory usage.

Table 3 compares the time and memory costs of deep learning models and LAEs. It shows that for
large datasets like Yelp 2018, DEQL families finish training in just 8 minutes on a CPU, which is
much faster than all other advanced deep learning baselines.

The primary reason LAE-based methods (e.g., DEQL) exhibit higher memory cost but lower training
time than deep learning-based methods is due to their computational paradigm: deep learning-based
models train via batch gradient descent, loading only small batches into GPU memory at each step,
which keeps memory usage around 3GB but requires many iterations, leading to longer training
time. In contrast, LAE-based methods load the entire matrix into memory to compute its inverse as
part of a closed-form solution, which may require 80GB for datasets like Yelp2018. This space-time
trade-off enables the entire training process to finish much faster, as shown in our experiments.

Unlike GPU-intensive GNN-based models such as LightGCN or SSM (GNN), DEQL families are
particularly suitable for deployment in memory-limited or CPU-only environments, making it highly
practical. In practice, modern CPU servers often equip with 500 GB – 1 TB RAM, mitigating this
issue.

Table 3: Approximate Training time and memory usage on Yelp2018. Deep based models mainly
consume GPU memory, while others rely on CPU memory.

Model Time (min) Memory (GB) Memory Type

LightGCN 30 1 GPU
SimpleX (GNN) 130 1 GPU
SSM (MF) 13 1 GPU
SSM (GNN) 13 1 GPU
DLAE 2 70 CPU
EASE 2 60 CPU
EDLAE 4 70 CPU
DEQL 6 80 CPU
DEQL (L2+zero-diag) 8 80 CPU
DEQL (L2) 8 80 CPU

E DISCUSSIONS

E.1 LIMITATIONS

One limitation of our work is that DEQL is currently used only as an optimization tool, providing
closed-form solutions under given hyperparameters. However, it does not offer guidance on which
hyperparameter choices lead to improved testing performance. As a result, hyperparameter selection
still relies on empirical tuning, and its theoretical understanding remains underexplored.

Another limitation lies in the computational complexity of the Algorithm in Section 4. Even when
R is sparse, this algorithm still has an O(n3) complexity bottleneck due to the need to compute
the inverse of H0. By Theorem 3.3, H0 is positive definite if no columns of R is a zero vector. In
this case, the inverse of H0 is typically performed by Cholesky decomposition (Krishnamoorthy &
Menon, 2013), but it still costs O(n3).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

E.2 EXPLANATION FOR THE PERFORMANCE GAINS FROM REGULARIZATION

Here we provide a possible explanation for the experimental results in Table 1 and Table 2, which
show why the performance of DEQL(L2) and DEQL(L2 + zero-diag) surpasses that of plain DEQL.
According to statistical learning theory (Vapnik, 1999), searching for solutions within a large hy-
pothesis space often leads to overfitting, while searching in a small hypothesis space may cause
underfitting – both cases resulting in poor testing performance. Structural risk minimization (SRM)
(Vapnik, 1999) addresses this trade-off by controlling the size of the hypothesis space. In this con-
text, both the L2 regularizer and the zero-diagonal constraint can be interpreted as SRM techniques
that restrict the hypothesis space. Let UDEQL,UDEQL(L2) and UDEQL(L2 + zero-diag) denote the hypothesis
spaces of DEQL, DEQL(L2) and DEQL(L2 + zero-diag), respectively. Then we have the nested
relationship UDEQL(L2 + zero-diag) ⊂ UDEQL(L2) ⊂ UDEQL. However, the hypothesis space that yields the
best performance depends on the dataset, as reflected in the results: on some datasets DEQL(L2 +
zero-diag) performs better, while on others DEQL(L2) performs better.

LLM USAGE STATEMENT

We use ChatGPT solely for polishing writing at the sentence and paragraph level. The content and
contributions of this paper were created by the authors. All text refined with ChatGPT has been
carefully checked to avoid errors.

19

	Introduction
	Preliminaries
	Decoupled Expected Quadratic Loss for Linear Autoencoders
	Decoupled Expected Quadratic Loss and its Closed-form Solution
	Adaptation to EDLAE
	Adding L Regularizer and Zero-diagonal Constraint

	An Efficient Algorithm for the Closed-Form Solution
	Experiements
	Experimental Set-Up
	Reproducibility
	Experimental Results

	Conclusions
	Mathematical Proofs
	Decoupled Expected Quadratic Loss with Low-Rank Constraint
	Related Works
	Supplemental Experiments on Time and Memory Cost
	Discussions
	Limitations
	Explanation for the Performance Gains from Regularization

