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ABSTRACT

This paper explores the generalization characteristics of iterative learning al-
gorithms with bounded updates for non-convex loss functions, employing
information-theoretic techniques. Our key contribution is a novel bound for the
generalization error of these algorithms with bounded updates. Our approach in-
troduces two main novelties: 1) we reformulate the mutual information as the
uncertainty of updates, providing a new perspective, and 2) instead of using the
chaining rule of mutual information, we employ a variance decomposition tech-
nique to decompose information across iterations, allowing for a simpler surro-
gate process. We analyze our generalization bound under various settings and
demonstrate improved bounds. To bridge the gap between theory and practice, we
also examine the previously observed scaling behavior in large language models.
Ultimately, our work takes a further step for developing practical generalization
theories.

1 INTRODUCTION

The majority of machine learning techniques utilize the empirical risk minimization framework.
Within this framework, the optimization objective is to minimize empirical risk, which is the average
risk over a finite set of training samples. In practice, the value of interest is the population risk,
representing the expected risk across a population. Generalization error is the difference between
the optimization objective (empirical risk) and the value of interest (population risk). The prevalence
of machine learning techniques makes it essential to comprehend generalization error.

Previous studies (Russo & Zou, 2016; 2019; Xu & Raginsky, 2017) have established a relationship
between mutual information, I(W ;Sn), and the generalization error, where Sn is a set containing
n samples from a distribution µ, erving as the algorithm’s input, and W represents the model’s
weights after training, serving as the algorithm’s output. Information-theoretic tools are well-
suited for analyzing iterative learning algorithms, as the chain rule of mutual information allows
for a simple decomposition I(W,Sn) across iterations (i.e. I(WT ;Sn) ≤ I(W1, · · ·WT ;Sn) ≤∑T

t=1 I(Wt;Sn|Wt−1)). Leveraging this technique, Xu & Raginsky (2017) studies the general-
ization properties of stochastic gradient Langevin dynamics (SGLD). SGLD can be considered as
introducing noise to the SGD in each update step.

Since most commonly used algorithms in practice, such as SGD and Adam (Kingma & Ba, 2014),
do not incorporate noise injection during the update process, recent research efforts are focused on
integrating information-theoretic methods into these iterative algorithms without added noise. The
challenge in this approach is that the value of I(Wt;Sn|Wt−1) will become infinite when WT is
determined by Sn and Wt−1. A potential solution involves utilizing surrogate processes (Negrea
et al., 2020; Sefidgaran et al., 2022). Neu et al. (2021) derives generalization bounds for SGD by
employing a ”virtual SGLD” surrogate process, in which noise is introduced during each update step
of (S)GD. Their generalization bound consists of two components: the generalization bound for the
surrogate process and the bound for the difference between the generalization errors of the surrogate
and original processes.

This paper examines the mutual information I(Sn,W ) from alternative perspectives and reformu-
lates the mutual information to relate to the uncertainty of the update. The uncertainty of the update
refers to how the update will vary for different datasets Sn ∼ µ⊗n. Instead of applying the chain-
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ing rule of mutual information, we use a variance decomposition method to decompose information
across iterations. From this perspective, we establish the generalization bound for general iterative
algorithms with bounded updates by employing a surrogate process that adds noise exclusively to
the original process’s final update.

We analyze our generalization bound in different situation. Our work achieve better vanishing rate
guarantee than previous work Neu et al. (2021). We also investigate the gap between our theoretical
framework and practical applications by analyzing the previous discovery of the scaling behavior
in large language models. Our model shed light on developing practically useful generalization
theories.

The contributions of our work can be summarized as following:

• This paper offers a novel viewpoint for analyzing the mutual information I(W,Sn) by
focusing on the uncertainty of updates.

• A new generalization bound, derived from an information-theoretic approach, is presented.
This bound is applicable to iterative learning algorithms with bounded updates.

• We investigate the generalization behavior of various types of bounded update, iterative
learning algorithms. Additionally, we summary the scaling rules of large language models
from previous experimental findings to examine the gap between theoretical and practical
aspects.

2 RELATED WORKS

Existing works on generalization theory can be roughly divided into two categories: function space
based method, and the learning algorithm based method. The function space based method study
the generalization behavior based on the complexity of function space. Many methods for mea-
suring the complexity of the function space have been proposed, e.g., VC dimension (Vapnik &
Chervonenkis, 2015), Rademacher Complexity (Bartlett & Mendelson, 2002) and covering number
(Shalev-Shwartz & Ben-David, 2014). These works fail in being applied to overparameters models,
where the number of parameters is larger than the number of data samples. Because the function
space is too large to deliver a trivial result (Zhang et al., 2021) in this case. To overcome this
problem, recent works want to leverage the properties of learning algorithm to analyzing the gen-
eralization behavior. The most popular methods are stability of algorithm (Hardt et al., 2016) and
information-theoretic analysis (Xu & Raginsky, 2017; Russo & Zou, 2016). Among them, the sta-
bility of algorithm (Bousquet & Elisseeff, 2002) measures how one sample change of training data
impacts the model weights finally learned, and the information theory (Russo & Zou, 2016; 2019;
Xu & Raginsky, 2017) based generalization bounds rely on the mutual information of the input
(training data) and output (weights after training) of the learning algorithm. Although the both the
stability method and information theoretic method are general, obtaining the generalization bound
for practical learning algorithms is non-trival. Most of the stability-based generalization bounds
focus on SGD (Hardt et al., 2016; Bassily et al., 2020; Nikolakakis et al., 2022). Applying the
stability-based method outside SGD is very complex and non-trival (Nguyen et al., 2022; Ramezani
et al., 2018). Most information-theoretic generalization bounds are applied for Stochastic Gradi-
ent Langevin Dynamics(SGLD), e.g., SGD with noise injected in each step of parameters updating
(Pensia et al., 2018; Negrea et al., 2019; Haghifam et al., 2020; Negrea et al., 2019; Haghifam et al.,
2020). Neu et al. (2021) extends the information-theoretic generalization bounds to SGD by lever-
aging surrogate process. Our work advances the field by extending the information-theoretic
based method to learning algorithms beyond SGD in a simple way. This represents a significant
step towards developing practically useful generalization theories.

3 PRELIMINARY

Let P,Q be probability measures on a measurable space. When Q ≪ P , meaning Q is absolutely
continuous with respect to P , dQ

dP represents the Radon-Nikodym derivative of Q concerning P .

