

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GENERALIZING LINEAR AUTOENCODER RECOM- MENDERS WITH DECOUPLED EXPECTED QUADRATIC LOSS

Anonymous authors

Paper under double-blind review

ABSTRACT

Linear autoencoders (LAEs) have gained increasing popularity in recommender systems due to their simplicity and strong empirical performance. Most LAE models, including the Emphasized Denoising Linear Autoencoder (EDLAE) introduced by (Steck, 2020), use quadratic loss during training. However, the original EDLAE only provides closed-form solutions for the hyperparameter choice $b = 0$, which limits its capacity. In this work, we generalize EDLAE objective into a Decoupled Expected Quadratic Loss (DEQL). We show that DEQL simplifies the process of deriving EDLAE solutions and reveals solutions in a broader hyperparameter range $b > 0$, which were not derived in Steck’s original paper. Additionally, we propose an efficient algorithm based on Miller’s matrix inverse theorem to ensure the computational tractability for the $b > 0$ case. Empirical results on benchmark datasets show that the $b > 0$ solutions provided by DEQL outperform the $b = 0$ EDLAE baseline, demonstrating that DEQL expands the solution space and enables the discovery of models with better testing performance.

1 INTRODUCTION

In recent years, deep learning has emerged as the dominant paradigm in recommendation systems, leading to increasingly complex models. However, a growing body of empirical evidence reveals a surprising trend: simple linear models often perform comparably to, or even outperform, their deep learning counterparts (Dacrema et al., 2019). In particular, linear autoencoder-based methods such as SLIM (Ning & Karypis, 2011), EASE (Steck, 2019), EDLAE (Steck, 2020), ELSA (Vančura et al., 2022), RALE and RDLAE (Moon et al., 2023) have demonstrated strong performance, often exceeding that of more sophisticated deep models (Dacrema et al., 2021).

These methods typically aim to learn an item-to-item similarity matrix $W \in \mathbb{R}^{n \times n}$ to reconstruct the binary user-item interaction matrix $R \in \{0, 1\}^{m \times n}$ with m users and n items. Each row R_{i*} encodes the interactions of user i ; $R_{ij} = 1$ indicates that user i has interacted with item j , while $R_{ij} = 0$ indicates no interaction. The reconstruction takes the form RW , or equivalently $R_{i*}W$ for each user, and can be interpreted as a linear autoencoder (LAE), where W serves as both encoder and decoder. One representative example is EASE (Steck, 2019), in which W is obtained by minimizing the following objective function

$$f(W) = \|R - RW\|_F^2 \quad \text{s.t. } \text{diag}(W) = 0 \quad (1)$$

The zero diagonal constraint $\text{diag}(W) = 0$ is imposed to prevent W from overfitting towards identity. Moreover, since the prediction of each interaction R_{ij} is a weighted sum $R_{i*}W_{*j} = \sum_{k=1}^n R_{ik}W_{kj}$, the zero diagonal constraint enforces $W_{jj} = 0$, such that the prediction becomes $R_{i*}W_{*j} = \sum_{k=1, k \neq j}^n R_{ik}W_{kj}$. This means that the target R_{ij} is masked out during prediction, preventing the model from trivially using R_{ij} to predict itself. This constraint distinguishes LAEs from standard linear regression models and is widely adopted in models like EDLAE (Steck, 2020) and ELSA (Vančura et al., 2022).

Despite their empirical success, these models optimize squared error on observed entries during training, without explicitly considering the statistical nature of the evaluation process: In training, observed entries are treated as fixed values to be reconstructed; in evaluation, especially in the

strong/weak generalization settings (Steck, 2019; Moon et al., 2023), the model is evaluated on randomly masked interactions in the test set. This motivates adopting a statistical viewpoint to redesign the training objective, where interactions are treated as random variables sampled from a distribution and the objective is defined in expectation, thereby aligning with the testing scenario.

EDLAE (Steck, 2020) provides an important precursor in this direction. By introducing *dropout* and an *emphasis weighting* scheme, EDLAE effectively reshapes the loss to penalize reconstruction of masked entries more heavily, thereby reducing overfitting to the identity function, see Eq (3). We observe that considering the dropout matrix Δ as a random variable allows the objective to be expressed as an expected quadratic loss

$$f(W) = \mathbb{E}_\Delta [\|A \odot (R - (\Delta \odot R)W)\|_F^2], \quad (2)$$

$A \in \{a, b\}^{m \times n}$ is an emphasis matrix where a, b are hyperparameters. $\Delta \odot R$ represents random dropout applied to the fixed interaction matrix, mirroring the evaluation procedure. More importantly, $\Delta \odot R$ can itself be viewed as a random interaction matrix, providing the key insight that the objective can be *generalized* to random interaction matrices following arbitrary distributions.

Although it improves empirical performance, the theoretical framework underlying this objective’s construction remains largely underexplored. In particular, while Eq (3) is claimed to be applicable for $b \geq 0$, Steck (2020) only provides the solution for $b = 0$ case, which limits its capacity. Motivated by this gap, this paper investigates how to obtain a closed-form solution for the EDLAE objective under the full hyperparameter range $b \geq 0$, and how to compute these solutions efficiently.

First, we generalize the EDLAE objective Eq (3) into a **Decoupled Expected Quadratic Loss (DEQL)** and derive its closed-form minimizer, which subsumes EDLAE as a special case. This generalization not only simplifies the derivation of EDLAE solutions but also extends them to the previously unexplored regime of $b > 0$ (Section 3). Equally important, DEQL introduces a well-posed, closed-form solution that offers uniqueness (beyond EDLAE) and analytic interpretability – properties rarely attainable in iterative or deep learning-based recommenders.

Next, we find that the direct solutions for $b > 0$ have an $O(n^4)$ computational complexity, which is prohibitively expensive for large-scale recommendation tasks. To overcome this challenge, we develop an efficient algorithm based on Miller’s matrix inverse theorem (Miller, 1981), reducing the complexity to $O(n^3)$. This makes computing solutions for the $b > 0$ case practical (Section 4).

Finally, we evaluate solutions derived from DEQL on real-world benchmark datasets. Our experiments demonstrate that solutions with $b > 0$ consistently outperform the original EDLAE solutions with $b = 0$, confirming that expanding the solution space leads to models with stronger testing performance (Section 5).

The proofs of all theorems, lemmas and propositions are presented in Appendix B. Related works are in Appendix E. Discussions are in Appendix G.

2 PRELIMINARIES

Implicit and Explicit Recommenders: Recommendation algorithms can generally be divided into two categories: explicit and implicit methods. Explicit approaches focus on predicting unseen numerical ratings that users might assign to items, whereas implicit approaches aim to predict user behaviors such as clicks, add-to-cart actions, or purchases (Steck, 2019; Dacrema et al., 2019). In this study, we focus on the implicit recommendation setting due to its greater economic significance. Let n denote the number of items and m the number of users. We are given a binary interaction matrix $R \in \{0, 1\}^{m \times n}$, where each entry $R_{i,j} = 1$ if user i has interacted with item j (e.g., through a purchase or rating), and 0 otherwise. We note that despite the difference between explicit and implicit settings; for recommendation models, both objectives aim to recover a real-valued score matrix $\hat{R} \in \mathbb{R}^{m \times n}$. The performance of the model for implicit setting is typically evaluated using information retrieval metrics such as Top- k Recall/Accuracy or Normalized Discounted Cumulative Gain (nDCG) on test set.

EDLAE Recommender System (Steck, 2020): Let $\Delta \in \{0, 1\}^{m \times n}$ be a random matrix where each Δ_{ij} is i.i.d. drawn from the Bernoulli distribution such that $P(\Delta_{ij} = 0) = p$ and $P(\Delta_{ij} = 1) = 1 - p$. Let $\Delta^{(k)}$ denote a realization of Δ , and let \odot denote the Hadamard (element-wise) product, so

108 that $\Delta^{(k)} \odot R$ applies dropout element-wise to R . Define the emphasis matrix $A^{(k)}$ where $A_{ij}^{(k)} = a$
 109 if $\Delta_{ij}^{(k)} = 0$ and $A_{ij}^{(k)} = b$ if $\Delta_{ij}^{(k)} = 1$. Then, the EDLAE model is obtained by optimizing the
 110 following objective function:
 111

$$112 \quad W^* = \operatorname{argmin}_W \lim_{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^N \|A^{(k)} \odot (R - (\Delta^{(k)} \odot R)W)\|_F^2 \quad (3)$$

115 under the hyperparameters a, b, p . Since the squared Frobenius norm in Eq (3) can be expanded into
 116 the sum of weighted quadratic loss $\sum_{i=1}^m \sum_{j=1}^n A_{ij}^{(k)} (R_{ij} - (\Delta_{i*}^{(k)} \odot R_{i*})W_{*j})^2$, if R_{ij} is dropped,
 117 its reconstruction loss $(R_{ij} - (\Delta_{i*}^{(k)} \odot R_{i*})W_{*j})^2$ is weighted by a^2 ; otherwise, it is weighted by
 118 b^2 . The hyperparameters a, b are typically chosen to satisfy $a \geq b \geq 0$, thereby placing greater
 119 emphasis on dropped entries to prioritize reducing loss.
 120

121 The original EDLAE paper (Steck, 2020) provides a closed-form solution to Eq (3) for the case
 122 $b = 0$ and under the zero-diagonal constraint $\operatorname{diag}(W^*) = 0$, expressed as

$$123 \quad W^* = \frac{1}{1-p} (I - C \cdot (I \odot C)^{-1}), \text{ where } C = \left(R^T R + \frac{p}{1-p} I \odot R^T R \right)^{-1} \quad (4)$$

124 While Eq (3) remains valid and meaningful for $b > 0$, the solution for this case is not addressed in
 125 the original work.
 126

128 3 DECOUPLED EXPECTED QUADRATIC LOSS FOR LINEAR AUTOENCODERS

130 In the EDLAE optimization problem Eq (3), let \mathcal{B} denote the multivariate Bernoulli distribution of
 131 Δ , then by the law of large numbers, Eq (3) can be rewritten as

$$132 \quad W^* = \operatorname{argmin}_W l_{\mathcal{B}}(W), \quad \text{where}$$

$$133 \quad l_{\mathcal{B}}(W) = \mathbb{E}_{\Delta \sim \mathcal{B}} [\|A \odot (R - (\Delta \odot R)W)\|_F^2] = \sum_{i=1}^n \mathbb{E}_{\Delta \sim \mathcal{B}} [\|A_{*i} \odot (R_{*i} - (\Delta \odot R)W_{*i})\|_F^2]$$

$$136 \quad = \sum_{i=1}^n \mathbb{E}_{\Delta \sim \mathcal{B}} [\|A^{(i)} R_{*i} - A^{(i)} (\Delta \odot R) W_{*i}\|_F^2] \quad (5)$$

138 Here we denote $A^{(i)} = \operatorname{diagMat}(A_{*i})$. Note that Eq (5) *decouples* the squared Frobenius norm over
 139 the columns of W . Since R is constant while both Δ and $A^{(i)}$ are random, define $Y^{(i)} = A^{(i)} R$
 140 and $X^{(i)} = A^{(i)} (\Delta \odot R)$, then both $X^{(i)}$ and $Y^{(i)}$ are random. If we further denote $\mathcal{D}^{(i)}$ as the
 141 distribution of the pair $(X^{(i)}, Y^{(i)})$, then the objective function in Eq (5) can be written as

$$142 \quad l_{\mathcal{B}}(W) = \sum_{i=1}^n \mathbb{E}_{(X^{(i)}, Y^{(i)}) \sim \mathcal{D}^{(i)}} [\|Y^{(i)} - X^{(i)} W_{*i}\|_F^2] \quad (6)$$

145 Eq (6) places each column W_{*i} inside an *expected quadratic loss* $\mathbb{E}_{(X^{(i)}, Y^{(i)}) \sim \mathcal{D}^{(i)}} [\|Y^{(i)} - X^{(i)} W_{*i}\|_F^2]$.

146 This formulation is general since each $\mathcal{D}^{(i)}$ can be any distribution, while Eq (5) is a special case
 147 where $X^{(i)}$ and $Y^{(i)}$ follow distributions induced by applying random dropout to constants. We
 148 first derive the general closed-form solution of optimizing Eq (6), then specialize it to EDLAE,
 149 and show that this reformulation simplifies the analysis and reveals a broader class of solutions for
 150 $b \geq 0$ compared Steck’s original solution for $b = 0$ (Steck, 2020).

151 3.1 DECOUPLED EXPECTED QUADRATIC LOSS AND ITS CLOSED-FORM SOLUTION

153 We formally define Eq (6) as follows:

154 **Definition 3.1.** Given a set of joint distributions $\mathcal{D} = \{\mathcal{D}^{(i)}\}_{i=1}^n$ over the pair (X, Y) , the **decoupled**
 155 **expected quadratic loss** is defined as

$$157 \quad l_{\mathcal{D}}(W) = \sum_{i=1}^n h_{\mathcal{D}^{(i)}}^i(W_{*i}), \text{ where}$$

$$159 \quad h_{\mathcal{D}^{(i)}}^i(W_{*i}) = \mathbb{E}_{(X, Y) \sim \mathcal{D}^{(i)}} [\|Y_{*i} - X W_{*i}\|_F^2]$$

$$160 \quad = W_{*i}^T \mathbb{E}_{(X, Y) \sim \mathcal{D}^{(i)}} [X^T X] W_{*i} - 2W_{*i}^T \mathbb{E}_{(X, Y) \sim \mathcal{D}^{(i)}} [X^T Y_{*i}] + \mathbb{E}_{(X, Y) \sim \mathcal{D}^{(i)}} [Y_{*i}^T Y_{*i}] \quad (7)$$

162 Note that each $h_{\mathcal{D}^{(i)}}^i$ is a quadratic function of W_{*i} . Since $\mathbb{E}_{(X,Y) \sim \mathcal{D}^{(i)}} [X^T X]$ is positive
163 semi-definite (as $X^T X$ is a random variable whose realizations are always positive semi-definite
164 matrices), $h_{\mathcal{D}^{(i)}}^i$ is convex for any i . Hence, let $W^* = \operatorname{argmin}_W l_{\mathcal{D}}(W)$, then $W_{*i}^* =$
165 $\operatorname{argmin}_{W_{*i}} h_{\mathcal{D}^{(i)}}^i(W_{*i})$ for all i . Furthermore, if $\mathbb{E}_{(X,Y) \sim \mathcal{D}^{(i)}} [X^T X]$ is positive definite for all
166 i , so that its inverse exists, then W^* can be computed as
167

$$168 \quad W_{*i}^* = \mathbb{E}_{(X,Y) \sim \mathcal{D}^{(i)}} [X^T X]^{-1} \mathbb{E}_{(X,Y) \sim \mathcal{D}^{(i)}} [X^T Y_{*i}] \text{ for } i = 1, 2, \dots, n \quad (8)$$

170 Eq (7) represents a general quadratic loss. A special case arises when taking $\mathcal{D} := \mathcal{D}^{(1)} = \mathcal{D}^{(2)} =$
171 $\dots = \mathcal{D}^{(n)}$, in which case Eq (7) reduces to

$$172 \quad l_{\mathcal{D}}(W) = \mathbb{E}_{(X,Y) \sim \mathcal{D}} [\|Y - XW\|_F^2]$$

174 Moreover, under certain condition that $\mathbb{E}_{(X,Y) \sim \mathcal{D}^{(i)}} [X^T X]$ is independent of i for all i , Eq (7) with
175 low-rank constraints on W has a closed-form solution, which is discussed in Appendix D.
176

177 3.2 ADAPTATION TO EDLAE 178

179 This section derives the closed-form solution for EDLAE from Eq (7), which covers the case $b \geq 0$.
180 We show that our solution is equivalent to Steck's solution (Steck, 2020) for $b = 0$, and it extends to
181 the $b > 0$ case, which was not addressed in Steck's work.

