DIFFMOE: DYNAMIC TOKEN SELECTION FOR SCAL-ABLE DIFFUSION TRANSFORMERS

Anonymous authors

000

001

002 003 004

010 011

012

013

014

015

016

017

018

019

021

025

026

027

028

031

034

037

040

041

042

043

044 045 046

047

051

052

Paper under double-blind review

ABSTRACT

Diffusion Transformers (DiTs) have become the leading architecture for visual generation tasks. However, their uniform treatment of inputs across different conditions and noise levels overlooks the inherent heterogeneity of the diffusion process. While recent mixture-of-experts (MoE) in diffusion approaches attempt to address this limitation, they struggle to achieve significant improvements due to their restricted token accessibility and fixed computational patterns. We present **DiffMoE**, a novel MoE-based architecture that enables experts to access global token distributions through a batch-level global token pool during training, promoting specialized expert behavior. To unleash the full potential of inherent heterogeneity, DiffMoE incorporates capacity predictor and dynamic threshold that adpatively allocates computational resources based on noise levels and sample complexity. Through comprehensive evaluation, DiffMoE achieves state-of-the-art performance among diffusion transformers on ImageNet benchmark, substantially outperforming both dense architectures with 3× activated parameters and existing MoE approaches while maintaining $1 \times$ activated parameters. Our approach demonstrates efficacy not only in class-conditional generation but also in more complex tasks such as text-to-image synthesis, outperforming both dense models and various DiT baselines. This underscores its broad applicability across diverse diffusion model applications.

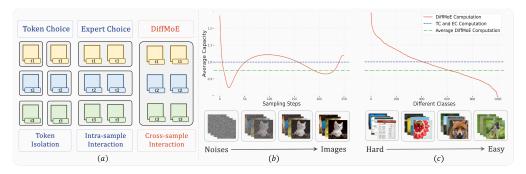


Figure 1: **Token Accessibility and Dynamic Computation.** (a) Token accessibility levels from token isolation to cross-sample interaction. (b) Computational dynamics during diffusion sampling, showing adaptive computation from noise to image. (c) Class-wise computation allocation from hard (technical diagrams) to easy (natural photos) tasks. Results from DiffMoE-L-E16-Flow (700K).

1 Introduction

The Mixture-of-Experts (MoE) framework (Lepikhin et al., 2020; Shazeer et al., 2017) has emerged as a powerful paradigm for enhancing overall multi-task performance while maintaining computational efficiency. This is achieved by combining multiple expert networks, each focusing on a distinct task, with their outputs integrated through a gating mechanism. In language modeling, MoE has achieved performance comparable to dense models of $2 \times -3 \times$ activated parameters (DeepSeek-AI et al., 2024; MiniMax et al., 2025; Muennighoff et al., 2024). The current MoE primarily follows two gating paradigms: Token-Choice (TC), where each token independently selects a subset of experts for

processing; and Expert-Choice (EC), where each expert selects a subset of tokens from the sequence for processing.

Diffusion (Ho et al., 2020; Rombach et al., 2022; Podell et al., 2023; Song et al., 2021) and flow-based (Ma et al., 2024; Esser et al., 2024b; Liu et al., 2023) models inherently represent multi-task learning frameworks, as they process varying token distributions across different noise levels and conditional inputs. While this heterogeneity characteristic naturally aligns with the MoE framework's ability for multi-task handling, existing attempts (Fei et al., 2024; Sun et al., 2024; Yatharth Gupta, 2024; Sehwag et al., 2024) to integrate MoE with diffusion models have yielded suboptimal results, failing to achieve the remarkable improvements observed in language models. Specifically, Token-choice MoE (TC-MoE) (Fei et al., 2024) often underperforms compared to conventional dense architectures under the same number of activations; Expert-choice MoE (EC-MoE) (Sehwag et al., 2024; Sun et al., 2024) shows marginal improvements over dense models, but only when trained for much longer.

We are curious about what fundamentally limits MoE's effectiveness in diffusion models. Our key finding reveals that **global token distribution accessibility is crucial for MoE success in diffusion models, necessitating the model learn and dynamically process the tokens from different noise levels and conditions**, as illustrated in Figure 1(b)(c). Previous approaches have neglected this crucial component, resulting in compromised performance. Specifically, Dense models and TC-MoE isolates tokens, preventing them from interacting with others during expert selection, while EC-DiT restricts intra-sample token interaction, which fails to access other samples with different noise levels and conditions. These limitations hinder the model's ability to capture the full spectrum of the heterogeneity inherent in diffusion processes.