The relative entropy (KL divergence) is calculated as KL(P∥Q) =
∫
x
dP (x) log

(
dP
dQ (x)

)
. The

distribution of variable x is denoted as P(x) or Px. The product distribution between two variables
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x, y is denoted as P(x)⊗ P(y). The mutual information between two variables x, y is calculated as
I(x; y) = KL(P(x, y)∥P(x) ⊗ P(y)). We use ∥ · ∥ to denote the Euclidean norm. And we denote
{1, · · · , k} as [k].

We consider the data distribution µ. The data Z is sampled from µ and resides in the space Z . The
training dataset is represented as Sn ∼ µ⊗n. The learning algorithms is denoted as A which takes
Sn as input and outputs weights for parameterized. The weights are denoted as W ∈ W, with a
dimension of d. The performance and behavior of these weights are evaluated using a loss function,
represented as f(W,Z) ∈ R+. We assume f(W,Z) is differentiable with respect to W . The
gradient and the Hessian matrix of f(W,Z) are denoted as∇f(W,Z) and∇2f(W,Z) respectively.
the value of interest is population risk, which is calculated as

Fµ(W ) = Ez∼µf(W, z).

However, the population risk is often inaccessible. In the context of empirical risk minimization
(ERM), the objective is to minimize the empirical risk. Given a data set Sn = {zi}ni=1 ∼ µ⊗n, the
empirical risk is calculated as

FSn
(W ) =

1

n

n∑
i=1

f(W, zi).

The empirical risk is determined by averaging all samples in a dataset Sn. This paper primarily
focuses on the generalization error, which represents the difference between empirical risk and pop-
ulation risk. The generalization error can be calculated as follows

gen(µ,PW |Sn
) = ESn∼µ⊗n,W∼PW |Sn

[FSn
(W )− Fµ(W )] .

The generalization error is calculated as the expectation concerning the randomness of data and the
algorithm. In the learning problem, we iteratively update the weights of parameterized functions.
We represent the weights at step t as Wt. Wt is acquired by adding the update value to the initial
weights W0, i.e., Wt = Wt−1 + Ut. Typically, Ut takes the form Ut = ηtut, where ηt indicates the
learning rate for the t-th step. We denote the accumulated update as U (t) ≜

∑t
t=1 Ut. The initial

weights are obtained by sampling from a specific distribution, i.e. W0 ∼ P(W0). The final output
of the T -steps algorithm is WT . The variance of update is defined as:

Vµ,n(U
(t)|W0) ≜ EW0∼PW0

E
[∥∥∥U (t) − EU (t)

∥∥∥2 |W0

]
,

where the EU (t) is taking the expection of all randomness of U (t), including the randomness caused
by data sampling and the randomness of learning algorithm. Following the similar way, we define
the covariance as

Cµ,n(Ui, Uj |W0) ≜ EW0∼PW0
E
[
< Ūi, Ūj > |W0

]
,

where Ūi = Ui − EUi. Without loss of ambiguity, we simplify Vµ,n(U
(t)|W0) as V(U (t)) and

Cµ,n(Ui, Uj |W0) as C(Ui, Uj).

4 GENERALIZATION BOUND

Our primary result is a bound on the generalization error of the weights W generated by a learning
algorithm with bounded updates. We will initially analyze the generalization mutual information
from the perspective of update uncertainty. Subsequently, we will provide a bound for the learning
algorithm with bounded updates.

4.1 GENERALIZATION BOUNDS WITH UNCERTAINTY OF UPDATE

We begin by discussing the assumption used in our bound. The R-sub-Gaussian is defined as fol-
lows:
Definition 4.1. A random variable X is R-sub-Gaussian if for every λ ∈ R, the following inequality
holds:

E[exp (λ(X − EX))] ≤ exp

(
λ2R2

2

)
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Remark 4.2. If a variable X ∈ R and takes value in [a, b], then the variable is (b − a)/2-sub-
Guassian.

Based on the definition of R-sub-Guassian, our assumption is:
Assumption 4.3. Suppose f(w,Z) is R-sub-Guassian with respect to Z ∼ µ for every w ∈ W .

With the R-sub-Guassian, we obtain the following generalization bound,
Theorem 4.4. Under Assumption 4.3, the following bound holds:∣∣gen(µ,PW |Sn

)
∣∣ ≤√2R2

n
[h(U (T )|W0)− h(U (T )|W0, Sn)]. (1)

This bound transfer the original I(W ;Sn) into the difference between two update entropy. The
update entropy can be interprete as the measure the uncertainty. h(U (T )|W0) − h(U (T )|W0, Sn)
measures the contribution dataset Sn to the update uncertainty. A low generalization bound can be
obtained if the learning algorithm takes a similar update given different Sn ∼ µ⊗n.

We first consider the situation where h(U (T )|W0, Sn) ≥ 0. In this case, we can simply omit
h(U (T )|W0, Sn) and we only need to derive a upper bound of h(U (T )|W0).
Theorem 4.5. Under Assumption 4.3, for high randomness learning algorithm, i.e.
h(U (T )|W0, Sn) ≥ 0, the generalization error of the final iteration satisfies∣∣gen(µ,PW |Sn

)
∣∣ ≤√2πeR2V(U (T ))

n
.

Remark 4.6. h(U (T )|W0, Sn) ≥ 0 can be achieve if the learning algorithms have hign randomness.
The high randomness can be obtain through 1) using small batch size 2) adding noise during the
updates, like SGLD 3) or some other methods. What’s more, this theorem establishes a connection
between the generalization error and the variance of the update.

The generalization bound in Theorem 4.4 can not be calculated directly when h(U (T )|W0, Sn) < 0,
because we don’t know the distribution of U (T ). The h(U (T )|W0) and h(U (T )|W0, Sn) can be
extremely small when the algorithm has minimal randomness. A natural approach is to associate the
update entropy with the Gaussian distribution entropy, which can be calculated directly. Moreover,
by adding noise to both sides, a relatively large entropy can be obtained. Consequently, we introduce
a surrogate process for our analysis:

surrogate process We consider the surrogate update Ũ with noise added to the final update, i.e.,
Ut = Ut when t ̸= T and UT = UT+ϵ, where ϵ is a random noise. Here we consider ϵ ∼ N (0, σ2I).
Then we have Ũ (T ) = U (T ) + ϵ.

Based on the surrogate process, we obtain the result:
Theorem 4.7. Under Assumption 4.3, for any σ, the generalization error of the final iteration satis-
fies ∣∣gen(µ,PW |Sn

)
∣∣ ≤√R2V(U (T ))

nσ2
+∆σ, (2)

where ∆σ ≜ |E [(Fµ(WT )− Fµ(WT + ϵ))− (FS(WT )− FS(WT + ϵ))]| and ϵ ∼ N (0, σ2I).
Remark 4.8. Compared to Theorem 4.5, Theorem 4.7 employs the surrogate process and, as a re-
sults, this theorem is more general. We give a further analysis of the results of this Theorem from
Pac-Bayes perspective in Appendix F to remove sub-Guassian assumption and obtain high proba-
bility bounds.

