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ABSTRACT

Diffusion Transformers (DiTs) have become the leading architecture for visual
generation tasks. However, their uniform treatment of inputs across different
conditions and noise levels overlooks the inherent heterogeneity of the diffusion
process. While recent mixture-of-experts (MoE) in diffusion approaches attempt to
address this limitation, they struggle to achieve significant improvements due to
their restricted token accessibility and fixed computational patterns. We present
DiffMoE, a novel MoE-based architecture that enables experts to access global
token distributions through a batch-level global token pool during training, pro-
moting specialized expert behavior. To unleash the full potential of inherent
heterogeneity, DiffMoE incorporates capacity predictor and dynamic threshold
that adpatively allocates computational resources based on noise levels and sample
complexity. Through comprehensive evaluation, DiffMoE achieves state-of-the-art
performance among diffusion transformers on ImageNet benchmark, substantially
outperforming both dense architectures with 3× activated parameters and exist-
ing MoE approaches while maintaining 1× activated parameters. Our approach
demonstrates efficacy not only in class-conditional generation but also in more
complex tasks such as text-to-image synthesis, outperforming both dense models
and various DiT baselines. This underscores its broad applicability across diverse
diffusion model applications.

Figure 1: Token Accessibility and Dynamic Computation. (a) Token accessibility levels from
token isolation to cross-sample interaction. (b) Computational dynamics during diffusion sampling,
showing adaptive computation from noise to image. (c) Class-wise computation allocation from hard
(technical diagrams) to easy (natural photos) tasks. Results from DiffMoE-L-E16-Flow (700K).

1 INTRODUCTION

The Mixture-of-Experts (MoE) framework (Lepikhin et al., 2020; Shazeer et al., 2017) has emerged as
a powerful paradigm for enhancing overall multi-task performance while maintaining computational
efficiency. This is achieved by combining multiple expert networks, each focusing on a distinct task,
with their outputs integrated through a gating mechanism. In language modeling, MoE has achieved
performance comparable to dense models of 2× − 3× activated parameters (DeepSeek-AI et al.,
2024; MiniMax et al., 2025; Muennighoff et al., 2024). The current MoE primarily follows two
gating paradigms: Token-Choice (TC), where each token independently selects a subset of experts for
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processing; and Expert-Choice (EC), where each expert selects a subset of tokens from the sequence
for processing.

Diffusion (Ho et al., 2020; Rombach et al., 2022; Podell et al., 2023; Song et al., 2021) and flow-based
(Ma et al., 2024; Esser et al., 2024b; Liu et al., 2023) models inherently represent multi-task learning
frameworks, as they process varying token distributions across different noise levels and conditional
inputs. While this heterogeneity characteristic naturally aligns with the MoE framework’s ability
for multi-task handling, existing attempts (Fei et al., 2024; Sun et al., 2024; Yatharth Gupta, 2024;
Sehwag et al., 2024) to integrate MoE with diffusion models have yielded suboptimal results, failing
to achieve the remarkable improvements observed in language models. Specifically, Token-choice
MoE (TC-MoE) (Fei et al., 2024) often underperforms compared to conventional dense architectures
under the same number of activations; Expert-choice MoE (EC-MoE) (Sehwag et al., 2024; Sun et al.,
2024) shows marginal improvements over dense models, but only when trained for much longer.

We are curious about what fundamentally limits MoE’s effectiveness in diffusion models. Our key
finding reveals that global token distribution accessibility is crucial for MoE success in diffusion
models, necessitating the model learn and dynamically process the tokens from different noise
levels and conditions, as illustrated in Figure 1(b)(c). Previous approaches have neglected this
crucial component, resulting in compromised performance. Specifically, Dense models and TC-MoE
isolates tokens, preventing them from interacting with others during expert selection, while EC-DiT
restricts intra-sample token interaction, which fails to access other samples with different noise
levels and conditions. These limitations hinder the model’s ability to capture the full spectrum of the
heterogeneity inherent in diffusion processes.

To address these limitations, we introduce DiffMoE, a novel architecture that features a batch-level
global token pool for enhanced cross-sample token interaction during training, as illustrated
in Figure 2. This approach approximates the complete token distribution across different noise
levels and samples, facilitating more specialized expert learning through comprehensive global token
information access. Our empirical analysis demonstrates that the global token pool is instrumental in
accelerating loss convergence. Compared to dense models with an equivalent number of activation
parameters, it achieves significantly faster convergence.

However, conventional MoE inference strategies, which maintain fixed computational resource
allocation across different noise levels and conditions, fail to fully leverage the potential of DiffMoE’s
batch-level global token pool. To optimize token selection during inference, we propose a capacity
predictor that dynamically adjusts resource allocation. This adaptive mechanism learns from training-
time token routing patterns, efficiently distributing computational resources between complex and
simple cases. Furthermore, we implement a dynamic threshold at inference time to achieve flexible
performance-computation trade-offs. By integrating the global token pool and capacity predictor,
DiffMoE achieves superior performance over dense models with 3× activated parameters while
maintaining efficient scaling properties (See Table 2). Our approach offers extra several advantages
over existing methods: it eliminates the potentially detrimental load balancing losses present in TC-
MoE and overcomes the intra-sample token selection constraints of EC-MoE, resulting in enhanced
flexibility and scalability. Extensive empirical evaluations demonstrate DiffMoE’s superior scaling
efficiency and performance improvements across diverse diffusion applications.

Our contributions can be summarized as follows:

(1) We identify the critical role of global token distribution accessibility in enabling dynamic token
selection for MoE-based diffusion models.

(2) We propose DiffMoE, a scalable framework with a global token pool, capacity predictor, and
dynamic threshold for efficient computation.

(3) We demonstrate superior performance on ImageNet and T2I benchmarks via dynamic computation
allocation without sacrificing efficiency.

(4) We provide extensive experiments across diverse diffusion tasks, validating the effectiveness and
generality of our approach.
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Figure 2: DiffMoE Architecture Overview. DiffMoE flattens tokens into a batch-level global token
pool, where each expert maintains a fixed training capacity of Ctrain = 1. During inference, a dynamic
capacity predictor adaptively routes tokens across different sampling steps and conditions. Different
colors denote tokens from distinct samples, while ti represents corresponding noise levels.

2 METHODOLOGY

Diffusion Models. Diffusion models (Ho et al., 2020; Rombach et al., 2022; Sohl-Dickstein et al.,
2015; Song et al., 2021) are a powerful family of generative models, which can transform the
noise distribution p1(x) to the data distribution p0(x). The diffusion process can be represented as:
xt = αtx0 + σtϵ, t ∈ [0, 1], ϵ ∼ N (0, I), Where αt and σt are monotonically decreasing and
increasing functions of t, respectively. The marginal distribution p1(x) converges to N (0, I), when
α1 = σ0 = 0, α0 = σ1 = 1.

To train a diffusion model, we can use the denoising score matching method (Song et al., 2021) which
constructs a score prediction model ϵθ(xt, t) to estimate the scaled score function −σt∇x log pt(xt)
with training objective formulated in Eq. 21. Sampling from a diffusion model can be achieved by
solving the reverse-time SDE or the corresponding diffusion ODE (Song et al., 2021) in an iterative
manner. Recently, flow-based models (Liu et al., 2022a; Lipman et al., 2022; Esser et al., 2024a)
have shown superior performance through alternative training objective formulated in Eq. 30 while
maintaining the same architecture as DiT (Peebles & Xie, 2023a). Sampling from a flow-based model
can be achieved by solving the probability flow ODE.

Mixture of Experts. Mixture of Experts (MoE) (Shazeer et al., 2017; Cai et al., 2024) is based
on a fundamental insight: different parts of a model can specialize in handling distinct tasks. By
selectively activating only relevant components, MoE enables efficient scaling of model capacity while
maintaining computational efficiency. MoE layers generally consist of N experts, each implemented
as a Feed-Forward Network (FFN) with identical architecture, denoted by E1(x), . . . , EN (x) with
input x. A routing matrix Wr ∈ RD×N is used to calculate token-expert affinity matrix:

M = softmaxE(xWr), x ∈ RB×S×D, (1)

whereB is the batch size, S is the token length of one sample,D is the hidden dimension, softmaxE

denotes the softmax operation along the expert axis. There are two common gating paradigms:
Token-Choice (TC) (Shazeer et al., 2017; Fei et al., 2024) and Expert-Choice (EC) (Zhou et al.,
2022; Sun et al., 2024). For TC, each token of each sample individually selects top-K experts via a
gating function, the gating function and output of TC-MoE layers are defined as follows:

GTC
s,i =

{
Ms,i, Ms,i ∈ top-K({Ms,i}Ni=1)

0, otherwise
(2)

ys =

K∑
i=1

GTC
s,i E(xs),xs ∈ R1×D, s ∈ {1, . . . , S}. (3)
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Figure 3: (a) Effectiveness of Capacity Predictor. Comparison of sampling strategies with DiffMoE-
L-E16-Flow (Batch Size = 1). For each group, Top: Sampling w/o Capacity Predictor (with Fixed
TopK Method.) Bottom: Sampling with Capacity Predictor. (b) Different Threshold Methods:
We employ two distinct approaches for threshold determination: dynamic threshold (red point) and
interval search (blue points). Visualization using DiffMoE-L-E16-Flow (700K).

Different from TC, EC makes every expert selects K ′ tokens from each sample of the input x ∈
RB×S×D. The gating function GEC

s,i can be implemented analogously to Eq. 2, with the modification
that the top operation selects K ′ tokens along the token dimension, i.e. S. Similar to Eq. 3, the

output for a token xs of EC-MoE layers can be calculated as: ys =
N∑
i=1

GEC
s,i E(xs),xs ∈ R1×D.

Both TC and EC struggle to achieve significant improvements comparing with dense models due to
their restricted token accessibility and fixed computational patterns.