182 Remember that Eq (5) is a special case of Eq (7) by taking $X = A^{(i)}(\Delta \odot R)$ and $Y_{*i} = A^{(i)}R_{*i}$.
183 By Eq (8), the solution of Eq (5) is given by
184

$$185 \quad W_{*i}^* = H^{(i)-1} v^{(i)} \text{ for } i = 1, 2, \dots, n, \text{ where} \quad (9)$$

$$186 \quad H^{(i)} = \mathbb{E}_{\Delta \sim \mathcal{B}} [(\Delta \odot R)^T A^{(i)2} (\Delta \odot R)], \quad v^{(i)} = \mathbb{E}_{\Delta \sim \mathcal{B}} [(\Delta \odot R)^T A^{(i)2} R_{*i}] \quad (10)$$

189 The following lemma enables explicit computation of the expectations in Eq (10):

190 **Lemma 3.2.** *The $H^{(i)}$ and $v^{(i)}$ in Eq (10) can be expressed as $H^{(i)} = G^{(i)} \odot R^T R$ and $v^{(i)} =$
191 $u^{(i)} \odot R^T R_{*i}$, where $G^{(i)} \in \mathbb{R}^{n \times n}$ and $u^{(i)} \in \mathbb{R}^n$ satisfy*

$$193 \quad G_{kl}^{(i)} = \begin{cases} (1-p)b^2 & \text{if } k = l = i \\ (1-p)^2 b^2 & \text{if } k \neq l = i \text{ or } l \neq k = i \\ (1-p)pa^2 + (1-p)^2 b^2 & \text{if } k = l \neq i \\ (1-p)^2 pa^2 + (1-p)^3 b^2 & \text{if } i \neq k \neq l \neq i \end{cases}, \quad u_k^{(i)} = \begin{cases} (1-p)b^2 & \text{if } k = i \\ (1-p)pa^2 + (1-p)^2 b^2 & \text{if } k \neq i \end{cases}$$

198 for $k, l \in \{1, 2, \dots, n\}$.

200 Furthermore, the computation of Eq (9) requires the $H^{(i)-1}$, which exists only if $H^{(i)}$ is **invertible**.
201 The following theorem establishes sufficient conditions to ensure this property.

202 **Theorem 3.3.** *For any $a \geq 0, b > 0$ and $0 < p < 1$, $G^{(i)}$ is positive definite. Furthermore, $H^{(i)}$ is
203 positive definite if $G^{(i)}$ is positive definite and no column of R is a zero vector.*

205 A positive definite $H^{(i)}$ is always invertible. Hence, Theorem 3.3 implies that the closed-form
206 solution by Eq (9) holds for any $a \geq 0$ and $b > 0$, including the case $b > a$, which lies outside the
207 original EDLAE range $a \geq b \geq 0$ (see Figure 2).

208 Now we discuss the case when $b = 0$. In this setting, both the i -th row and i -th column of $H^{(i)}$ are
209 zero, and the i -th row of $v^{(i)}$ is also zero. Consequently, $H^{(i)}$ is singular and its inverse $H^{(i)-1}$ does
210 not exist, making Eq (8) inapplicable for computing the optimal W^* .

212 To proceed, we define submatrices and subvectors using the subscript $-i$ notation: if Q is an $n \times n$
213 matrix, then Q_{-i} is a $(n-1) \times (n-1)$ matrix obtained by removing the i -th row and i -th column of
214 Q ; if q is an n dimensional vector, then q_{-i} is an $n-1$ dimensional vector obtained by removing q_i
215 from q . Under this notation, we can write $H_{-i}^{(i)} = G^- \odot (R^T R)_{-i}$, where G^- is an $(n-1) \times (n-1)$
matrix with diagonal elements $(1-p)pa^2$ and off-diagonal elements $(1-p)^2 pa^2$. It is easy to verify

216 that G^- is positive definite, hence $H_{-i}^{(i)}$ is positive definite. Likewise, $v_{-i}^{(i)} = u^- \odot (R^T R_{*i})_{-i}$,
 217 where u^- is an $n - 1$ dimensional vector with all elements being $(1 - p)pa^2$.
 218

219 Denote the vector $(W_{*i})_{-i}$ as $W_{*i,-i}$, then Eq (5) can be written as
 220

$$221 \quad l_{\mathcal{B}}(W) = \sum_{i=1}^n W_{*i}^T H^{(i)} W_{*i} - 2W_{*i}^T v^{(i)} + \mathbb{E}_{\Delta \sim \mathcal{B}} \left[R_{*i}^T A^{(i)2} R_{*i} \right] \quad (11)$$

$$223 \quad = \sum_{i=1}^n W_{*i,-i}^T H_{-i}^{(i)} W_{*i,-i} - 2W_{*i,-i}^T v_{-i}^{(i)} + \mathbb{E}_{\Delta \sim \mathcal{B}} \left[R_{*i}^T A^{(i)2} R_{*i} \right] \quad (12)$$

226 Therefore, the solution $W^* = \operatorname{argmin}_W l_{\mathcal{B}}(W)$ is expressed as
 227

$$228 \quad W_{*i,-i}^* = (H_{-i}^{(i)})^{-1} v_{-i}^{(i)} \quad \text{and} \quad W_{ii}^* \in \mathbb{R} \quad \text{for } i = 1, 2, \dots, n \quad (13)$$

230 Here DEQL uncovers a new finding about the uniqueness of closed-form solutions. In the $b > 0$
 231 case, the optimal W^* given by Eq (9) is unique; in the $b = 0$ case, the optimal W^* given by Eq
 232 (13) is not unique, but belongs to an infinite set of solutions that share the same off-diagonal entries
 233 while allowing arbitrary diagonal entries. The following theorem shows that Steck's solution Eq (4)
 234 is a special case of Eq (13), corresponding to the choice of zero diagonal.

235 **Theorem 3.4.** *Suppose no column of R is a zero vector. If taking $W_{ii} = 0$ for all i in Eq (13), then
 236 Eq (13) and Eq (4) are equivalent.*

237 It is important to note that varying the diagonal of W^* can lead to different performance on test data,
 238 and Eq (13) does not provide theoretical guidance on which choice of diagonal elements gives the
 239 best performance. However, empirical results suggest that a W^* with non-zero diagonal elements
 240 can outperform the zero-diagonal solution in certain cases (Moon et al., 2023).
 241

242 3.3 ADDING L_2 REGULARIZER AND ZERO-DIAGONAL CONSTRAINT

244 In LAE-based recommender systems, L_2 regularizer and zero diagonal constraint are commonly
 245 applied to the objective function, as they are established techniques for improving test performance.
 246 This section discusses the closed-form solution of the optimization problem Eq (5) when the L_2
 247 regularizer or the zero-diagonal constraint is applied.

248 **Adding L_2 Regularizer:** Given $\lambda > 0$, Eq (5) with L_2 regularizer is expressed as
 249

$$250 \quad W^* = \operatorname{argmin}_W l_{\mathcal{B}}(W) + \lambda \|W\|_F^2 \quad (14)$$

252 **Adding Zero-diagonal Constraint:** Eq (5) with zero-diagonal constraint is expressed as
 253

$$254 \quad W^* = \operatorname{argmin}_W l_{\mathcal{B}}(W) \quad \text{s.t. } \operatorname{diag}(W) = 0 \quad (15)$$

255 In these cases, the solution Eq (9) is modified accordingly, as presented below.

256 **Proposition 3.5.** (a) The solution of Eq (14) is

$$258 \quad W_{*i}^* = \left(H^{(i)} + \lambda I \right)^{-1} v^{(i)} \quad \text{for } i = 1, 2, \dots, n \quad (16)$$

260 (b) The solution of Eq (15) is

$$261 \quad W_{*i}^* = H^{(i)-1} v^{(i)} - \frac{(H^{(i)-1} v^{(i)})_i}{(H^{(i)-1} l^{(i)})_i} H^{(i)-1} l^{(i)} \quad \text{for } i = 1, 2, \dots, n \quad (17)$$

264 where $l^{(i)}$ is an n -dimensional vector with $l_i^{(i)} = 1$ and $l_j^{(i)} = 0$ for all $j \neq i$.
 265

266 4 AN EFFICIENT ALGORITHM FOR THE CLOSED-FORM SOLUTION

268 Recall from Theorem 3.3 that the optimal W^* for the $b > 0$ case of EDLAE can be computed by
 269 Eq (9). However, a major challenge with Eq (9) is its high computational complexity: since $H^{(i)}$

270 differs for each i , computing each inverse $H^{(i)}^{-1}$ costs $O(n^3)$ (suppose we compute the inverse
 271 using basic algorithms, e.g., Cholesky decomposition (Krishnamoorthy & Menon, 2013)), resulting
 272 in a total cost of $O(n^4)$ for all i , which is computationally impractical.
 273

274 In this section, we demonstrate the existence of a practical algorithm that reduces the overall com-
 275 plexity of computing Eq (9) from $O(n^4)$ to $O(n^3)$; we prove this by explicitly constructing such an
 276 algorithm using Miller's matrix inverse theorem:

277 **Theorem 4.1.** ((Miller, 1981)) Let G and $G + Q$ be non-singular matrices. Suppose Q is of rank
 278 r and can be decomposed as $Q = E_1 + E_2 + \dots + E_r$, where each E_k is of rank 1, and $P_{k+1} =$
 279 $G + E_1 + E_2 + \dots + E_k$ is non-singular for $k = 1, 2, \dots, r$. Let $P_1 = G$, then

$$280 \quad P_{k+1}^{-1} = P_k^{-1} - \frac{1}{1 + \text{tr}(P_k^{-1} E_k)} P_k^{-1} E_k P_k^{-1}$$

$$281$$

282 In Lemma 3.2, we define $H^{(i)} = G^{(i)} \odot R^T R$, which can be decomposed as

$$283 \quad H^{(i)} = G_0 \odot R^T R + G_1^{(i)} \odot R^T R + G_2^{(i)} \odot R^T R$$

$$284$$

285 where G_0 is a matrix with diagonal elements equal to $(1-p)pa^2 + (1-p)^2b^2$ and off-diagonal
 286 elements equal to $(1-p)^2pa^2 + (1-p)^3b^2$; $G_1^{(i)}$ is a matrix with $(G_1^{(i)})_{ji} = -(1-p)^2p(a^2 - b^2)$
 287 for $j \neq i$, $(G_1^{(i)})_{ii} = -(1-p)p(a^2 - b^2)$, and all other elements zero; $G_2^{(i)}$ is a matrix with
 288 $(G_2^{(i)})_{ij} = -(1-p)^2p(a^2 - b^2)$ for $j \neq i$ and all other elements zero.

289 Denote $H_0 = G_0 \odot R^T R$, $E_1^{(i)} = G_1^{(i)} \odot R^T R$ and $E_2^{(i)} = G_2^{(i)} \odot R^T R$, then $H^{(i)} = H_0 + E_1^{(i)} +$
 290 $E_2^{(i)}$. Note that H_0 is positive definite and independent of i , $E_1^{(i)}$ is of rank 1 with only the i -th
 291 column being nonzero, and $E_2^{(i)}$ is of rank 1 with the i -th row (excluding $(E_2^{(i)})_{ii}$) being nonzero.
 292

293 Applying Theorem 4.1, $H^{(i)}^{-1}$ can be computed with the following two steps:

$$294 \quad H_+^{(i)-1} = (H_0 + E_1^{(i)})^{-1} = H_0^{-1} - \frac{1}{1 + \text{tr}(H_0^{-1} E_1^{(i)})} H_0^{-1} E_1^{(i)} H_0^{-1} \quad (18)$$

$$295$$

$$296 \quad H^{(i)-1} = (H_0 + E_1^{(i)} + E_2^{(i)})^{-1} = H_+^{(i)-1} - \frac{1}{1 + \text{tr}(H_+^{(i)-1} E_2^{(i)})} H_+^{(i)-1} E_2^{(i)} H_+^{(i)-1} \quad (19)$$

$$297$$

300 Let $e_1^{(i)}$ be the i -th column of $E_1^{(i)}$, $e_2^{(i)T}$ be the i -th row of $E_2^{(i)}$, then Eq (18) and Eq (19) can be
 301 simplified as

$$302 \quad H_+^{(i)-1} = H_0^{-1} - \frac{1}{1 + (H_0^{-1})_{i*} e_1^{(i)}} (H_0^{-1} e_1^{(i)}) (H_0^{-1})_{i*} \quad (20)$$

$$303$$

$$304 \quad H^{(i)-1} = H_+^{(i)-1} - \frac{1}{1 + e_2^{(i)T} (H_+^{(i)-1})_{*i}} (H_+^{(i)-1})_{*i} (e_2^{(i)T} H_+^{(i)-1}) \quad (21)$$

$$305$$

306 Observe that, given H_0^{-1} , the computation of each $H^{(i)-1}$ using Eq (20) and Eq (21) requires only
 307 $O(n^2)$ operations, resulting in a total cost of $O(n^3)$ for all i . This significantly reduces the original
 308 $O(n^4)$ complexity of computing Eq (9).
 309