4.2 GENERALIZATION BOUNDS FOR BOUNDED UPDATES LEARNING ALGORITHMS

Building on the results from the previous section, we derive the bound for the bounded updates
learning algorithm in this part. We provide the formal definition of the bounded updates as follows:
Definition 4.9. (Bounded updates) A learning algorithm is said to have bounded updates with re-
spect to function f(·) and data distribution µ, if for all Sn ∼ µ⊗n, there exists a constant L, such
that ∥ut∥ ≤ L for all t ≤ T , when the learning algorithm is operated on f(·) and Sn.
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Comparison between bounded updates assumption and L-Lipschitz assumption The L-
Lipschitz assumption is widely used to analyze the convergence or generalization behavior of learn-
ing algorithms. The L-Lipschitz condition requires that ∇f(w,Z) ≤ L for all w,Z. These two
assumptions, L-Lipschitz and bounded update, share some similarities. However, some fundamen-
tal differences exist: 1) L-Lipschitz is a property of f(·), while the bounded updates is a joint
behavior of the learning algorithm and f(·). It is possible to achieve a bounded updates behavior
even when the function is not L-Lipschitz. 2) The L-Lipschitz is a ”global assumption,” meaning
that the assumption must be held for all w. On the other hand, the bounded updates assumption is
a local assumption. This assumption is only required to be held for the weights encountered during
the learning process.

Under the bounded updates assumption, we can obtain the result as follows:
Theorem 4.10. If the learning algorithm has bounded updates on data distribution µ and loss
function f(·), then we have

V(U (T )) ≤
T∑

t=1

4η2tL
2 + 2L2

T∑
t=1

ηt

t−1∑
i=1

ηt

then under Assumption 4.3, we have

gen(µ,PW |Sn
) ≤

√√√√ R2

nσ2

(
T∑

t=1

4η2tL
2 + 2L2

T∑
t=1

ηt

t−1∑
i=1

ηt

)
+∆σ.

If the learning algorithms have high randomness, i.e. satisfying h(U (T )|W0, Sn) ≥ 0, we have

∣∣gen(µ,PW |Sn
)
∣∣ ≤

√√√√2πeR2

n

(
T∑

t=1

4η2tL
2 + 2L2

T∑
t=1

ηt

t−1∑
i=1

ηt

)
.

Proof Schetch: The full proof is listed in Appendix C. Here, we give the proof schetch. Step 1
We use the equation V(U (T )) =

∑T
t=1 V(Ut)+2

∑T
t=1 C(U (t−1), Ut) to decomposite the V(U (T ))

to the information along the learning trajectory. Step 2 Due to the bounded updates assumption, the
V(Ut) ≤ 4η2tL

2 and V(U (t)) ≤ L
∑t

i=1 ηt. Step 3 Combining the results above, we obtain the final
bound.

Technique Novelty: Most previous works employ the technique I(WT ;Sn) ≤∑T
t=1 I(Wt;Sn|Wt−1) to decompose the information of the final weights into the informa-

tion along the learning trajectory. This method fails in our case because we do not add noise
at every update step along the learning trajectory. As a result, I(Wt;Sn|Wt−1) becomes large
in this situation. To address this challenge, we utilize another commonly used technique:
V(U(T )) =

∑T
t=1 V(Ut) + 2

∑T
t=1 C(U(t− 1), Ut). This method is quite simple, but it is

effective. We will analyze the effectiveness of our method by comparing it with Neu et al. (2021),
which uses the technique I(WT ;Sn) ≤

∑T
t=1 I(Wt;Sn|Wt−1), in the following section.

5 ANALYSIS

5.1 BOUNDED UPDATES LEARNING ALGORITHMS

In this section, we will discussion about the bounded updates hehavior of commonly used algorithm.
Proposition 5.1. Adam(Kingma & Ba, 2014), Adagrad(Duchi et al., 2011), RMSprop(Tieleman
et al., 2012) are bounded updates with respect to all data distribution and function f(·) when d =
O(1)

This proposition suggests that when setting the dimension d as a constant, commonly used learning
algorithms, such as Adam, Adagrad, and RMSprop, exhibit bounded updates. However, in real-
world situations, we typically scale the model size based on the amount of data, which implies that
d will increase along with n. In this scenario, we do not have d = Θ(1).
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Then, we consider the learning algorithm modified with update clip. The update rule of learning
algorithm with update clip is ut = min{L, ∥u′

t∥}
u′
t

∥u′
t∥

, where u′
t is the update value of original

learning algorithm without update clip.

Proposition 5.2. All learning algorithms with update clip and (S)GD with grad clip have bounded
updates with respect to all data distribution and function f(·).

Proof. For algorithms with update clip, we have ∥ut∥ = min{L, ∥u′
t∥}
∥u′

t∥
∥u′

t∥
≤ L. For (S)GD,

because u′
t is gradient of a batch data, the grad clip is equal to update clip.

The gradient clipping technique is commonly employed in practice (Zhang et al., 2019; Qian et al.,
2021). If a learning algorithm does not have a bounded update, it may be possible to incorporate an
update clipping technique to ensure that it aligns with our theoretical framework.

5.2 d DEPENDENCE OF ∆σ

We consider the situations where σ is a small value. As our analysis concentrates on the asymptotic
behavior of the generalization error when n increases, we use the setting lim

n→∞
σ = 0. In this

situation, σ is a small value when a relatively large n is adopted.

For z ∈ Z , we have

E[f(WT , z)−f(WT + ϵ, z)] ≈ E[< ∇f(WT , z), ϵ >] +
1

2
E[ϵT∇2f(WT , z)ϵ]

=
1

2d
E ∥ϵ∥2 ETr(∇2f(WT , z)) =

σ2

2
ETr(∇2f(WT , z))

The, according to the definition of ∆σ , we have ∆σ ≈ σ2

2

∣∣ETr
(
∇2Fµ(WT )−∇2FSn

(WT )
)∣∣.

Therefore, analyzing d dependence of ∆σ is equal to analyzing the d dependence of
Tr
(
∇2f(WT , z)

)
.

Worst case: ∆σ = Θ(dσ2). We assume the β-smooth for function f(w, z), then we have
the upper bound E

∣∣Tr(∇2(WT , z))
∣∣ ≤ dβ. The equal sign is taken when all the eignvalue of

∇2f(WT , z)) is β.