2.1 DIFFMOE: DYNAMIC TOKEN SELECTION

Batch-level Global Token Pool. Since MoE architectures replace FFN layers, both TC and EC
paradigms in diffusion models are inherently limited to processing tokens within individual samples,
where gating mechanisms operate exclusively on tokens sharing identical conditions and noise levels.
This architectural constraint not only prevents experts from learning crucial contrastive patterns but,
more fundamentally, restricts their access to the global token distribution that characterizes the full
spectrum of the diffusion process. To capture this essential global context, we introduce a Batch-level
Global Token Pool for DiffMoE by flattening batch and token dimensions, enabling experts to access
a comprehensive token distribution spanning different noise levels and conditions. This design, which
simulate the true token distribution of the entire dataset during training, can be formulated as follows:

x ∈ RB×S×D → xpool ∈ RBS×D. (4)

During the training phase, we push expert E to select KE
train tokens, forcing each expert to capture the

characteristics of tokens from different conditional information and noise levels, while keeping expert
load balance during training. The corresponding batch-level global token-expert affinity matrix will
be calculated as follows:

MDy = xpoolWr,xpool ∈ RBS×D,Wr ∈ RD×N . (5)

Then, using MDy ∈ RBS×N , the gating value of MoE and the output of DiffMoE layers can be
computed as follows:

GDy
s,i =

{
MDy

s,i , MDy
s,i ∈ top-KE

train({M
Dy
s,i }BS

s=1)

0, otherwise
(6)

ys =

N∑
i=1

GDy
s,i E(xs). (7)

Capacity and Computational Cost. To establish a rigorous and fair comparison framework, we
define the capacity CE for a single expert E, which serves as a standardized metric for quantifying
computational costs. This capacity metric enables fair comparisons between DiffMoE and baseline
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models by accurately measuring the computational resources utilized by each expert:

CE =
N × # tokens processed by E

# all input tokens
=
NKE

BS
, (8)

where KE denotes the number of tokens assigned to expert E, N is the number of experts, and BS
represents the size of global token pool. Here, we define the capacity C for one forward process for
both training and inference phases:

C =
1

LN

L∑
l=1

N∑
i=1

CEl
i , (9)

where El
i denotes ith expert in the lth MoE layer. During training phase, Ctrain is fixed to 1 across all

the MoE models, indicating that they keep the same computational cost as dense models. Specifically,
DiffMoE keeps KE

train = BS/N for Ctrain = 1. TC-DiT selects the top-1 expert, while EC-
DiT selects top-(S/N) tokens per sample in a batch to ensure the same computation. During the
inference phase, we compute the global average inference capacity Cavg

infer by averaging over all
timesteps: Cavg

infer =
1
T

∑T
t=1 C

t
infer, where Ct

infer represents the inference capacity at sampling step t.

Capacity Predictor. Although batch-level global token routing enables efficient model training,
conventional MoE inference strategies with fixed computational resource allocation fail to fully
leverage its potential. This limitation stems from the static resource distribution across different
noise levels and conditional information during inference. To optimize token selection, we propose a
capacity predictor—a lightweight structure that dynamically determines token selection per expert
through a two-layer MLP with SiLU activations. This adaptive mechanism learns from training-time
token routing patterns, efficiently distributing computational resources between complex and simple
cases. Formally, let CP(xpool) ∈ RBS×N denote the predictor’s output for input xpool ∈ RBS×D:

CP(xpool) = W2σSiLU(W1xpool). (10)

We can optimize the capacity predictor by minimizing the object function:

LCP = BCELoss(O,CP(sg[xpool]) (11)

where sg denotes the stop-gradient operation, and O ∈ RL×BS×N is defined as follows:

Ol
s,i =

{
1, if xpool,s is processed by El

i

0, otherwise
. (12)

We employ the stop-gradient technique to train the capacity predictor, ensuring it focuses solely
on the input features which contains vision, conditions and step information at the current layer while
preventing it from interfering with the training of the main diffusion transformers. Therefore, LCP

will not affect actual diffusion loss. During inference, the capacity predictor determines the inference

capacity CEl
i,t

infer for each expert El
i at timestep t based on a threshold. Let τEl

i
denote the threshold

of El
i . Using T = {τEl

i
| i ∈ {1, . . . , N}, l ∈ {1, . . . , L}}, the model achieves an adaptive CEl

i,t
infer

allocation at sampling step t tailored to different input tokens as follows:

C
El

i,t
infer(τEl

i
) =

N

BS

BS∑
s=1

δls,i where δls,i =

{
1, if CP(xpool)s,i > τEl

i

0, otherwise
(13)

Then we can calculate Cavg
infer

Cavg
infer(T ) =

1

TNL

T∑
t=1

N∑
i=1

L∑
l=1

C
El

i,t
infer(τEl

i
). (14)

Dynamic Threshold. We can set the threshold T to control the number of tokens processed by
each expert during inference. It is evident that #tokens processed during inference, decreases as τEl

i
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increases for all expert. We can adjust T flexibly to achieve a better trade-off between computational
complexity and generation quality. We employ two distinct approaches for threshold T determination:
Interval Search and Dynamic Threshold. The interval search method addresses an optimization
problem formulated as follows:

min
T

FID(T ) subject to Cavg
infer(T ) ≤ 1. (15)

To simplify the optimization problem, we assume that τ = γ < 1,∀τ ∈ T , where γ is a constant in
our experiments. However, interval search method is labor-intensive and time-consuming, making it
impractical for real-world applications. To address this limitation, we propose a dynamic threshold
method that automatically maintains thresholds (denoted as T Dy = {τDy

El
i

| i ∈ {1, . . . , N}, l ∈
{1, . . . , L}}) for all experts during the training phase. To ensure the inference computational cost
approximates the training cost (i.e. Cavg

infer ≈ 1), we employ the Exponential Moving Average (EMA)
technique as follows:

QuantileEl
i
← CP(xpool)sk,i,

τDy

El
i

← α · τDy

El
i

+ (1− α) ·QuantileEl
i
, (16)

where sk denotes the kth value in descending order, α is a constant which is equals to 0.95 in our
experiments.

3 EXPERIMENTS

We evaluate DiffMoE on class-conditional and text-to image generation along three key dimensions:

(1) Training and Inference Performance Section 3.2. Tables 1, 2, 3, 4, 5, 12, and 14. Figure 5.

(2) Dynamic Computation Section 3.3. Figure 1, 3, 7, 8. Table 15. Appendix B.

(3) Scalability and Adaptability Section 3.4. Table 2, 3, 4, 5. Figure 4, 6.

For the convenience of elaboration, we use the flow matching training method to do the following
analysis while DDPM results are also provided in the Appendix A.1.

3.1 EXPERIMENT SETUP

Baseline and Model architecture. We compare DiffMoE against Dense-DiT, TC-DiT (Fei et al.,
2024), and EC-DiT (Sun et al., 2024) using both flow matching (Ma et al., 2024) and denoising
score matching (Peebles & Xie, 2023a). All models follow the naming convention [Model]-[Size]-
[#Experts]-[Type]. For class-conditional generation, we replace even FFN layers with MoE layers
while maintaining the original DiT architecture (details in Appendix Table 9). For text-to-image
generation, we incorporate cross-attention modules (Rombach et al., 2022) to introduce text conditions.
In this setup, all the models activates 458M parameters and the total parameters of MoE variants are
1.2B. Further training details are provided in Appendix D.1.

Evaluation. We evaluated DiffMoE through both quantitative and qualitative metrics. Quantita-
tively, we used FID50K (Heusel et al., 2017) with 250 DDPM/Euler (250 NFEs) steps for class-
conditional generation, For text-to-image generation evaluation, we use FID (Heusel et al., 2017),
CLIP Score (Radford et al., 2021), PickScore (Kirstain et al., 2023), and HPSv2 (Wu et al., 2023) on
COCO prompts. For PickScore and HPSv2, we compute the average score and standard deviation
across prompts, ensuring fair comparison using identical prompt-image pairs. We report performance
on the GenEval (Ghosh et al., 2023) and T2I-CompBench (Huang et al., 2023) to evaluate all-round
capabilities of DiffMoE and baselines following their official protocol.

3.2 MAIN RESULTS OF C2I AND T2I

C2I Results. Class-conditional image generation is a task of synthesizing images based on specified
class labels. DiffMoE-L-E16 demonstrates superior efficiency by outperforming Dense-DiT-XL
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Table 1: Baseline and Capacity Predictor Effects. Performance comparison of different model
architectures at 700K steps. DiffMoE-L-E16-Flow achieves best FID50K (14.41 w/o CFG) among
TC, EC, and Dense variants. (n×) means n times base activated parameters. A.A.P indicates Average
Activated Params.

Model (700K) Config # A.A.P FID50K↓

TC-DiT-L-E16-Flow Token-Choice MoE 458M(1×) 19.06
EC-DiT-L-E16-Flow Expert-Choice MoE 458M(1×) 16.12
Dense-DiT-L-Flow Dense FFN 458M(1×) 17.01
Dense-DiT-XL-Flow Dense FFN 675M(1.5×) 14.77

DiffMoE-L-E16-Flow Token Pool Only 458M(1×) 15.25
DiffMoE-L-E16-Flow Token Pool & Predictor 454M(0.95×) 14.41

Table 2: Parameter Scaling Behavior on ImageNet 256×256 Class-Conditional Generation. Diff-
MoE demonstrates superior FID scores with fewer parameters after 3000K training steps. Results are
reported with guidance scale 1.5 (Ho & Salimans, 2022).