310 Moreover, the computation can be further simplified by directly computing $H^{(i)-1} v^{(i)}$ without ex-
 311 plicitly forming $H^{(i)-1}$. By Eq (20) and Eq (21),
 312

$$313 \quad H_+^{(i)-1} v^{(i)} = H_0^{-1} v^{(i)} - \frac{1}{1 + (H_0^{-1})_{i*} e_1^{(i)}} (H_0^{-1} e_1^{(i)}) \left[(H_0^{-1})_{i*} v^{(i)} \right] \quad (22)$$

$$314$$

$$315 \quad H^{(i)-1} v^{(i)} = H_+^{(i)-1} v^{(i)} - \frac{1}{1 + e_2^{(i)T} (H_+^{(i)-1})_{*i}} (H_+^{(i)-1})_{*i} \left[(e_2^{(i)T} H_+^{(i)-1}) v^{(i)} \right] \quad (23)$$

$$316$$

317 in which the scalars $(H_0^{-1})_{i*} v^{(i)}$ and $(e_2^{(i)T} H_+^{(i)-1}) v^{(i)}$ can be computed first. In Eq (23), the
 318 $(H_+^{(i)-1})_{*i}$ term can be computed by Eq (20),
 319

$$320 \quad (H_+^{(i)-1})_{*i} = (H_0^{-1})_{*i} - \frac{(H_0^{-1})_{ii}}{1 + (H_0^{-1})_{i*} e_1^{(i)}} (H_0^{-1} e_1^{(i)})$$

$$321$$

Denote $s = H_+^{(i)^{-1}} v^{(i)}$, $t = (H_+^{(i)^{-1}})_{*i}$. Let U be an $n \times n$ matrix with diagonal elements equal to $(1-p)b^2$ and off-diagonal elements equal to $(1-p)pa^2 + (1-p)^2b^2$, let G_1 be an $n \times n$ matrix with diagonal elements $-(1-p)p(a^2 - b^2)$ and off-diagonal elements $-(1-p)^2p(a^2 - b^2)$, and let G_2 be an $n \times n$ matrix with zeros on the diagonal and off-diagonal elements $-(1-p)^2p(a^2 - b^2)$. Then we can summarize our computation as follows.

Fast Algorithm for Computing Eq (9): First, precompute these matrices

$$R^T R, \quad H_0^{-1} = (G_0 \odot R^T R)^{-1}, \quad [H_0^{-1} v^{(1)}, H_0^{-1} v^{(2)}, \dots, H_0^{-1} v^{(n)}] = H_0^{-1} (U \odot R^T R), \\ [H_0^{-1} e_1^{(1)}, H_0^{-1} e_1^{(2)}, \dots, H_0^{-1} e_1^{(n)}] = H_0^{-1} (G_1 \odot R^T R), \quad [e_2^{(1)}, e_2^{(2)}, \dots, e_2^{(n)}] = G_2 \odot R^T R$$

Then for $i = 1, 2, \dots, n$, compute each $W_{*i}^* = H^{(i)^{-1}} v^{(i)}$ as follows:

$$r = H_0^{-1} v^{(i)}, \quad w = H_0^{-1} e_1^{(i)} \\ s = r - \frac{1}{1 + w_i} r_i w, \quad t = (H_0^{-1})_{*i} - \frac{(H_0^{-1})_{ii}}{1 + w_i} w \\ H^{(i)^{-1}} v^{(i)} = s - \frac{1}{1 + e_2^{(i)^T} t} (e_2^{(i)^T} s) t$$

We now analyze the computational complexity of the above algorithm. **Here we we assume that matrix multiplication and inversion are implemented using basic linear algebra algorithms.** In the precomputing stage, $R^T R$ costs $O(mn^2)$, H_0^{-1} costs $O(n^3)$, $H_0^{-1}(U \odot R^T R)$ and $H_0^{-1}(G_1 \odot R^T R)$ cost $O(n^3)$, and $G_2 \odot R^T R$ costs $O(n^2)$. In the computing stage, each W_{*i}^* is obtained via only vector-vector multiplications with a complexity of $O(n)$, resulting in an overall complexity of $O(n^2)$ for the entire W^* . Therefore, the total complexity of the algorithm is $O(\max(m + n)n^2)$. This complexity is the same as the closed-form solutions of EASE (Steck, 2019) and EDLAE (Steck, 2020). **However, if using more advanced algorithms for matrix multiplication and inversion, the complexity of our Fast Algorithm (as well as EASE and EDLAE) can be in further reduced from $O(n^3)$ to $O(n^{2.376})$.** We elaborate on this in Appendix C.

Adapting the Algorithm to the L2 regularizer and Zero-diagonal Constraint Cases: In Eq (16), note that $H^{(i)} + \lambda I = (H_0 + \lambda I) + E_1^{(i)} + E_2^{(i)}$, where $H_0 + \lambda I$ is independent of i . This means that we can compute Eq (16) using the above algorithm by replacing H_0 with $H_0 + \lambda I$. In Eq (17), we first compute $H^{(i)^{-1}} v^{(i)}$ with the algorithm; then, by replace $v^{(i)}$ with $l^{(i)}$, we compute $H^{(i)^{-1}} l^{(i)}$ with the same method. Once $H^{(i)^{-1}} v^{(i)}$ and $H^{(i)^{-1}} l^{(i)}$ are obtained, Eq (17) can be computed accordingly.

5 EXPERIEMENTS

This section provides experimental results comparing DEQL with state-of-the-art collaborative filtering models, including linear models and deep learning based models. Additional experiments on tim and space costs can be found in Appendix F.

5.1 EXPERIMENTAL SET-UP

Datasets: We conduct extensive experiments to verify our theoretical claims. Specifically, we employ six publicly available datasets, from small to large, including Games, Beauty, Gowalla, ML-20M, Netflix, and MSD (Steck, 2019; Ni et al., 2019; Seol et al., 2024) to compare with LAE based models under strong generalization setting where test users do not appear in training dataset. When comparing with modern deep learning based models, since most of these models rely on user and item embeddings to make prediction and require users appear in training dataset, we further evaluate our methods on 3 additional widely used datasets: Amazonbook, Yelp2018 and Gowalla He et al. (2020) under weak generalization setting. For better generalization, we preprocess the data following (Steck, 2020; He et al., 2020).

Baseline models and Evaluation Metrics: We compare it against the following state-of-the-art linear autoencoder-based recommendation models: EASE (Steck, 2019), DLAE (Steck, 2020), EDLAE (Steck, 2020), ELSA (Vančura et al., 2022) and recent deep learning based models: PinSage

(Ying et al., 2018), LightGCN (He et al., 2020), DGCF (Wang et al., 2020), SimpleX (Mao et al., 2021), SGL-ED (Wu et al., 2021) and SSM (Wu et al., 2024a). We evaluate model performance using widely adopted ranking metrics: Recall@20 and NDCG@20. **All baseline LAE models (EASE, EDLAE, DLAE and ELSA) in our experiments are trained with L_2 regularization, consistent with their original papers.**

5.2 REPRODUCIBILITY

For hyper-parameter tuning, We performed a grid search to optimize the hyperparameters of the linear autoencoder models. Since in the objective function, all quadratic entries are equipped with either a or b and the solution to it is scalar invariant (e.g., in Eq 3, although $(a, b) = (1, 0.1)$ and $(a, b) = (10, 1)$ gives different Loss value, the obtained W^* will always be the same), only the ratio b/a affects the closed-form solution. Therefore, we fix $a = 1$ and search b over the range $[0.1, 0.25, \dots, 2.0]$. The L_2 regularization coefficient is searched over $[10, 0.20, 0, \dots, 50, 100, 0.300, 0.500, 0]$, and the dropout rate p is varied across $[0.1, 0.2, \dots, 0.5, 0.8]$. All experiments are conducted on a Linux server equipped with 500 GB of memory, four NVIDIA 3090 GPUs, and a 96-core Intel(R) Xeon(R) Platinum 8268 CPU @ 2.90GHz. Our code is available at https://anonymous.4open.science/r/ICLR2026_DEQL_new-441D/README.md

5.3 MODEL PERFORMANCE EVALUATION

In this section, we present the experimental results over two evaluation metrics. Specifically, we would answer the following research questions:

RQ1 Can the generalized quadratic loss DEQL(L2)/DEQL(L2+zero-diag) improve recommendation performance over existing linear autoencoder-based models?

RQ2 Is the zero diagonal constraint necessary for optimal performance, or can models benefit from non-zero diagonals as suggested by DEQL(L2)?

RQ3: How does DEQL families perform compared with modern deep learning based models?

RQ1: DEQL(L2) substantially improves recommendation performance over state-of-the-art linear autoencoder models across a diverse set of benchmarks. We evaluate DEQL against three widely recognized baselines:DLAE, EASE, and EDLAE (Steck et al., 2024)(Jin et al., 2021)on six public datasets: Games, Beauty, Gowalla, ML-20M, Netflix, and MSD. As shown in Table 1, DEQL(L2) achieves the highest Recall and NDCG on 5 out of the 6 datasets, often with a significant margin. For instance, on the Games dataset, DEQL(L2) improves Recall@20 from 0.2851 (EDLAE) to 0.2998, and NDCG@20 from 0.1681 to 0.1842, showing that our framework provides better ranking quality even in small-scale, sparse interaction settings. On large-scale datasets like ML-20M, DEQL maintains top performance (Recall@20 = 0.3934, NDCG@20 = 0.3426) that matches and even improves upon the best baseline (EDLAE: Recall@20 = 0.3925, NDCG@20 = 0.3421). This suggests that our framework retains its effectiveness when scaled to millions of interactions and hundreds of thousands of users due to its low complexity. These consistent improvements across datasets of varying sparsity and scale demonstrate the robustness of the DEQL formulation. These gains stem from our theoretical insight: by generalizing the EDLAE formulation to allow $b > 0$, our framework explores a richer solution space with closed-form solvability.

RQ2: When $b = 0$, the training loss does not constrain the diagonal of W , leading to non-uniqueness in the optimal solution. Instead of enforcing zero diagonals as in EASE/EDLAE/DEQL(L2+zero-diag), DEQL(L2) allows the diagonal to be arbitrary real number, allowing us to explore richer searching space. Our empirical results support this design. On Gowalla, DEQL(L2) achieves Recall@20 = 0.2288 and NDCG@20 = 0.2033, outperforming DEQL(L+zero-diag) (0.2278 / 0.2027) and EDLAE (0.2268 / 0.2012). On ML20M, DEQL reaches Recall@20 = 0.3934 and NDCG@20 = 0.3426, closely matching DEQL(L2+zero-diag) (0.3934 / 0.3429) and surpassing EDLAE (0.3925 / 0.3421). These results demonstrate that adjusting b alone is sufficient to ensure strong generalization ability without a hard constraint as zero-diagonal constraints. These findings indicate that the diagonal constraint in EDLAE is NOT necessary and by introducing non-zero b , LAEs can still achieve competitive performance. An explanation of these results can be found in Appendix G.2.

RQ3: In Table 2 we report the results compared with recent deep learning based models. Our proposed DEQL(L2) and DEQL(L2+zero-diag) not only achieves better performance than most classic baselines, in some cases we can surpasses the most recent deep learning-based recommendation

models. For example, when comparing with a recent strong benchmark SSM, DEQL(L2) attains comparable results on Yelp2018/Gowalla even superior to it on Amazonbook dataset with as large as 27% and 34% margin on R@20 and N@20 respectively. Overall, these results demonstrate the robustness and strong empirical performance of our generalized quadratic loss.

Table 1: Performance comparison and dataset statistics across six different datasets under strong generalization setting. We highlight the best results in bold. DEQL refer to Eq (9), DEQL(L2+zero-diag) refers to combining Eq (16) and Eq (17), and DEQL(L2) refers to Eq (16) solely.

Model	Games		Beauty		Gowalla		ML20M		Netflix		MSD	
	R@20	N@20										
DLAE	0.2771	0.1664	0.1329	0.0886	0.2143	0.1916	0.3924	0.3409	0.3620	0.3395	0.3290	0.3210
EASE	0.2733	0.1640	0.1323	0.0875	0.2230	0.1988	0.3905	0.3390	0.3618	0.3388	0.3332	0.3261
EDLAE	0.2851	0.1681	0.1324	0.0850	0.2268	0.2012	0.3925	0.3421	0.3656	0.3427	0.3336	0.3258
ELSA	0.2734	0.1658	0.1263	0.0763	0.2255	0.1960	0.3919	0.3386	0.3625	0.3372	0.3256	0.3144
DEQL	0.2524	0.1565	0.1093	0.0670	0.2149	0.1909	0.3844	0.3347	0.3606	0.3382	0.3329	0.3256
DEQL(L2+zero-diag)	0.2872	0.1704	0.1388	0.0898	0.2278	0.2027	0.3934	0.3429	0.3656	0.3423	0.3344	0.3268
DEQL(L2)	0.2998	0.1842	0.1391	0.0881	0.2288	0.2033	0.3934	0.3426	0.3658	0.3428	0.3340	0.3265
# items	896		4,394		13,681		20,108		17,769		41,140	
# users	1,006		17,971		29,243		136,677		463,435		571,353	
# inter.	15,276		75,472		677,956		9,990,682		56,880,037		33,633,450	
density	1.69%		0.10%		0.17%		0.36%		0.69%		0.14%	

Table 2: Performance comparison and dataset statistics for LAE-based model and advanced deep learning based model under weak generalization setting.