To address these limitations, we introduce **DiffMoE**, a novel architecture that features a **batch-level global token pool** for enhanced **cross-sample token interaction** during training, as illustrated in Figure 2. This approach approximates the complete token distribution across different noise levels and samples, facilitating more specialized expert learning through comprehensive global token information access. Our empirical analysis demonstrates that the global token pool is instrumental in accelerating loss convergence. Compared to dense models with an equivalent number of activation parameters, it achieves significantly faster convergence.

However, conventional MoE inference strategies, which maintain fixed computational resource allocation across different noise levels and conditions, fail to fully leverage the potential of DiffMoE's batch-level global token pool. To optimize token selection during inference, we propose a **capacity predictor** that dynamically adjusts resource allocation. This adaptive mechanism learns from training-time token routing patterns, efficiently distributing computational resources between complex and simple cases. Furthermore, we implement a **dynamic threshold** at inference time to achieve flexible performance-computation trade-offs. By integrating the global token pool and capacity predictor, **DiffMoE achieves superior performance over dense models with** $3 \times$ **activated parameters** while maintaining efficient scaling properties (See Table 2). Our approach offers extra several advantages over existing methods: it eliminates the potentially detrimental load balancing losses present in TC-MoE and overcomes the intra-sample token selection constraints of EC-MoE, resulting in enhanced flexibility and scalability. Extensive empirical evaluations demonstrate DiffMoE's superior scaling efficiency and performance improvements across diverse diffusion applications.

Our contributions can be summarized as follows:

- (1) We identify the critical role of global token distribution accessibility in enabling dynamic token selection for MoE-based diffusion models.
- (2) We propose DiffMoE, a scalable framework with a global token pool, capacity predictor, and dynamic threshold for efficient computation.
- (3) We demonstrate superior performance on ImageNet and T2I benchmarks via dynamic computation allocation without sacrificing efficiency.
- (4) We provide extensive experiments across diverse diffusion tasks, validating the effectiveness and generality of our approach.

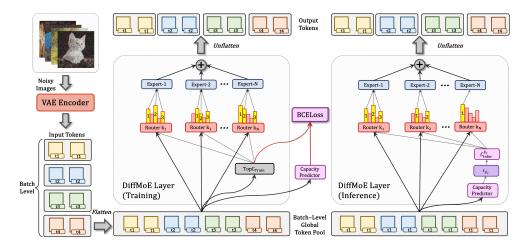


Figure 2: **DiffMoE** Architecture Overview. DiffMoE flattens tokens into a batch-level global token pool, where each expert maintains a fixed training capacity of $C_{\text{train}} = 1$. During inference, a dynamic capacity predictor adaptively routes tokens across different sampling steps and conditions. Different colors denote tokens from distinct samples, while t_i represents corresponding noise levels.

2 METHODOLOGY

Diffusion Models. Diffusion models (Ho et al., 2020; Rombach et al., 2022; Sohl-Dickstein et al., 2015; Song et al., 2021) are a powerful family of generative models, which can transform the noise distribution $p_1(\mathbf{x})$ to the data distribution $p_0(\mathbf{x})$. The diffusion process can be represented as: $\mathbf{x}_t = \alpha_t \mathbf{x}_0 + \sigma_t \epsilon$, $t \in [0,1]$, $\epsilon \sim \mathcal{N}(0,\mathbf{I})$, Where α_t and σ_t are monotonically decreasing and increasing functions of t, respectively. The marginal distribution $p_1(\mathbf{x})$ converges to $\mathcal{N}(0,\mathbf{I})$, when $\alpha_1 = \sigma_0 = 0$, $\alpha_0 = \sigma_1 = 1$.

To train a diffusion model, we can use the denoising score matching method (Song et al., 2021) which constructs a score prediction model $\epsilon_{\theta}(\mathbf{x}_{t},t)$ to estimate the scaled score function $-\sigma_{t}\nabla_{\mathbf{x}}\log p_{t}(\mathbf{x}_{t})$ with training objective formulated in Eq. 21. Sampling from a diffusion model can be achieved by solving the reverse-time SDE or the corresponding diffusion ODE (Song et al., 2021) in an iterative manner. Recently, flow-based models (Liu et al., 2022a; Lipman et al., 2022; Esser et al., 2024a) have shown superior performance through alternative training objective formulated in Eq. 30 while maintaining the same architecture as DiT (Peebles & Xie, 2023a). Sampling from a flow-based model can be achieved by solving the probability flow ODE.