Benign case: The benign case is possible when the distribution of eigenvalues of the Hessian
matrix exhibits a long tail. In this situation, most eigenvalues are close to 0, which implies that
Tr(∇2(WT , z)) remains stable when increasing d. The long tail distribution is commonly observed
in neural networks (Ghorbani et al., 2019; Sagun et al., 2016; Zhou et al., 2022). We consider two
cases in this context: 1) ∆σ = Θ(σ2/η): This case may be achieved by leveraging the inductive
bias of training algorithm. Wu et al. (2022) finds that the SGD can only converge to WT where
Tr(∇2(WT , z)) is smaller than a specific value. The value is dimension independent but learning
rate dependent ( 1η ). The similar learning rate dependent on maximum eigenvalue is also discovered
by Cohen et al. (2021; 2022). 2) ∆σ = Θ(σ2). This case may be achieved if the learning algorithm
explicitly decreases Tr(∇2(WT , z)). The SAM learning algorithm (Foret et al., 2020) is specifically
designed to reduce the sharpness (maximum eigenvalue of the Hessian matrix). Wen et al. (2022)
find that the stochastic SAM minimizes Tr(∇2(WT , z)).

5.3 COMPARED WITH NEU ET AL. (2021)

Neu et al. (2021) consider the surrogate process that Ũt = Ut + ϵt for all t ∈ [T ], where ϵt ∼
N (0, σtId). They obtain the generalization error bound,

∣∣gen(µ,PW |Sn
)
∣∣ = O(√R2η2T

n
(dT +

1

bσ2
) + ∆σ1:T

),

where b denotes batch size and σ1:T =
√

σ2
1 + · · ·+ σ2

T .
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Table 1: The asymptotic analysis when increasing n under Tη = Θ(1) for various scenarios, with b
denoting the batch size. (△) stands for h(U (T )|W0, Sn) < 0, and (⋆) is short for h(U (T )|W0, Sn) ≥
0.

Settings Ours Neu et al. (2021)
d ∆σ (△) (⋆) b = O(1) b = O(

√
n)

Θ(1) Θ(dσ2), Θ(σ2/η) ,Θ(σ2) O(1/n 1
3 ) O(1/n 1

2 ) O(1/n 1
3 ) O(1/n 1

2 )

Θ(n)
Θ(dσ2) O(1)

O(1/n 1
2 ) O(1) O(1)Θ(σ2/η) O(1/n 1

3 )

Θ(σ2) O(1/n 1
3 )

We consider two settings of d in this analysis. The first one is the underparameterized regime, where
d = Θ(1). In this regime, as we increase n to a large value, n will be significantly larger than
d. The second setting is the overparameterized regime, where d = Θ(n). In this case, the ratio
between d and n remains nearly constant as we increase n. This setting is commonly employed in
Large Language Models (Muennighoff et al., 2023; Hoffmann et al., 2022) when scaling n. Table 1
examines the behavior of the generalization bound under different d values and various cases of ∆σ .
In this analysis, we fix ηT = Θ(1).

Last iteration noise v.s. whole process noise Our work and Neu et al. (2021) both utilize surro-
gate processes for analysis. The main difference lies in the surrogate process, where our approach
adds noise only to the final iteration, while Neu et al. (2021) adds noise throughout the entire pro-
cess. Our bound is better for analysis because our bounds only require taking infinity with respect
to one variable σ, whereas the bound of Neu et al. (2021) needs to consider infinity with respect to T
variables, σ1, · · ·σT . Our method exhibits weaker dependence on T . The ∆σ used in our bound
does not have a clear dependence on T , while the ∆σ1:T

will increase with respect to T .

Applies to general learning algorithms. Our bound don’t leverage any specific knowledge about
particular learning algorithms, while the main Theorem of Neu et al. (2021) only applied to (S)GD.
Although the methods of Neu et al. (2021) is general which makes it possible to apply to other
learning algorithms, it is untrival to do this. More information can be found in the Section ”5.
Extension” in Neu et al. (2021).

5.4 COMPARED WITH STABILITY BASED METHOD

Table 2: Compared with stability-based works. We consider the case where ηt = 1
t and T = O(n)

to calculate the rate. Because stability-based works consider the stochastic optimizers with batch
size 1, we choose our results with h(U (T )|W0, Sn) ≥ 0 for fair comparison. The conclusion is that
1) Our method has weaker assumption on function f(·), and 2) Our bound achieve a better rate on
non-convex function.

Paper Position Assumption Learning Rate
(in ori paper) algorithm

Hardt et al. (2016) Thm 3.8 Lipschtz β-smooth SGD O(1/n
1

β+1 )
Ramezani et al. (2018) Thm 5 Lipschtz β-smooth SGDM O(1/ log n) 1

Lei & Ying (2020) Thm 3 nonnegative convex β-smooth SGD
Nguyen et al. (2022) Thm 4 bounded f(·) Lipschitz β-smooth Adam, Adagrad O(en/n) 2

Ours Thm 4.10 sub-Guassian Bounded update O(log n/
√
n)

Table 2 summaries some recent stability-based studies on different learning algorithms. Our methods
have the following advantages:

• Weaker assumptions. Most stability-based works (Hardt et al., 2016; Ramezani et al.,
2018; Nguyen et al., 2022) require Lipschitz and smooth assumption. Lei & Ying (2020)

1We set td in this bounds as O(T ).
2Corollary 1 in Nguyen et al. (2022)
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removes the Lipschitz assumption, but the convex assumption is required. Our methods
only require to be f(·) sub-Guassian.

• Better results in non-convex situation. Obviously, our methods have a better result than
Nguyen et al. (2022); Ramezani et al. (2018) from Table 2 under the setting η = 1

t and
T = O(n). As for the Hardt et al. (2016), our bound is better if β > 1, which is hold in
many situations (Cohen et al., 2021; Ghorbani et al., 2019; Zhou et al., 2022).

Remark 5.3. We don’t compare the results with Lei & Ying (2020) because 1) it relies on the convex
assumption and 2) its studies don’t include the results with learning rate setting ηt =

1
t . Haghifam

et al. (2023) argues that all the information-theoretic methods will be worse than stability-based
work in convex case. We leave achieving better results in convex case using information-theoretic
methods as future work (Detail discussion on Section 8).

6 CONNECTION TO PRACTICE

In this section, we investigate practical concerns, specifically focusing on the scaling results of the
LLM problem. Practically speaking, the population risk is unbiased estimated by the test loss. Test
loss is assessed using a new dataset sampled from the same distribution µ, which was not observed
during the training process. The test loss can be roughly decomposite as:

Test Loss = Training loss + Generalization Error,

where the training loss is refer to the loss of the data set used as input to learning algorithm.