Model	Amazon-Books		Yelp2018		Gowalla	
	R@20	N@20	R@20	N@20	R@20	N@20
Deep learning based models						
PinSage	0.0282	0.0219	0.0471	0.0393	0.1380	0.1196
LightGCN	0.0411	0.0315	0.0649	0.0530	0.1830	0.1554
DGCF	0.0422	0.0324	0.0654	0.0534	0.1842	0.1561
SGL-ED	0.0478	0.0379	0.0675	0.0555	–	–
SimpleX	0.0583	0.0468	0.0701	0.0575	0.1872	0.1557
SSM (MF)	0.0473	0.0367	0.0509	0.0404	0.1231	0.0878
SSM (GNN)	0.0590	0.0459	0.0737	0.0609	0.1869	0.1571
LAE-based models						
DLAE	0.0751	0.0610	0.0678	0.0570	0.1839	0.1533
EASE	0.0710	0.0566	0.0657	0.0552	0.1765	0.1467
EDLAE	0.0711	0.0566	0.0673	0.0565	0.1844	0.1539
ELSA	0.0719	0.0594	0.0629	0.0541	0.1755	0.1490
DEQL	0.0695	0.0537	0.0647	0.0543	0.1749	0.1453
DEQL(L2+zero-diag)	0.0711	0.0567	0.0672	0.0565	0.1844	0.1539
DEQL(L2)	0.0751	0.0613	0.0685	0.0576	0.1845	0.1540
# items		91,599		38,048		40,981
# users		52,643		31,668		29,858
# inter.		2,984,108		1,561,406		1,027,370
density		0.06%		0.13%		0.08%

5.4 THE IMPACT OF b ON MODEL PERFORMANCE

In EDLAE, a represents the emphasis on dropout entries, while b represents the emphasis on entries that are remained. The original EDLAE suggests that placing more emphasis on dropped-out entries than on non-dropped entries can improve performance, and therefore restricts $a \geq b$ to ensure the loss remains meaningful. However, the original EDLAE only provides a closed-form solution for the case $b = 0$, which does not explain how varying b affects the performance. To address this, we leverage our closed-form solution for $b > 0$ from DEQL and conduct a sensitivity analysis to investigate that how different b impact test performance.

We evaluate the effect of different b across seven benchmark datasets, as shown in Figure 1. For each dataset, we set $a = 1$ and vary b from 0 to 2.0 while keeping all other configurations fixed, and report both Recall@20 and NDCG@20. Note that for $b = 0$, the solution is obtained from Eq (4); and for $b > 0$, the solution is obtained from Eq (9), whose existence is guaranteed by Theorem 3.3.

On datasets *ML-20M*, *Games*, *Netflix*, and *MSD*, we observe a clear and consistent pattern: performance first improves when increasing b from 0, reaches its peak *before* the b/a ratio exceeds 1, and then gradually decreases as b becomes too large. This behavior directly demonstrates that the $b = 0$

Figure 1: Sensitivity on b/a ratio across different datasets

choice in the original EDLAE does not necessarily yield the best performance, and that models obtained with $b > 0$ using DEQL can achieve superior results.

Interestingly, we observe a markedly different pattern on *Yelp2018* and *AmazonBook*: their optimal b/a ratios approach 1 or even exceed 1 (as in *Yelp*). In the original EDLAE formulation, $a > b$ promotes reconstruction of *dropped* items through cross-item learning, with b typically fixed to zero. The regime of $b > a$ has rarely been explored, as it instead trains the model to use the *remained* items to better predict other remained ones within the same set. Although $a > b$ appears to be the intuitive choice, our results show that $b > a$ can yield superior performance on certain datasets, suggesting that emphasizing dropped entries is not always beneficial.

We hypothesize that a key factor is the **user-item cardinality ratio** and the corresponding reliability of the item-item co-occurrence graph. When the number of items greatly exceeds the number of users, as in *AmazonBook* and *Yelp2018*, the interaction matrix becomes extremely sparse, and cross-item correlations are weak or noisy. In such regimes, training with $a > b$ forces the model to learn from unreliable correlations across items. Conversely, setting $b > a$ reduces dropout strength and shifts learning toward predicting within the same item set, effectively stabilizing reconstruction through stronger self-association signals. This behavior is reflected in the larger diagonal magnitudes of the learned weight matrices W , indicating reliance on identity-like mappings rather than cross-item reconstruction (Figure 3). In short, when the co-occurrence graph is weak, identity is not overfitting—it is the most reliable component of the signal.

6 CONCLUSIONS

This paper aims to advance the EDLAE recommender system by extending its closed-form solution to a broader range of hyperparameter choices, and develop an efficient algorithm to compute these solutions. We first generalize the EDLAE objective function into DEQL, derive its closed-form solutions, and then apply them back to EDLAE. We show that, through DEQL, the original EDLAE solution for $b = 0$ can be extended to the wider range $b \geq 0$, enabling exploration of a larger solution space. To address the high computational complexity of solutions for $b > 0$, we develop an efficient algorithm based on Miller’s matrix inverse theorem, reducing the complexity from $O(n^4)$ to $O(n^3)$. Experimental results demonstrate that most solutions for $b > 0$ outperform the $b = 0$ baseline, showing that DEQL expands the solution space and enables the discovery of models with better testing performance. Furthermore, DEQL is a general loss function that may inspire the construction of other specialized objectives for LAE models.

540 REFERENCES
541

542 Amir Abboud, Karl Bringmann, Nick Fischer, and Marvin Künemann. The time complexity of
543 fully sparse matrix multiplication. In *Proceedings of the 2024 Annual ACM-SIAM Symposium on*
544 *Discrete Algorithms (SODA)*, pp. 4670–4703. SIAM, 2024.

545 Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier
546 probes. *arXiv preprint arXiv:1610.01644*, 2016. URL <https://arxiv.org/abs/1610.01644>.

548 Emmanuel J Candès and Terence Tao. The power of convex relaxation: Near-optimal matrix com-
549 pletion. *IEEE transactions on information theory*, 56(5):2053–2080, 2010.

551 Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye,
552 Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al. Wide & deep learning for recom-
553 mender systems. In *Proceedings of the 1st workshop on deep learning for recommender systems*,
554 pp. 7–10, 2016.

555 Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions. In
556 *Proceedings of the nineteenth annual ACM symposium on Theory of computing*, pp. 1–6, 1987.

558 Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. *Introduction to*
559 *algorithms*, 3rd Edition. MIT press, 2009.

560 Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
561 coders find highly interpretable features in language models. *arXiv preprint arXiv:2309.08600*,
562 2023.

564 Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. Are we really making much
565 progress? a worrying analysis of recent neural recommendation approaches. In *Proceedings of*
566 *the 13th ACM Conference on Recommender Systems*, pp. 101–109, 2019.

567 Maurizio Ferrari Dacrema, Simone Boglio, Paolo Cremonesi, and Dietmar Jannach. A troubling
568 analysis of reproducibility and progress in recommender systems research. *ACM Trans. Inf. Syst.*,
569 39(2), January 2021.

571 Trenton Bricken et al. Towards monosemanticity: Decomposing lan-
572 guage models with dictionary learning. Technical report, An-
573 thropic, 2023. URL <https://www.anthropic.com/research/towards-monosemanticity-decomposing-language-models-with-dictionary-learning>.
574 Anthropic Research Report.

576 Moghis Fereidouni, Muhammad Umair Haider, Peizhong Ju, and A. B. Siddique. Evaluating sparse
577 autoencoders for monosemantic representation. *arXiv preprint arXiv:2508.15094*, 2025.

578 Rina Foygel, Ohad Shamir, Nati Srebro, and Russ R Salakhutdinov. Learning with the weighted
579 trace-norm under arbitrary sampling distributions. *Advances in neural information processing*
580 *systems*, 24, 2011.

582 Huirong Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. Deepfm: a factorization-
583 machine based neural network for ctr prediction. *arXiv preprint arXiv:1703.04247*, 2017.

584 Xiangnan He, L. Liao, H. Zhang, L. Nie, X. Hu, and T. Chua. Neural collaborative filtering. In
585 *WWW’17*, 2017.

587 Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
588 Simplifying and powering graph convolution network for recommendation. In *Proceedings of the*
589 *43rd International ACM SIGIR conference on research and development in Information Retrieval*,
590 pp. 639–648, 2020.

591 Roger A Horn and Charles R Johnson. *Matrix analysis*. Cambridge university press, 2012.

593 Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit feedback datasets.
In *IEEE International Conference on Data Mining*, pp. 263–272. IEEE, 2008.

594 Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee Sharkey. Sparse
 595 autoencoders find highly interpretable features in language models. In *International Conference*
 596 *on Learning Representations*, 2023.

597 Dietmar Jannach, Markus Zanker, Alexander Felfernig, and Gerhard Friedrich. *Recommender sys-*
 598 *tems: an introduction*. Cambridge university press, 2010.

600 Ruoming Jin, Dong Li, Jing Gao, Zhi Liu, Li Chen, and Yang Zhou. Towards a better understanding
 601 of linear models for recommendation. In *Proceedings of the 27th ACM SIGKDD Conference on*
 602 *Knowledge Discovery & Data Mining*, pp. 776–785, 2021.

603 Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender
 604 systems. *Computer*, 42(8):30–37, August 2009.

605 Aravindh Krishnamoorthy and Deepak Menon. Matrix inversion using cholesky decomposition.
 606 In *2013 signal processing: Algorithms, architectures, arrangements, and applications (SPA)*, pp.
 607 70–72. IEEE, 2013.

609 Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. *nature*, 521(7553):436–444,
 610 2015.

612 Dong Li, Ruoming Jin, and Bin Ren. Revisiting recommendation loss functions through contrastive
 613 learning (technical report). *arXiv preprint arXiv:2312.08520*, 2023.

614 Zhuang Liu, Yunpu Ma, Yuanxin Ouyang, and Zhang Xiong. Contrastive learning for recommender
 615 system. *arXiv preprint arXiv:2101.01317*, 2021.

617 David G Luenberger and Yinyu Ye. *Linear and nonlinear programming, 3rd Edition*. Springer,
 618 2008.

619 Kelong Mao, Jieming Zhu, Jinpeng Wang, Quanyu Dai, Zhenhua Dong, Xi Xiao, and Xiuqiang He.
 620 Simplex: A simple and strong baseline for collaborative filtering. In *Proceedings of the 30th ACM*
 621 *international conference on information & knowledge management*, pp. 1243–1252, 2021.

623 Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. Spectral regularization algorithms for learn-
 624 ing large incomplete matrices. *The Journal of Machine Learning Research*, 11:2287–2322, 2010.

625 Kenneth S Miller. On the inverse of the sum of matrices. *Mathematics magazine*, 54(2):67–72,
 626 1981.

627 Julien Monteil, Volodymyr Vaskovych, Wentao Lu, Anirban Majumder, and Anton Van Den Hengel.
 628 Marec: Metadata alignment for cold-start recommendation. In *Proceedings of the 18th ACM*
 629 *Conference on Recommender Systems*, pp. 401–410, 2024.

631 Jaewan Moon, Hye-young Kim, and Jongwuk Lee. It’s enough: Relaxing diagonal constraints in
 632 linear autoencoders for recommendation. In *Proceedings of the 46th International ACM SIGIR*
 633 *Conference on Research and Development in Information Retrieval*, pp. 1639–1648, 2023.

634 Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using distantly-labeled
 635 reviews and fine-grained aspects. In *Proceedings of the 2019 conference on empirical methods*
 636 *in natural language processing and the 9th international joint conference on natural language*
 637 *processing (EMNLP-IJCNLP)*, pp. 188–197, 2019.

638 Xia Ning and George Karypis. Slim: Sparse linear methods for top-N recommender systems. In
 639 *2011 IEEE 11th International Conference on Data Mining*, pp. 497–506. IEEE, 2011.

641 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 642 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*
 643 *in neural information processing systems*, 36:53728–53741, 2023.

644 Ran Raz. On the complexity of matrix product. In *Proceedings of the thiry-fourth annual ACM*
 645 *symposium on Theory of computing*, pp. 144–151, 2002.

647 Benjamin Recht. A simpler approach to matrix completion. *Journal of Machine Learning Research*,
 12(12), 2011.

648 Steffen Rendle. Factorization machines. In *2010 IEEE International Conference on Data Mining*,
 649 pp. 995–1000. IEEE, 2010.

650

651 Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr: Bayesian
 652 personalized ranking from implicit feedback. In *Proceedings of the Twenty-Fifth Conference on*
 653 *Uncertainty in Artificial Intelligence*, pp. 452–461, 2009.

654 Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explaining the
 655 predictions of any classifier. In *Proceedings of the 22nd ACM SIGKDD international conference*
 656 *on knowledge discovery and data mining*, pp. 1135–1144, 2016.

657

658 LM Rivera-Muñoz, Andrés Felipe Giraldo-Forero, and JD Martinez-Vargas. Deep matrix factoriza-
 659 tion models for estimation of missing data in a low-cost sensor network to measure air quality.
 660 *Ecological Informatics*, 71:101775, 2022.

661

662 Jinseok Seol, Minseok Gang, Sang-goo Lee, and Jaehui Park. Proxy-based item representation
 663 for attribute and context-aware recommendation. In *Proceedings of the 17th ACM International*
 664 *Conference on Web Search and Data Mining*, pp. 616–625, 2024.

665

666 Ohad Shamir and Shai Shalev-Shwartz. Collaborative filtering with the trace norm: Learning,
 667 bounding, and transducing. In *Proceedings of the 24th Annual Conference on Learning Theory*,
 668 pp. 661–678. JMLR Workshop and Conference Proceedings, 2011.

669

670 Ohad Shamir and Shai Shalev-Shwartz. Matrix completion with the trace norm: Learning, bounding,
 671 and transducing. *Journal of Machine Learning Research*, 15(1):3401–3423, 2014.

672

673 Martin Spišák, Radek Bartyzal, Antonín Hoskovec, and Ladislav Peška. On interpretability of linear
 674 autoencoders. In *Proceedings of the 18th ACM Conference on Recommender Systems*, pp. 975–
 675 980, 2024.

676

677 Harald Steck. Embarrassingly shallow autoencoders for sparse data. In *The World Wide Web Con-
 678 ference*, pp. 3251–3257, 2019.

679

680 Harald Steck. Autoencoders that don’t overfit towards the identity. In *Advances in Neural Infor-
 681 mation Processing Systems*, volume 33, pp. 19598–19608, 2020.

682

683 Harald Steck, Chaitanya Ekanadham, and Nathan Kallus. Is cosine-similarity of embeddings really
 684 about similarity? In *Companion Proceedings of the ACM Web Conference 2024*, pp. 887–890,
 685 2024.

686

687 Daniel J Stekhoven and Peter Bühlmann. Missforest—non-parametric missing value imputation for
 688 mixed-type data. *Bioinformatics*, 28(1):112–118, 2012.