Diffusion Models (3000K) # A.A.P FID50K↓ IS↑ Precision↑ Recall↑
Dense-DiT-XL-Flow 675M (1.5×) 2.52 273.78 0.84 0.56
Dense-DiT-XXL-Flow 951M (2×) 2.41 281.96 0.84 0.57
Dense-DiT-XXXL-Flow 1353M (3×) 2.37 291.29 0.84 0.57
DiffMoE-L-E8-Flow 458M (1×) 2.40 280.30 0.83 0.57
DiffMoE-L-E16-Flow 458M (1×) 2.36 287.26 0.83 0.58
DiffMoE-XL-E16-Flow 675M (1.5×) 2.30 291.23 0.83 0.58

(which uses 1.5× more parameters) after just 700K steps, as shown in Table 1. And these improve-
ments hold across both the DDPM and Flow Matching paradigms. With extended training for 3000K
steps, DiffMoE-L-E16 (with 1× parameters and FID 2.36) surpasses Dense-DiT-XXXL (with 3×
parameters and FID 2.37), as shown in Table 2. Visualizations are provided in Figures 10 and 11.

T2I Results. In text-to-image generation, DiffMoE consistently outperforms dense and moe variants
baselines in various metrics which can evaluate multi-dimensions include visual fidelity, diversity,
text-image alignment and prompt understanding. Results are shown in 3, 4, 5.

3.3 DYNAMIC COMPUTATION ANALYSIS

Analysis of Inference Capacity. DiffMoE-L-E16-Flow demonstrates superior parameter efficiency
with its inference capacity (Cavg

infer) being 1 less than TC-DiT and EC-DiT, while achieving better
performance, as shown in Table 1. Notably, with only 454M(0.95×) average activated parameters,
our model outperforms Dense-DiT-XL-Flow (675M 1×), highlighting the effectiveness of dynamic
token allocation. Detailed analysis of average activated parameters is provided in the Appendix E.

Ablation of Capacity Predictor. Dynamic token selection through our capacity predictor demon-
strates superior performance over traditional static topK token selection, as shown in Figure 3(a)
and Table 1. This improvement stems from the predictor’s ability to intelligently allocate more com-
putational resources to challenging tasks. The capacity predictor plays a crucial role in unleashing
DiffMoE’s full potential by dynamically adjusting resource allocation, which is particularly important
for optimizing inference efficiency.

Interval Search vs. Dynamic Threshold. Both interval search and dynamic threshold methods
achieve optimal performance in DiffMoE, with the dynamic threshold (T Dy) emerging as our
preferred approach due to its elegance and efficiency. Through interval search from 0.0 to 0.999, we
identify an optimal threshold (γ ≈ 0.4) that minimizes FID while maintainingCavg

infer ≤ 1. Meanwhile,
the dynamic threshold automatically maintains Cavg

infer ≈ 1 during inference, achieving comparable
FID scores within the optimal region, as shown in Figure 3(b) and Table 11. Our experiments reveal
a U-shaped relationship between FID and Cavg

infer, indicating that both over-activation and under-
activation of parameters degrade performance. Both methods successfully identify thresholds within

7
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Table 3: Text-to-Image results on COCO prompts. Under the same 458M activated parameters,
DiffMoE consistently outperforms all baseline DiT variants across various T2I metrics.

Model FID10K↓ CLIP Score↑ PickScore↑ HPSv2↑
Dense-DiT 46.38 29.58 0.2510±0.111 0.255±0.021
TC-DiT 45.10 29.59 0.2024±0.112 0.256±0.020
EC-DiT 44.80 29.60 0.2527±0.109 0.255±0.020
DiffMoE 44.53 29.75 0.2937±0.112 0.257±0.020

Table 4: Text-to-Image GenEval Benchmark Results. DiffMoE outperforms baseline DiT variants
across six evaluation aspects, showing better compositionality, faithfulness, and controllability.

Model Single Obj.↑ Two Obj.↑ Cnt. Obj.↑ Colors↑ Pos.↑ Attri.↑ Overall↑
Dense-DiT 0.656 0.280 0.225 0.481 0.165 0.278 0.346
TC-DiT 0.644 0.298 0.194 0.500 0.178 0.275 0.348
EC-DiT 0.666 0.349 0.181 0.426 0.200 0.235 0.343
DiffMoE 0.688 0.397 0.200 0.500 0.178 0.303 0.377

the optimal region, but the dynamic threshold’s straightforward implementation and computational
efficiency make it our default choice throughout this paper.

Harder Work Needs More Computation. Figure 1(c) illustrates that different classes demand
varying amounts of computation during generation. By analyzing 1K class labels and ranking their
Cavg

infer, we observe clear patterns in computational requirements. The most challenging cases often
involve objects with intricate details, complex materials, precise structures, or specific viewing angles
(e.g., technical instruments and detailed artifacts). In contrast, natural subjects such as common
animals (e.g., birds, dogs, cats) generally require less computation. Figures 7 and 8 present the
top-10 most and least computationally demanding classes for both flow-based and DDPM models,
respectively. For text-to-image generation, we also identify harder and easier prompts by similiar
ranking method. Detailed discussions refer to Appendix B.1.

3.4 SCALING BEHAVIOR

Scaling Model Size. DiffMoE demonstrates consistent performance improvements across small
(S), base (B), and large (L) configurations, with activated parameters of 32M, 130M, and 458M
respectively as shown in Figure 4(a). To explore the upper limits of DiffMoE and quantify its
performance efficiency, as analyzed in Section 3.2 DiffMoE-L-E16 (with 1× parameters and FID
2.36) surpasses Dense-DiT-XXXL (with 3× parameters and FID 2.37) with same 3000K training
budget. This highlights the exceptional parameter efficiency and scalability of DiffMoE.

Scaling Number of Experts. As shown in Figure 4(b), model performance improves consistently
when scaling experts from 2 to 16, with diminishing returns between E8 and E16. Based on this
analysis, we trained DiffMoE-L-E8 for 7000K iterations, achieving optimal performance-efficiency
trade-off and state-of-the-art results.

3.5 LIMITATIONS AND BROADER IMPACT

While DiffMoE demonstrates promising results, our study has two limitations. First, due to computa-
tional constraints, we have not validated the framework on text-to-video generation tasks, leaving
this extension for future work. Second, like other generative models, DiffMoE could potentially be
misused to create harmful content, warranting careful consideration of ethical deployment.

4 RELATED WORKS

Diffusion Models. Diffusion models (Ho et al., 2020; Podell et al., 2023; Peebles & Xie, 2023a;
Esser et al., 2024b) have emerged as the dominant paradigm in visual generation in recent years.

8
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Table 5: Text-to-Image T2I-CompBench Results. DiffMoE consistently outperforms baseline DiT
variants across color, texture, shape, number, spatial, and complex compositional aspects.

Model Color ↑ Texture ↑ Shape ↑ Number ↑ 3D-Spatial ↑ 2D-Spatial ↑ Non-Spatial ↑ Complex ↑
Dense-DiT 0.598 0.485 0.320 0.373 0.261 0.0163 0.292 0.292
TC-DiT 0.582 0.519 0.338 0.377 0.256 0.0178 0.290 0.293
EC-DiT 0.598 0.532 0.369 0.335 0.242 0.0205 0.293 0.302
DiffMoE 0.601 0.547 0.395 0.432 0.264 0.0234 0.295 0.311

(𝑎) (𝑏)

Figure 4: Scaling Analysis. (a) Scaling Model Size: DiffMoE consistently outperforms the
corresponding baseline models across all scales (Small/Medium/Large). (b) Scaling Number of
Experts : Comparison of FID50K scores during training between Dense-DiT-L-Flow (E1) and
models with increasing expert counts (E2, E4, E8, E16).

These models transform gaussian distribution into target data distribution through iterative processes,
with two primary training paradigms: Denoising Diffusion Probabilistic Models (DDPM) trained
via score-matching (Ho et al., 2020; Song et al., 2021), which learns the inverse of a diffusion
process and Rectified Flow approaches optimized through flow-matching (Lipman et al., 2022; Ma
et al., 2024; Esser et al., 2024b), which is a more generic modeling techinique and can construct a
straight probaility path connecting data and noise. We implement DiffMoE using both paradigms,
demonstrating its versatility across these complementary training methodologies.

Mixture of Experts. Mixture of Experts (MoE) (Shazeer et al., 2017; Lepikhin et al., 2020) enables
efficient model scaling through conditional computation by selectively activating expert subsets. This
approach has demonstrated remarkable success in Large Language Models (LLMs), as evidenced
by cutting-edge implementations like DeepSeek-V3 (DeepSeek-AI et al., 2024). Recent works
have explored incorporating MoE architectures into diffusion models, but face several limitations.
MEME (Lee et al., 2023), eDiff-I (Balaji et al., 2022), and ERNIE-ViLG 2.0 (Feng et al., 2023)
restrict experts to specific timestep ranges. SegMoE (Yatharth Gupta, 2024) and DiT-MoE (Fei
et al., 2024) suffer from expert utilization imbalance due to isolated token processing. While
EC-DiT (Sehwag et al., 2024; Sun et al., 2024) recognizes complex tokens’ need for additional
computation, it constrains token selection within individual samples and requires longer training for
marginal improvements. These approaches, by limiting global token distribution across noise levels
and conditions, fail to capture diffusion processes’ inherent heterogeneity. DiffMoE addresses these
challenges through batch-level global token pool for training, and dynamically adapting computation
to both noise levels and sample complexity for inference.

5 CONCLUSION

In this work, we propose DiffMoE, a simple yet effective framework for scaling diffusion models
via dynamic token selection and global token accessibility. By overcoming the uniform processing
bottleneck of diffusion transformers, DiffMoE achieves superior performance over TC-MoE, EC-
MoE, and even dense models with 3× parameters, while keeping computational costs comparable.
Our results highlight its broad applicability to both class-conditional and text-to-image generation,
positioning DiffMoE as a scalable and efficient foundation for advancing large-scale diffusion models.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Michael S. Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants,
2023. URL https://arxiv.org/abs/2209.15571.

Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Jiaming Song, Qinsheng Zhang, Karsten
Kreis, Miika Aittala, Timo Aila, Samuli Laine, Bryan Catanzaro, Tero Karras, and Ming-Yu
Liu. ediff-i: Text-to-image diffusion models with ensemble of expert denoisers. arXiv preprint
arXiv:2211.01324, 2022.

Weilin Cai, Juyong Jiang, Fan Wang, Jing Tang, Sunghun Kim, and Jiayi Huang. A survey on mixture
of experts, 2024. URL https://arxiv.org/abs/2407.06204.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Damai Dai, Chengqi Deng, Chenggang Zhao, R. X. Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li, Panpan Huang, Fuli Luo, Chong Ruan, Zhifang Sui,
and Wenfeng Liang. Deepseekmoe: Towards ultimate expert specialization in mixture-of-experts
language models, 2024. URL https://arxiv.org/abs/2401.06066.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, et al. Deepseek-v3
technical report, 2024. URL https://arxiv.org/abs/2412.19437.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. arXiv preprint arXiv:2403.03206, 2024a.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English,
Kyle Lacey, Alex Goodwin, Yannik Marek, and Robin Rombach. Scaling rectified flow trans-
formers for high-resolution image synthesis, 2024b. URL https://arxiv.org/abs/2403.
03206.

Zhengcong Fei, Mingyuan Fan, Changqian Yu, Debang Li, and Jusnshi Huang. Scaling diffusion
transformers to 16 billion parameters. arXiv preprint, 2024.

Zhida Feng, Zhenyu Zhang, Xintong Yu, Yewei Fang, Lanxin Li, Xuyi Chen, Yuxiang Lu, Jiaxiang
Liu, Weichong Yin, Shikun Feng, Yu Sun, Li Chen, Hao Tian, Hua Wu, and Haifeng Wang.
Ernie-vilg 2.0: Improving text-to-image diffusion model with knowledge-enhanced mixture-of-
denoising-experts, 2023. URL https://arxiv.org/abs/2210.15257.

Dhruba Ghosh, Hanna Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework for
evaluating text-to-image alignment, 2023. URL https://arxiv.org/abs/2310.11513.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochre-
iter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/
2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance, 2022. URL https://arxiv.
org/abs/2207.12598.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. NeurIPS, 33:
6840–6851, 2020.

Kaiyi Huang, Kaiyue Sun, Enze Xie, Zhenguo Li, and Xihui Liu. T2i-compbench: A compre-
hensive benchmark for open-world compositional text-to-image generation. Advances in Neural
Information Processing Systems, 36:78723–78747, 2023.

10

https://arxiv.org/abs/2209.15571
https://arxiv.org/abs/2407.06204
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2403.03206
https://arxiv.org/abs/2403.03206
https://arxiv.org/abs/2210.15257
https://arxiv.org/abs/2310.11513
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://arxiv.org/abs/2207.12598
https://arxiv.org/abs/2207.12598


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. NeurIPS,
34:21696–21707, 2021.

Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-
a-pic: An open dataset of user preferences for text-to-image generation, 2023. URL https:
//arxiv.org/abs/2305.01569.

Yunsung Lee, Jin-Young Kim, Hyojun Go, Myeongho Jeong, Shinhyeok Oh, and Seungtaek Choi.
Multi-architecture multi-expert diffusion models, 2023. URL https://arxiv.org/abs/
2306.04990.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding, 2020. URL https://arxiv.org/abs/2006.16668.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling, 2023. URL https://arxiv.org/abs/2210.02747.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022a.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow, 2022b. URL https://arxiv.org/abs/2209.03003.

Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, et al. Instaflow: One step is enough for
high-quality diffusion-based text-to-image generation. In The Twelfth International Conference on
Learning Representations, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and
Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
transformers. arXiv preprint arXiv:2401.08740, 2024.

MiniMax, Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang,
Congchao Guo, Da Chen, Dong Li, Enwei Jiao, Gengxin Li, Guojun Zhang, Haohai Sun, Houze
Dong, Jiadai Zhu, Jiaqi Zhuang, Jiayuan Song, Jin Zhu, Jingtao Han, Jingyang Li, Junbin Xie,
Junhao Xu, Junjie Yan, Kaishun Zhang, Kecheng Xiao, Kexi Kang, et al. Minimax-01: Scaling
foundation models with lightning attention, 2025. URL https://arxiv.org/abs/2501.
08313.

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Weijia
Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, Yuling Gu, Shane Arora, Akshita Bhagia,
Dustin Schwenk, David Wadden, Alexander Wettig, Binyuan Hui, Tim Dettmers, Douwe Kiela, Ali
Farhadi, Noah A. Smith, Pang Wei Koh, Amanpreet Singh, and Hannaneh Hajishirzi. Olmoe: Open
mixture-of-experts language models, 2024. URL https://arxiv.org/abs/2409.02060.

Junting Pan, Keqiang Sun, Yuying Ge, Hao Li, Haodong Duan, Xiaoshi Wu, Renrui Zhang, Aojun
Zhou, Zipeng Qin, Yi Wang, Jifeng Dai, Yu Qiao, and Hongsheng Li. Journeydb: A benchmark
for generative image understanding, 2023.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023a.

William Peebles and Saining Xie. Scalable diffusion models with transformers, 2023b. URL
https://arxiv.org/abs/2212.09748.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

11

https://arxiv.org/abs/2305.01569
https://arxiv.org/abs/2305.01569
https://arxiv.org/abs/2306.04990
https://arxiv.org/abs/2306.04990
https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2209.03003
https://arxiv.org/abs/2501.08313
https://arxiv.org/abs/2501.08313
https://arxiv.org/abs/2409.02060
https://arxiv.org/abs/2212.09748


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision, 2021. URL https:
//arxiv.org/abs/2103.00020.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, pp. 10684–10695, 2022.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115
(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis,
Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open dataset of
clip-filtered 400 million image-text pairs. arXiv preprint arXiv:2111.02114, 2021.

Vikash Sehwag, Xianghao Kong, Jingtao Li, Michael Spranger, and Lingjuan Lyu. Stretching each
dollar: Diffusion training from scratch on a micro-budget, 2024. URL https://arxiv.org/
abs/2407.15811.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer, 2017.
URL https://arxiv.org/abs/1701.06538.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053, 2019.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In ICML, pp. 2256–2265. PMLR, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In ICLR, 2021.

Haotian Sun, Tao Lei, Bowen Zhang, Yanghao Li, Haoshuo Huang, Ruoming Pang, Bo Dai, and
Nan Du. Ec-dit: Scaling diffusion transformers with adaptive expert-choice routing, 2024. URL
https://arxiv.org/abs/2410.02098.

Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
Human preference score v2: A solid benchmark for evaluating human preferences of text-to-image
synthesis. arXiv preprint arXiv:2306.09341, 2023.

Harish Prabhala Yatharth Gupta, Vishnu V Jaddipal. Segmoe: Segmind mixture of diffusion experts.
https://github.com/segmind/segmoe, 2024.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew Dai, Zhifeng
Chen, Quoc Le, and James Laudon. Mixture-of-experts with expert choice routing, 2022. URL
https://arxiv.org/abs/2202.09368.

A MORE DIFFMOE ANALYSIS

A.1 ADDITIONAL DIFFMOE DDPM CLASS-CONDITIONAL GENERATION QUALITATIVE AND
QUANTITATIVE RESULTS

We present comprehensive evaluations of DiffMoE-L-E16-DDPM series models. Table 12 shows
the experimental results, while Figure 5 illustrates the diffusion loss comparison against the baseline
model, revealing substantial performance improvements. Furthermore, Figure 6 demonstrates the
scaling capabilities of our DiffMoE-DDPM architecture.
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A.2 COMPUTATIONAL OVERHEAD AND HARDWARE PERFORMANCE ANALYSIS

A.2.1 COMPUTATIONAL OVERHEAD ANALYSIS

DiffMoE maintains high training efficiency while introducing minimal overhead. Compared with
the cost of a standard feed-forward network (FFN), the computational cost of the MoE router is
negligible. The primary overhead arises from the top-K selection operation, whose complexity
grows logarithmically with respect to the number of tokens or experts. Additionally, token indexing
operations (e.g., y[mask] = gate[mask] * x[mask] to gather routed tokens) can introduce
extra computational cost compared with dense models if implemented naively.

Table 6: Computation Complexity Analysis

MoE Method Top-K Complexity FFN Complexity Relative Overhead Token Indexing Training Speed (steps/sec)

Dense-DiT N/A O(BSD2) N/A N/A 1.9
TC-MoE O(BSE log(E)) O(BSD2) 10−5 (negligible) Required 1.5
EC-MoE O(BSE log(S)) O(BSD2) 10−3 Required 1.6
DiffMoE O(BSE log(BS)) O(BSD2) 10−2 (minor) Required 1.6

Note: B denotes batch size, S sequence length, D embedding dimension, and E number of experts.

A.2.2 HARDWARE-RELATED PERFORMANCE METRICS

We benchmarked training and inference on NVIDIA H800 GPUs using Fully Sharded Data Parallel
(FSDP). Training was conducted with a batch size of 64, while inference used a single GPU with
batch size 20. Input resolution was fixed at 256× 256 pixels.

Table 7: Training Time Hardware-related Performance Metrics

Model Active Params (M) Training Speed (iters/sec) Training Memory Consumption (GB)
Dense-DiT 458 1.9 29
TC-DiT 458 1.5 31
EC-DiT 458 1.6 31
DiffMoE 458 1.6 31

Table 8: Inference Time Hardware-related Performance Metrics

Model Active Params (M) Throughput (images/sec) Latency (sec/image) Inference Speed (step/sec)
Dense-DiT 458 6.57 0.152 8.22
TC-DiT 458 4.8 0.208 6
EC-DiT 458 5.75 0.173 7.19
DiffMoE 458 5.74 0.174 7.18

All sparse models maintain the same number of active parameters as the dense baseline, ensuring a fair
comparison. While a slight increase in memory usage (approximately 2GB) and a modest decrease
in throughput are observed, these overheads are minor and do not affect DiffMoE’s deployment
feasibility. MoE models can be further improved by advanced frameworks like Megatron Shoeybi
et al. (2019).