Mixture of Experts. Mixture of Experts (MoE) (Shazeer et al., 2017; Cai et al., 2024) is based on a fundamental insight: different parts of a model can specialize in handling distinct tasks. By selectively activating only relevant components, MoE enables efficient scaling of model capacity while maintaining computational efficiency. MoE layers generally consist of N experts, each implemented as a Feed-Forward Network (FFN) with identical architecture, denoted by $E_1(\mathbf{x}), \ldots, E_N(\mathbf{x})$ with input \mathbf{x} . A routing matrix $\mathbf{W}_r \in \mathbb{R}^{D \times N}$ is used to calculate token-expert affinity matrix:

$$\mathbf{M} = \operatorname{softmax}_{E}(\mathbf{x}\mathbf{W}_{r}), \quad \mathbf{x} \in \mathbb{R}^{B \times S \times D}, \tag{1}$$

where B is the batch size, S is the token length of one sample, D is the hidden dimension, $softmax_E$ denotes the softmax operation along the expert axis. There are two common gating paradigms: Token-Choice (TC) (Shazeer et al., 2017; Fei et al., 2024) and Expert-Choice (EC) (Zhou et al., 2022; Sun et al., 2024). For TC, each token of each sample individually selects top-K experts via a gating function, the gating function and output of TC-MoE layers are defined as follows:

$$\mathbf{G}_{s,i}^{TC} = \begin{cases} \mathbf{M}_{s,i}, & \mathbf{M}_{s,i} \in \text{top-}K(\{\mathbf{M}_{s,i}\}_{i=1}^{N}) \\ 0, & \text{otherwise} \end{cases}$$
 (2)

$$\mathbf{y}_s = \sum_{i=1}^K \mathbf{G}_{s,i}^{TC} E(\mathbf{x}_s), \mathbf{x}_s \in \mathbb{R}^{1 \times D}, s \in \{1, \dots, S\}.$$
(3)

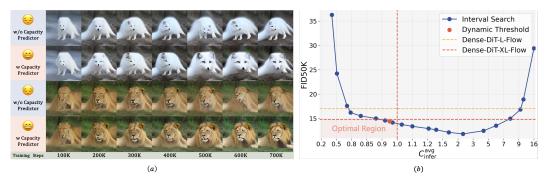


Figure 3: (a) Effectiveness of Capacity Predictor. Comparison of sampling strategies with DiffMoEL-E16-Flow (Batch Size = 1). For each group, **Top:** Sampling w/o Capacity Predictor (with Fixed TopK Method.) **Bottom:** Sampling with Capacity Predictor. (b) **Different Threshold Methods:** We employ two distinct approaches for threshold determination: dynamic threshold (red point) and interval search (blue points). Visualization using DiffMoE-L-E16-Flow (700K).

Different from TC, EC makes every expert selects K' tokens from each sample of the input $\mathbf{x} \in \mathbb{R}^{B \times S \times D}$. The gating function $G_{s,i}^{EC}$ can be implemented analogously to Eq. 2, with the modification that the top operation selects K' tokens along the token dimension, i.e. S. Similar to Eq. 3, the output for a token \mathbf{x}_s of EC-MoE layers can be calculated as: $\mathbf{y}_s = \sum_{i=1}^{N} \mathbf{G}_{s,i}^{EC} E(\mathbf{x}_s), \mathbf{x}_s \in \mathbb{R}^{1 \times D}$. Both TC and EC struggle to achieve significant improvements comparing with dense models due to their restricted token accessibility and fixed computational patterns.

2.1 DIFFMOE: DYNAMIC TOKEN SELECTION

Batch-level Global Token Pool. Since MoE architectures replace FFN layers, both TC and EC paradigms in diffusion models are inherently limited to processing tokens within individual samples, where gating mechanisms operate exclusively on tokens sharing identical conditions and noise levels. This architectural constraint not only prevents experts from learning crucial contrastive patterns but, more fundamentally, restricts their access to the global token distribution that characterizes the full spectrum of the diffusion process. To capture this essential global context, we introduce a *Batch-level Global Token Pool* for DiffMoE by flattening batch and token dimensions, enabling experts to access a comprehensive token distribution spanning different noise levels and conditions. This design, which simulate the true token distribution of the entire dataset during training, can be formulated as follows:

$$\mathbf{x} \in \mathbb{R}^{B \times S \times D} \to \mathbf{x}_{\text{pool}} \in \mathbb{R}^{BS \times D}.$$
 (4)