689

690 Juan Terven, Diana-Margarita Cordova-Esparza, Julio-Alejandro Romero-González, Alfonso
 691 Ramírez-Pedraza, and EA Chávez-Urbiola. A comprehensive survey of loss functions and metrics
 692 in deep learning. *Artificial Intelligence Review*, 58(7):195, 2025.

693

694 Amund Tveit. On the complexity of matrix inversion. *Mathematical Note*, 1, 2003.

695

696 Vojtěch Vančura, Rodrigo Alves, Petr Kasalický, and Pavel Kordík. Scalable linear shallow autoen-
 697 coder for collaborative filtering. In *Proceedings of the 16th ACM Conference on Recommender*
 698 *Systems*, pp. 604–609, 2022.

699

700 Vladimir Vapnik. *The nature of statistical learning theory*. Springer science & business media,
 701 1999.

702

703 Maksims Volkovs, Guangwei Yu, and Tomi Poutanen. Dropoutnet: Addressing cold start in recom-
 704 mender systems. *Advances in neural information processing systems*, 30, 2017.

705

706 Chenyang Wang, Yuancqing Yu, Weizhi Ma, Min Zhang, Chong Chen, Yiqun Liu, and Shaoping Ma.
 707 Towards representation alignment and uniformity in collaborative filtering. In *Proceedings of the*
 708 *28th ACM SIGKDD conference on knowledge discovery and data mining*, pp. 1816–1825, 2022.

709

710 Feng Wang and Huaping Liu. Understanding the behaviour of contrastive loss. In *Proceedings of*
 711 *the IEEE/CVF conference on computer vision and pattern recognition*, pp. 2495–2504, 2021.

702 Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. Deep & cross network for ad click predictions.
 703 In *Proceedings of the ADKDD'17*, pp. 1–7. 2017.

704

705 Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. Neural graph collaborative
 706 filtering. In *Proceedings of the 42nd international ACM SIGIR conference on Research and*
 707 *development in Information Retrieval*, pp. 165–174, 2019.

708 Xiang Wang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, and Tat-Seng Chua. Disentangled
 709 graph collaborative filtering. In *Proceedings of the 43rd international ACM SIGIR conference on*
 710 *research and development in information retrieval*, pp. 1001–1010, 2020.

711

712 Runmin Wei, Jingye Wang, Mingming Su, Erik Jia, Shaoqiu Chen, Tianlu Chen, and Yan Ni. Miss-
 713 ing value imputation approach for mass spectrometry-based metabolomics data. *Scientific reports*,
 714 8(1):663, 2018.

715 Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian, and Xing Xie. Self-
 716 supervised graph learning for recommendation. In *Proceedings of the 44th international ACM*
 717 *SIGIR conference on research and development in information retrieval*, pp. 726–735, 2021.

718 Jiancan Wu, Xiang Wang, Xingyu Gao, Jiawei Chen, Hongcheng Fu, and Tianyu Qiu. On the effec-
 719 tiveness of sampled softmax loss for item recommendation. *ACM Transactions on Information*
 720 *Systems*, 42(4):1–26, 2024a.

721

722 Junkang Wu, Jiawei Chen, Jiancan Wu, Wentao Shi, Jizhi Zhang, and Xiang Wang. Bsl: Un-
 723 derstanding and improving softmax loss for recommendation. In *2024 IEEE 40th International*
 724 *Conference on Data Engineering (ICDE)*, pp. 816–830. IEEE, 2024b.

725 Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. On early stopping in gradient descent learn-
 726 ing. *Constructive approximation*, 26(2):289–315, 2007.

727

728 Jing Yi, Zijun Yao, Lingxu Ran, Hongzhu Guo, Xiaozhi Wang, Lei Hou, and Juanzi Li. Sparse auto-
 729 encoders interpret linguistic features in large language models. *arXiv preprint arXiv:2502.20344*,
 730 2025.

731 Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
 732 Graph convolutional neural networks for web-scale recommender systems. In *Proceedings of the*
 733 *24th ACM SIGKDD international conference on knowledge discovery & data mining*, pp. 974–
 734 983, 2018.

735

736 Jinsung Yoon, James Jordon, and Mihaela Schaar. Gain: Missing data imputation using generative
 737 adversarial nets. In *International conference on machine learning*, pp. 5689–5698. PMLR, 2018.

738 Chang Zhou, Jianxin Ma, Jianwei Zhang, Jingren Zhou, and Hongxia Yang. Contrastive learning for
 739 debiased candidate generation in large-scale recommender systems. In *Proceedings of the 27th*
 740 *ACM SIGKDD Conference on Knowledge Discovery & Data Mining*, pp. 3985–3995, 2021.

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A ILLUSTRATION OF THE DEQL FRAMEWORK**
 757

759 The loss of EDLAE and extended EDLAE is a special case of DEQL obtained by taking a specific $\{\mathcal{D}^{(i)}\}_{i=1}^n$.
 760 Their solutions follow from DEQL (Eq (9) and Eq (10)), and the complexity can be reduced to $O(n^3)$
 761 by constructing a Fast Algorithm (Section 4) based on Miller's matrix inverse theorem (Miller, 1981).

783 Figure 2: Comparison of the closed-form solution sets of DEQL and EDLAE. The white region
 784 represents the set of original EDLAE solution, and the green region represents the remaining
 785 solutions covered by DEQL. The orange circle marks solutions derived from a original EDLAE loss,
 786 whereas the cyan circle marks solutions obtained from the *extended* EDLAE loss (with hyperparam-
 787 eter choices $b > a$, which go beyond the original EDLAE constraints but still yield valid solutions).
 788

789 **B MATHEMATICAL PROOFS**
 790

791 *Proof of Lemma 3.2:* $H^{(i)}$ can be computed as follows. For any k, l ,

$$\begin{aligned}
 H_{kl}^{(i)} &= \mathbb{E}_\Delta[(\Delta \odot R)_{*k}^T A^{(i)2} (\Delta \odot R)_{*l}] = \mathbb{E}_\Delta[\sum_{s=1}^m \Delta_{sk} R_{sk} A_{ss}^{(i)2} \Delta_{sl} R_{sl}] \\
 &= \sum_{s=1}^m \mathbb{E}_\Delta[\Delta_{sk} R_{sk} A_{ss}^{(i)2} \Delta_{sl} R_{sl}] = \sum_{s=1}^m \mathbb{E}_\Delta[\Delta_{sk} \Delta_{sl} A_{ss}^{(i)2}] R_{sk} R_{sl}
 \end{aligned} \tag{24}$$

799 Note that $A_{ss}^{(i)} = A_{si}$, which depends on Δ_{si} . Since we assume each Δ_{ij} is an i.i.d. Bernoulli
 800 random variable, $\mathbb{E}_\Delta[\Delta_{sk} \Delta_{sl} A_{si}^2]$ is independent of s . Thus we can let z be a specific value of s
 801 and rewrite Eq (24) as

$$H_{kl}^{(i)} = \mathbb{E}_\Delta[\Delta_{zk} \Delta_{zl} A_{zi}^2] \sum_{s=1}^m R_{sk} R_{sl} = \mathbb{E}_\Delta[\Delta_{zk} \Delta_{zl} A_{zi}^2] R_{*k}^T R_{*l}$$

805 Define $G^{(i)} \in \mathbb{R}^{n \times n}$ where $G_{kl}^{(i)} = \mathbb{E}_\Delta[\Delta_{zk} \Delta_{zl} A_{zi}^2]$, then $H^{(i)} = G^{(i)} \odot R^T R$. $G^{(i)}$ can be
 806 computed as follows: Given i , for any k, l ,

$$\Delta_{zk} \Delta_{zl} A_{zi}^2 = \begin{cases} a^2 & \text{if } \Delta_{zk} = 1 \text{ and } \Delta_{zl} = 1 \text{ and } \Delta_{zi} = 0 \\ b^2 & \text{if } \Delta_{zk} = 1 \text{ and } \Delta_{zl} = 1 \text{ and } \Delta_{zi} = 1 \\ 0 & \text{otherwise} \end{cases}$$

810 Since

$$811 \quad P(\Delta_{zk} = 1 \text{ and } \Delta_{zl} = 1 \text{ and } \Delta_{zi} = 0) = \begin{cases} (1-p)p & \text{if } k = l \neq i \\ (1-p)^2p & \text{if } i \neq k \neq l \neq i \end{cases}$$

$$814 \quad P(\Delta_{zk} = 1 \text{ and } \Delta_{zl} = 1 \text{ and } \Delta_{zi} = 1) = \begin{cases} 1-p & \text{if } k = l = i \\ (1-p)^2 & \text{if } k = l \neq i \text{ or } k \neq l = i \text{ or } l \neq k = i \\ (1-p)^3 & \text{if } i \neq k \neq l \neq i \end{cases}$$

817 we have

$$819 \quad G_{kl}^{(i)} = \mathbb{E}_\Delta[\Delta_{zk}\Delta_{zl}A_{zi}^2] = \begin{cases} (1-p)b^2 & \text{if } k = l = i \\ (1-p)^2b^2 & \text{if } k \neq l = i \text{ or } l \neq k = i \\ (1-p)pa^2 + (1-p)^2b^2 & \text{if } k = l \neq i \\ (1-p)^2pa^2 + (1-p)^3b^2 & \text{if } i \neq k \neq l \neq i \end{cases}$$

824 On the other hand, $v^{(i)}$ can be computed as follows. For any k ,

$$826 \quad v_k^{(i)} = \mathbb{E}_\Delta[(\Delta \odot R)_{*k}^T A^{(i)2} R_{*i}] = \mathbb{E}_\Delta[\sum_{s=1}^m \Delta_{sk} R_{sk} A_{ss}^{(i)2} R_{si}] = \sum_{s=1}^m \mathbb{E}_\Delta[\Delta_{sk} A_{si}^2] R_{sk} R_{si}$$

$$829 \quad = \mathbb{E}_\Delta[\Delta_{zk} A_{zi}^2] R_{*k}^T R_{*i}$$

830 Define $u^{(i)} \in \mathbb{R}^n$ where $u_k^{(i)} = \mathbb{E}_\Delta[\Delta_{zk} A_{zi}^2]$, then we can write $v^{(i)} = u^{(i)} \odot R^T R_{*i}$. $u^{(i)}$ can be
831 computed as follows: Given any k ,

$$833 \quad u_k^{(i)} = \mathbb{E}_\Delta[\Delta_{zk} A_{zi}^2] = \begin{cases} (1-p)b^2 & \text{if } k = i \\ (1-p)pa^2 + (1-p)^2b^2 & \text{if } k \neq i \end{cases}$$

836 \square 838 Proof of Theorem 3.3: Observe that $G^{(i)}$ can be decomposed as the sum of two matrices:

$$840 \quad G^{(i)} = (1-p)b^2 M^{(i)} + (1-p)pa^2 N^{(i)}$$

841 where

$$843 \quad M_{kl}^{(i)} = \begin{cases} 1 & \text{if } k = l = i \\ 1-p & \text{if } k \neq l = i \text{ or } l \neq k = i \text{ or } k = l \neq i \\ (1-p)^2 & \text{if } i \neq k \neq l \neq i \end{cases}$$

$$846 \quad N_{kl}^{(i)} = \begin{cases} 0 & \text{if } k = l = i \text{ or } k \neq l = i \text{ or } l \neq k = i \\ 1 & \text{if } k = l \neq i \\ 1-p & \text{if } i \neq k \neq l \neq i \end{cases}$$

850 for $k, l \in \{1, 2, \dots, n\}$.851 We can show that for any i , $M^{(i)}$ is positive definite and $N^{(i)}$ is positive semi-definite: Let $x =$
852 $[x_1, x_2, \dots, x_n]^T \in \mathbb{R}^n$,

$$854 \quad x^T M^{(i)} x = \left(x_i + (1-p) \sum_{\substack{j=1 \\ j \neq i}}^n x_j \right)^2 + p(1-p) \left(\sum_{\substack{j=1 \\ j \neq i}}^n x_j^2 \right) > 0 \quad \text{for any } x \neq 0$$

$$859 \quad x^T N^{(i)} x = (1-p) \left(\sum_{\substack{j=1 \\ j \neq i}}^n x_j \right)^2 + p \left(\sum_{\substack{j=1 \\ j \neq i}}^n x_j^2 \right) \geq 0 \quad \text{for any } x$$

863 Hence, $G^{(i)}$ is positive definite if $a \geq 0, b > 0$ and $0 < p < 1$.

864 $R^T R$ is a positive semi-definite matrix. If no column of R is a zero vector, then all diagonal elements
 865 of $R^T R$ are positive. By the Schur product theorem (Theorem 7.5.3 (b), (Horn & Johnson, 2012)), if
 866 $G^{(i)}$ is positive definite and the diagonal elements of $R^T R$ are all positive, then $H^{(i)} = G^{(i)} \odot R^T R$
 867 is positive definite.

□

871 *Proof of Theorem 3.4:* Since the W^* in Eq (13) has zero diagonal, we only need to verify the
 872 equivalence of non-diagonal elements. Let us write $(C_{*i})_{-i}$ as $C_{*i,-i}$, then $W_{*i,-i}$ by Eq (13) is
 873 expressed as

$$874 \quad W_{*i,-i} = -\frac{1}{1-p} \frac{1}{C_{ii}} C_{*i,-i}$$

876 Thus, our goal is to prove

$$878 \quad (H_{-i}^{(i)})^{-1} v_{-i}^{(i)} = -\frac{1}{1-p} \frac{1}{C_{ii}} C_{*i,-i} \text{ for any } i \in \{1, 2, \dots, n\} \quad (25)$$

880 To show this, first,

$$\begin{aligned} 882 \quad (H_{-i}^{(i)})^{-1} v_{-i}^{(i)} &= (G^- \odot (R^T R)_{-i})^{-1} \cdot (1-p)pa^2(R^T R_{*i})_{-i} \\ 883 &= \left(\frac{1}{(1-p)pa^2} G^- \odot (R^T R)_{-i} \right)^{-1} (R^T R_{*i})_{-i} \\ 884 &= \frac{1}{1-p} \left((R^T R)_{-i} + \frac{p}{1-p} I \odot (R^T R)_{-i} \right)^{-1} (R^T R_{*i})_{-i} \end{aligned} \quad (26)$$

889 Next, remember that $C^{-1} = R^T R + \frac{p}{1-p} I \odot R^T R$. Since no column of R is a zero vector, $I \odot$
 890 $R^T R$ is positive definite, thus C^{-1} is positive definite. By the properties of matrix inverse, for an
 891 invertible matrix E , if we swap the i -th and j -th rows (or columns) of E and get E' , then E'^{-1} is
 892 equivalent to the matrix formed by swapping the i -th and j -th columns (or rows) of E^{-1} . Therefore,
 893 suppose $(C^{-1})^{(i)}$ is obtained from C^{-1} by first swapping the k th row with the $(k+1)$ th row for
 894 $k = i, i+1, \dots, n-1$ sequentially, then swapping the k th column with the $(k+1)$ th column for
 895 $k = i, i+1, \dots, n-1$ sequentially. We have

$$897 \quad (C^{-1})^{(i)} = \begin{bmatrix} (R^T R)_{-i} + \frac{p}{1-p} I \odot (R^T R)_{-i} & (R^T R_{*i})_{-i} \\ (R^T R_{*i})_{-i}^T & \frac{1}{1-p} (R^T R)_{ii} \end{bmatrix}$$

900 and

$$901 \quad ((C^{-1})^{(i)})^{-1} = C^{(i)} = \begin{bmatrix} M & C_{*i,-i} \\ C_{*i,-i}^T & C_{ii} \end{bmatrix}$$

904 where M is an $(n-1) \times (n-1)$ matrix that we are not interested in.