A.3 ANALYSIS OF TOKEN INTERACTION STRATEGIES.

As shown in Figure 1. The interaction levels (L1/L2/L3) represent: L1 for isolated token processing,
L2 for local token routing within samples, and L3 for global token routing across sample. Table 14
presents a comprehensive comparison of different token interaction strategies in diffusion models.
The baseline models with L1 strategy (TC-DiT-L-Flow and Dense-DiT-L-Flow) process tokens
independently, resulting in limited performance (FID: 19.06 and 17.01). The L2 strategy, implemented
in EC-DiT-L-Flow, enables local token routing within samples, showing improved performance (FID:
16.12) with the same parameter count. Our proposed L3 strategy in DiffMoE-L-Flow introduces
cross-sample token routing, achieving superior results (FID: 14.41) even compared to the 1.5x larger
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Table 9: DiffMoE Model Configurations. Hyperparameter settings and computational specifications
for class-conditional models. See Appendix E for activated parameter calculations.

Model Config #Avg. Activated Params (Cavg
infer = 1). #Total Params. #Blocks L #Hidden dim. D #Head n #Experts Ctrain

DiffMoE-S-E16 32M 139M 12 384 6 16 1
DiffMoE-B-E16 130M 555M 12 768 12 16 1
DiffMoE-L-E8 458M 1.176B 24 1024 16 8 1
DiffMoE-L-E16 458M 1.982B 24 1024 16 16 1
DiffMoE-XL-E16 675M 2.925B 28 1152 16 16 1

Table 10: Module Parameters and Percent-
age. We have counted the number of parameters
(M) of various modules to facilitate our analy-
sis.

Model FFN Attention AdaLN Others Total

Dense-DiT-L 201.44(44.0%) 100.7(22.0%) 151(33.0%) 4.7(1.0%) 457.84
DiffMoE-L-E2 314.8(55.1%) 100.7(17.6%) 151(26.4%) 4.7(0.8%) 571.2
DiffMoE-L-E4 516.3(66.8%) 100.7(13.0%) 151(19.5%) 4.7((0.6%) 772.7
DiffMoE-L-E8 919.3(78.2%) 100.7(8.6%) 151(12.8%) 4.7(0.4%) 1175.7
DiffMoE-L-E16 1725.3(87.1%) 100.7(5.1%) 151(7.6%)) 4.7(0.2%) 1981.7

Table 11: Different Threshold Method. We
use both interval search and dynamic threshold
method to find out the optimal τEi

. We find that
the dynamic threshold makes a good balance
between Cavg

infer and performance.

T Cavg
infer FID50K ↓

0.999 0.41 36.28
0.99 0.51 24.22
0.9 0.71 17.59
0.8 0.78 16.21
0.7 0.83 15.51
0.6 0.88 15.00
0.5 0.92 14.59
0.4 0.97 14.16
0.3 1.03 13.75
0.2 1.10 13.38
0.1 1.22 12.92

Dynamic 0.95 14.41

T Cavg
infer FID50K ↓

0.2 1.10 13.38
0.1 1.22 12.92
1E-2 1.71 12.14
1E-3 2.33 11.82
1E-4 3.17 11.87
1E-5 4.36 12.47
1E-6 6.01 13.51
1E-7 7.88 13.96
1E-8 9.67 16.85
1E-9 11.18 18.90
0.0 16 29.39

Table 12: Comparisons with the Baseline Mod-
els. (DDPM) We compare TC, EC and Dense
Model and show the average activated parameters
of all the experts across all the sampling steps.

Model (700K) # Avg. Activated Params. Cavg
infer FID50K ↓

TC-DiT-L-E16-DDPM 458M 1 20.81
EC-DiT-L-E16-DDPM 458M 1 17.65
Dense-DiT-L-DDPM 458M 1 17.87
Dense-DiT-XL-DDPM 675M 1 15.28
DiffMoE-L-E16-DDPM 458M 1 14.60

Table 13: Decoder Ablation Study. Evaluation
of various pre-trained VAE decoder weights. †:
results from Ma et al. (2024) (DDPM) and Peebles
& Xie (2023a) (Flow). ∗: our reproduction. All
other results are from our experiments. In general,
with VAE decoder EMA version, the FID score is
consistently lower than MSE version.

Model Training Steps VAE-Decoder Sampler Batch Size FID50K ↓
Dense-DiT-XL-Flow 400K ft-MSE Euler 125 18.80
Dense-DiT-XL-Flow 400K ft-EMA Euler 125 18.74
Dense-DiT-XL-Flow 400K ft-MSE Dopri5 125 18.63
Dense-DiT-XL-Flow 400K ft-EMA Dopri5 125 18.45

Dense-DiT-XL-Flow∗ 7000K ft-MSE Heun 125 9.66
Dense-DiT-XL-Flow∗ 7000K ft-EMA Heun 125 9.63
Dense-DiT-XL-Flow∗ 7000K ft-MSE Dopri5 125 9.51
Dense-DiT-XL-Flow∗ 7000K ft-EMA Dopri5 125 9.48

Dense-DiT-XL-DDPM-G † 7000K ft-MSE DDPM 125 2.30
Dense-DiT-XL-DDPM-G † 7000K ft-EMA DDPM 125 2.27

Dense-DiT-XL-Flow (675M parameters). Notably, when combined with Dynamic Global CP, our
model not only achieves the best FID score but also reduces the computational capacity to 0.95x,
demonstrating both effectiveness and efficiency.

B DYNAMIC CONDITIONAL COMPUTATION

B.1 HARDER WORK NEEDS MORE COMPUTATION

Dynamic Computation in C2I: Figure 1 demonstrates that different classes require varying com-
putational resources during generation. To analyze this variation, we sample 1K different class
labels in a batch and rank their Cavg

infer in descending order, revealing the computational complexity of
generation across classes. The top-10 most computationally intensive classes for both flow-based and
DDPM models are displayed in Figure 7. The top-10 least computationally intensive classes for both
flow-based and DDPM models are displayed in Figure 8.

Dynamic Computation in T2I:

The dynamic computation paradigm has also been explored in text-to-image (T2I) generation tasks.
To investigate its effectiveness, we used 10K text prompts sampled from GPT-4o to synthesize images
for evaluation. We measured and ranked the per-sample inference capacity C, which reflects the
computational demand. By analyzing the distribution of C, we identify distinctive features of both
challenging and straightforward samples in text-to-image tasks.

Hard Samples typically exhibit the following characteristics:
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(a) Loss Comparison of L-Flow Series (b) Loss Comparison of L-DDPM Series

Figure 5: Loss Comparison of L-Flow and L-DDPM Series. The relative losses illustrated in
subfigures (a) and (b) demonstrate the exceptional training dynamics of DiffMoE, consistently
outperforming all baseline models.

Table 14: Performance comparison of different diffusion models with varying token interaction
strategies. All models are trained with Flow Matching for 700K steps. The interaction levels
(L1/L2/L3) represent: L1 (Iso) for isolated token processing, L2 (Loc) for local token routing within
samples, and L3 (Glob) for global token routing across samples. Our DiffMoE-L-Flow with Dynamic
Global CP achieves the best FID score of 14.41 while maintaining parameter efficiency and reduced
computational cost. # A.A.P. denotes # Avg. Act. Params.

Model # A.A.P. Train Infer FID50K ↓
TC-DiT-L-E16-Flow 458M L1 (Isolated) L1 (Isolated) 19.06
Dense-DiT-L-Flow 458M L1 (Isolated) L1 (Isolated) 17.01
EC-DiT-L-E16-Flow 458M L2 (Local) L2 (Loc, Stat TopK) 16.12
EC-DiT-L-E16-Flow 458M L2 (Local) L2 (Loc, Dyn Intra Sample) 23.74
DiffMoE-L-E16-Flow 458M L3 (Global) L3 (Glob, Stat TopK) 15.25

Dense-DiT-XL-Flow 675M L1 (Isolated) L1 (Isolated) 14.77

DiffMoE-L-E16-Flow 454M L3 (Global) L3 (Glob, Dyn Cross Sample) 14.41

• Fine-grained text rendering: e.g., a signboard with multiple handwritten fonts, or a
calendar with circled dates and notes.

• Complex spatial relations: e.g., objects arranged in layered or interleaved configurations,
such as furniture in a cluttered room.

• Multi-object interactions: e.g., a group of people passing a basketball, or multiple bowls
each containing different items.

• Material fidelity and surface effects: e.g., shiny or translucent surfaces like glass cups,
glossy donuts, or metallic reflections.

Easy Samples are characterized by:

• Simple compositions: e.g., a single flower, or one object on a plain background.

• Clear and minimal semantics: e.g., a sunset over the ocean, or a green apple on a white
table.

• Simple attribute emphasis: e.g., a red book, or a yellow balloon.

Our method effectively adapts computation allocation based on such sample-level difficulty, thereby
improving generation quality without requiring manually defined classes or handcrafted heuristics.
These findings demonstrate the benefit of dynamic token routing in adapting to varying sample
difficulty, providing insights for future research on adaptive computation in generative models.
Table 15 provides concrete examples illustrating the correlation between prompt characteristics and
computational difficulty.
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(a) Comparisons with the Baseline Size-L
(DDPM).

(b) Comparisons with the Baseline
Size-S/B (DDPM).