Relation between test loss and generalization error. The test loss consists of two components:
the generalization error and the training loss. The generalization error can accurately represent the
test loss if the training loss is negligible compared to the generalization error. There are two scenarios
in which this can occur: 1) The training loss is consistently numerically small compared to
the generalization error. In practice, small numerical values are often disregarded. Under these
circumstances, the behavior of the generalization error dictates the pattern observed in the test loss.
2) The training loss diminishes at an equal or faster rate compared to the generalization error.
In this case, the rate of the test loss is determined by the rate of the generalization error. When
analyzing how quickly the test loss decreases as we scale n, only the rate of decrease is taken into
account.

6.1 COMPARISON BETWEEN THEORETIC AND PRACTICE

Table 3: comparing the empirical results on the scaling of large language models with our theory.
it is important to note that large language models are trained with only one epoch. Therefore, the
”training loss” in the new batch data of their work is, in fact, the test loss. The actual training loss
can be determined by reevaluating the loss on the training data after training with fixed weights..

Relation between d and n Test Loss Generalization Error
Kaplan et al. (2020) n ≳ (5× 103)d0.74 O(1/n0.103)

Hoffmann et al. (2022) d = Θ(n) O(1/n0.28)
Muennighoff et al. (2023) d = Θ(n) O(1/n0.353)

Ours d = Θ(n) O(1/n 1
3 ) or O(1/n 1

3 )

The setting d = Θ(n) is prefered in practice. Hoffmann et al. (2022) found that optimal perfor-
mance can be achieved with d = Θ(n) (Table 2 in Hoffmann et al. (2022)). Additionally, Kaplan
et al. (2020) discovers that n ≳ (5 × 103)d0.74 can avoid overfitting behavior. It is clear that the
d = Θ(n) condition satisfies the inequality for relative large n. We argue that it is crucial to study the
generalization behavior under d = Θ(n) to better align theoretical work with practical applications.

Interpreting our results in practice situation If the training error can decrease to a significantly
lower value than the generalization error, or if the training error’s vanishing rate is faster than the
generalization error, and ∆σ is not in the worst-case scenario, then the iterative learning algorithm
with bounded updates can achieve a vanishing test loss at a rate of O(1/n 1

3 ) in worst-case scenario.

8
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The asymtotic rate of loss The generalization error result ( 1
n1/3 ) is similar to the experimental test

loss findings of Hoffmann et al. (2022) (O(1/n0.28)) and Muennighoff et al. (2023) (O(1/n0.353)).

6.2 GAP BETWEEN THEORY AND PRACTICE

Bounded update Our method requires the learning algorithms have bounded update.. However,
practically employed learning algorithms may not always exhibit this property. To bridge this gap,
future efforts should focus on: 1) Analyzing the differences in behavior between learning algorithms
with update clipping, which ensures bounded updates, and the original learning algorithms. 2)
Investigating the behavior of the update norm when scaling the dimension d. It is possible for
learning algorithms that don’t guarantee bounded updates to still achieve bounded update behavior
if f(·) has desirable properties. The lazy training phenomenon (Chizat et al., 2019; Allen-Zhu et al.,
2019; Du et al., 2019; Zou et al., 2018) implies that such favorable properties exist.

Learning rate setting In our analysis, we select Tη = Θ(1). Practically, the learning rate often
decays throughout the training process. We also give further discuss the configuration T = O(n)
and ηt =

c
t in Appendix D. The outcomes of this setting closely resemble those with Tη = Θ(1),

except for an additional log n term. This log n term is negligible compared to polynomial terms of n.
However, the real application usually decay the learning rate for certain iteration and may leverage
warm up technique. Therefore, future work is needed to bridge the gap.

7 FUTURE WORK

Integrating the knowledge of learning trajectory Incorporating information from the learning
trajectory is crucial for gaining a deeper understanding of generalization behavior. Fu et al. (2023)
employs learning trajectory data to establish a better generalization bound for SGD. Additionally,
using learning trajectory information could potentially enhance the bounds of iterative learning al-
gorithms with bounded updates.

8 LIMITATION

Haghifam et al. (2023) analyzes the behavior of information-theoretic generalization bounds and
stability-based generalization bounds, finding that all information-theoretic-based generalization
bounds do not achieve a min-max rate comparable to stability-based works in stochastic convex
optimization problems. Our work cannot overcome this limitation for the following reasons:
1) Unlike stability-based work, information-theoretic methods, including our work, cannot directly
leverage convex information. This makes the information-theoretic methods sub-optimal. 2) Some
failure cases listed in Haghifam et al. (2023) are due to the work of Russo & Zou (2016), on which
our study is based. Improving the limitations of Russo & Zou (2016) is beyond the scope of our
paper. Given that all bounds of information-theoretic methods suffer from this limitation, it is an
important direction for future research.

9 CONCLUSION

This paper presents a new generalization bound for general iterative learning algorithms with
bounded updates. This result is more general than previous methods, which primarily focus on
the SGD algorithm. To achieve these results, we introduce a new perspective by reformulating the
mutual information I(W ;S) as the uncertainty of the update. Our generalization bound is analyzed
under various settings. Our work achieves a better vanishing rate guarantee than previous work (Neu
et al., 2021) in the overparameterized regime where d = Θ(n). Finally, we examine the gap between
our theory and practice by analyzing the previously discovered scaling behavior in large language
models. Our model shed light on developing practial used generalization theory.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International conference on machine learning, pp. 242–252. PMLR, 2019.

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.
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A PROOF OF THEOREM 4.4

Theorem A.1. (Theorem 1 of Xu & Raginsky (2017)) Under Assumption 4.3, the following bound
holds: ∣∣gen(µ,PW |Sn

)
∣∣ ≤√2R2

n
I(W ;Sn) (3)

Theorem A.2. Under Assumption 4.3, the following bound holds:∣∣gen(µ,PW |Sn
)
∣∣ ≤√2R2

n
[h(U (T )|W0)− h(U (T )|W0, Sn)] (4)

Proof. Using the chain rule of entropy, we have

h(WT ,W0) = h(WT |W0) + h(W0), (5)

and
h(WT ,W0) = h(W0|WT ) + h(WT ). (6)

Taking (6) - (5), we have

h(WT ) = h(WT |W0) + h(W0)− h(W0|WT ) (7)

h(W0|WT ) + h(WT |Sn) can be lower bounded by

h(W0|WT ) + h(WT |Sn)
(⋆)
= h(W0|WT , Sn) + h(WT |Sn)

= h(W0,WT |Sn)

= h(W0|Sn) + h(WT |W0, Sn)

(∗)
= h(W0) + h(WT |W0, Sn),

(8)

where (⋆) and (∗) are due to the independent between W0 and Sn.

