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ABSTRACT

Linear autoencoders (LAEs) have gained increasing popularity in recommender
systems due to their simplicity and strong empirical performance. Most LAE
models, including the Emphasized Denoising Linear Autoencoder (EDLAE) in-
troduced by (Steck, 2020), use quadratic loss during training. However, the orig-
inal EDLAE only provides closed-form solutions for the hyperparameter choice
b = 0, which limits its capacity. In this work, we generalize EDLAE objective
into a Decoupled Expected Quadratic Loss (DEQL). We show that DEQL simpli-
fies the process of deriving EDLAE solutions and reveals solutions in a broader
hyperparameter range b > 0, which were not derived in Steck’s original paper.
Additionally, we propose an efficient algorithm based on Miller’s matrix inverse
theorem to ensure the computational tractability for the b > 0 case. Empirical
results on benchmark datasets show that the b > 0 solutions provided by DEQL
outperform the b = 0 EDLAE baseline, demonstrating that DEQL expands the so-
lution space and enables the discovery of models with better testing performance.

1 INTRODUCTION

In recent years, deep learning has emerged as the dominant paradigm in recommendation systems,
leading to increasingly complex models. However, a growing body of empirical evidence reveals
a surprising trend: simple linear models often perform comparably to, or even outperform, their
deep learning counterparts (Dacrema et al., 2019). In particular, linear autoencoder-based methods
such as SLIM (Ning & Karypis, 2011), EASE (Steck, 2019), EDLAE (Steck, 2020), ELSA(Vančura
et al., 2022), RALE and RDLAE (Moon et al., 2023) have demonstrated strong performance, often
exceeding that of more sophisticated deep models (Dacrema et al., 2021).

These methods typically aim to learn an item-to-item similarity matrix W ∈ Rn×n to reconstruct
the binary user-item interaction matrix R ∈ {0, 1}m×n with m users and n items. Each row Ri∗
encodes the interactions of user i; Rij = 1 indicates that user i has interacted with item j, while
Rij = 0 indicates no interaction. The reconstruction takes the form RW , or equivalently Ri∗W for
each user, and can be interpreted as a linear autoencoder (LAE), where W serves as both encoder and
decoder. One representative example is EASE (Steck, 2019), in which W is obtained by minimizing
the following objective function

f(W ) = ∥R−RW∥2F s.t. diag(W ) = 0 (1)

The zero diagonal constraint diag(W ) = 0 is imposed to prevent W from overfitting towards
identity. Moreover, since the prediction of each interaction Rij is a weighted sum Ri∗W∗j =∑n

k=1 RikWkj , the zero diagonal constraint enforces Wjj = 0, such that the prediction becomes
Ri∗W∗j =

∑n
k=1,k ̸=j RikWkj . This means that the target Rij is masked out during prediction,

preventing the model from trivially using Rij to predict itself. This constraint distinguishes LAEs
from standard linear regression models and is widely adopted in models like EDLAE (Steck, 2020)
and ELSA (Vančura et al., 2022).

Despite their empirical success, these models optimize squared error on observed entries during
training, without explicitly considering the statistical nature of the evaluation process: In training,
observed entries are treated as fixed values to be reconstructed; in evaluation, especially in the
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strong/weak generalization settings (Steck, 2019; Moon et al., 2023), the model is evaluated on
randomly masked interactions in the test set. This motivates adopting a statistical viewpoint to
redesign the training objective, where interactions are treated as random variables sampled from a
distribution and the objective is defined in expectation, thereby aligning with the testing scenario.

EDLAE (Steck, 2020) provides an important precursor in this direction. By introducing dropout
and an emphasis weighting scheme, EDLAE effectively reshapes the loss to penalize reconstruction
of masked entries more heavily, thereby reducing overfitting to the identity function, see Eq (3).
We observe that considering the dropout matrix ∆ as a random variable allows the objective to be
expressed as an expected quadratic loss

f(W ) = E∆

[
∥A⊙ (R− (∆⊙R)W )∥2F

]
, (2)

A ∈ {a, b}m×n is an emphasis matrix where a, b are hyperparameters. ∆ ⊙ R represents random
dropout applied to the fixed interaction matrix, mirroring the evaluation procedure. More impor-
tantly, ∆⊙R can itself be viewed as a random interaction matrix, providing the key insight that the
objective can be generalized to random interaction matrices following arbitrary distributions.

Although it improves empirical performance, the theoretical framework underlying this objective’s
construction remains largely underexplored. In particular, while Eq (3) is claimed to be applica-
ble for b ≥ 0, Steck (2020) only provides the solution for b = 0 case, which limits its capacity.
Motivated by this gap, this paper investigates how to obtain a closed-form solution for the EDLAE
objective under the full hyperparameter range b ≥ 0, and how to compute these solutions efficiently.

First, we generalize the EDLAE objective Eq (3) into a Decoupled Expected Quadratic Loss
(DEQL) and derive its closed-form minimizer, which subsumes EDLAE as a special case. This
generalization not only simplifies the derivation of EDLAE solutions but also extends them to the
previously unexplored regime of b > 0 (Section 3). Equally important, DEQL introduces a well-
posed, closed-form solution that offers uniqueness (beyond EDLAE) and analytic interpretability –
properties rarely attainable in iterative or deep learning–based recommenders.

Next, we find that the direct solutions for b > 0 have an O(n4) computational complexity, which
is prohibitively expensive for large-scale recommendation tasks. To overcome this challenge, we
develop an efficient algorithm based on Miller’s matrix inverse theorem (Miller, 1981), reducing the
complexity to O(n3). This makes computing solutions for the b > 0 case practical (Section 4).

Finally, we evaluate solutions derived from DEQL on real-world benchmark datasets. Our experi-
ments demonstrate that solutions with b > 0 consistently outperform the original EDLAE solutions
with b = 0, confirming that expanding the solution space leads to models with stronger testing
performance (Section 5).

The proofs of all theorems, lemmas and propositions are presented in Appendix B. Related works
are in Appendix E. Discussions are in Appendix G.

2 PRELIMINARIES

Implicit and Explicit Recommenders: Recommendation algorithms can generally be divided into
two categories: explicit and implicit methods. Explicit approaches focus on predicting unseen nu-
merical ratings that users might assign to items, whereas implicit approaches aim to predict user
behaviors such as clicks, add-to-cart actions, or purchases (Steck, 2019; Dacrema et al., 2019). In
this study, we focus on the implicit recommendation setting due to its greater economic significance.
Let n denote the number of items and m the number of users. We are given a binary interaction ma-
trix R ∈ {0, 1}m×n, where each entry Ri,j = 1 if user i has interacted with item j (e.g., through
a purchase or rating), and 0 otherwise. We note that despite the difference between explicit and
implicit settings; for recommendation models, both objectives aim to recover a real-valued score
matrix R̂ ∈ Rm×n. The performance of the model for implicit setting is typically evaluated using
information retrieval metrics such as Top-k Recall/Accuracy or Normalized Discounted Cumulative
Gain (nDCG) on test set.

EDLAE Recommender System (Steck, 2020): Let ∆ ∈ {0, 1}m×n be a random matrix where each
∆ij is i.i.d. drawn from the Bernoulli distribution such that P (∆ij = 0) = p and P (∆ij = 1) =

1−p. Let ∆(k) denote a realization of ∆, and let ⊙ denote the Hadamard (element-wise) product, so

2
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that ∆(k)⊙R applies dropout element-wise to R. Define the emphasis matrix A(k) where A(k)
ij = a

if ∆(k)
ij = 0 and A

(k)
ij = b if ∆(k)

ij = 1. Then, the EDLAE model is obtained by optimizing the
following objective function:

W ∗ = argminW lim
N→∞

1

N

N∑
k=1

∥A(k) ⊙ (R− (∆(k) ⊙R)W )∥2F (3)

under the hyperparameters a, b, p. Since the squared Frobenius norm in Eq (3) can be expanded into

the sum of weighted quadratic loss
∑m

i=1

∑n
j=1 A

(k)
ij

2
(Rij − (∆

(k)
i∗ ⊙Ri∗)W∗j)

2, if Rij is dropped,

its reconstruction loss (Rij − (∆
(k)
i∗ ⊙ Ri∗)W∗j)

2 is weighted by a2; otherwise, it is weighted by
b2. The hyperparameters a, b are typically chosen to satisfy a ≥ b ≥ 0, thereby placing greater
emphasis on dropped entries to prioritize reducing loss.

The original EDLAE paper (Steck, 2020) provides a closed-form solution to Eq (3) for the case
b = 0 and under the zero-diagonal constraint diag(W ∗) = 0, expressed as

W ∗ =
1

1− p

(
I − C · (I ⊙ C)−1

)
, where C =

(
RTR+

p

1− p
I ⊙RTR

)−1

(4)

While Eq (3) remains valid and meaningful for b > 0, the solution for this case is not addressed in
the original work.

3 DECOUPLED EXPECTED QUADRATIC LOSS FOR LINEAR AUTOENCODERS

In the EDLAE optimization problem Eq (3), let B denote the multivariate Bernoulli distribution of
∆, then by the law of large numbers, Eq (3) can be rewritten as

W ∗ = argminW lB(W ), where

lB(W ) = E∆∼B
[
∥A⊙ (R− (∆⊙R)W )∥2F

]
=

n∑
i=1

E∆∼B
[
∥A∗i ⊙ (R∗i − (∆⊙R)W∗i)∥2F

]
=

n∑
i=1

E∆∼B

[
∥A(i)R∗i −A(i)(∆⊙R)W∗i)∥2F

]
(5)

Here we denote A(i) = diagMat(A∗i). Note that Eq (5) decouples the squared Frobenius norm over
the columns of W . Since R is constant while both ∆ and A(i) are random, define Y (i) = A(i)R
and X(i) = A(i)(∆ ⊙ R), then both X(i) and Y (i) are random. If we in further denote D(i) as the
distribution of the pair (X(i), Y (i)), then the objective function in Eq (5) can be written as

lB(W ) =

n∑
i=1

E(X(i),Y (i))∼D(i)

[
∥Y (i) −X(i)W∗i∥2F

]
(6)

Eq (6) places each column W∗i inside an expected quadratic loss E(X(i),Y (i))∼D(i)

[
∥Y (i) −X(i)W∗i∥2F

]
.