Figure 6: Comparisons with the Baseline Models. (a) We compare TC, EC, and Dense Models
and show the average activated parameters of all experts across all sampling steps. DiffMoE-L-E16-
DDPM even surpasses DenseDiT-XL-DDPM (1.5x params). (b) We also examine S/B size DiffMoE
models to further demonstrate the scalability.

Table 15: Representative text prompts across different difficulty levels.Cavg
infer denotes the average

inference capacity, where higher values indicate greater computational demand.

Key Feature Example Prompt Difficulty Cavg
infer

Text rendering; complex spa-
tial relations

A close-up view of a calendar. A specific date, the 20th,
is circled and has the word “Branch!” written next to
it. A pen is positioned on top of the calendar, pointing
towards the circled date.

Hard 1.13

Multi-object; complex spatial
relations

Three wooden bowls placed side by side on a textured
surface. Each bowl contains a different type of legume.

Hard 1.07

Simple object; single color A vibrant pink flower with delicate petals. Easy 0.92
Simple composition; attribute
emphasis

A heart-shaped padlock with a shiny silver keyhole, set
against a vibrant pink background.

Easy 0.93

B.2 DYNAMIC TOKEN SELECTION ACROSS NETWORK LAYERS

As illustrated in Figure 9, our analysis reveals distinctive expert utilization patterns across different
network depths. The shallow Layer 1 exhibits pronounced fluctuations and sharp capacity spikes,
indicating intensive early-stage feature extraction. Moving to intermediate Layer 7, we observe
more stabilized capacity patterns, suggesting balanced processing of mid-level features. Layer 13
demonstrates gradual, long-term capacity transitions, while the deep Layer 19 shows notably uniform
expert utilization. This systematic progression from volatile to stable expert engagement reflects the
natural specialization of experts: from low-level feature detection in early layers to refined semantic
processing in deeper layers. Such hierarchical organization of expert behaviors aligns with the
progressive nature of diffusion-based generation.

C DETAILED BACKGROUND OF GENERATIVE MODELING.

In this section, we will provide a detailed bachground of generative modeling of both DDPM Ho
et al. (2020); Song et al. (2021); Rombach et al. (2022) and Rectified Flow (Lipman et al., 2023;
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(a) DiffMoE-L-E16-Flow (700K)

(b) DiffMoE-L-E16-DDPM (700K)

Figure 7: Top 10 Hardest Classes. The 10 classes with the highest computational cost, sampled
from the training set.

Ma et al., 2024; Esser et al., 2024b) which is helpful to understand the difference and relationship
between them.

Generative modeling essentially defines a mapping between x1 from a noise distribution p1(x) to x0

from a data distribution p0(x) leads to time-dependent processes represented as below

xt = αtx0 + σtϵ, t ∈ [0, 1], (17)

where αt is a decreasing function of t and σt is an increasing function of t. We set α0 = 1, σ0 = 0
and α1 = 0, σ0 = 1 to make the marginals pt(xt) = Eϵ∼N (0,I)pt(xt|ϵ) are consistent with data
p0(x) and noise p1(x) distirbution. p1(x) usually be chosen as gaussion distribution N (0, 1).

Different forward path from data to noise leads to different training object which significantly affect
the performance of the model. Next we will introduce DDPM and Rectified Flow.
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(a) DiffMoE-L-E16-Flow (700K)

(b) DiffMoE-L-E16-DDPM (700K)

Figure 8: Top 10 Easiest Classes. The 10 classes with the lowest computational cost, sampled from
the training set.

C.1 DENOSING DIFFUSION PROBABILISTIC MODELS (DDPM)

In DDPM the choice for αt and σt is referred to as the noise schedule and the signal-to-noise-ratio
(SNR) α2

t /σ
2
t is strictly decreasing w.r.t t (Kingma et al., 2021). Moreover, (Kingma et al., 2021)

prove that the following stochastic differential Eq. (SDE) has same transition distribution as pt(xt|x0)
for any t ∈ [0, 1]:

dxt = f(t)xtdt+ g(t)dwt, t ∈ [0, 1],x0 ∼ p0(x0), (18)

where wt ∈ ED is the standard Wiener process, and

f(t) =
d logαt

dt
, g2(t) =

dσ2
t

dt
− 2

d logαt

dt
σ2
t . (19)

(Song et al., 2021) proved that the forward path in Eq. 18 has an equivalent reverse process from
time 1 to 0 under some regularity conditions, starting with pT (xT )

dxt = [f(t)xt − g(t)2∇x log pt(xt)]dt+ g(t)dw̄t, xT ∼ pT (xT ), (20)
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(a) Capacity of All Experts in Layer 1 (b) Capacity of All Experts in Layer 7

(c) Capacity of All Experts in Layer 13 (d) Capacity of All Experts in Layer 19

Figure 9: Expert Dynamics across Network Layers. Visualization of expert capacity patterns in
network layers (1, 7, 13, 19). Early layers show high-amplitude fluctuations, while deeper layers
exhibit increasingly stable utilization, demonstrating natural expert specialization throughout the
diffusion process.

where w̄t ∈ ED is the standard Wiener process. We can esitimate the score term ∇x log pt(xt) as
each time t to iterativtely solve the reverse process, then get the gernerated target. DPMs train a
neural network ϵθ(x, t) parameterized by θ to esitimated the scaled score function −σ∇x log pt(xt).
To optimize ϵθ, we minimize the following objective (Ho et al., 2020; Song et al., 2021; Ma et al.,
2024)

LDDPM(θ) = Et,p0(x0),p(xt|x0)

[
λ(t)∥ϵθ(xt, t) + σt∇x log pt(xt)∥22

]
, (21)

where λt is a time-dependent coefficent. ϵθ(xt, t) can be interpreted as predicting the Gaussian
noise added to xt, thus it is commonly referred to as a noise prediction model. Consequently, the
diffusion model is known as a denoising diffusion probabilistic model. Substitute score term in
equation 20 with −ϵθ(xt, t)/σt, we can solve the reverse process and generate samples from DPMs
with numerical solvers. To further accelerate the sampling process, (Song et al., 2021) proved that
the equvivalent probability flow ODE is
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dxt

dt
= vθ(xt, t) := f(t)xt +

g2(t)

2σt
ϵθ(xt, t), x1 ∼ N (0, I). (22)

Thus samples can be also generated by solving the ODE from time 1 to 0.

C.2 RECTIFIED FLOW MODELS (FLOW)

Recified flow models (Liu et al., 2022b; Albergo & Vanden-Eijnden, 2023; Lipman et al., 2023)
connects data x0 and noise ϵ on a straight line as follows

xt = (1− t)x0 + tϵ, t ∈ [0, 1]. (23)
To precisely express the relationship between xt, x0, and ϵ, we first construct a time-dependent
vector field u : [0, 1]× RD → RD. This vector field ut can be used to construct a time-dependent
diffeomorphic map, known as a flow ϕ : [0, 1]× RD → RD, through the following ODE:

d

dt
ϕt(x0) = ut(ϕt(x0)) (24)

ϕ0(x0) = x0. (25)

The vector field ut can be modeled as a neural network vθ (Chen et al., 2018) which leads to a
deep parametric model of the flow ϕt, called a Continuous Normalizing Flow (CNF). We can using
conditional flow matching (CFM) technique (Lipman et al., 2022) to training a CNF. Now we can
define the flow we need as follows:

ψt(·|ϵ) : x0 7→ αtx0 + σtϵ. (26)
The corresponding velocity vector field of the flow ψt can be represented as:

ut(ψt(·|ϵ)|ϵ) =
d

dt
ψt(x0|ϵ) = α̇tx0 + σ̇tϵ = ϵ− x0. (27)

Using conditional flow matching technique, v(xt, t) in Eq. equation 22 can be modeled as a neural
network vθ(xt, t) by minimziing the following objective

LFlow(θ) = Et,p0(x0),p1(ϵ)∥vθ(xt, t)−
d

dt
ψt(x0|ϵ)∥22 (28)

= Et,p0(x0),p(ϵ)∥vθ(xt, t)− (α̇tx0 + σ̇tϵ)∥22 (29)

= Et,p0(x0),p(ϵ)∥vθ(xt, t)− (ϵ− x0)∥22. (30)

Samples can be generated by sovling the probability flow ODE below with learned velocity using
numerical sovler like Euler, Heun, Runge-Kutta method.

dxt = vθ(xt, t)dt, x1 = ϵ ∼ N (0, 1). (31)

C.3 RELATIONSHIP DDPM AND FLOW

There exists a straightforward connection between vθ(xt, t) and the score term −σt∇x log pt(xt)
can be derived as follows

vθ(xt, t) = f(t)xt +
g2(t)

2σt
ϵθ(xt, t) (32)

≈ α̇t

αt
xt +

(
σ̇t −

α̇t

αt

)
(−σt∇x log pt(xt)). (33)
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Let ζt = σ̇t − α̇t

αt
, and we have ϵθ(xt, t) ≈ −σt∇x log pt(xt, then we can get vθ(xt, t) =

α̇t

αt
xt +

ζtϵθ(xt, t)

By plugging equation 33 into the loss LFlow in Eq. equation 30 we have:

LFlow(θ) = Et,p0(x0),p1(ϵ)∥vθ(xt, t)− (α̇tx0 + σ̇tϵ)∥22 (34)

= Et,p0(x0),p(ϵ)∥
α̇t

αt
xt + ζtϵθ(xt, t)− σ̇tϵ∥22 (35)

= Et,p0(x0),p(ϵ)∥ζtϵθ(xt, t)− ζtϵ∥22 (36)

= Et,p0(x0),p(ϵ)

[
ζ2t ∥ϵθ(xt, t)− ϵ∥22

]
. (37)

Considering Eq. equation 17, we have xt ∼ N (αtx0, σtI) and∇x log p(xt) = σ−1
t (xt − αtx0) =

σ−1
t (σtϵ) = ϵ. Then, we can get the equivilant loss function as below:

LFlow(θ) = Et,p0(x0),p(xt|x0)

[
ζ2t ∥ϵθ(xt, t) + σt∇x log pt(xt)∥22

]
. (38)

Recall that LDDPM(θ) = Et,p0(x0),p(xt|x0)

[
λ(t)∥ϵθ(xt, t) + σt∇x log pt(xt)∥22

]
.