I(WT ;Sn) = h(WT )− h(WT |Sn)

(⋆)
= h(WT |W0) + h(W0)− h(W0|WT )− h(WT |Sn)
◦
= h(WT |W0) + h(W0)− h(W0)− h(WT |W0, Sn)

= h(WT |W0)− h(WT |W0, Sn)

= h(W0 + U (T )|W0)− h(W0 + U (T )|W0, Sn)

= h(U (T )|W0)− h(U (T )|W0, Sn)

(9)

where (⋆) is due to Equation (7) and (◦) is due to 8.

Combining with Theorem A.1, we conclude the Theorem A.2.

B PROOF OF THEOREM 4.5 AND THEOREM 4.7

Lemma B.1. (From Pensia et al. (2018) page 12) If a random variable X has E ∥X∥2 ≤ C, then
we have h(X) ≤ d

2 log(
2πeC

d ).
Lemma B.2. (Entropy Power inequality (Shannon, 1948)) If X,Y are independent random variables
with dimension d, then we have

N(X + Y ) ≥ N(X) +N(Y ),

where N(X) = 1
2πee

2
dh(X).

Definition B.3. We say a learning algorithm is a high randomness learning algorithm if
h(U (T )|W0, Sn) ≥ 0.
Theorem B.4. Under Assumption 4.3, for high randomness learning algorithm, i.e.
h(U (T )|W0, Sn) ≥ 0, the generalization error of the final iteration satisfies∣∣gen(µ,PW |Sn

)
∣∣ ≤√2πeR2V(U (T ))

n
.
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Proof. According to Theorem 4.4, we have∣∣gen(µ,PW |Sn
)
∣∣ ≤√2R2

n
[h(U (T )|W0)− h(U (T )|W0, Sn)] ≤

√
2R2

n
h(U (T )|W0).

Using Lemma B.1

h(U (T )|W0) ≤
d

2
log

(
2πeV(U (T ))

d

)
≤ d

2
log

(
2πeV(U (T ))

d
+ 1

)
≤ πeV(U (T ))

Combining the equations, we obtain∣∣gen(µ,PW |Sn
)
∣∣ ≤√2R2

n
h(U (T )|W0) ≤

√
2πeR2V(U (T ))

n

Theorem B.5. Under Assumption 4.3, for any σ, the generalization error of the final iterate satisfies∣∣gen(µ,PW |Sn
)
∣∣ ≤√R2V(U (T ))

nσ2
+∆σ (10)

Proof. ∣∣gen(µ,PW |Sn
)
∣∣ = ∣∣∣ESn∼µ⊗n,W∼PW |Sn

[FSn(W )− Fµ(W )]
∣∣∣

≤
∣∣∣ESn∼µ⊗n,W∼PW |Sn

[
FSn(W̃ )− Fµ(W̃ )

]∣∣∣+∆σ,

where W̃ ≜ W + ϵ, ∆σ ≜ |E [(Fµ(WT )− Fµ(WT + ϵ))− (FS(WT )− FS(WT + ϵ))]| and ϵ ∼
N (0, σ2I).

Recall that

V(U (t)) ≜ EW0∼PW0
E
[∥∥∥U (t) − EU (t)

∥∥∥2 |W0

]
.

Denote V(w0)(U
(t)) = E

[∥∥U (t) − EU (t)
∥∥2 |W0

]
. For all w0, we have

h(U (T )|W0 = w0) = h(U (T ) − EU (t)|W0 = w0)
(⋆)

≤ d

2
log(

2πeV(w0)(U
(T ))

d
)

The inequlity (⋆) is due to Lemma B.1. Since ϵ is independent with U (T ), we have V(w0)(Ũ
(T )) =

V(w0)(Ũ
(T )) + V(ϵ). According to Lemma B.2, we have

N(Ũ (T )|W0, Sn) = N(U (T ) + ϵ|W0, Sn)

≥ N(U (T )|W0, Sn) +N(ϵ)

≥ N(ϵ).

Simplify the equation, we obtain that h(Ũ (T )|W0, Sn) ≥ h(ϵ) = d
2 log(

2πeV(ϵ)
d ).

Therefore, we have

h(Ũ (T )|W0)−h(Ũ (T )|W0, Sn)

≤
∫

h(Ũ (T )|W0)dP(W0)− h(ϵ) =

∫
h(Ũ (T )|W0)− h(ϵ)dP(W0)

≤
∫

d

2
log(

2πe[V(w0)(U
(T )) + V(ϵ)]
d

)− d

2
log(

2πeV(ϵ)
d

)dP(W0)

=

∫
d

2
log(1 +

V(w0)(U
(T ))

V(ϵ)
)dP(W0) ≤

d
∫
V(w0)(U

(T ))dP(W0)

2V(ϵ)

=
V(U (T ))

2σ2
.

(11)

Combining with Theorem A.2, we establish this Theorem.
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C PROOF OF THEOREM 4.10

Theorem C.1. If the learning algorithm has bounded updates on data distribution µ and loss func-
tion f(·), then we have

V(U (T )) ≤
T∑

t=1

4η2tL
2 + 2L2

T∑
t=1

ηt

t−1∑
i=1

ηt

then under Assumption 4.3, we have

gen(µ,PW |Sn
) ≤

√√√√ R2

nσ2

(
T∑

t=1

4η2tL
2 + 2L2

T∑
t=1

ηt

t−1∑
i=1

ηt

)
+∆σ.

If the learning algorithms have high randomness, i.e. satisfying h(U (T )|W0, Sn) ≥ 0, we have

∣∣gen(µ,PW |Sn
)
∣∣ ≤

√√√√2πeR2

n

(
T∑

t=1

4η2tL
2 + 2L2

T∑
t=1

ηt

t−1∑
i=1

ηt

)
.

Proof. We first derive upper bound V(U (T )) with Assumption 4.9. According to the definition, we
have

V(U (t)) = E
[∥∥∥U (t) − EU (t)

∥∥∥2 |W0

]
= E

[∥∥∥U (t−1) − EU (t−1) + Ut − EUt

∥∥∥2 |W0

]
= E

∥∥∥Ū (t−1) + Ūt

∥∥∥2
= E

∥∥∥Ū (t−1)
∥∥∥2 + E

∥∥Ūt

∥∥2 + E < Ū (t−1), Ūt >

= V(U (t−1)) + V(Ut) + 2C(U (t−1), Ut).