This formulation is general since each D(i) can be any distribution, while Eq (5) is a special case
where X(i) and Y (i) follow distributions induced by applying random dropout to constants. We
first derive the general closed-form solution of optimizing Eq (6), then specialize it to EDLAE,
and show that this reformulation simplifies the analysis and reveals a broader class of solutions for
b ≥ 0 compared Steck’s original solution for b = 0 (Steck, 2020).

3.1 DECOUPLED EXPECTED QUADRATIC LOSS AND ITS CLOSED-FORM SOLUTION

We formally define Eq (6) as follows:
Definition 3.1. Given a set of joint distributions D = {D(i)}ni=1 over the pair (X,Y ), the decou-
pled expected quadratic loss is defined as

lD(W ) =

n∑
i=1

hi
D(i)(W∗i), where

hi
D(i)(W∗i) = E(X,Y )∼D(i)

[
∥Y∗i −XW∗i∥2F

]
= WT

∗iE(X,Y )∼D(i)

[
XTX

]
W∗i − 2WT

∗iE(X,Y )∼D(i)

[
XTY∗i

]
+ E(X,Y )∼D(i)

[
Y T
∗iY∗i

]
(7)

3
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Note that each hi
D(i) is a quadratic function of W∗i. Since E(X,Y )∼D(i)

[
XTX

]
is positive

semi-definite (as XTX is a random variable whose realizations are always positive semi-definite
matrices), hi

D(i) is convex for any i. Hence, let W ∗ = argminW lD(W ), then W ∗
∗i =

argminW∗i
hi
D(i)(W∗i) for all i. Furthermore, if E(X,Y )∼D(i)

[
XTX

]
is positive definite for all

i, so that its inverse exists, then W ∗ can be computed as

W ∗
∗i = E(X,Y )∼D(i)

[
XTX

]−1 E(X,Y )∼D(i)

[
XTY∗i

]
for i = 1, 2, ..., n (8)

Eq (7) represents a general quadratic loss. A special case arises when taking D := D(1) = D(2) =
... = D(n), in which case Eq (7) reduces to

lD(W ) = E(X,Y )∼D
[
∥Y −XW∥2F

]
Moreover, under certain condition that E(X,Y )∼D(i)

[
XTX

]
is independent of i for all i, Eq (7) with

low-rank constraints on W has a closed-form solution, which is discussed in Appendix D.

3.2 ADAPTATION TO EDLAE

This section derives the closed-from solution for EDLAE from Eq (7), which covers the case b ≥ 0.
We show that our solution is equivalent to Steck’s solution (Steck, 2020) for b = 0, and it extends to
the b > 0 case, which was not addressed in Steck’s work.

Remember that Eq (5) is a special case of Eq (7) by taking X = A(i)(∆ ⊙ R) and Y∗i = A(i)R∗i.
By Eq (8), the solution of Eq (5) is given by

W ∗
∗i = H(i)−1

v(i) for i = 1, 2, ..., n, where (9)

H(i) = E∆∼B

[
(∆⊙R)TA(i)2(∆⊙R)

]
, v(i) = E∆∼B

[
(∆⊙R)TA(i)2R∗i

]
(10)

The following lemma enables explicit computation of the expectations in Eq (10):

Lemma 3.2. The H(i) and v(i) in Eq (10) can be expressed as H(i) = G(i) ⊙ RTR and v(i) =
u(i) ⊙RTR∗i, where G(i) ∈ Rn×n and u(i) ∈ Rn satisfy

G
(i)
kl =


(1− p)b2 if k = l = i

(1− p)2b2 if k ̸= l = i or l ̸= k = i

(1− p)pa2 + (1− p)2b2 if k = l ̸= i

(1− p)2pa2 + (1− p)3b2 if i ̸= k ̸= l ̸= i

, u
(i)
k =

{
(1− p)b2 if k = i

(1− p)pa2 + (1− p)2b2 if k ̸= i

for k, l ∈ {1, 2, ..., n}.

Furthermore, the computation of Eq (9) requires the H(i)−1
, which exists only if H(i) is invertible.

The following theorem establishes sufficient conditions to ensure this property.

Theorem 3.3. For any a ≥ 0, b > 0 and 0 < p < 1, G(i) is positive definite. Furthermore, H(i) is
positive definite if G(i) is positive definite and no column of R is a zero vector.

A positive definite H(i) is always invertible. Hence, Theorem 3.3 implies that the closed-form
solution by Eq (9) holds for any a ≥ 0 and b > 0, including the case b > a, which lies outside the
original EDLAE range a ≥ b ≥ 0 (see Figure 2).

Now we discuss the case when b = 0. In this setting, both the i-th row and i-th column of H(i) are
zero, and the i-th row of v(i) is also zero. Consequently, H(i) is singular and its inverse H(i)−1

does
not exist, making Eq (8) inapplicable for computing the optimal W ∗.

To proceed, we define submatrices and subvectors using the subscript −i notation: if Q is an n× n
matrix, then Q−i is a (n−1)× (n−1) matrix obtained by removing the i-th row and i-th column of
Q; if q is an n dimensional vector, then q−i is an n− 1 dimensional vector obtained by removing qi
from q. Under this notation, we can write H(i)

−i = G−⊙(RTR)−i, where G− is an (n−1)×(n−1)

matrix with diagonal elements (1−p)pa2 and off-diagonal elements (1−p)2pa2. It is easy to verify

4
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that G− is positive definite, hence H
(i)
−i is positive definite. Likewise, v(i)−i = u− ⊙ (RTR∗i)−i,

where u− is an n− 1 dimensional vector with all elements being (1− p)pa2.

Denote the vector (W∗i)−i as W∗i,−i, then Eq (5) can be written as

lB(W ) =

n∑
i=1

WT
∗iH

(i)W∗i − 2WT
∗iv

(i) + E∆∼B

[
RT

∗iA
(i)2R∗i

]
(11)

=

n∑
i=1

WT
∗i,−iH

(i)
−iW∗i,−i − 2WT

∗i,−iv
(i)
−i + E∆∼B

[
RT

∗iA
(i)2R∗i

]
(12)

Therefore, the solution W ∗ = argminW lB(W ) is expressed as

W ∗
∗i,−i = (H

(i)
−i )

−1v
(i)
−i and W ∗

ii ∈ R for i = 1, 2, ..., n (13)

Here DEQL uncovers a new finding about the uniqueness of closed-form solutions. In the b > 0
case, the optimal W ∗ given by Eq (9) is unique; in the b = 0 case, the optimal W ∗ given by Eq
(13) is not unique, but belongs to an infinite set of solutions that share the same off-diagonal entries
while allowing arbitrary diagonal entries. The following theorem shows that Steck’s solution Eq (4)
is a special case of Eq (13), corresponding to the choice of zero diagonal.
Theorem 3.4. Suppose no column of R is a zero vector. If taking Wii = 0 for all i in Eq (13), then
Eq (13) and Eq (4) are equivalent.

It is important to note that varying the diagonal of W ∗ can lead to different performance on test data,
and Eq (13) does not provide theoretical guidance on which choice of diagonal elements gives the
best performance. However, empirical results suggest that a W ∗ with non-zero diagonal elements
can outperform the zero-diagonal solution in certain cases (Moon et al., 2023).

3.3 ADDING L2 REGULARIZER AND ZERO-DIAGONAL CONSTRAINT

In LAE-based recommender systems, L2 regularizer and zero diagonal constraint are commonly
applied to the objective function, as they are established techniques for improving test performance.
This section discusses the closed-form solution of the optimization problem Eq (5) when the L2

regularizer or the zero-diagonal constraint is applied.

Adding L2 Regularizer: Given λ > 0, Eq (5) with L2 regularizer is expressed as

W ∗ = argminW lB(W ) + λ∥W∥2F (14)

Adding Zero-diagonal Constraint: Eq (5) with zero-diagonal constraint is expressed as

W ∗ = argminW lB(W ) s.t. diag(W ) = 0 (15)

In these cases, the solution Eq (9) is modified accordingly, as presented below.
Proposition 3.5. (a) The solution of Eq (14) is

W ∗
∗i =

(
H(i) + λI

)−1

v(i) for i = 1, 2, ..., n (16)

(b) The solution of Eq (15) is

W ∗
∗i = H(i)−1

v(i) − (H(i)−1
v(i))i

(H(i)−1
l(i))i

H(i)−1
l(i) for i = 1, 2, ..., n (17)

where l(i) is an n-dimensional vector with l
(i)
i = 1 and l

(i)
j = 0 for all j ̸= i.

4 AN EFFICIENT ALGORITHM FOR THE CLOSED-FORM SOLUTION

Recall from Theorem 3.3 that the optimal W ∗ for the b > 0 case of EDLAE can be computed by
Eq (9). However, a major challenge with Eq (9) is its high computational complexity: since H(i)

5
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differs for each i, computing each inverse H(i)−1
costs O(n3) (suppose we compute the inverse

using basic algorithms, e.g., Cholesky decomposition (Krishnamoorthy & Menon, 2013)), resulting
in a total cost of O(n4) for all i, which is computationally impractical.

In this section, we demonstrate the existence of a practical algorithm that reduces the overall com-
plexity of computing Eq (9) from O(n4) to O(n3); we prove this by explicitly constructing such an
algorithm using Miller’s matrix inverse theorem:
Theorem 4.1. ((Miller, 1981)) Let G and G + Q be non-singular matrices. Suppose Q is of rank
r and can be decomposed as Q = E1 + E2 + ... + Er, where each Ek is of rank 1, and Pk+1 =
G+ E1 + E2 + ...+ Ek is non-singular for k = 1, 2, ..., r. Let P1 = G, then

P−1
k+1 = P−1

k − 1

1 + tr
(
P−1
k Ek

)P−1
k EkP

−1
k

In Lemma 3.2, we define H(i) = G(i) ⊙RTR, which can be decomposed as

H(i) = G0 ⊙RTR+G
(i)
1 ⊙RTR+G

(i)
2 ⊙RTR

where G0 is a matrix with diagonal elements equal to (1 − p)pa2 + (1 − p)2b2 and off-diagonal
elements equal to (1− p)2pa2 + (1− p)3b2; G(i)

1 is a matrix with (G
(i)
1 )ji = −(1− p)2p(a2 − b2)

for j ̸= i, (G(i)
1 )ii = −(1 − p)p(a2 − b2), and all other elements zero; G

(i)
2 is a matrix with

(G
(i)
2 )ij = −(1− p)2p(a2 − b2) for j ̸= i and all other elements zero.