905 By the symmetric block matrix inverse (0.7.3, (Horn & Johnson, 2012)), we know that

$$907 \quad \begin{bmatrix} A & B^T \\ B & D \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} + A^{-1}B^T S^{-1}BA^{-1} & -A^{-1}B^T S^{-1} \\ -S^{-1}BA^{-1} & S^{-1} \end{bmatrix}$$

910 where $S = D - BA^{-1}B^T$.

911 Let $A = (R^T R)_{-i} + \frac{p}{1-p} (I \odot (R^T R)_{-i})$, $B^T = (R^T R_{*i})_{-i}$ and $S^{-1} = C_{ii}$, we have

$$913 \quad C_{*i,-i} = -A^{-1}B^T S^{-1} = -\left((R^T R)_{-i} + \frac{p}{1-p} I \odot (R^T R)_{-i} \right)^{-1} (R^T R_{*i})_{-i} \cdot C_{ii} \quad (27)$$

916 Combining Eq (27) and Eq (26), we get Eq (25), thereby completing the proof.

□

918 *Proof of Proposition 3.5:*

919 (a) Similar to Eq (11), we can expand objective function of Eq (14) as

920
$$l_{\mathcal{B}}(W) + \lambda \|W\|_F^2 = \sum_{i=1}^n h_{\mathcal{B}}^{(i)}(W_{*i}), \quad \text{where}$$

921
$$h_{\mathcal{B}}^{(i)}(W_{*i}) = W_{*i}^T H^{(i)} W_{*i} - 2W_{*i}^T v^{(i)} + \lambda \|W_{*i}\|_F^2 + \mathbb{E}_{\Delta \sim \mathcal{B}} [R_{*i}^T A^{(i)2} R_{*i}]$$

922 Hence, $\left[\frac{\partial h_{\mathcal{B}}^{(i)}}{\partial W_{*i}} \right]^T = 2H^{(i)}W_{*i} - 2v^{(i)} + 2\lambda W_{*i}$, and the solution of $\left[\frac{\partial h_{\mathcal{B}}^{(i)}}{\partial W_{*i}} \right]^T = 0$ becomes

923
$$W_{*i}^* = (H^{(i)} + \lambda I)^{-1} v^{(i)} \quad (28)$$

924 The optimal W^* is obtained by solving W_{*i}^* via Eq (28) for all i . The solution is unique since each
925 $h_{\mathcal{B}}^{(i)}$ is strictly convex.

926 (b) Eq (15) is equivalent to solving for the stationary points of the following a Lagrangian function

927
$$\mathcal{L}(W, \mu) = l_{\mathcal{B}}(W) + \mu^T \text{diag}(W)$$

928 where $\mu \in \mathbb{R}^n$. Since

929
$$\mathcal{L}(W, \mu) = \sum_{i=1}^n \bar{h}_{\mathcal{B}}^{(i)}(W_{*i}, \mu_i), \quad \text{where}$$

930
$$\bar{h}_{\mathcal{B}}^{(i)}(W_{*i}, \mu_i) = W_{*i}^T H^{(i)} W_{*i} - 2W_{*i}^T v^{(i)} + \mu_i W_{ii} + \mathbb{E}_{\Delta \sim \mathcal{B}} [R_{*i}^T A^{(i)2} R_{*i}]$$

931 the solution (W, μ) of the system of equations

932
$$\left[\frac{\partial \mathcal{L}}{\partial W} \right]^T = \left[\left[\frac{\partial \mathcal{L}}{\partial W_{*1}} \right]^T, \left[\frac{\partial \mathcal{L}}{\partial W_{*2}} \right]^T, \dots, \left[\frac{\partial \mathcal{L}}{\partial W_{*n}} \right]^T \right] = \left[\left[\frac{\partial \bar{h}_{\mathcal{B}}^{(1)}}{\partial W_{*1}} \right]^T, \left[\frac{\partial \bar{h}_{\mathcal{B}}^{(2)}}{\partial W_{*2}} \right]^T, \dots, \left[\frac{\partial \bar{h}_{\mathcal{B}}^{(n)}}{\partial W_{*n}} \right]^T \right] = 0$$

933
$$\left[\frac{\partial \mathcal{L}}{\partial \mu} \right]^T = \left[\frac{\partial \mathcal{L}}{\partial \mu_1}, \frac{\partial \mathcal{L}}{\partial \mu_2}, \dots, \frac{\partial \mathcal{L}}{\partial \mu_n} \right]^T = \left[\frac{\partial \bar{h}_{\mathcal{B}}^{(1)}}{\partial \mu_1}, \frac{\partial \bar{h}_{\mathcal{B}}^{(2)}}{\partial \mu_2}, \dots, \frac{\partial \bar{h}_{\mathcal{B}}^{(n)}}{\partial \mu_n} \right]^T = 0$$

934 is given by taking

935
$$\left[\frac{\partial \bar{h}_{\mathcal{B}}^{(i)}}{\partial W_{*i}} \right]^T = 2H^{(i)}W_{*i} - 2v^{(i)} + \mu_i l^{(i)} = 0 \quad (29)$$

936
$$\frac{\partial \bar{h}_{\mathcal{B}}^{(i)}}{\partial \mu_i} = W_{ii} = 0 \quad (30)$$

937 for $i = 1, 2, \dots, n$. Solving Eq (29), we get

938
$$W_{*i} = H^{(i)-1} (v_i - \frac{1}{2} \mu_i l^{(i)}) \quad (31)$$

939 Combining Eq (30) and Eq (31), we have

940
$$W_{ii} = (H^{(i)-1} v^{(i)})_i - \frac{1}{2} \mu_i (H^{(i)-1} l^{(i)})_i = 0 \implies \mu_i = 2 \frac{(H^{(i)-1} v^{(i)})_i}{(H^{(i)-1} l^{(i)})_i} \quad (32)$$

941 Finally, plugging Eq (33) into Eq (31), we get the solution of W^* : For any i ,

942
$$W_{*i}^* = H^{(i)-1} \left(v^{(i)} - \frac{(H^{(i)-1} v^{(i)})_i}{(H^{(i)-1} l^{(i)})_i} l^{(i)} \right) = H^{(i)-1} v^{(i)} - \frac{(H^{(i)-1} v^{(i)})_i}{(H^{(i)-1} l^{(i)})_i} H^{(i)-1} l^{(i)} \quad (33)$$

943 The solution Eq (33) is unique. By *second order sufficiency conditions* (Section 11.5, (Luenberger
944 & Ye, 2008)), one can show that any W^* that minimizes $\mathcal{L}(W, \mu)$ is a strict local minimizer. Thus,
945 the solution Eq (33) gives the global minimizer.

946

□

972 **C IMPROVED COMPLEXITY FOR THE FAST ALGORITHM**
 973

974 As discussed in Section 4, when using *basic* algorithms for matrix multiplication and inversion,
 975 our Fast Algorithm a computational cost of $O(\max(m + n)n^2)$. The main bottleneck lies in the
 976 precomputing stage: the $m \times n$ product $R^T R$ costs $O(mn^2)$; the $n \times n$ inversion H_0^{-1} costs $O(n^3)$;
 977 and multiplying H_0^{-1} with $n \times n$ matrices $U \odot R^T R$ and $G_1 \odot R^T R$ costs $O(n^3)$. The following
 978 corollary shows that these costs can be reduced when *more advanced* matrix multiplication and
 979 inversion algorithms are applied.

980 **Corollary C.1.** (a) If R is sparse, contains only integer elements, and has k nonzero elements
 981 ($\max(m, n) < k < mn$), then $R^T R$ can be computed with complexity $O((2k + n^2)^{1.346})$.

982 (b) The cost of computing H_0^{-1} can be reduced to $O(n^{2.376})$, but cannot be improved beyond
 983 $\Omega(n^2 \log n)$.

984 (c) The cost of computing $H_0^{-1}(U \odot R^T R)$ and $H_0^{-1}(U \odot R^T R)$ can each be reduced to $O(n^{2.376})$,
 985 but cannot be improved beyond $\Omega(n^2 \log n)$.

986 *Proof:*

987 (a) By the analysis of (Abboud et al., 2024), consider the multiplication of sparse integer matrices
 988 $A^{x \times y}$ and $B^{y \times z}$. Let m_{in} be the total number of nonzeros in the inputs A and B , and let m_{out} be the
 989 number of nonzeros in the output AB . If $m_{\text{in}} \geq \max(x, y, z)$, then the matrix multiplication can be
 990 computed with complexity $O((m_{\text{in}} + m_{\text{out}})^{1.346})$.

991 For computing $R^T R$, we have $m_{\text{in}} = 2k$ and $m_{\text{out}} \leq n^2$, so the total complexity is $O((2k + n^2)^{1.346})$.

992 (b) This proof mainly follows (Tveit, 2003). By Theorem 28.1 and Theorem 28.2 in (Cormen et al.,
 993 2009), let $I(n)$ be the complexity of inverting any $n \times n$ nonsingular matrix, and $M(n)$ be the
 994 complexity of multiplying two $n \times n$ matrices, then $I(n) = \Theta(M(n))$. That is, the complexity
 995 of matrix inversion is asymptotically both upper- and lower-bounded by the complexity of matrix
 996 multiplication.

997 Using the Coppersmith-Winograd algorithm (Coppersmith & Winograd, 1987), one of the fastest
 998 known algorithms for multiplying two $n \times n$ matrices, we have $M(n) = O(n^{2.376})$, which gives the
 999 upper bound $I(n) = O(n^{2.376})$.

1000 Moreover, (Raz, 2002) proved that the complexity multiplying two $n \times n$ matrices cannot be better
 1001 than $M(n) = \Omega(n^2 \log n)$. Thus $I(n) = \Omega(n^2 \log n)$.

1002 (c) Following (b), we have the upper bound $M(n) = O(n^{2.376})$ and the lower bound $M(n) =$
 1003 $\Omega(n^2 \log n)$.

1004 \square
 1005 Corollary C.1 shows that it is possible to reduce the complexity of the Fast Algorithm to $O((2k +$
 1006 $n^2)^{1.346} + n^{2.376})$ by choosing efficient algorithms for matrix multiplication and inversion; however,
 1007 it is impossible to reduce it below $\Omega(n^2 \log n)$.

1008 It is easy to check that that the same conclusion also applies to computing the closed-form solutions
 1009 of EASE and EDLAE.

1010 **D DEQL WITH LOW-RANK CONSTRAINT**

1011 This section discusses the closed-form solution of Eq (7) under low-rank constraint of W . Given the
 1012 rank k ($k \leq n$), we would like to solve

1013
$$\underset{W}{\operatorname{argmin}} l_{\mathcal{D}}(W) = \sum_{i=1}^n \mathbb{E}_{(X, Y) \sim \mathcal{D}^{(i)}} [\|Y_{*i} - XW_{*i}\|_F^2] \quad \text{s.t. rank}(W) \leq k \quad (34)$$

1014 **Theorem D.1.** Suppose $\mathbb{E}_{(X, Y) \sim \mathcal{D}^{(i)}}[X^T X]$ is independent of i , and denote

1015 $\Sigma_{xx} = \mathbb{E}_{(X, Y) \sim \mathcal{D}^{(i)}}[X^T X]$

1016 $\Sigma_{xy} = [\mathbb{E}_{(X, Y) \sim \mathcal{D}^{(1)}}[X^T Y_{*1}], \mathbb{E}_{(X, Y) \sim \mathcal{D}^{(2)}}[X^T Y_{*2}], \dots, \mathbb{E}_{(X, Y) \sim \mathcal{D}^{(n)}}[X^T Y_{*n}]]$

1026 If Σ_{xx} is non-singular, then the closed-form solution of Eq (34) is given by
 1027

$$1028 \quad W^* = \Sigma_{xx}^{-1/2} \left[\Sigma_{xx}^{-1/2} \Sigma_{xy} \right]_k \quad (35)$$

1029
 1030 Here, let $\Sigma_{xx}^{-1/2} \Sigma_{xy} = U \begin{bmatrix} \sigma_1 & & & \\ & \sigma_2 & & \\ & & \dots & \\ & & & \sigma_n \end{bmatrix} V^T$ be the singular value decomposition where $\sigma_1 \geq$
 1031
 1032 $\sigma_2 \dots \geq \sigma_n$, we denote $\left[\Sigma_{xx}^{-1/2} \Sigma_{xy} \right]_k = \sum_{i=1}^k \sigma_i U_{*i} V_{*i}^T$.
 1033
 1034