(12)

By iterative appling Equation (12), we have:

V(U (T )) =

T∑
t=1

V(Ut) + 2

T∑
t=1

C(U (t−1), Ut).

Due to the Assumption 4.9 and definition of V(Ut), we have

V(Ut) = E ∥Ut − EUt∥2

≤ ∥ηtL+ ηtL∥22
= 4η2tL

2.

Then, for U (t), we have ∥∥∥U (t)
∥∥∥ =

∥∥∥∥∥
t∑

i=1

Ut

∥∥∥∥∥ ≤
t∑

i=1

∥Ut∥ ≤ L

t∑
i=1

ηt

Therefore, we have

C(U (t), Ut) ≤
∥∥∥U (t−1)

∥∥∥ ∥Ut∥ ≤ L2ηt

t−1∑
i=1

ηt

Combining the equation above, we have

V(U (T )) =

T∑
t=1

V(Ut) + 2

T∑
t=1

C(U (t), Ut) ≤
T∑

t=1

4η2tL
2 + 2L2

T∑
t=1

ηt

t−1∑
i=1

ηt

If ηt = η, we have
V(U (T )) ≤ 4Tη2L2 + 2T 2η2L2 = 2Tη2L2(2 + T ) = O(Tη2(2 + T )),

Combining with Theorem B.4, Theorem B.5, we establish this Theorem.
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D ANALYZING THE LEARNING RATE SETTING ηt = c/t

Lemma D.1. (Harmonic series (Rice, 2011)) ℏt ≜
∑t

k=1
1
k = log n+γ+ 1

2t−ςt, where γ ≈ 0.5772

and 0 ≤ ςt ≤ 1
8t2

Theorem D.2. If the learning algorithm has bounded updates on data distribution µ and loss func-
tion f(·), then under Assumption 4.3, by setting ηt =

c
t , we obtain

V(U (T )) = O
(
c2 (log T )

2
)

(13)

Proof. From the proof of Theorem C.1, we have

V(U (T )) ≤
T∑

t=1

4η2tL
2 + 2L2

T∑
t=1

ηt

t−1∑
i=1

ηt.

If ηt = c
t , then we have

V(U (T )) ≤ 2L2c2

(
2

T∑
t=1

1

t2
+

T∑
t=1

1

t

t−1∑
i=1

1

i

)

≤ 2L2c2

(
2

(
1 +

T∑
t=2

1

t(t− 1)

)
+

T∑
t=1

1

t

T∑
t=1

1

t

)

≤ 2L2c2

2

(
1 +

T∑
t=2

(
1

t− 1
− 1

t

))
+

(
T∑

t=1

1

t

)2


(⋆)

≤ 2L2c2
(
2

(
2− 1

T

)
+ ℏ2T

)
,

where (⋆) leverage the Lemma D.1. Obviously, we have ℏ = O(log n). Therefore, we have

V(U (T )) ≤ 2L2c2
(
2

(
2− 1

T

)
+ ℏ2n

)
≤ 2L2c2

(
4 + ℏ2n

)
= O

(
c2 (log T )

2
)
.

We establish the Theorem.

Asymptotic analysis when increase n The result of the setting ηt = c
t with c = O(1) and

T = O(n) have a extra log n term compared with the setting where ηt = η and ηT = Θ(1). The
log n is usually ignorable compared with polynominal term. Therefore, we can conclude that both
settings obtain a similar results.

Table 4: Asymptotic analysis when increase n under c = O(1) and T = O(n) for different situa-
tions. (△) stands for h(U (T )|W0, Sn) < 0, and (⋆) is short for h(U (T )|W0, Sn) ≥ 0.

Settings Ours
d ∆σ (△) (⋆)

Θ(1) Θ(dσ2), Θ(σ2/c) ,Θ(σ2) O(log n/n 1
3 )

Θ(n)
Θ(dσ2) O(log n)
Θ(σ2/c) O(log n/n 1

3 )

Θ(σ2) O(log n/n 1
3 )
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E PROOF OF PROPOSITION 5.1

Algorithm 1 Adam

1: Input: the loss function f(w, z), the initial
point w1 ∈ Rd, the batch size b, learning
rates {ηt}Tt=1, m0 = 0,v0 = 0, and hyper-
parameters β = (β1,β2).

2: For t = 1→ T :
3: Sample a mini-batch of data Bt with size b
4: ∇fBt

(wt) =
1
b

∑
z∈Bt

f(wt, z)

5: mt ←β1mt−1+(1− β1)∇fBt
(wt)

6: vt ←β2vt−1+(1− β2)∇fBt
(wt)

⊙2

7: wt+1 ← wt − ηt
mt√
vt

8: End For

Algorithm 2 Adagrad

1: Input: the loss function f(w, z), the initial
point w1 ∈ Rd, the batch size b, learning
rates {ηt}Tt=1, m0 = 0,v0 = 0..

2:
3: For t = 1→ T :
4: Sample a mini-batch of data Bt with size b
5: ∇fBt(wt) =

1
b

∑
z∈Bt

f(wt, z)

6: vt ←vt−1+∇fBt(wt)
⊙2

7: wt+1 ← wt − ηt
∇fBt (w)√

vt

8: End For
9:

Lemma E.1. For Adam, we have ∀t ≥ 1, |wt+1,l −wt,l| ≤ ηt
1−β1√

1−β2

√
1−β2

1
β2

and for Adagrad, we

have ∀t ≥ 1, |wt+1,l −wt,l| ≤ ηt.

Proof. For Adam, We have that

|wt+1,l −wt,l| = ηt

∣∣∣∣ mt,l√
vt,l

∣∣∣∣ ≤ ηt

∑t−1
i=0(1− β1)β

i
1|gt−i,l|√∑t−1

i=0(1− β2)β
i
2|gt−i,l|2 + βt

2v0,l

≤ηt
1− β1√
1− β2

√∑t−1
i=0 β

i
2|gt−i,l|2

√∑t−1
i=0

β2i
1

βi
2√∑t−1

i=0 β
i
2|gt−i,l|2

≤ ηt
1− β1√

1− β2

√
1− β2

1

β2

.

Here the second inequality is due to Cauchy’s inequality. The proof is completed.