Denote H0 = G0 ⊙RTR, E(i)
1 = G

(i)
1 ⊙RTR and E

(i)
2 = G

(i)
2 ⊙RTR, then H(i) = H0 +E

(i)
1 +

E
(i)
2 . Note that H0 is positive definite and independent of i, E(i)

1 is of rank 1 with only the i-th
column being nonzero, and E

(i)
2 is of rank 1 with the i-th row (excluding (E

(i)
2 )ii) being nonzero.

Applying Theorem 4.1, H(i)−1
can be computed with the following two steps:

H
(i)
+

−1
= (H0 + E

(i)
1 )−1 = H−1

0 − 1

1 + tr(H−1
0 E

(i)
1 )

H−1
0 E

(i)
1 H−1

0 (18)

H(i)−1
= (H0 + E

(i)
1 + E

(i)
2 )−1 = H−1

+ − 1

1 + tr(H−1
+ E

(i)
2 )

H−1
+ E

(i)
2 H−1

+ (19)

Let e(i)1 be the i-th column of E(i)
1 , e(i)2

T
be the i-th row of E(i)

2 , then Eq (18) and Eq (19) can be
simplified as

H
(i)
+

−1
= H−1

0 − 1

1 + (H−1
0 )i∗e

(i)
1

(H−1
0 e

(i)
1 )(H−1

0 )i∗ (20)

H(i)−1
= H

(i)
+

−1
− 1

1 + e
(i)
2

T
(H

(i)
+

−1
)∗i

(H
(i)
+

−1
)∗i(e

(i)
2

T
H

(i)
+

−1
) (21)

Observe that, given H−1
0 , the computation of each H(i)−1

using Eq (20) and Eq (21) requires only
O(n2) operations, resulting in a total cost of O(n3) for all i. This significantly reduces the original
O(n4) complexity of computing Eq (9).

Moreover, the computation can be further simplified by directly computing H(i)−1
v(i) without ex-

plicitly forming H(i)−1
. By Eq (20) and Eq (21),

H
(i)
+

−1
v(i) = H−1

0 v(i) − 1

1 + (H−1
0 )i∗e

(i)
1

(H−1
0 e

(i)
1 )

[
(H−1

0 )i∗v
(i)
]

(22)

H(i)−1
v(i) = H

(i)
+

−1
v(i) − 1

1 + e
(i)
2

T
(H

(i)
+

−1
)∗i

(H
(i)
+

−1
)∗i

[
(e

(i)
2

T
H

(i)
+

−1
)v(i)

]
(23)

in which the scalars (H−1
0 )i∗v

(i) and (e
(i)
2

T
H

(i)
+

−1
)v(i) can be computed first. In Eq (23), the

(H
(i)
+

−1
)∗i term can be computed by Eq (20),

(H
(i)
+

−1
)∗i = (H−1

0 )∗i −
(H−1

0 )ii

1 + (H−1
0 )i∗e

(i)
1

(H−1
0 e

(i)
1 )
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Denote s = H
(i)
+

−1
v(i), t = (H

(i)
+

−1
)∗i. Let U be an n× n matrix with diagonal elements equal to

(1 − p)b2 and off-diagonal elements equal to (1 − p)pa2 + (1 − p)2b2, let G1 be an n × n matrix
with diagonal elements −(1− p)p(a2 − b2) and off-diagonal elements −(1− p)2p(a2 − b2), and let
G2 be an n× n matrix with zeros on the diagonal and off-diagonal elements −(1− p)2p(a2 − b2).
Then we can summarize our computation as follows.

Fast Algorithm for Computing Eq (9): First, precompute these matrices

RTR, H−1
0 =

(
G0 ⊙RTR

)−1
, [H−1

0 v(1), H−1
0 v(2), ...H−1

0 v(n)] = H−1
0 (U ⊙RTR),

[H−1
0 e

(1)
1 , H−1

0 e
(2)
1 , ...,H−1

0 e
(n)
1 ] = H−1

0 (G1 ⊙RTR), [e
(1)
2 , e

(2)
2 , ..., e

(n)
2 ] = G2 ⊙RTR

Then for i = 1, 2, ..., n, compute each W ∗
∗i = H(i)−1

v(i) as follows:

r = H−1
0 v(i), w = H−1

0 e
(i)
1

s = r − 1

1 + wi
riw, t = (H−1

0 )∗i −
(H−1

0 )ii
1 + wi

w

H(i)−1
v(i) = s− 1

1 + e
(i)
2

T
t
(e

(i)
2

T
s)t

We now analyze the computational complexity of the above algorithm. Here we we assume that
matrix multiplication and inversion are implemented using basic linear algebra algorithms. In the
precomputing stage, RTR costs O(mn2), H−1

0 costs O(n3), H−1
0 (U⊙RTR) and H−1

0 (G1⊙RTR)
cost O(n3), and G2 ⊙ RTR costs O(n2). In the computing stage, each W ∗

∗i is obtained via only
vector-vector multiplications with a complexity of O(n), resulting in an overall complexity of O(n2)
for the entire W ∗. Therefore, the total complexity of the algorithm is O

(
max(m+ n)n2

)
. This

complexity is the same as the closed-form solutions of EASE (Steck, 2019) and EDLAE (Steck,
2020). However, if using more advanced algorithms for matrix multiplication and inversion, the
complexity of our Fast Algorithm (as well as EASE and EDLAE) can be in further reduced from
O(n3) to O(n2.376). We elaborate on this in Appendix C.

Adapting the Algorithm to the L2 regularizer and Zero-diagonal Constraint Cases: In Eq (16),
note that H(i)+λI = (H0+λI)+E

(i)
1 +E

(i)
2 , where H0+λI is independent of i. This means that

we can compute Eq (16) using the above algorithm by replacing H0 with H0 + λI . In Eq (17), we
first compute H(i)−1

v(i) with the algorithm; then, by replace v(i) with l(i), we compute H(i)−1
l(i)

with the same method. Once H(i)−1
v(i) and H(i)−1

l(i) are obtained, Eq (17) can be computed
accordingly.

5 EXPERIEMENTS

This section provides experimental results comparing DEQL with state-of-the-art collaborative fil-
tering models, including linear models and deep learning based models. Additional experiments on
tim and space costs can be found in Appendix F.

5.1 EXPERIMENTAL SET-UP

Datasets: We conduct extensive experiments to verify our theorical claims. Specifically, we employ
six publicly available datasets, from small to large, including Games, Beauty, Gowalla, ML-20M,
Netflix, and MSD (Steck, 2019; Ni et al., 2019; Seol et al., 2024) to compare with LAE based mod-
els under strong generalization setting where test users do not appear in training dataset. When
comparing with modern deep learning based models, since most of these models rely on user and
item embeddings to make prediction and require users appear in training dataset, we further eval-
uate our methods on 3 additional widely used datasets: Amazonbook, Yelp2018 and Gowalla He
et al. (2020) under weak generalization setting. For better generalization, we preprocess the data
following (Steck, 2020; He et al., 2020).

Baseline models and Evaluation Metrics: We compare it against the following state-of-the-art
linear autoencoder-based recommendation models: EASE (Steck, 2019), DLAE (Steck, 2020), ED-
LAE (Steck, 2020), ELSA (Vančura et al., 2022) and recent deep learning based models: PinSage
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(Ying et al., 2018), LightGCN (He et al., 2020), DGCF (Wang et al., 2020), SimpleX (Mao et al.,
2021), SGL-ED (Wu et al., 2021) and SSM (Wu et al., 2024a). We evaluate model performance us-
ing widely adopted ranking metrics: Recall@20 and NDCG@20. All baseline LAE models (EASE,
EDLAE, DLAE and ELSA) in our experiments are trained with L2 regularization, consistent with
their original papers.

5.2 REPRODUCIBILITY

For hyper-parameter tuning, We performed a grid search to optimize the hyperparameters of the
linear autoencoder models. Since in the objective function, all quadratic entries are equipped
with either a or b and the solution to it is scalar invariant (e.g., in Eq 3, although (a, b) =
(1, 0.1) and (a, b) = (10, 1) gives different Loss value, the obtained W ∗ will always be the
same), only the ratio b/a affects the closed-form solution. Therefore, we fix a = 1 and
search b over the range [0.1,0.25,. . . ,2.0]. The L2 regularization coefficient is searched over
[10.0,20.0,...50,100.0,300.0,500.0], and the dropout rate p is varied across [0.1,0.2,. . . ,0.5,0.8]. All
experiments are conducted on a Linux server equipped with 500 GB of memory, four NVIDIA 3090
GPUs, and a 96-core Intel(R) Xeon(R) Platinum 8268 CPU @ 2.90GHz. Our code is available at
https://anonymous.4open.science/r/ICLR2026_DEQL_new-441D/README.md

5.3 MODEL PERFORMANCE EVALUATION

In this section, we present the experimental results over two evaluation metrics. Specifically, we
would answer the following research questions:
RQ1 Can the generalized quadratic loss DEQL(L2)/DEQL(L2+zero-diag) improve recommenda-
tion performance over existing linear autoencoder-based models?
RQ2 Is the zero diagonal constraint necessary for optimal performance, or can models benefit from
non-zero diagonals as suggested by DEQL(L2)?
RQ3: How does DEQL families perform compared with modern deep learning based models?