We can find that LDDPM and LFlow have the same form, with the only difference being their time-
dependent weighting functions, which lead to different trajectories and properties.

D MORE IMPLEMENTATION DETAILS

D.1 TRAINING SETUP.

We train class-conditional DiffMoE and baseline models at 256x256 image resolution on the ImageNet
dataset (Russakovsky et al., 2015) a highly-competitive generative benchmark, which contains
1281167 training images. We use horizontal flips as the only data augmentation. We train all models
with AdamW (Loshchilov & Hutter, 2017). We use a constant learning rate of 1× 10−4, no weight
decay and a fixed global batch size of 256, following (Peebles & Xie, 2023b). We also maintain
an exponential moving average(EMA) of DiffMoE and baseline model weights over training with
a decay of 0.9999. All results reported use the EMA mode. For most experiments, we utilized 4
NVIDIA H800 GPUs during training. To achieve state-of-the-art results, we extended the training
process with 8 NVIDIA H800 GPUs for improved efficiency. For text-to-image experiments, we train
all baseline models Dense-DiT, TC-DiT, EC-DiT, and our DiffMoE on a dataset of 25M 256×256
text-image pairs (mixed from LAION (Schuhmann et al., 2021) and JourneyDB (Pan et al., 2023))
for 576 H800 GPU hours.

D.2 IMPLEMENTATION ALGORITHMS.

We provide a detailed illustration of the DiffMoE layer during training and inference in Algorithm 3
and 4, respectively. We also implemented the same EC-DiT layer in Algorithm 1 as (Sun et al.,
2024). We implemented TC-DiT in layer in Algorithm 2 similar to (Dai et al., 2024; Fei et al., 2024)

E CALCULATION OF AVERAGE ACTIVATED PARAMETERS AND AVERAGE
CAPACITY

E.1 COMPUTING AVERAGE INFERENCE CAPACITY

To compute the global average capacity (Cavg
infer), we analyze 50K samples across all experts and

sampling steps. For a quick approximation, sampling 1K samples is sufficient due to DiffMoE’s
stable performance characteristics.
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E.2 ESTIMATING AVERAGE ACTIVATED PARAMETERS USING AVERAGE INFERENCE
CAPACITY

We will introduce the relationship between average activated parameters and average capacity in
detail. Let #Module denote the number of parameters a certain Module, NE denote the number of
experts. Under approximate conditions, for DiT (Peebles & Xie, 2023a) models, we have

In our model, we adopt an interlaced arrangement of the Mixture of Experts (MoE) layer and the
dense layer. Here, #FFN represents the total number of parameters of all Feed - Forward Neural
Network (FFN) layers. Given that the total number of layers is N , the calculation of the average
activated parameters is as follows:

The contribution of FFN layers to the average activated parameters can be derived step - by - step.
First, consider the proportion of active FFN layers. Since MoE and dense layers are interlaced, the
number of active FFN layers is approximately N/2.

The formula for the average activated parameters of FFN layers is:

# Average Activated Parameters of FFN layers

≈ N/2

N/2 +N/2×NE
×#FFN +

N/2× Cavg
infer

N/2 +N/2×NE
×#FFN =

(
1 + Cavg

infer

1 +NE

)
×#FFN

Combining with the contributions from other components (Attention, AdaLN, and other modules),
the overall average activated parameters of the model can be approximated as:

# Average Activated Parameters ≈
(
1 + Cavg

infer

1 +NE

)
#FFN+#Attention+#AdaLN+#Other Modules

(39)

Table 10 displays the parameters and their corresponding percentages of the main modules of
large-size DiffMoE.

F FID SENSIBILITY AND ABLATION STUDY

FID scores are sensitive to implementation details, necessitating careful ablation studies to understand
the differences between various implementations. Through these studies, we aim to provide the
academic community with clearer insights for fair comparisons between diffusion models.

The observed FID degradation at higher CFG scales is well-documented (Ma et al., 2024), primarily
due to ImageNet’s diverse image quality distribution. When generating high-quality samples, the
deviation from ImageNet’s mixed-quality dataset can lead to increased FID scores, despite improved
visual quality.

For FID calculation, we follow the implementations from SiT (Ma et al., 2024) and DiT (Peebles &
Xie, 2023a). Results marked with † are directly quoted from (Ma et al., 2024) (DDPM) and (Peebles
& Xie, 2023a) (Flow). For results marked with ∗, we reproduce the experiments using officially
released checkpoints under identical evaluation conditions.

F.1 VAE DECODER ABLATIONS

Following (Peebles & Xie, 2023a), throughout our experiments, we employed pre-trained VAE
models. Specifically, we utilized fine-tuned versions (ft-MSE and ft-EMA) of the original LDM ”f8”
model, where only the decoder weights were fine-tuned. For the analysis presented in Experiments
section 3 and Tables 12 and 11 , we tracked metrics using the ft-MSE decoder, while the final
metrics reported in Table 2 was obtained using the ft-EMA decoder. In this section, we examine the
impact of two distinct VAE decoders for our experiments - the two fine-tuned variants employed in
Stable Diffusion. Since all models share identical encoders, we can interchange decoders without
necessitating diffusion model retraining. As demonstrated in Table 13, the DiffMoE model maintains
its superior performance over existing diffusion models.
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Table 16: Batch Size Ablation Study: FID
scores under different batch sizes using fine-
tuned EMA VAE decoder and Heun sampler.
Bold indicates best performance in its cell.

Model Training Steps CFG Batch Size FID50K ↓
DiffMoE-L-E8-Flow 7000K 1.0 10 9.60
DiffMoE-L-E8-Flow 7000K 1.0 15 9.62
DiffMoE-L-E8-Flow 7000K 1.0 32 9.77
DiffMoE-L-E8-Flow 7000K 1.0 50 9.98
DiffMoE-L-E8-Flow 7000K 1.0 75 9.90
DiffMoE-L-E8-Flow 7000K 1.0 100 9.76
DiffMoE-L-E8-Flow 7000K 1.0 125 9.78

Dense-DiT-XL-Flow∗ 7000K 1.0 10 9.57
Dense-DiT-XL-Flow∗ 7000K 1.0 15 9.47
Dense-DiT-XL-Flow∗ 7000K 1.0 50 9.84
Dense-DiT-XL-Flow∗ 7000K 1.0 75 9.67
Dense-DiT-XL-Flow∗ 7000K 1.0 100 9.65
Dense-DiT-XL-Flow∗ 7000K 1.0 125 9.64

DiffMoE-L-E8-Flow 7000K 1.5 10 2.19
DiffMoE-L-E8-Flow 7000K 1.5 32 2.16
DiffMoE-L-E8-Flow 7000K 1.5 50 2.16
DiffMoE-L-E8-Flow 7000K 1.5 75 2.13
DiffMoE-L-E8-Flow 7000K 1.5 100 2.17
DiffMoE-L-E8-Flow 7000K 1.5 125 2.18

Dense-DiT-XL-Flow∗ 7000K 1.5 10 2.23
Dense-DiT-XL-Flow∗ 7000K 1.5 15 2.23
Dense-DiT-XL-Flow∗ 7000K 1.5 50 2.21
Dense-DiT-XL-Flow∗ 7000K 1.5 75 2.19
Dense-DiT-XL-Flow∗ 7000K 1.5 100 2.22
Dense-DiT-XL-Flow∗ 7000K 1.5 125 2.21

DiffMoE-L-E8-DDPM 7000K 1.5 50 2.30
DiffMoE-L-E8-DDPM 7000K 1.5 75 2.33
DiffMoE-L-E8-DDPM 7000K 1.5 100 2.32
DiffMoE-L-E8-DDPM 7000K 1.5 125 2.32

Table 17: CFG Scale Ablation Study: FID
scores across different CFG scales using fine-
tuned EMA VAE decoder. Bold indicates best
performance in its cell.

Model Training Steps Sampler CFG Batch Size FID50K ↓
DiffMoE-L-E8-Flow 4900K Heun 1.0 125 9.21
Dense-DiT-XL-Flow∗ 7000K Heun 1.0 125 9.64
DiffMoE-L-E8-Flow 7000K Heun 1.0 125 9.78

DiffMoE-L-E8-Flow 4900K Heun 1.43 125 2.14
Dense-DiT-XL-Flow∗ 7000K Heun 1.43 125 2.08
DiffMoE-L-E8-Flow 7000K Heun 1.43 125 2.13

DiffMoE-L-E8-Flow 4900K Heun 1.5 125 2.28
Dense-DiT-XL-Flow∗ 7000K Heun 1.5 125 2.21
DiffMoE-L-E8-Flow 7000K Heun 1.5 125 2.18

DiffMoE-L-E8-DDPM 6500K DDPM 1.0 125 9.39
Dense-DiT-XL-DDPM∗ 7000K DDPM 1.0 125 9.63
DiffMoE-L-E8-DDPM 7000K DDPM 1.0 125 9.17

DiffMoE-L-E8-DDPM 6500K DDPM 1.5 125 2.27
Dense-DiT-XL-DDPM∗ 7000K DDPM 1.5 125 2.32
DiffMoE-L-E8-DDPM 7000K DDPM 1.5 125 2.32

Table 18: Flow ODE Sampler Ablation
Study: FID scores across different ODE sam-
plers with CFG scale 1.0 and fine-tuned EMA
VAE decoder. Bold indicates best performance
in its cell.