For Adagrad, we have that

|wt+1,l −wt,l| = ηt

∣∣∣∣∣∣ gt,l√∑t
i=1 g

2
i,l

∣∣∣∣∣∣ ≤ ηt

∣∣∣∣∣∣ gt,l√
g2i,l

∣∣∣∣∣∣ ≤ ηt

Proposition E.2. Adam, Adagrad, RMSprop are bounded updates with respect to all data distribu-
tion and function f(·) when d = Θ(1)

Proof. For Adam, we have

∥ut∥ =
1

ηt
∥Ut∥

√√√√ d∑
l=1

(wt+1,l −wt,l)2 ≤ d
1− β1√

1− β2

√
1− β2

1

β2

Because RMSgrad is a special case of Adam by setting β1 = 0, we have

∥ut∥ =≤ d
1√

1− β2

For Adagrad, we have

∥ut∥ =
1

ηt
∥Ut∥

√√√√ d∑
l=1

(wt+1,l −wt,l)2 ≤ d

When d = O(1), all the learning algorithms can be bounded by a constant. We establish the
proposition.
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Under the setting ηt = η and ηT = O(1), we have
∣∣gen(µ,PW |Sn

)
∣∣ = O(1/√n).

F FROM PAC-BAYES PERSPECTIVE

In this section, we provided a analysis of generalization bound with update variance from pac-bayes
perspective. From this perspective, we further enhance Theorem 4.7 by achieving the following
improvements: 1) Removing the sub-Guassian Assumption, and 2) Acquiring high probability
bounds.
Theorem F.1. (From McAllester (1999); Dziugaite & Roy (2017)) For any prior P1 over parameters
with probability 1− δ over the choice of the training set Sn ∼ µ⊗n, for any posterior P2, we have

Ew∼P2(Fµ(w))− Ew∼P2(FSn(w)) ≤

√
KL(P1∥P2) + log n

δ

2(n− 2)

Theorem F.2. (Using Pac-Bayes Methods) for relative small σ, with probability 1 − δ over the
choice of the training set Sn ∼ µ⊗n, the generalization error of the final iteration satisfies

Ew∼P2(Fµ(w))− Ew∼P2(FSn(w)) ≤

√
V(W0) + V′(U (T )) + σ2 log n

δ

2σ2(n− 2)
+ ∆σ,

where V(W0) = E ∥W0 − EW0∥2 and V′(U (T )) = E
∥∥U (T ) − EU (T )

∥∥2.

Remark F.3. V′(U (T )) is different from V(U (T )) in considering the randomness of initialization
weights W0. By keeping the W0 as a constant value, we achieve the outcomes of Theorem 4.7,
except that the sub-Gaussian assumption is removed and high probability bounds are presented.

Proof. If P1 = N (µp, σ
2
pI) and P2 = N (µq, σ

2
qI), then we have

KL(P1∥P2) =
1

2

[
kσ2

q + ∥µp − µq∥2

σ2
p

− k + k log

(
σ2
p

σ2
q

)]
If σp = σq , then we have

KL(P1∥P2) =
∥µp − µq∥2

2σ2
p

.

By setting the P1 = N (µp, σ
2
pI) and for each WT , setting P2 = N (WT , σ

2
qI), and σp = σq = σ,

combining with Theorem F.1, we obtain that

Ew∼P2
(Fµ(w))− Ew∼P2

(FSn
(w)) ≤

√
E ∥WT − µp∥2 + 2σ2 log n

δ

4σ2(n− 2)
+ ∆σ.

Then, in the following we use distribution dependent prior to obtain a update uncertainty term.
We set up = EWT , because the expectation is taken from the randomness of algorithm and the
randomness of sampling, EWT is distribution dependent but training data independent. Then,
we have

E ∥WT − µp∥2 = E
∥∥∥W0 + U (T ) − EW0 − EU (T )

∥∥∥2
≤ 2E ∥W0 − EW0∥2 + 2E

∥∥∥U (T ) − EU (T )
∥∥∥2

= 2V(W0) + 2V′(U (T ))

Therefore, we have

Ew∼P2
(Fµ(w))− Ew∼P2

(FSn
(w)) ≤

√
V(W0) + V′(U (T )) + σ2 log n

δ

2σ2(n− 2)
+ ∆σ.

18



Under review as a conference paper at ICLR 2024

G DISCUSSION OF THE UNCERTAINTY OF UPDATE WITH OTHER MEASURES

Compared to variance of gradient A closely related measure is the variance of the gradi-
ent. Given the dataset Sn = {zi}ni=1, the variance of the gradient in weights w is calculated as
1
n

∑n
i=1 ∥∇f(W, zi)− FS(W )∥. The generalization bounds of Fu et al. (2023); Neu et al. (2021)

depend on this type of variance. The key distinction is that the update certainty is a joint property
of the learning algorithm and the function f(·). Another difference is that the update uncertainty is
evaluated by sampling different Sn ∼ µ⊗n, whereas the variance of the gradient is assessed using
only Sn.

Connection to stability measure Another most used technique for analyzing the generalization
behavior is analyzing the stability behavior of learning algorithm (Hardt et al., 2016; Lei & Ying,
2020; Liu et al., 2017; Bassily et al., 2020; Feldman & Vondrak, 2019). We analyze the connec-
tion between on-average stabilty(Lei & Ying, 2020) and the variance of update. The connection
between on-average stability and uniform stability is discussed in Lei & Ying (2020). Given two set
Sn = {zi}ni=1 and S̃n = {z̃i}ni=1. S(i) ≜ {z1 · · · zi−1, z̃i, zi+1 · · · zn} The l2 on-average stable is
calculated as

ESn,S̃n,A

[
1

n

n∑
i=1

∥∥∥A(Sn)−A(S(i)
n )
∥∥∥] ≤ stab

Then, we define S
[k]
n set, where k samples of S[k]

n come from Sn and the others come from S′
n. We

denote EkA = EkA(S[k]
n ), where the expectation is taken regarding the randomness of sampling of

S′
n, the randomness of chosing k samples from Sn, as well as the randomness of learning algorithm
A. If E

[
∥EkA− Ek−1A∥2 |W0

]
≈ E

[
∥EiA− Ei−1A∥2 |W0

]
for all k, i ∈ [n], we have

V(U (T )) = E
[∥∥∥U (T )|Sn − EU (T )

∥∥∥2 |W0

]
= E

[∥∥∥W (T )|Sn − EW (T )
∥∥∥2 |W0

]
= E

[
∥A(Sn)− EA(S′

n)∥
2 |W0

]
≤ E

[
n∑

k=1

∥EkA− Ek−1A∥2 |W0

]

≈ E
[
n ∥EnA− En−1A∥2 |W0

]
≈ nESn,S̃n,A

[
1

n

n∑
i=1

∥∥∥A(Sn)−A(S(i)
n )
∥∥∥]

Therefore, we have V(U (T )) ≤ nStab.
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