RQ1: DEQL(L2) substantially improves recommendation performance over state-of-the-art linear
autoencoder models across a diverse set of benchmarks. We evaluate DEQL against three widely
recognized baselines:DLAE, EASE, and EDLAE (Steck et al., 2024)(Jin et al., 2021)on six public
datasets: Games, Beauty, Gowalla, ML-20M, Netflix, and MSD. As shown in Table 1, DEQL(L2)
achieves the highest Recall and NDCG on 5 out of the 6 datasets, often with a significant margin. For
instance, on the Games dataset, DEQL(L2) improves Recall@20 from 0.2851 (EDLAE) to 0.2998,
and NDCG@20 from 0.1681 to 0.1842, showing that our framework provides better ranking quality
even in small-scale, sparse interaction settings. On large-scale datasets like ML-20M, DEQL main-
tains top performance (Recall@20 = 0.3934, NDCG@20 = 0.3426) that matches and even improves
upon the best baseline (EDLAE: Recall@20 = 0.3925, NDCG@20 = 0.3421). This suggests that
our framework retains its effectiveness when scaled to millions of interactions and hundreds of thou-
sands of users due to its low complexity. These consistent improvements across datasets of varying
sparsity and scale demonstrate the robustness of the DEQL formulation. These gains stem from our
theoretical insight: by generalizing the EDLAE formulation to allow b > 0, our framework explores
a richer solution space with closed-form solvability.

RQ2: When b = 0, the training loss does not constrain the diagonal of W , leading to non-uniqueness
in the optimal solution. Instead of enforcing zero diagonals as in EASE/EDLAE/DEQL(L2+zero-
diag), DEQL(L2) allows the diagonal to be arbitry real number, allowing us to explore richer search-
ing space. Our empirical results support this design. On Gowalla, DEQL(L2)achieves Recall@20
= 0.2288 and NDCG@20 = 0.2033, outperforming DEQL(L+zero-diag) (0.2278 / 0.2027) and ED-
LAE (0.2268 / 0.2012). On ML20M, DEQL reaches Recall@20 = 0.3934 and NDCG@20 = 0.3426,
closely matching DEQL(L2+zero-diag) (0.3934 / 0.3429) and surpassing EDLAE (0.3925 / 0.3421).
These results demonstrate that adjusting b alone is sufficient to ensure strong generalization ability
without a hard constraint as zero-diagonal constraints. These findings indicate that the diagonal
constraint in EDLAE is NOT necessary and by introducing non-zero b, LAEs can still achieve com-
petitive performance. An explanation of these results can be found in Appendix G.2.

RQ3: In Table 2 we report the results compared with recent deep learning based models. Our pro-
posed DEQL(L2) and DEQL(L2+zero-diag) not only achieves better performance than most classic
baselines, in some cases we can surpasses the most recent deep learning–based recommendation
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models. For example, when comparing with a recent strong benchmark SSM, DEQL(L2) attains
comparable results on Yelp2018/Gowalla even superior to it on Amazonbook dataset with as large
as 27% and 34% margin on R@20 and N@20 respectively. Overall, these results demonstrate the
robustness and strong empirical performance of our generalized quadratic loss.

Table 1: Performance comparison and dataset statistics across six different datasets under strong
generalization setting. We highlight the best results in bold. DEQL refer to Eq (9), DEQL(L2+zero-
diag) refers to combining Eq (16) and Eq (17), and DEQL(L2) refers to Eq (16) solely.

Model Games Beauty Gowalla ML20M Netflix MSD

R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20

DLAE 0.2771 0.1664 0.1329 0.0886 0.2143 0.1916 0.3924 0.3409 0.3620 0.3395 0.3290 0.3210
EASE 0.2733 0.1640 0.1323 0.0875 0.2230 0.1988 0.3905 0.3390 0.3618 0.3388 0.3332 0.3261

EDLAE 0.2851 0.1681 0.1324 0.0850 0.2268 0.2012 0.3925 0.3421 0.3656 0.3427 0.3336 0.3258
ELSA 0.2734 0.1658 0.1263 0.0763 0.2255 0.1960 0.3919 0.3386 0.3625 0.3372 0.3256 0.3144
DEQL 0.2524 0.1565 0.1093 0.0670 0.2149 0.1909 0.3844 0.3347 0.3606 0.3382 0.3329 0.3256

DEQL(L2+zero-diag) 0.2872 0.1704 0.1388 0.0898 0.2278 0.2027 0.3934 0.3429 0.3656 0.3423 0.3344 0.3268
DEQL(L2) 0.2998 0.1842 0.1391 0.0881 0.2288 0.2033 0.3934 0.3426 0.3658 0.3428 0.3340 0.3265

# items 896 4,394 13,681 20,108 17,769 41,140
# users 1,006 17,971 29,243 136,677 463,435 571,353
# inter. 15,276 75,472 677,956 9,990,682 56,880,037 33,633,450
density 1.69% 0.10% 0.17% 0.36% 0.69% 0.14%

Table 2: Performance comparison and dataset statistics for LAE-based model and advanced deep
learning based model under weak generalization setting.

Model Amazon-Books Yelp2018 Gowalla

R@20 N@20 R@20 N@20 R@20 N@20

Deep learning based models
PinSage 0.0282 0.0219 0.0471 0.0393 0.1380 0.1196
LightGCN 0.0411 0.0315 0.0649 0.0530 0.1830 0.1554
DGCF 0.0422 0.0324 0.0654 0.0534 0.1842 0.1561
SGL-ED 0.0478 0.0379 0.0675 0.0555 – –
SimpleX 0.0583 0.0468 0.0701 0.0575 0.1872 0.1557
SSM (MF) 0.0473 0.0367 0.0509 0.0404 0.1231 0.0878
SSM (GNN) 0.0590 0.0459 0.0737 0.0609 0.1869 0.1571

LAE-based models
DLAE 0.0751 0.0610 0.0678 0.0570 0.1839 0.1533
EASE 0.0710 0.0566 0.0657 0.0552 0.1765 0.1467
EDLAE 0.0711 0.0566 0.0673 0.0565 0.1844 0.1539
ELSA 0.0719 0.0594 0.0629 0.0541 0.1755 0.1490
DEQL 0.0695 0.0537 0.0647 0.0543 0.1749 0.1453
DEQL(L2+zero-diag) 0.0711 0.0567 0.0672 0.0565 0.1844 0.1539
DEQL(L2) 0.0751 0.0613 0.0685 0.0576 0.1845 0.1540

# items 91,599 38,048 40,981
# users 52,643 31,668 29,858
# inter. 2,984,108 1,561,406 1,027,370
density 0.06% 0.13% 0.08%

5.4 THE IMPACT OF b ON MODEL PERFORMANCE

In EDLAE, a represents the emphasis on dropout entries, while b represents the emphasis on entries
that are remained. The original EDLAE suggests that placing more emphasis on dropped-out entries
than on non-dropped entries can improve performance, and therefore restricts a ≥ b to ensure the
loss remains meaningful. However, the original EDLAE only provides a closed-form solution for
the case b = 0, which does not explain how varying b affects the performance. To address this,
we leverage our closed-form solution for b > 0 from DEQL and conduct a sensitivity analysis to
investigate that how different b impact test performance.

We evaluate the effect of different b across seven benchmark datasets, as shown in Figure 1. For
each dataset, we set a = 1 and vary b from 0 to 2.0 while keeping all other configurations fixed, and
report both Recall@20 and NDCG@20. Note that for b = 0, the solution is obtained from Eq (4);
and for b > 0, the solution is obtained from Eq (9), whose existence is guaranteed by Theorem 3.3.

On datasets ML-20M, Games, Netflix, and MSD, we observe a clear and consistent pattern: perfor-
mance first improves when increasing b from 0, reaches its peak before the b/a ratio exceeds 1, and
then gradually decreases as b becomes too large. This behavior directly demonstrates that the b = 0

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0 1.5 2.0
(a) Yelp2018

0.063

0.065

0.067

0.068

Re
ca

ll@
20

0.0 0.5 1.0 1.5 2.0
(b) Gowalla

0.181

0.182

0.183

0.184

Re
ca

ll@
20

0.0 0.5 1.0 1.5 2.0
(c) Amazonbook

0.063

0.067

0.071

0.076

Re
ca

ll@
20

0.0 0.5 1.0 1.5 2.0
(d) ML20M

0.382

0.386

0.390

0.394

Re
ca

ll@
20

0.0 0.5 1.0 1.5 2.0
(e) Games

0.219

0.247

0.275

0.304

Re
ca

ll@
20

0.0 0.5 1.0 1.5 2.0
(f) Netflix

0.352

0.357

0.362

0.368

Re
ca

ll@
20

0.0 0.5 1.0 1.5 2.0
(g) MSD

0.320

0.325

0.329

0.334

Re
ca

ll@
20

0.053

0.055

0.056

0.057

ND
CG

@
20

0.150

0.151

0.153

0.154

ND
CG

@
20

0.050

0.054

0.058

0.062

ND
CG

@
20

0.331

0.335

0.339

0.343

ND
CG

@
20

0.136

0.153

0.170

0.187

ND
CG

@
20

0.328

0.334

0.339

0.344

ND
CG

@
20

0.306

0.313

0.319

0.325

ND
CG

@
20

Recall@20 NDCG@20

Figure 1: Sensitivity on b/a ratio across different datasets

choice in the original EDLAE does not necessarily yield the best performance, and that models
obtained with b > 0 using DEQL can achieve superior results.

Interestingly, we observe a markedly different pattern on Yelp2018 and AmazonBook: their optimal
b/a ratios approach 1 or even exceed 1 (as in Yelp). In the original EDLAE formulation, a > b
promotes reconstruction of dropped items through cross-item learning, with b typically fixed to zero.
The regime of b > a has rarely been explored, as it instead trains the model to use the remained
items to better predict other remained ones within the same set. Although a > b appears to be the
intuitive choice, our results show that b > a can yield superior performance on certain datasets,
suggesting that emphasizing dropped entries is not always beneficial.