1035
 1036 *Proof:* Denote $y^{(i)} = \mathbb{E}_{(X, Y) \sim \mathcal{D}^{(i)}}[Y_{*i}^T Y_{*i}]$. By Eq (7),
 1037

$$\begin{aligned} 1038 \quad l_{\mathcal{D}}(W) &= \sum_{i=1}^n W_{*i}^T \Sigma_{xx} W_{*i} - 2W_{*i}^T (\Sigma_{xy})_{*i} + y^{(i)} \\ 1039 &= \sum_{i=1}^n \left(\Sigma_{xx}^{1/2} W_{*i} \right)^T \Sigma_{xx}^{1/2} W_{*i} - 2 \left(\Sigma_{xx}^{1/2} W_{*i} \right)^T \Sigma_{xx}^{-1/2} (\Sigma_{xy})_{*i} + y^{(i)} \\ 1040 &= \sum_{i=1}^n \left\| \Sigma_{xx}^{1/2} W_{*i} - \Sigma_{xx}^{-1/2} (\Sigma_{xy})_{*i} \right\|_F^2 + y^{(i)} - (\Sigma_{xy})_{*i}^T \Sigma_{xx}^{-1} (\Sigma_{xy})_{*i} \\ 1041 &= \left\| \Sigma_{xx}^{1/2} W - \Sigma_{xx}^{-1/2} \Sigma_{xy} \right\|_F^2 + \sum_{i=1}^n y^{(i)} - (\Sigma_{xy})_{*i}^T \Sigma_{xx}^{-1} (\Sigma_{xy})_{*i} \\ 1042 &= \left\| \Sigma_{xx}^{1/2} W - \Sigma_{xx}^{-1/2} \Sigma_{xy} \right\|_F^2 + \sum_{i=1}^n y^{(i)} - (\Sigma_{xy})_{*i}^T \Sigma_{xx}^{-1} (\Sigma_{xy})_{*i} \\ 1043 &= \left\| \Sigma_{xx}^{1/2} W - \Sigma_{xx}^{-1/2} \Sigma_{xy} \right\|_F^2 + \sum_{i=1}^n y^{(i)} - (\Sigma_{xy})_{*i}^T \Sigma_{xx}^{-1} (\Sigma_{xy})_{*i} \\ 1044 &= \left\| \Sigma_{xx}^{1/2} W - \Sigma_{xx}^{-1/2} \Sigma_{xy} \right\|_F^2 + \sum_{i=1}^n y^{(i)} - (\Sigma_{xy})_{*i}^T \Sigma_{xx}^{-1} (\Sigma_{xy})_{*i} \\ 1045 &= \left\| \Sigma_{xx}^{1/2} W - \Sigma_{xx}^{-1/2} \Sigma_{xy} \right\|_F^2 + \sum_{i=1}^n y^{(i)} - (\Sigma_{xy})_{*i}^T \Sigma_{xx}^{-1} (\Sigma_{xy})_{*i} \\ 1046 &= \left\| \Sigma_{xx}^{1/2} W - \Sigma_{xx}^{-1/2} \Sigma_{xy} \right\|_F^2 + \sum_{i=1}^n y^{(i)} - (\Sigma_{xy})_{*i}^T \Sigma_{xx}^{-1} (\Sigma_{xy})_{*i} \\ 1047 &= \left\| \Sigma_{xx}^{1/2} W - \Sigma_{xx}^{-1/2} \Sigma_{xy} \right\|_F^2 + \sum_{i=1}^n y^{(i)} - (\Sigma_{xy})_{*i}^T \Sigma_{xx}^{-1} (\Sigma_{xy})_{*i} \\ 1048 &= \left\| \Sigma_{xx}^{1/2} W - \Sigma_{xx}^{-1/2} \Sigma_{xy} \right\|_F^2 + \sum_{i=1}^n y^{(i)} - (\Sigma_{xy})_{*i}^T \Sigma_{xx}^{-1} (\Sigma_{xy})_{*i} \end{aligned}$$

1049
 1050 By Eckart–Young–Mirsky theorem, $\left[\Sigma_{xx}^{-1/2} \Sigma_{xy} \right]_k = \underset{\text{rank}(Q) \leq k}{\text{argmin}} \left\| Q - \Sigma_{xx}^{-1/2} \Sigma_{xy} \right\|_F^2$ for any $Q \in$
 1051
 1052 $\mathbb{R}^{n \times n}$. Therefore, $\Sigma_{xx}^{1/2} W^* = \left[\Sigma_{xx}^{-1/2} \Sigma_{xy} \right]_k \implies W^* = \Sigma_{xx}^{-1/2} \left[\Sigma_{xx}^{-1/2} \Sigma_{xy} \right]_k$. \square
 1053

1054 Note that the low-rank solution Eq (35) is not applicable when $\Sigma_{xx} = \mathbb{E}_{(X, Y) \sim \mathcal{D}^{(i)}}[X^T X]$ de-
 1055 pends on i : If Σ_{xx} varies with i , then in the proof $\sum_{i=1}^n \left\| \Sigma_{xx}^{1/2} W_{*i} - \Sigma_{xx}^{-1/2} (\Sigma_{xy})_{*i} \right\|_F^2$ cannot be
 1056 combined into $\left\| \Sigma_{xx}^{1/2} W - \Sigma_{xx}^{-1/2} \Sigma_{xy} \right\|_F^2$.
 1057

1058 The low-rank solution Eq (35) is applicable to EDLAE only when taking $a = b$: by Eq (10), Σ_{xx} is
 1059 represented by $H^{(i)}$; by Lemma 3.2, if $a = b$, $H^{(i)}$ will have all diagonal entries being $(1-p)b^2$
 1060 and all off-diagonal entries being $(1-p)^2b^2$ for any i , thus being independent of i . However, when
 1061 $a \neq b$, $H^{(i)}$ will depend on i , making Eq (34) not applicable.
 1062

1064 E RELATED WORKS

1065
 1066 The evolution of collaborative filtering (CF) in recommendation systems has undergone several
 1067 key paradigm shifts. In its early stages, neighborhood-based methods dominated the field, with
 1068 influential works such as user-item KNN approaches (Hu et al., 2008) and sparse linear models
 1069 (SLIM) (Ning & Karypis, 2011) setting the foundation. However, the Netflix Prize competition
 1070 marked a turning point, accelerating the adoption of matrix factorization (MF) techniques, which
 1071 offered improved scalability and latent feature learning (Koren et al., 2009). These models aim to
 1072 solve a matrix completion problem, which has been extensively studied theoretically (Candès & Tao,
 1073 2010; Recht, 2011; Foygel et al., 2011; Shamir & Shalev-Shwartz, 2011).

1074 The rise of deep learning (LeCun et al., 2015) further revolutionized the landscape, introducing
 1075 more expressive neural architectures. Among these, graph-based models gained prominence, in-
 1076 cluding Neural Collaborative Filtering (NCF) (He et al., 2017), which replaced traditional MF with
 1077 neural networks, and later refinements like Neural Graph Collaborative Filtering (NGCF) (Wang
 1078 et al., 2019) and LightGCN (He et al., 2020), which explicitly leveraged graph structures for higher-
 1079 order user-item relationship modeling. Simultaneously, industry-scale solutions emerged, blending
 memorization and generalization through hybrid architectures such as Wide & Deep (Cheng et al.,

1080 2016), DeepFM (Guo et al., 2017), and Deep & Cross Networks (DCN) (Wang et al., 2017), which
 1081 automated feature interactions while maintaining interpretability.
 1082

1083 Alongside the ongoing research that explores various models to enhance recommendation perfor-
 1084 mance, the research community has gradually recognized the importance of gaining a deeper the-
 1085 oretical understanding of loss functions (Terven et al., 2025; Wu et al., 2024b). These theoretical
 1086 investigations seek to reveal the fundamental principles and mathematical underpinnings that govern
 1087 the behavior and optimization direction of recommendation systems, thereby advancing our over-
 1088 all understanding of how these systems function. BPR (Rendle et al., 2009). Early methods often
 1089 adopted pointwise L2 loss over observed ratings or implicit feedback (Hu et al., 2008), which is
 1090 simple and analytically tractable. Later, pairwise ranking losses such as BPR (Rendle et al., 2009)
 1091 became popular for top-N recommendation, optimizing relative preferences between positive and
 1092 negative items. Softmax-based listwise losses, such as sampled softmax (Jannach et al., 2010) were
 1093 introduced to better align with ranking metrics like NDCG. In recent years, contrastive learning
 1094 frameworks (Zhou et al., 2021; Wang et al., 2022) have gained prominence as a powerful and effec-
 1095 tive approach, particularly in unsupervised recommendation scenarios. Notable studies such as (Li
 1096 et al., 2023; Liu et al., 2021) have further showcased their effectiveness in this domain.
 1097

1098 Notably, recent studies (Rendle, 2010) have shown that well-tuned linear models can outperform
 1099 more complex deep architectures on sparse implicit data, challenging the assumption that greater
 1100 model expressiveness always yields better performance. At the same time, alternative objectives
 1101 such as pairwise ranking losses (Rendle et al., 2009), listwise softmax, and contrastive formulations
 1102 (Zhou et al., 2021; Wang & Liu, 2021)—though popular—often suffer from instability, sensitivity
 1103 to negative sampling, and increased computational overhead. Motivated by these findings, we adopt
 1104 a different perspective: rather than seeking more complex losses or models, we focus on refining
 1105 linear models under the classical L2 loss.
 1106

1107 LAEs are one type of the linear recommender models. One of the earliest LAE model is SLIM (Ning
 1108 & Karypis, 2011), which trains the loss $\|R - RW\|_F^2$ with L1 and L2 regularizers. The zero-diagonal
 1109 constraint was first introduced in EASE (Steck, 2019) to prevent solutions from overfitting toward
 1110 the identity matrix. EDLAE (Steck, 2020) instead employs dropout and emphasis as an alternative
 1111 strategy to mitigate overfitting. ELSA (Vančura et al., 2022) construct the model W with a zero
 1112 diagonal by enforcing $W = AA^T - I$ for some matrix A subject to $\|A_{i*}\|_2^2 = 1$ for all i . (Moon
 1113 et al., 2023) shows that a strict zero-diagonal constraint does not always yield the best performance,
 1114 and that replacing it with a diagonal bounded by a small norm during training can improve results.
 1115

1116 Finally, we would like to point out the relationship between linear autoencoders (LAEs) and model
 1117 explainability. LAE-based architectures provide a uniquely transparent mapping between input and
 1118 output representations through a single linear operator W , where each element W_{ij} quantifies how
 1119 item j contributes to predicting item i . This white-box structure makes LAEs inherently inter-
 1120 pretable compared with matrix factorization and deep neural recommenders, whose latent dimen-
 1121 sions are unidentifiable or highly nonlinear. Earlier models such as SLIM Ning & Karypis (2011)
 1122 and EASE Steck (2019) demonstrated that linear reconstruction of co-occurrence patterns can yield
 1123 competitive recommendation performance while exposing direct item–item relationships. The more
 1124 recent EDLAE Steck (2020) extended this idea by explicitly adding random dropout, ensuring that
 1125 learned dependencies reflect genuine collaborative signals.
 1126

1127 This interpretability direction aligns with broader developments in machine learning, where linear
 1128 and sparse representations are increasingly used to reveal structure inside complex neural systems.
 1129 In particular, Sparse Autoencoders (SAEs) trained on large language models have been shown to un-
 1130 cover highly interpretable and often monosemantic latent features et al. (2023); Cunningham et al.
 1131 (2023); Yi et al. (2025); Fereidouni et al. (2025). These findings extend earlier insights that deep
 1132 activations can be linearly decomposed into disentangled semantic directions, a principle also sup-
 1133 ported by linear probes Alain & Bengio (2016). Complementary approaches such as LIME Ribeiro
 1134 et al. (2016) further demonstrate how local linear surrogates can explain the predictions of arbitrary
 1135 black-box models, reinforcing the idea that linearity provides a powerful lens for interpretability.
 1136 Building on this insight, our proposed DEQL framework extends the explanatory power of LAEs,
 1137 preserving their interpretability while enhancing expressive capacity.
 1138

1134
1135

F SUPPLEMENTAL EXPERIMENTS

1136
1137

F.1 STATISTICAL SIGNIFICANCE

1138
1139
1140
1141
1142

Since the closed-form solution of DEQL is deterministic, each b corresponds to a fixed model, so any statistical noise in test performance cannot be attributed to model randomness; rather, it arises from data randomness. To demonstrate that the performance improvements in Tables 1 and 2 are not due to statistical biases in dataset splitting, we conduct significance tests to confirm that the improvements of DEQL(L2) are statistically meaningful.

1143
1144
1145
1146
1147
1148
1149
1150

We re-sampled the train/validation/test splits under five different random seeds and evaluated all methods using the same best hyperparameters identified in the original experiments. We report the mean performance with standard deviations (Table 3), and further conducted pairwise t-tests for every dataset and metric (Table 4). These analyses consistently show that although the performance margin is small, **DEQL(L2)** reliably outperforms its strictly constrained counterpart **EDLAE**. This indicates that relaxing the diagonal constraint does not introduce instability; rather, the combination of $b > 0$ and L_2 regularization yields a slightly more flexible model that achieves better overall accuracy.

1151

1152
1153
1154

Table 3: Five run performance comparisons among DEQL(L2+diag), DEQL(L2), and EDLAE across different datasets. Best value per column is highlighted in bold.

Model	Games		Beauty		Gowalla		ML20M		Netflix		MSD	
	R@20	N@20										
EDLAE	0.2674 \pm 0.0144	0.1729 \pm 0.0030	0.1526 \pm 0.0194	0.0969 \pm 0.0164	0.2266 \pm 0.0019	0.2061 \pm 0.0027	0.3971 \pm 0.0031	0.3482 \pm 0.0026	0.3657 \pm 0.0012	0.3434 \pm 0.0006	0.3317 \pm 0.0006	0.3223 \pm 0.0007
DEQL(L2+diag)	0.2669 \pm 0.0188	0.1737 \pm 0.0027	0.1517 \pm 0.0225	0.1001 \pm 0.0148	0.2270 \pm 0.0026	0.2071 \pm 0.0031	0.3972 \pm 0.0036	0.3482 \pm 0.0027	0.3657 \pm 0.0013	0.3433 \pm 0.0006	0.3344 \pm 0.0005	0.3247 \pm 0.0015
DEQL(L2)	0.2745 \pm 0.0153	0.1738 \pm 0.0067	0.1567 \pm 0.0208	0.1023 \pm 0.0164	0.2279 \pm 0.0023	0.2076 \pm 0.0029	0.3974 \pm 0.0032	0.3484 \pm 0.0026	0.3660 \pm 0.0012	0.3437 \pm 0.0006	0.3333 \pm 0.0005	0.3251 \pm 0.0007

1155

1156

1157

1158

1159
1160
1161
1162
1163

Table 4: Pairwise t-tests results at significance level $\alpha = 0.05$. The null hypothesis $A \leq B$ means that method A performs no better than method B on the given metrics and datasets. Each cell reports the decision to to reject (Rej) or accept (Acc) the null hypothesis on the first line and the corresponding p-value on the second line. If p-value $< \alpha$, the null hypothesis is rejected (i.e., the evidence supports that A performs better than B).