Model Training Steps Sampler Batch Size FID50K ↓
DiffMoE-L-E8-Flow 4900K Euler 125 9.37
DiffMoE-L-E8-Flow 4900K Heun 125 9.21
DiffMoE-L-E8-Flow 4900K Euler 250 9.39
DiffMoE-L-E8-Flow 4900K Dopri5 250 9.06

DiffMoE-L-E8-Flow 7000K Euler 125 9.86
DiffMoE-L-E8-Flow 7000K Heun 125 9.78
DiffMoE-L-E8-Flow 7000K Euler 250 9.94
DiffMoE-L-E8-Flow 7000K Dopri5 250 9.56

F.2 FLOW ODE-SAMPLER ABLATIONS

Higher-order ODE samplers generally achieve better FID scores. As shown in Table 18, the black-
box dopri5 sampler outperforms heun (NFE=250), which in turn surpasses euler (NFE). For fair
comparison with baseline models, we employ the euler sampler in flow-based experiments. However,
to benchmark against SiT-XL (Dense-DiT-XL-Flow) (Ma et al., 2024), we use the heun sampler to
achieve SOTA results.

F.3 CLASSIFIER-FREE-GUIDENCE ABLATIONS

We evaluate different models with varying classifier-free guidance (CFG) scales in Table 17, and
discover that the CFG scale of 1.5 adopted in DiT (Peebles & Xie, 2023a) and SiT (Ma et al., 2024)
studies may not be universally optimal. Our analysis reveals the best CFG scale approximates to 1.43
through comprehensive comparisons. However, different models exhibit distinct characteristics that
lead to varying optimal CFG scales, suggesting that fixing a uniform scale across all models could
introduce evaluation bias. To ensure relatively fair comparisons while maintaining consistency with
established practices, we ultimately adopt CFG 1.5 as the default setting in our experiments. This
decision aligns with the well-documented trade-off in diffusion models: higher CFG scales (e.g., 4.0)
typically enhance image fidelity at the cost of increased FID scores, while lower scales (e.g., 1.5)
yield better FID metrics despite reduced perceptual quality. This phenomenon primarily stems from
FID’s sensitivity to distributional coverage - higher guidance scales tend to produce samples with
reduced diversity that more closely match the training distribution statistics, paradoxically resulting
in worse FID scores despite improved individual sample quality.

F.4 BATCH SIZES ABLATIONS

The batch sizes ablation study reveals critical insights into the interplay between batch size and
classifier-free guidance (CFG) scales for the DiffMoE-L-E8-Flow model. At CFG=1.0, FID scores
remain elevated (9.60–9.98), with smaller batch sizes (e.g., bs=10) marginally outperforming larger
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Algorithm 1 EC - DiT Layer

Require: x (input tensor)
B (batch size), S (sequence length), d (hidden dim), Wr (routing weights), experts (list of

expert FFNs)
E (number of experts), C (expert capacity)

1: Step 1: Compute Token - Expert Affinity Matrix
2: logits← einsum(‘bsd, de→ bse′, x,Wr)
3: scores← softmax(logits, dim = −1).permute(−1,−2)
4: Step 2: Select top - k tokens for each expert
5: gating, index← top k(scores, k = C, dim = −1)
6: dispatch← one hot(index, num classes = S)
7: Step 3: Process tokens through experts and combine
8: xin ← einsum(‘becs, bsd→ becd′, dispatch, x)
9: xe ← [experts[e](xin[:, e]) for e in range(E)]

10: xe ← stack(xe, dim = 1)
11: xout ← einsum(‘becs, bec, becd→ bsd′, dispatch, gating, xe)
Ensure: xout

configurations, exhibiting a U-shaped trend. However, elevating CFG to 1.5 drastically reduces FID
to 2.13–2.19, achieving optimal performance at bs=75 (2.13), while demonstrating remarkable
robustness to batch size variations (∆=0.06 vs. ∆=0.38 at CFG=1.0).

F.5 CONCLUSION: A LITTLE THOUGHT ABOUT FID

While Fréchet Inception Distance (FID) is widely adopted for evaluating generative models, par-
ticularly on ImageNet, it exhibits several notable limitations. Our analysis reveals counterintuitive
behaviors, especially when evaluating models with classifier-free guidance (CFG). For example,
higher CFG scales typically enhance perceptual quality but paradoxically result in worse FID scores,
despite producing visually superior images. This discrepancy stems from FID’s fundamental mecha-
nism: it measures statistical similarities between generated and real distributions in the Inception
network’s feature space, often failing to capture perceptual quality and fine-grained details. Moreover,
FID scores are susceptible to various implementation factors, including choice of ODE samplers,
hardware configurations, random seeds, and sample size for estimation. These sensitivities can impact
reproducibility and comparison across different studies. Furthermore, FID’s focus on distributional
overlap overlooks critical aspects such as mode collapse and overfitting, as it does not explicitly eval-
uate sample diversity or novelty. These limitations underscore the pressing need for more robust and
comprehensive metrics that can better reflect the true modeling capabilities of generative models. We
advocate for developing new evaluation frameworks that combine precision-recall curves, perceptual
quality metrics, and human evaluation studies, which would provide a more reliable assessment of
generative model performance.

G VISUAL GENERATION RESULTS

G.1 CLASS-CONDITIONAL IMAGE GENERATION

To demonstrate the generation capabilities of our model, we showcase diverse images sampled
from DiffMoE-L-E8-Flow and DiffMoE-L-E8-DDPM, conditioned on ImageNet class labels. These
visualizations illustrate the model’s ability to generate high-quality, class-specific images. See Figure
10 and 11.

G.2 TEXT-CONDITIONAL IMAGE GENERATION

We present a collection of images generated by our DiffMoE-T2I-Flow model using various text
prompts as conditioning inputs. These examples demonstrate the model’s versatility in translating
textual descriptions into corresponding visual representations. See Figure 12.
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Algorithm 2 TC - DiT layer

Require: x (input tensor), Wr (routing weights), experts (list of expert FFNs)
B (batch size), S (sequence length), d (hidden dim), K (experts per token)

1: Step 1: Save original input shape
2: orig shape← shape(x)
3: Step 2: Compute Token - Expert Affinity Matrix
4: logits← einsum(‘bsd, de→ bse′, x,Wr)
5: scores← softmax(logits, dim = −1)
6: Step 3: Select top - k tokens for each expert
7: gating, index← top k(scores, k = K, dim = −1)
8: Step 4: Flatten x and top - k indices
9: x← view(x, (−1, x.shape[−1]))

10: flat topk idx← view(topk idx, (−1))
11: Step 5: Process tokens through experts
12: x← repeat interleave(x,K, dim = 0)
13: y ← empty like(x)
14: for i← 1 to len(experts) do
15: y[flat topk idx == i]← experti(x[flat topk idx == i])
16: end for
17: y ← sum(view(y, (∗gating.shape,−1)) · gating.unsqueeze(−1), dim = 1)
18: y ← view(y, orig shape)
Ensure: y

Algorithm 3 DiffMoE layer (Training)

Require: x (input tensor)
B (batch size), S (flattened sequence length), D (hidden dim), N (number of experts)
Wr (routing weights), experts (list of expert FFNs), C (expert capacity)

1: Step 1: Batch-level token pool and compute capacity prediction
2: x← view(x, (−1, D))
3: S ← shape(x)[0]
4: capacity pred← capacity predictor(detach(x))
5: Ctrain ← int((S/N)× C)
6: Step 2: Compute token - expert affinity scores
7: logits← einsum(‘sd, de→ se′, x,Wr)
8: scores← softmax(logits, dim = −1).permute(−1,−2)
9: gating, index← top k(scores, k = Ctrain, dim = −1, sorted = False)

10: Step 3: Process tokens through experts
11: y ← zeros like(x), ones← zeros(N,S)
12: for i← 1 to N do
13: y[index[i], :]← y[index[i], :] + gating[i].unsqueeze(−1)× experti(x[index[i], :])
14: ones[i][index[i]]← 1
15: end for
16: Step 4: Update capacity threshold
17: update threshold(capacity pred)
18: Step 5: Reshape output
19: xout ← view(y, (B, s,D))
Ensure: xout, ones, capacity pred

H STATEMENT ON LLM ASSISTANCE

Portions of this manuscript were refined for clarity and readability using Claude and DeepSeek. The
authors remain solely responsible for the technical content and conclusions presented in this work.
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Algorithm 4 DiffMoE layer (Inference)

Require: x (input tensor)
B (batch size), S (flattened sequence length), D (hidden dim), N (number of experts)
Wr (routing weights), experts (list of expert FFNs), C (expert capacity)
threshold (expert threshold)

1: Step 1: Reshape input and compute capacity prediction
2: x← view(x, (−1, D))
3: S ← shape(x)[0]
4: capacity pred← sigmoid(capacity predictor(detach(x)))
5: Step 2: Compute token - expert affinity scores
6: logits← einsum(‘sd, de→ se′, x,Wr)
7: scores← softmax(logits, dim = −1).permute(−1,−2)
8: Step 3: Process tokens through experts
9: y ← zeros like(x)

10: for i← 1 to N do
11: kpred ← sum(where(capacity pred[:, i] > threshold[i], 1, 0))
12: gating, index← top k(scores[i], k = kpred, dim = −1, sorted = False)
13: y[index, :]← y[index, :] + gating.unsqueeze(−1)× experti(x[index, :])
14: end for
15: Step 4: Reshape output
16: xout ← view(y, (B, s,D))
Ensure: xout

Figure 10: Class-conditional Generation. Uncurated 256×256 DiffMoE-L-E8-Flow samples
CFG scale = 4.0.
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Figure 11: Class-conditional Generation. Uncurated 256×256 DiffMoE-L-E8-DDPM samples
CFG scale = 4.0.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 12: Text-to-Image Generation. Uncurated 256×256 Images generated by DiffMoE-E16-
T2I-Flow
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