We hypothesize that a key factor is the user–item cardinality ratio and the corresponding reliabil-
ity of the item–item co-occurrence graph. When the number of items greatly exceeds the number
of users, as in AmazonBook and Yelp2018, the interaction matrix becomes extremely sparse, and
cross-item correlations are weak or noisy. In such regimes, training with a > b forces the model to
learn from unreliable correlations across items. Conversely, setting b > a reduces dropout strength
and shifts learning toward predicting within the same item set, effectively stabilizing reconstruction
through stronger self-association signals. This behavior is reflected in the larger diagonal magni-
tudes of the learned weight matrices W , indicating reliance on identity-like mappings rather than
cross-item reconstruction (Figure 3) . In short, when the co-occurrence graph is weak, identity is
not overfitting—it is the most reliable component of the signal.

6 CONCLUSIONS

This paper aims to advance the EDLAE recommender system by extending its closed-form solution
to a broader range of hyperparameter choices, and develop an efficient algorithm to compute these
solutions. We first generalize the EDLAE objective function into DEQL, derive its closed-form
solutions, and then apply them back to EDLAE. We show that, through DEQL, the original EDLAE
solution for b = 0 can be extended to the wider range b ≥ 0, enabling exploration of a larger
solution space. To address the high computational complexity of solutions for b > 0, we develop an
efficient algorithm based on Miller’s matrix inverse theorem, reducing the complexity from O(n4)
to O(n3). Experimental results demonstrate that most solutions for b > 0 outperform the b = 0
baseline, showing that DEQL expands the solution space and enables the discovery of models with
better testing performance. Furthermore, DEQL is a general loss function that may inspire the
construction of other specialized objectives for LAE models.
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A ILLUSTRATION OF THE DEQL FRAMEWORK

EDLAE
a > 0, b = 0

EDLAE
a ≥ b > 0

extended EDLAE
b > a ≥ 0

DEQL

The loss of DEQL is given in Eq (7),
allowing arbitrary {D(i)}ni=1.
Its solution is given in Eq (8),
which costs O(n4) in the worst case.

The original EDLAE by (Steck, 2020).
Loss is meaningful under a ≥ b ≥ 0.
Only provides the solution for b = 0.

The loss of EDLAE and extended EDLAE is a special case of DEQL obtained by taking a specific {D(i)}ni=1.
Their solutions follow from DEQL (Eq (9) and Eq (10)), and the complexity can be reduced to O(n3)
by constructing a Fast Algorithm (Section 4) based on Miller’s matrix inverse theorem (Miller, 1981).

Figure 2: Comparison of the closed-form solution sets of DEQL and EDLAE. The white region
represents the set of original EDLAE solution, and the green region represents the remaining so-
lutions covered by DEQL. The orange circle marks solutions derived from a original EDLAE loss,
whereas the cyan circle marks solutions obtained from the extended EDLAE loss (with hyperparam-
eter choices b > a, which go beyond the original EDLAE constraints but still yield valid solutions).

B MATHEMATICAL PROOFS

Proof of Lemma 3.2: H(i) can be computed as follows. For any k, l,

H
(i)
kl = E∆[(∆⊙R)T∗kA

(i)2(∆⊙R)∗l] = E∆[

m∑
s=1

∆skRskA
(i)
ss

2
∆slRsl]

=

m∑
s=1

E∆[∆skRskA
(i)
ss

2
∆slRsl] =

m∑
s=1

E∆[∆sk∆slA
(i)
ss

2
]RskRsl (24)

Note that A(i)
ss = Asi, which depends on ∆si. Since we assume each ∆ij is an i.i.d. Bernoulli

random variable, E∆[∆sk∆slA
2
si] is independent of s. Thus we can let a z be a specific value of s

and rewrite Eq (24) as

H
(i)
kl = E∆[∆zk∆zlA

2
zi]

m∑
s=1

RskRsl = E∆[∆zk∆zlA
2
zi]R

T
∗kR∗l

Define G(i) ∈ Rn×n where G
(i)
kl = E∆[∆zk∆zlA

2
zi], then H(i) = G(i) ⊙ RTR. G(i) can be

computed as follows: Given i, for any k, l,

∆zk∆zlA
2
zi =


a2 if ∆zk = 1 and ∆zl = 1 and ∆zi = 0

b2 if ∆zk = 1 and ∆zl = 1 and ∆zi = 1

0 otherwise
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Since

P (∆zk = 1 and ∆zl = 1 and ∆zi = 0) =

{
(1− p)p if k = l ̸= i

(1− p)2p if i ̸= k ̸= l ̸= i

P (∆zk = 1 and ∆zl = 1 and ∆zi = 1) =


1− p if k = l = i

(1− p)2 if k = l ̸= i or k ̸= l = i or l ̸= k = i

(1− p)3 if i ̸= k ̸= l ̸= i

we have

G
(i)
kl = E∆[∆zk∆zlA

2
zi] =


(1− p)b2 if k = l = i

(1− p)2b2 if k ̸= l = i or l ̸= k = i

(1− p)pa2 + (1− p)2b2 if k = l ̸= i

(1− p)2pa2 + (1− p)3b2 if i ̸= k ̸= l ̸= i

On the other hand, v(i) can be computed as follows. For any k,

v
(i)
k = E∆[(∆⊙R)T∗kA

(i)2R∗i] = E∆[
m∑
s=1

∆skRskA
(i)
ss

2
Rsi] =

m∑
s=1

E∆[∆skA
2
si]RskRsi

= E∆[∆zkA
2
zi]R

T
∗kR∗i

Define u(i) ∈ Rn where u
(i)
k = E∆[∆zkA

2
zi], then we can write v(i) = u(i) ⊙ RTR∗i. u(i) can be

computed as follows: Given any k,

u
(i)
k = E∆[∆zkA

2
zi] =

{
(1− p)b2 if k = i

(1− p)pa2 + (1− p)2b2 if k ̸= i

Proof of Theorem 3.3: Observe that G(i) can be decomposed as the sum of two matrices:

G(i) = (1− p)b2M (i) + (1− p)pa2N (i)

where

M
(i)
kl =


1 if k = l = i

1− p if k ̸= l = i or l ̸= k = i or k = l ̸= i

(1− p)2 if i ̸= k ̸= l ̸= i

N
(i)
kl =


0 if k = l = i or k ̸= l = i or l ̸= k = i

1 if k = l ̸= i

1− p if i ̸= k ̸= l ̸= i

for k, l ∈ {1, 2, ..., n}.

We can show that for any i, M (i) is positive definite and N (i) is positive semi-definite: Let x =
[x1, x2, ..., xn]

T ∈ Rn,

xTM (i)x =

xi + (1− p)

n∑
j=1
j ̸=i

xj


2

+ p(1− p)

 n∑
j=1
j ̸=i

x2
j

 > 0 for any x ̸= 0

xTN (i)x = (1− p)

 n∑
j=1
j ̸=i

xj


2

+ p

 n∑
j=1
j ̸=i

x2
j

 ≥ 0 for any x

Hence, G(i) is positive definite if a ≥ 0, b > 0 and 0 < p < 1.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

RTR is a positive semi-definite matrix. If no column of R is a zero vector, then all diagonal elements
of RTR are positive. By the Schur product theorem (Theorem 7.5.3 (b), (Horn & Johnson, 2012)), if
G(i) is positive definite and the diagonal elements of RTR are all positive, then H(i) = G(i)⊙RTR
is positive definite.

Proof of Theorem 3.4: Since the W ∗ in Eq (13) has zero diagonal, we only need to verify the
equivalence of non-diagonal elements. Let us write (C∗i)−i as C∗i,−i, then W∗i,−i by Eq (13) is
expressed as

W∗i,−i = − 1

1− p

1

Cii
C∗i,−i

Thus, our goal is to prove

(H
(i)
−i )

−1v
(i)
−i = − 1

1− p

1

Cii
C∗i,−i for any i ∈ {1, 2, ..., n} (25)

To show this, first,

(H
(i)
−i )

−1v
(i)
−i =

(
G− ⊙ (RTR)−i

)−1 · (1− p)pa2(RTR∗i)−i

=

(
1

(1− p)pa2
G− ⊙ (RTR)−i

)−1

(RTR∗i)−i

=
1

1− p

(
(RTR)−i +

p

1− p
I ⊙ (RTR)−i

)−1

(RTR∗i)−i (26)

Next, remember that C−1 = RTR + p
1−pI ⊙ RTR. Since no column of R is a zero vector, I ⊙

RTR is positive definite, thus C−1 is positive definite. By the properties of matrix inverse, for an
invertible matrix E, if we swap the i-th and j-th rows (or columns) of E and get E′, then E′−1 is
equivalent to the matrix formed by swapping the i-th and j-th columns (or rows) of E−1. Therefore,
suppose (C−1)⟨i⟩ is obtained from C−1 by first swapping the kth row with the (k + 1)th row for
k = i, i + 1, ..., n − 1 sequentially, then swapping the kth column with the (k + 1)th column for
k = i, i+ 1, ..., n− 1 sequentially. We have

(C−1)⟨i⟩ =

(RTR)−i +
p

1−pI ⊙ (RTR)−i (RTR∗i)−i

(RTR∗i)
T
−i

1
1−p (R

TR)ii


and (

(C−1)⟨i⟩
)−1

= C⟨i⟩ =

[
M C∗i,−i

CT
∗i,−i Cii

]
where M is an (n− 1)× (n− 1) matrix that we are not interested in.

By the symmetric block matrix inverse (0.7.3, (Horn & Johnson, 2012)), we know that[
A BT

B D

]−1

=

[
A−1 +A−1BTS−1BA−1 −A−1BTS−1

−S−1BA−1 S−1

]
where S = D −BA−1BT .

Let A = (RTR)−i +
p

1−p (I ⊙ (RTR)−i), BT = (RTR∗i)−i and S−1 = Cii, we have

C∗i,−i = −A−1BTS−1 = −
(
(RTR)−i +

p

1− p
I ⊙ (RTR)−i

)−1

(RTR∗i)−i · Cii (27)

Combining Eq (27) and Eq (26), we get Eq (25), thereby completing the proof.
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Proof of Proposition 3.5:

(a) Similar to Eq (11), we can expand objective function of Eq (14) as

lB(W ) + λ∥W∥2F =

n∑
i=1

h
(i)
B (W∗i), where

h
(i)
B (W∗i) = WT

∗iH
(i)W∗i − 2WT

∗iv
(i) + λ∥W∗i∥2F + E∆∼B

[
RT

∗iA
(i)2R∗i

]
Hence,

[
∂h

(i)
B

∂W∗i

]T
= 2H(i)W∗i − 2v(i) + 2λW∗i, and the solution of

[
∂h

(i)
B

∂W∗i

]T
= 0 becomes

W ∗
∗i =

(
H(i) + λI

)−1

v(i) (28)

The optimal W ∗ is obtained by solving W ∗
∗i via Eq (28) for all i. The solution is unique since each

h
(i)
B is strictly convex.