Null Hypothesis	Games		Beauty		Gowalla		ML20M		Netflix		MSD	
	R@20	N@20										
DEQL(L2) \leq DEQL(L2+diag)	Rej (p=0.0411)	Acc (p=0.4884)	Acc (p=0.1486)	Rej (p=0.0353)	Rej (p=0.0134)	Rej (p=0.0164)	Acc (p=0.1924)	Acc (p=0.0523)	Rej (p=0.0171)	Rej (p=0.0001)	Acc (p=0.9938)	Acc (p=0.2165)
DEQL(L2) \leq EDLAE	Rej (p=0.0137)	Acc (p=0.4008)	Acc (p=0.0729)	Rej (p=0.0013)	Rej (p=0.0083)	Rej (p=0.0001)	Rej (p=0.0033)	Rej (p=0.0400)	Rej (p=0.0401)	Rej (p=0.0001)	Rej (p=0.0000)	Rej (p=0.0000)

1164

1165

1166

1167

1168

1169

1170

F.2 LEARNED DIAGONAL VALUES IN DEQL(L2)

We visualize the distributions of diagonal values learned by **DEQL(L2)** across all datasets in Figure 3. Compared with the hard zero-diagonal constraint in EDLAE, relaxing the constraint in DEQL(L2) (i.e., removing the strict $\text{diag}(W) = 0$ requirement) allows the diagonal entries to shift slightly toward positive values. However, the vast majority of diagonal terms remain very close to zero, with sharp modes typically in the range 0.01–0.10 across datasets.

1177
1178
1179
1180
1181
1182
1183

This pattern indicates that although DEQL removes the strict $\text{diag}(W) = 0$ constraint, our formulation is still able to dynamically suppress the diagonal terms, preventing them from growing into large or semantically meaningful values. In other words, the model gains flexibility (allowing slight positive drift) without sacrificing stability. The diagonals stay small enough that overfitting is effectively avoided even without the hard constraint, which aligns with the empirical findings by (Moon et al., 2023), showing that relaxing the zero-diagonal constraint to a diagonal with small values can improve performance.

1184
1185
1186
1187

In this section, we provided more experimental details and results (as in Table 5) regarding training time and memory usage.

Figure 3: Diagonal Value Distribution Across different datasets

Table 5 compares the time and memory costs of deep learning models and LAEs. It shows that for large datasets like Yelp 2018, DEQL families finish training in just 8 minutes on a CPU, which is much faster than all other advanced deep learning baselines.

The primary reason LAE-based methods (e.g., DEQL) exhibit higher memory cost but lower training time than deep learning-based methods is due to their computational paradigm: deep learning-based models train via batch gradient descent, loading only small batches into GPU memory at each step, which keeps memory usage around 3GB but requires many iterations, leading to longer training time. In contrast, LAE-based methods load the entire matrix into memory to compute its inverse as part of a closed-form solution, which may require 80GB for datasets like Yelp2018. This space-time trade-off enables the entire training process to finish much faster, as shown in our experiments.

Unlike GPU-intensive GNN-based models such as LightGCN or SSM (GNN), DEQL families are particularly suitable for deployment in memory-limited or CPU-only environments, making it highly practical. In practice, modern CPU servers often equip with 500 GB – 1 TB RAM, mitigating this issue.

Table 5: Approximate Training time and memory usage on Yelp2018. Deep based models mainly consume GPU memory, while others rely on CPU memory.

Model	Time (min)	Memory (GB)	Memory Type
LightGCN	30	1	GPU
SimpleX (GNN)	130	1	GPU
SSM (MF)	13	1	GPU
SSM (GNN)	13	1	GPU
DLAE	2	70	CPU
EASE	2	60	CPU
EDLAE	4	70	CPU
DEQL	6	80	CPU
DEQL (L2+zero-diag)	8	80	CPU
DEQL (L2)	8	80	CPU

1242 **G DISCUSSIONS**
12431244 **G.1 LIMITATIONS**
12451246 One limitation of our work is that DEQL is currently used only as an optimization tool, providing
1247 closed-form solutions under given hyperparameters. However, it does not offer guidance on which
1248 hyperparameter choices lead to improved testing performance. As a result, hyperparameter selec-
1249 tion still relies on empirical tuning, and its theoretical understanding remains underexplored. Our
1250 experiments show that datasets with a larger user–item cardinality ratio tend to perform well under
1251 large b (Section 5.4).
12521253 **G.2 EXPLANATION FOR THE PERFORMANCE GAINS FROM REGULARIZATION**
12541255 Here we provide a possible explanation for the experimental results in Table 1 and Table 2, which
1256 show why the performance of DEQL(L2) and DEQL(L2 + zero-diag) surpasses that of plain DEQL.
1257 According to statistical learning theory (Vapnik, 1999), searching for solutions within a large hy-
1258 pothesis space often leads to overfitting, while searching in a small hypothesis space may cause
1259 underfitting – both cases resulting in poor testing performance. Structural risk minimization (SRM)
1260 (Vapnik, 1999) addresses this trade-off by controlling the size of the hypothesis space. In this con-
1261 text, both the L2 regularizer and the zero-diagonal constraint can be interpreted as SRM techniques
1262 that restrict the hypothesis space. Let $\mathcal{U}_{\text{DEQL}}$, $\mathcal{U}_{\text{DEQL(L2)}}$ and $\mathcal{U}_{\text{DEQL(L2 + zero-diag)}}$ denote the hypothesis
1263 spaces of DEQL, DEQL(L2) and DEQL(L2 + zero-diag), respectively. Then we have the nested
1264 relationship $\mathcal{U}_{\text{DEQL(L2 + zero-diag)}} \subset \mathcal{U}_{\text{DEQL(L2)}} \subset \mathcal{U}_{\text{DEQL}}$. However, the hypothesis space that yields the
1265 best performance depends on the dataset, as reflected in the results: on some datasets DEQL(L2 +
1266 zero-diag) performs better, while on others DEQL(L2) performs better.
12671268 **G.3 PRACTICAL SCALABILITY OF DEQL**
12691270 The LAE models produced by DEQL or other methods are typically represented by an $n \times n$ ma-
1271 trix. Here, *practical scalability* concerns how to handle, for large n , both the *inefficiency of the*
1272 *Fast Algorithm* used to compute the model and the associated *memory prohibitivity* issues. Since
1273 computation is often performed on GPUs – which generally have much smaller memory capacity
1274 than CPU RAM – we discuss the scalability challenge at two levels of memory prohibitivity:
12751276 **1. The $n \times n$ matrix matrix fits in CPU RAM but cannot fit in GPU memory:** At this level, we do
1277 not need to impose rank constraints, and the model can remain full-rank. The issue is computational:
1278 the Fast Algorithm depends on matrix multiplication and inversion, which are too slow on CPU.
1279 Using the GPU would accelerate these operations, but matrices such as R or $R^T R$ are too large to
1280 load into GPU for a single-pass computation. Instead, we can use block matrix multiplication and
1281 block matrix inversion. These methods partition R or $R^T R$ into blocks that fit in GPU memory and
1282 can be processed sequentially.
12831284 **2. The $n \times n$ matrix cannot fit in CPU RAM:** In this case, a low-rank LAE can be used instead
1285 of a full-rank model. Importantly, the number of parameters in an LAE can be freely scaled. For
1286 example, ELSA (Vančura et al., 2022) represents the model as $A^T A - I \in \mathbb{R}^{n \times n}$ where $A \in \mathbb{R}^{l \times n}$.
1287 Although the final model is still an $n \times n$ matrix, the number of parameters depends on the size of A ,
1288 which can be flexibly controlled through l . Choosing $l < n$ produces a low-rank LAE. Moreover, as
1289 shown in Appendix D, a low-rank DEQL closed-form solution can also be obtained in the restricted
1290 case $a = b$.
12911292 Additionally, to accelerate computation, one may consider replacing the standard $O(n^3)$ matrix
1293 multiplication algorithm with Strassen’s algorithm, which runs in $O(n^{2.81})$. Although Appendix
1294 C shows that the complexity can in principle be further reduced to $O(n^{2.376})$ using the Copper-
1295 smith–Winograd algorithm, this method is difficult to deploy in practice, and its asymptotic advan-
1296 tage only appears for extremely large n far beyond practical scenarios.
12971298 **G.4 ADVANTAGES OF CLOSED-FORM SOLUTIONS**
12991300 DEQL provides a framework for computing and analyzing closed-form solutions. A closed-form
1301 solution guarantees the global optimum of the training objective, but it does not necessarily yield
1302

1296 the best test performance, as it may overfit the training data. In contrast, gradient-based optimization
 1297 can rely on *early stopping* as a regularization technique (Yao et al., 2007) to mitigate overfitting, in
 1298 which case the resulting model does *not* minimize the training objective.

1299 However, the closed-form solution has a distinct advantage in hyperparameter tuning. When hyper-
 1300 parameters are fixed, gradient-based training typically produces non-deterministic models due to the
 1301 reliance on early stopping, which introduces randomness in addition to the randomness from data
 1302 splitting. This compounded uncertainty makes it harder to assess whether a particular hyperparam-
 1303 eter setting truly leads to good generalization.

1304 By contrast, the closed-form solution is fully deterministic for any fixed hyperparameters, so the only
 1305 source of randomness stems from the data itself. This substantially reduces uncertainty in model
 1306 evaluation and makes hyperparameter tuning more reliable. Consequently, closed-form solutions
 1307 enable cleaner hyperparameter selection and facilitate reproducibility.

1309 G.5 LAEs VERSUS DEEP MODELS

1312 Deep neural networks have become popular in industrial recommender systems due to their flexi-
 1313 bility: their depth and width are not constrained by the dataset dimension n . In contrast, LAEs are
 1314 typically represented by an $n \times n$ matrix, inherently tied to n . Although their parameter count can be
 1315 scaled while preserving the $n \times n$ size – such as the ELSA model described in Appendix G.3 – these
 1316 models remain comparatively shallow. As a result, deep models generally benefit from more flexible
 1317 parameter scaling and architectural design, which often yields stronger representation power.

1318 However, this does not imply that LAEs always underperform deep networks. Empirical results
 1319 show that LAE models outperform deep neural networks on sparse datasets where #users \times #items
 1320 is far larger than the number of observed interactions (nonzeros); such sparsity often arises in cold-
 1321 start or low-information regimes (e.g., users with short histories) in industry (Monteil et al., 2024;
 1322 Volkovs et al., 2017). Besides, many small- to medium-scale e-commerce platforms have abundant
 1323 interaction logs but limited or no side features – a scenario that characterizes a substantial portion of
 1324 industrial deployments. In such environments, LAE-style models and matrix factorization remain
 1325 both effective and operationally attractive (Dacrema et al., 2019).

1326 Moreover, linear models are typically easier to analyze than deep models due to their simplicity and
 1327 structural stability, which is why they are widely used in interpretable AI (Ribeiro et al., 2016). In
 1328 particular, LAEs have been adopted as interpretability and diagnostic tools within larger recom-
 1329 mendation pipelines, including those involving deep models (Spišák et al., 2024; Huben et al., 2023):
 1330 their item-item affinity matrix captures co-occurrence and influence patterns that support practical
 1331 use cases such as ‘frequently bought together’ recommendations, promotional bundling, and cross-
 1332 selling workflows. These interpretable relationships are a key reason why LAE-style models remain
 1333 prominent in production systems. Although DEQL was originally developed to enable closed-form
 1334 theoretical analysis for LAE models, the resulting LAE solutions can also be naturally leveraged for
 1335 interpretability at the application level.

1336 G.6 BROADER SCOPE OF LAEs AND DEQL

1339 LAE models are mainly used for matrix completion, a fundamental mathematical problem with
 1340 broad applications in collaborative filtering recommender systems (Shamir & Shalev-Shwartz, 2014;
 1341 Candès & Tao, 2010). DEQL, in turn, is a framework for closed-form analysis of LAE models.
 1342 Consequently, in domains beyond recommender systems where matrix completion is relevant, both
 1343 LAEs and the DEQL framework can be naturally applied. Below we highlight several non-RecSys
 1344 application domains where LAE-style models and DEQL may be particularly useful:

- 1345 **• Survey & psychometric modeling; genomics & biomedical panels:** In survey research, user \times
 1346 item response matrices exhibit substantial missingness and heterogeneous exposure, a setting long
 1347 modeled using linear or matrix-completion methods (Mazumder et al., 2010; Yoon et al., 2018).
 1348 Similarly, genomics, metabolomics, and biomedical panels routinely rely on linear or low-rank
 1349 imputation methods for patient \times gene and panel-level data, including mass-spectrometry-based
 1350 metabolomics (Stekhoven & Bühlmann, 2012; Wei et al., 2018).

1350
1351 • **Distributed Sensing & Sensor Network:** In distributed sensing applications, sensortime matrices
1352 frequently contain missing measurements due to intermittent connectivity, power constraints, or
1353 sensor failures. Linear reconstruction and imputation methods continue to be widely used in
1354 these resource-constrained environments, where computational simplicity and interpretability are
1355 critical (Rivera-Muñoz et al., 2022).

1356 • **LLM Interpretability:** Many interpretability methods use linear mappings of the form $Y \approx$
1357 WX , including concept-extraction SAEs, probing classifiers, and certain linearized attention ap-
1358 proximations. These directly match DEQL’s weighted linear reconstruction structure (See Ap-
1359

1360 Finally, we note a conceptual connection to LLM preference learning: while methods such as DPO
1361 differ substantially in mathematical formulation, both LLM content generation and recommendation
1362 involve selecting or ranking items from large discrete spaces based on preference signals (Rafailov
1363 et al., 2023; Rendle et al., 2009).

1364 Although direct application would require substantial methodological development beyond DEQL’s
1365 current scope, this connection suggests an interesting direction for future research.

1367 LLM USAGE STATEMENT

1368
1369 We use ChatGPT solely for polishing writing at the sentence and paragraph level. The content and
1370 contributions of this paper were created by the authors. All text refined with ChatGPT has been
1371 carefully checked to avoid errors.

1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403