(b) Eq (15) is equivalent to solving for the stationary points of the following a Lagrangian function
L(W, µ) = lB(W ) + µT diag(W )

where µ ∈ Rn. Since

L(W, µ) =

n∑
i=1

h̄
(i)
B (W∗i, µi), where

h̄
(i)
B (W∗i, µi) = WT

∗iH
(i)W∗i − 2WT

∗iv
(i) + µiWii + E∆∼B

[
RT

∗iA
(i)2R∗i

]
the solution (W,µ) of the system of equations[
∂L
∂W

]T
=

[[
∂L

∂W∗1

]T
,

[
∂L

∂W∗2

]T
, ...,

[
∂L

∂W∗n

]T]
=

[ ∂h̄
(1)
B

∂W∗1

]T

,

[
∂h̄

(2)
B

∂W∗2

]T

, ...,

[
∂h̄

(n)
B

∂W∗n

]T
 = 0

[
∂L
∂µ

]T
=

[
∂L
∂µ1

,
∂L
∂µ2

, ...,
∂L
∂µn

]T
=

[
∂h̄

(1)
B

∂µ1
,
∂h̄

(2)
B

∂µ2
, ...,

∂h̄
(n)
B

∂µn

]T

= 0

is given by taking [
∂h̄

(i)
B

∂W∗i

]T

= 2H(i)W∗i − 2v(i) + µil
(i) = 0 (29)

∂h̄
(i)
B

∂µi
= Wii = 0 (30)

for i = 1, 2, ..., n. Solving Eq (29), we get

W∗i = H(i)−1
(vi −

1

2
µil

(i)) (31)

Combining Eq (30) and Eq (31), we have

Wii = (H(i)−1
v(i))i −

1

2
µi(H

(i)−1
l(i))i = 0 =⇒ µi = 2

(H(i)−1
v(i))i

(H(i)−1
l(i))i

(32)

Finally, plugging Eq (33) into Eq (31), we get the solution of W ∗: For any i,

W ∗
∗i = H(i)−1

(v(i) − (H(i)−1
v(i))i

(H(i)−1
l(i))i

l(i)) = H(i)−1
v(i) − (H(i)−1

v(i))i

(H(i)−1
l(i))i

H(i)−1
l(i) (33)

The solution Eq (33) is unique. By second order sufficiency conditions (Section 11.5, (Luenberger
& Ye, 2008)), one can show that any W ∗ that minimizes L(W, µ) is a strict local minimizer. Thus,
the solution Eq (33) gives the global minimizer.
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C IMPROVED COMPLEXITY FOR THE FAST ALGORITHM

As discussed in Section 4, when using basic algorithms for matrix multiplication and inversion,
our Fast Algorithm a computational cost of O(max(m + n)n2). The main bottleneck lies in the
precomputing stage: the m×n product RTR costs O(mn2); the n×n inversion H−1

0 costs O(n3);
and multiplying H−1

0 with n × n matrices U ⊙ RTR and G1 ⊙ RTR costs O(n3). The following
corollary shows that these costs can be reduced when more advanced matrix multiplication and
inversion algorithms are applied.
Corollary C.1. (a) If R is sparse, contains only integer elements, and has k nonzero elements
(max(m,n) < k < mn), then RTR can be computed with complexity O((2k + n2)1.346).

(b) The cost of computing H−1
0 can be reduced to O(n2.376), but cannot be improved beyond

Ω(n2 log n).

(c) The cost of computing H−1
0 (U ⊙RTR) and H−1

0 (U ⊙RTR) can each be reduced to O(n2.376),
but cannot be improved beyond Ω(n2 log n).

Proof :

(a) By the analysis of (Abboud et al., 2024), consider the multiplication of sparse integer matrices
Ax×y and By×z . Let min be the total number of nonzeros in the inputs A and B, and let mout be the
number of nonzeros in the output AB. If min ≥ max(x, y, z), then the matrix multiplication can be
computed with complexity O((min +mout)

1.346).

For computing RTR, we have min = 2k and mout ≤ n2, so the total complexity is O((2k+n2)1.346).

(b) This proof mainly follows (Tveit, 2003). By Theorem 28.1 and Theorem 28.2 in (Cormen et al.,
2009), let I(n) be the complexity of inverting any n × n nonsingular matrix, and M(n) be the
complexity of multiplying two n × n matrices, then I(n) = Θ(M(n)). That is, the complexity
of matrix inversion is asymptotically both upper- and lower-bounded by the complexity of matrix
multiplication.

Using the Coppersmith-Winograd algorithm (Coppersmith & Winograd, 1987), one of the fastest
known algorithms for multiplying two n×n matrices, we have M(n) = O(n2.376), which gives the
upper bound I(n) = O(n2.376).

Moreover, (Raz, 2002) proved that the complexity multiplying two n× n matrices cannot be better
than M(n) = Ω(n2 log n). Thus I(n) = Ω(n2 log n).

(c) Following (b), we have the upper bound M(n) = O(n2.376) and the lower bound M(n) =
Ω(n2 log n).

Corollary C.1 shows that it is possible to reduce the complexity of the Fast Algorithm to O((2k +
n2)1.346+n2.376) by choosing efficient algorithms for matrix multiplication and inversion; however,
it is impossible to reduce it below Ω(n2 log n).

It is easy to check that that the same conclusion also applies to computing the closed-form solutions
of EASE and EDLAE.

D DEQL WITH LOW-RANK CONSTRAINT

This section discusses the closed-form solution of Eq (7) under low-rank constraint of W . Given the
rank k (k ≤ n), we would like to solve

argmin
W

lD(W ) =

n∑
i=1

E(X,Y )∼D(i)

[
∥Y∗i −XW∗i∥2F

]
s.t. rank(W ) ≤ k (34)

Theorem D.1. Suppose E(X,Y )∼D(i) [XTX] is independent of i, and denote

Σxx = E(X,Y )∼D(i) [XTX]

Σxy =
[
E(X,Y )∼D(1) [XTY∗1],E(X,Y )∼D(2) [XTY∗2], ...,E(X,Y )∼D(n) [XTY∗n]

]
19
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If Σxx is non-singular, then the closed-form solution of Eq (34) is given by

W ∗ = Σ−1/2
xx

[
Σ−1/2

xx Σxy

]
k

(35)

Here, let Σ−1/2
xx Σxy = U

σ1

σ2

...
σn

V T be the singular value decomposition where σ1 ≥

σ2... ≥ σn, we denote
[
Σ

−1/2
xx Σxy

]
k
=

∑k
i=1 σiU∗iV

T
∗i .

Proof : Denote y(i) = E(X,Y )∼D(i) [Y T
∗iY∗i]. By Eq (7),

lD(W ) =

n∑
i=1

WT
∗iΣxxW∗i − 2WT

∗i (Σxy)∗i + y(i)

=

n∑
i=1

(
Σ1/2

xx W∗i

)T

Σ1/2
xx W∗i − 2

(
Σ1/2

xx W∗i

)T

Σ−1/2
xx (Σxy)∗i + y(i)

=

n∑
i=1

∥∥∥Σ1/2
xx W∗i − Σ−1/2

xx (Σxy)∗i

∥∥∥2
F
+ y(i) − (Σxy)

T
∗i Σ

−1
xx (Σxy)∗i

=
∥∥∥Σ1/2

xx W − Σ−1/2
xx Σxy

∥∥∥2
F
+

n∑
i=1

y(i) − (Σxy)
T
∗i Σ

−1
xx (Σxy)∗i

By Eckart–Young–Mirsky theorem,
[
Σ

−1/2
xx Σxy

]
k
= argmin

rank(Q)≤k

∥∥∥Q− Σ
−1/2
xx Σxy

∥∥∥2
F

for any Q ∈

Rn×n. Therefore, Σ1/2
xx W ∗ =

[
Σ

−1/2
xx Σxy

]
k
=⇒ W ∗ = Σ

−1/2
xx

[
Σ

−1/2
xx Σxy

]
k
.

Note that the low-rank solution Eq (35) is not applicable when Σxx = E(X,Y )∼D(i) [XTX] de-

pends on i: If Σxx varies with i, then in the proof
∑n

i=1

∥∥∥Σ1/2
xx W∗i − Σ

−1/2
xx (Σxy)∗i

∥∥∥2
F

cannot be

combined into
∥∥∥Σ1/2

xx W − Σ
−1/2
xx Σxy

∥∥∥2
F

.

The low-rank solution Eq (35) is applicable to EDLAE only when taking a = b: by Eq (10), Σxx is
represented by H(i); by Lemma 3.2, if a = b, H(i) will have all diagonal entries being (1 − p)b2

and all off-diagonal entries being (1− p)2b2 for any i, thus being independent of i. However, when
a ̸= b, H(i) will depend on i, making Eq (34) not applicable.

E RELATED WORKS

The evolution of collaborative filtering (CF) in recommendation systems has undergone several
key paradigm shifts. In its early stages, neighborhood-based methods dominated the field, with
influential works such as user-item KNN approaches (Hu et al., 2008) and sparse linear models
(SLIM) (Ning & Karypis, 2011) setting the foundation. However, the Netflix Prize competition
marked a turning point, accelerating the adoption of matrix factorization (MF) techniques, which
offered improved scalability and latent feature learning (Koren et al., 2009). These models aim to
solve a matrix completion problem, which has been extensively studied theoretically (Candès & Tao,
2010; Recht, 2011; Foygel et al., 2011; Shamir & Shalev-Shwartz, 2011).

The rise of deep learning (LeCun et al., 2015) further revolutionized the landscape, introducing
more expressive neural architectures. Among these, graph-based models gained prominence, in-
cluding Neural Collaborative Filtering (NCF) (He et al., 2017), which replaced traditional MF with
neural networks, and later refinements like Neural Graph Collaborative Filtering (NGCF) (Wang
et al., 2019) and LightGCN (He et al., 2020), which explicitly leveraged graph structures for higher-
order user-item relationship modeling. Simultaneously, industry-scale solutions emerged, blending
memorization and generalization through hybrid architectures such as Wide & Deep (Cheng et al.,
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2016), DeepFM (Guo et al., 2017), and Deep & Cross Networks (DCN) (Wang et al., 2017), which
automated feature interactions while maintaining interpretability.

Alongside the ongoing research that explores various models to enhance recommendation perfor-
mance, the research community has gradually recognized the importance of gaining a deeper the-
oretical understanding of loss functions (Terven et al., 2025; Wu et al., 2024b). These theoretical
investigations seek to reveal the fundamental principles and mathematical underpinnings that govern
the behavior and optimization direction of recommendation systems, thereby advancing our over-
all understanding of how these systems function. BPR (Rendle et al., 2009). Early methods often
adopted pointwise L2 loss over observed ratings or implicit feedback (Hu et al., 2008), which is
simple and analytically tractable. Later, pairwise ranking losses such as BPR (Rendle et al., 2009)
became popular for top-N recommendation, optimizing relative preferences between positive and
negative items. Softmax-based listwise losses, such as sampled softmax (Jannach et al., 2010) were
introduced to better align with ranking metrics like NDCG. In recent years, contrastive learning
frameworks (Zhou et al., 2021; Wang et al., 2022) have gained prominence as a powerful and effec-
tive approach, particularly in unsupervised recommendation scenarios. Notable studies such as (Li
et al., 2023; Liu et al., 2021) have further showcased their effectiveness in this domain.

Notably, recent studies (Rendle, 2010) have shown that well-tuned linear models can outperform
more complex deep architectures on sparse implicit data, challenging the assumption that greater
model expressiveness always yields better performance. At the same time, alternative objectives
such as pairwise ranking losses (Rendle et al., 2009), listwise softmax, and contrastive formulations
(Zhou et al., 2021; Wang & Liu, 2021)—though popular—often suffer from instability, sensitivity
to negative sampling, and increased computational overhead. Motivated by these findings, we adopt
a different perspective: rather than seeking more complex losses or models, we focus on refining
linear models under the classical L2 loss.

LAEs are one type of the linear recommender models. One of the earliest LAE model is SLIM (Ning
& Karypis, 2011), which trains the loss ∥R−RW∥2F with L1 and L2 regularizers. The zero-diagonal
constraint was first introduced in EASE (Steck, 2019) to prevent solutions from overfitting toward
the identity matrix. EDLAE (Steck, 2020) instead employs dropout and emphasis as an alternative
strategy to mitigate overfitting. ELSA (Vančura et al., 2022) construct the model W with a zero
diagonal by enforcing W = AAT − I for some matrix A subject to ∥Ai∗∥22 = 1 for all i. (Moon
et al., 2023) shows that a strict zero-diagonal constraint does not always yield the best performance,
and that replacing it with a diagonal bounded by a small norm during training can improve results.

Finally, we would like to point out the relationship between linear autoencoders (LAEs) and model
explainability. LAE-based architectures provide a uniquely transparent mapping between input and
output representations through a single linear operator W , where each element Wij quantifies how
item j contributes to predicting item i. This white-box structure makes LAEs inherently inter-
pretable compared with matrix factorization and deep neural recommenders, whose latent dimen-
sions are unidentifiable or highly nonlinear. Earlier models such as SLIM Ning & Karypis (2011)
and EASE Steck (2019) demonstrated that linear reconstruction of co-occurrence patterns can yield
competitive recommendation performance while exposing direct item–item relationships. The more
recent EDLAE Steck (2020) extended this idea by explicitly adding random dropout, ensuring that
learned dependencies reflect genuine collaborative signals.

This interpretability direction aligns with broader developments in machine learning, where linear
and sparse representations are increasingly used to reveal structure inside complex neural systems.
In particular, Sparse Autoencoders (SAEs) trained on large language models have been shown to un-
cover highly interpretable and often monosemantic latent features et al. (2023); Cunningham et al.
(2023); Yi et al. (2025); Fereidouni et al. (2025). These findings extend earlier insights that deep
activations can be linearly decomposed into disentangled semantic directions, a principle also sup-
ported by linear probes Alain & Bengio (2016). Complementary approaches such as LIME Ribeiro
et al. (2016) further demonstrate how local linear surrogates can explain the predictions of arbitrary
black-box models, reinforcing the idea that linearity provides a powerful lens for interpretability.
Building on this insight, our proposed DEQL framework extends the explanatory power of LAEs,
preserving their interpretability while enhancing expressive capacity.
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F SUPPLEMENTAL EXPERIMENTS

F.1 STATISTICAL SIGNIFICANCE

Since the closed-form solution of DEQL is deterministic, each b corresponds to a fixed model, so
any statistical noise in test performance cannot be attributed to model randomness; rather, it arises
from data randomness. To demonstrate that the performance improvements in Tables 1 and 2 are
not due to statistical biases in dataset splitting, we conduct significance tests to confirm that the
improvements of DEQL(L2) are statistically meaningful.

We re-sampled the train/validation/test splits under five different random seeds and evaluated all
methods using the same best hyperparameters identified in the original experiments. We report the
mean performance with standard deviations (Table 3), and further conducted pairwise t-tests for
every dataset and metric (Table 4). These analyses consistently show that although the performance
margin is small, DEQL(L2) reliably outperforms its strictly constrained counterpart EDLAE. This
indicates that relaxing the diagonal constraint does not introduce instability; rather, the combination
of b > 0 and L2 regularization yields a slightly more flexible model that achieves better overall
accuracy.

Table 3: Five run performance comparisons among DEQL(L2+diag), DEQL(L2), and EDLAE
across different datasets. Best value per column is highlighted in bold.

Model Games Beauty Gowalla ML20M Netflix MSD

R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20

EDLAE 0.2674 ± 0.0144 0.1729 ± 0.0030 0.1526 ± 0.0194 0.0969 ± 0.0164 0.2266 ± 0.0019 0.2061 ± 0.0027 0.3971 ± 0.0031 0.3482 ± 0.0026 0.3657 ± 0.0012 0.3434 ± 0.0006 0.3317 ± 0.0006 0.3233 ± 0.0007

DEQL(L2+diag) 0.2669 ± 0.0188 0.1737 ± 0.0027 0.1517 ± 0.0225 0.1001 ± 0.0148 0.2270 ± 0.0026 0.2071 ± 0.0031 0.3972 ± 0.0036 0.3482 ± 0.0027 0.3657 ± 0.0013 0.3433 ± 0.0006 0.3344 ± 0.0005 0.3247 ± 0.0015

DEQL(L2) 0.2745 ± 0.0153 0.1738 ± 0.0067 0.1567 ± 0.0208 0.1023 ± 0.0164 0.2279 ± 0.0023 0.2076 ± 0.0029 0.3974 ± 0.0032 0.3484 ± 0.0026 0.3660 ± 0.0012 0.3437 ± 0.0006 0.3333 ± 0.0005 0.3251 ± 0.0007

Table 4: Pairwise t-tests results at significance level α = 0.05. The null hypothesis A ≤ B means
that method A performs no better than method B on the given metrics and datasets. Each cell
reports the decision to to reject (Rej) or accept (Acc) the null hypothesis on the first line and the
corresponding p-value on the second line. If p-value < α, the null hypothesis is rejected (i.e., the
evidence supports that A performs better than B).

Null Hypothesis Games Beauty Gowalla ML20M Netflix MSD

R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20

DEQL(L2) ≤ DEQL(L2+diag)
Rej

(p=0.0411)
Acc

(p=0.4884)
Acc

(p=0.1486)
Rej

(p=0.0353)
Rej

(p=0.0134)
Rej

(p=0.0164)
Acc

(p=0.1924)
Acc

(p=0.0523)
Rej

(p=0.0171)
Rej

(p=0.0001)
Acc

(p=0.9938)
Acc

(p=0.2165)

DEQL(L2) ≤ EDLAE
Rej

(p=0.0137)
Acc

(p=0.4008)
Acc

(p=0.0729)
Rej

(p=0.0013)
Rej

(p=0.0083)
Rej

(p=0.0001)
Rej

(p=0.0033)
Rej

(p=0.0400)
Rej

(p=0.0401)
Rej

(p=0.0001)
Rej

(p=0.0000)
Rej

(p=0.0000)

F.2 LEARNED DIAGONAL VALUES IN DEQL(L2)

We visualize the distributions of diagonal values learned by DEQL(L2) across all datasets in Figure
3. Compared with the hard zero-diagonal constraint in EDLAE, relaxing the constraint in DEQL(L2)
(i.e., removing the strict diag(W ) = 0 requirement) allows the diagonal entries to shift slightly
toward positive values. However, the vast majority of diagonal terms remain very close to zero, with
sharp modes typically in the range 0.01–0.10 across datasets.

This pattern indicates that although DEQL removes the strict diag(W ) = 0 constraint, our formu-
lation is still able to dynamically suppress the diagonal terms, preventing them from growing into
large or semantically meaningful values. In other words, the model gains flexibility (allowing slight
positive drift) without sacrificing stability. The diagonals stay small enough that overfitting is effec-
tively avoided even without the hard constraint, which aligns with the empirical findings by (Moon
et al., 2023), showing that relaxing the zero-diagonal constraint to a diagonal with small values can
improve performance.

F.3 TIME AND MEMORY COST

In this section, we provided more experimental details and results (as in Table 5) regarding training
time and memory usage.
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Figure 3: Diagonal Value Distribution Across different datasets

Table 5 compares the time and memory costs of deep learning models and LAEs. It shows that for
large datasets like Yelp 2018, DEQL families finish training in just 8 minutes on a CPU, which is
much faster than all other advanced deep learning baselines.

The primary reason LAE-based methods (e.g., DEQL) exhibit higher memory cost but lower training
time than deep learning-based methods is due to their computational paradigm: deep learning-based
models train via batch gradient descent, loading only small batches into GPU memory at each step,
which keeps memory usage around 3GB but requires many iterations, leading to longer training
time. In contrast, LAE-based methods load the entire matrix into memory to compute its inverse as
part of a closed-form solution, which may require 80GB for datasets like Yelp2018. This space-time
trade-off enables the entire training process to finish much faster, as shown in our experiments.

Unlike GPU-intensive GNN-based models such as LightGCN or SSM (GNN), DEQL families are
particularly suitable for deployment in memory-limited or CPU-only environments, making it highly
practical. In practice, modern CPU servers often equip with 500 GB – 1 TB RAM, mitigating this
issue.

Table 5: Approximate Training time and memory usage on Yelp2018. Deep based models mainly
consume GPU memory, while others rely on CPU memory.

Model Time (min) Memory (GB) Memory Type

LightGCN 30 1 GPU
SimpleX (GNN) 130 1 GPU
SSM (MF) 13 1 GPU
SSM (GNN) 13 1 GPU
DLAE 2 70 CPU
EASE 2 60 CPU
EDLAE 4 70 CPU
DEQL 6 80 CPU
DEQL (L2+zero-diag) 8 80 CPU
DEQL (L2) 8 80 CPU
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G DISCUSSIONS

G.1 LIMITATIONS

One limitation of our work is that DEQL is currently used only as an optimization tool, providing
closed-form solutions under given hyperparameters. However, it does not offer guidance on which
hyperparameter choices lead to improved testing performance. As a result, hyperparameter selec-
tion still relies on empirical tuning, and its theoretical understanding remains underexplored. Our
experiments show that datasets with a larger user–item cardinality ratio tend to perform well under
large b (Section 5.4).

G.2 EXPLANATION FOR THE PERFORMANCE GAINS FROM REGULARIZATION

Here we provide a possible explanation for the experimental results in Table 1 and Table 2, which
show why the performance of DEQL(L2) and DEQL(L2 + zero-diag) surpasses that of plain DEQL.
According to statistical learning theory (Vapnik, 1999), searching for solutions within a large hy-
pothesis space often leads to overfitting, while searching in a small hypothesis space may cause
underfitting – both cases resulting in poor testing performance. Structural risk minimization (SRM)
(Vapnik, 1999) addresses this trade-off by controlling the size of the hypothesis space. In this con-
text, both the L2 regularizer and the zero-diagonal constraint can be interpreted as SRM techniques
that restrict the hypothesis space. Let UDEQL,UDEQL(L2) and UDEQL(L2 + zero-diag) denote the hypothesis
spaces of DEQL, DEQL(L2) and DEQL(L2 + zero-diag), respectively. Then we have the nested
relationship UDEQL(L2 + zero-diag) ⊂ UDEQL(L2) ⊂ UDEQL. However, the hypothesis space that yields the
best performance depends on the dataset, as reflected in the results: on some datasets DEQL(L2 +
zero-diag) performs better, while on others DEQL(L2) performs better.

G.3 PRACTICAL SCALABILITY OF DEQL

The LAE models produced by DEQL or other methods are typically represented by an n × n ma-
trix. Here, practical scalability concerns how to handle, for large n, both the inefficiency of the
Fast Algorithm used to compute the model and the associated memory prohibitivity issues. Since
computation is often performed on GPUs – which generally have much smaller memory capacity
than CPU RAM – we discuss the scalability challenge at two levels of memory prohibitivity:

1. The n×n matrix matrix fits in CPU RAM but cannot fit in GPU memory: At this level, we do
not need to impose rank constraints, and the model can remain full-rank. The issue is computational:
the Fast Algorithm depends on matrix multiplication and inversion, which are too slow on CPU.
Using the GPU would accelerate these operations, but matrices such as R or RTR are too large to
load into GPU for a single-pass computation. Instead, we can use block matrix multiplication and
block matrix inversion. These methods partition R or RTR into blocks that fit in GPU memory and
can be processed sequentially.

2. The n × n matrix cannot fit in CPU RAM: In this case, a low-rank LAE can be used instead
of a full-rank model. Importantly, the number of parameters in an LAE can be freely scaled. For
example, ELSA (Vančura et al., 2022) represents the model as ATA− I ∈ Rn×n where A ∈ Rl×n.
Although the final model is still an n×n matrix, the number of parameters depends on the size of A,
which can be flexibly controlled through l. Choosing l < n produces a low-rank LAE. Moreover, as
shown in Appendix D, a low-rank DEQL closed-form solution can also be obtained in the restricted
case a = b.

Additionally, to accelerate computation, one may consider replacing the standard O(n3) matrix
multiplication algorithm with Strassen’s algorithm, which runs in O(n2.81). Although Appendix
C shows that the complexity can in principle be further reduced to O(n2.376) using the Copper-
smith–Winograd algorithm, this method is difficult to deploy in practice, and its asymptotic advan-
tage only appears for extremely large n far beyond practical scenarios.

G.4 ADVANTAGES OF CLOSED-FORM SOLUTIONS

DEQL provides a framework for computing and analyzing closed-form solutions. A closed-form
solution guarantees the global optimum of the training objective, but it does not necessarily yield
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the best test performance, as it may overfit the training data. In contrast, gradient-based optimization
can rely on early stopping as a regularization technique (Yao et al., 2007) to mitigate overfitting, in
which case the resulting model does not minimize the training objective.

However, the closed-form solution has a distinct advantage in hyperparameter tuning. When hyper-
parameters are fixed, gradient-based training typically produces non-deterministic models due to the
reliance on early stopping, which introduces randomness in addition to the randomness from data
splitting. This compounded uncertainty makes it harder to assess whether a particular hyperparam-
eter setting truly leads to good generalization.

By contrast, the closed-form solution is fully deterministic for any fixed hyperparameters, so the only
source of randomness stems from the data itself. This substantially reduces uncertainty in model
evaluation and makes hyperparameter tuning more reliable. Consequently, closed-form solutions
enable cleaner hyperparameter selection and facilitate reproducibility.

G.5 LAES VERSUS DEEP MODELS

Deep neural networks have become popular in industrial recommender systems due to their flexi-
bility: their depth and width are not constrained by the dataset dimension n. In contrast, LAEs are
typically represented by an n×n matrix, inherently tied to n. Although their parameter count can be
scaled while preserving the n×n size – such as the ELSA model described in Appendix G.3 – these
models remain comparatively shallow. As a result, deep models generally benefit from more flexible
parameter scaling and architectural design, which often yields stronger representation power.

However, this does not imply that LAEs always underperform deep networks. Empirical results
show that LAE models outperform deep neural networks on sparse datasets where #users×#items
is far larger than the number of observed interactions (nonzeros); such sparsity often arises in cold-
start or low-information regimes (e.g., users with short histories) in industry (Monteil et al., 2024;
Volkovs et al., 2017). Besides, many small- to medium-scale e-commerce platforms have abundant
interaction logs but limited or no side features – a scenario that characterizes a substantial portion of
industrial deployments. In such environments, LAE-style models and matrix factorization remain
both effective and operationally attractive (Dacrema et al., 2019).

Moreover, linear models are typically easier to analyze than deep models due to their simplicity and
structural stability, which is why they are widely used in interpretable AI (Ribeiro et al., 2016). In
particular, LAEs have been adopted as interpretability and diagnostic tools within larger recommen-
dation pipelines, including those involving deep models (Spišák et al., 2024; Huben et al., 2023):
their item-item affinity matrix captures co-occurrence and influence patterns that support practical
use cases such as ‘frequently bought together’ recommendations, promotional bundling, and cross-
selling workflows. These interpretable relationships are a key reason why LAE-style models remain
prominent in production systems. Although DEQL was originally developed to enable closed-form
theoretical analysis for LAE models, the resulting LAE solutions can also be naturally leveraged for
interpretability at the application level.

G.6 BROADER SCOPE OF LAES AND DEQL

LAE models are mainly used for matrix completion, a fundamental mathematical problem with
broad applications in collaborative filtering recommender systems (Shamir & Shalev-Shwartz, 2014;
Candès & Tao, 2010). DEQL, in turn, is a framework for closed-form analysis of LAE models.
Consequently, in domains beyond recommender systems where matrix completion is relevant, both
LAEs and the DEQL framework can be naturally applied. Below we highlight several non-RecSys
application domains where LAE-style models and DEQL may be particularly useful:

• Survey & psychometric modeling; genomics & biomedical panels: In survey research, user ×
item response matrices exhibit substantial missingness and heterogeneous exposure, a setting long
modeled using linear or matrix-completion methods (Mazumder et al., 2010; Yoon et al., 2018).
Similarly, genomics, metabolomics, and biomedical panels routinely rely on linear or low-rank
imputation methods for patient × gene and panel-level data, including mass-spectrometry–based
metabolomics (Stekhoven & Bühlmann, 2012; Wei et al., 2018).
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• Distributed Sensing & Sensor Network: In distributed sensing applications, sensortime matrices
frequently contain missing measurements due to intermittent connectivity, power constraints, or
sensor failures. Linear reconstruction and imputation methods continue to be widely used in
these resource-constrained environments, where computational simplicity and interpretability are
critical (Rivera-Muñoz et al., 2022).

• LLM Interpretability: Many interpretability methods use linear mappings of the form Y ≈
WX , including concept-extraction SAEs, probing classifiers, and certain linearized attention ap-
proximations. These directly match DEQL’s weighted linear reconstruction structure (See Ap-
pendix E).

Finally, we note a conceptual connection to LLM preference learning: while methods such as DPO
differ substantially in mathematical formulation, both LLM content generation and recommendation
involve selecting or ranking items from large discrete spaces based on preference signals (Rafailov
et al., 2023; Rendle et al., 2009).

Although direct application would require substantial methodological development beyond DEQL’s
current scope, this connection suggests an interesting direction for future research.

LLM USAGE STATEMENT

We use ChatGPT solely for polishing writing at the sentence and paragraph level. The content and
contributions of this paper were created by the authors. All text refined with ChatGPT has been
carefully checked to avoid errors.
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