During the training phase, we push expert E to select $K^E_{\rm train}$ tokens, forcing each expert to capture the characteristics of tokens from different conditional information and noise levels, while keeping expert load balance during training. The corresponding batch-level global token-expert affinity matrix will be calculated as follows:

$$\mathbf{M}^{Dy} = \mathbf{x}_{\text{pool}} \mathbf{W}_r, \mathbf{x}_{\text{pool}} \in \mathbb{R}^{BS \times D}, \mathbf{W}_r \in \mathbb{R}^{D \times N}.$$
 (5)

Then, using $\mathbf{M}^{Dy} \in \mathbb{R}^{BS \times N}$, the gating value of MoE and the output of DiffMoE layers can be computed as follows:

$$\mathbf{G}_{s,i}^{Dy} = \begin{cases} \mathbf{M}_{s,i}^{Dy}, & \mathbf{M}_{s,i}^{Dy} \in \text{top-}K_{\text{train}}^{E}(\{\mathbf{M}_{s,i}^{Dy}\}_{s=1}^{BS})\\ 0, & \text{otherwise} \end{cases}$$
(6)

$$\mathbf{y}_s = \sum_{i=1}^N \mathbf{G}_{s,i}^{Dy} E(\mathbf{x}_s). \tag{7}$$

Capacity and Computational Cost. To establish a rigorous and fair comparison framework, we define the capacity C^E for a single expert E, which serves as a standardized metric for quantifying computational costs. This capacity metric enables fair comparisons between DiffMoE and baseline

models by accurately measuring the computational resources utilized by each expert:

$$C^{E} = \frac{N \times \text{\# tokens processed by } E}{\text{\# all input tokens}} = \frac{NK^{E}}{BS},$$
 (8)

where K^E denotes the number of tokens assigned to expert E, N is the number of experts, and BS represents the size of global token pool. Here, we define the capacity C for one forward process for both training and inference phases:

$$C = \frac{1}{LN} \sum_{l=1}^{L} \sum_{i=1}^{N} C^{E_i^l}, \tag{9}$$

where E_i^l denotes $i_{\rm th}$ expert in the $l_{\rm th}$ MoE layer. During training phase, $C_{\rm train}$ is fixed to 1 across all the MoE models, indicating that they keep the same computational cost as dense models. Specifically, DiffMoE keeps $K_{\rm train}^E = BS/N$ for $C_{\rm train} = 1$. TC-DiT selects the top-1 expert, while EC-DiT selects top-(S/N) tokens per sample in a batch to ensure the same computation. During the inference phase, we compute the global average inference capacity $C_{\rm infer}^{\rm avg}$ by averaging over all timesteps: $C_{\rm infer}^{\rm avg} = \frac{1}{T} \sum_{t=1}^T C_{\rm infer}^t$, where $C_{\rm infer}^t$ represents the inference capacity at sampling step t.

Capacity Predictor. Although batch-level global token routing enables efficient model training, conventional MoE inference strategies with fixed computational resource allocation fail to fully leverage its potential. This limitation stems from the static resource distribution across different noise levels and conditional information during inference. To optimize token selection, we propose a *capacity predictor*—a lightweight structure that dynamically determines token selection per expert through a two-layer MLP with SiLU activations. This adaptive mechanism learns from training-time token routing patterns, efficiently distributing computational resources between complex and simple cases. Formally, let $CP(\mathbf{x}_{pool}) \in \mathbb{R}^{BS \times N}$ denote the predictor's output for input $\mathbf{x}_{pool} \in \mathbb{R}^{BS \times D}$:

$$CP(\mathbf{x}_{pool}) = \mathbf{W}_2 \sigma_{SiLU}(\mathbf{W}_1 \mathbf{x}_{pool}). \tag{10}$$

We can optimize the capacity predictor by minimizing the object function:

$$\mathcal{L}_{CP} = BCELoss(\mathbf{O}, CP(sg[\mathbf{x}_{pool}])$$
(11)

where sg denotes the stop-gradient operation, and $\mathbf{O} \in \mathbb{R}^{L \times BS \times N}$ is defined as follows:

$$\mathbf{O}_{s,i}^{l} = \begin{cases} 1, & \text{if } \mathbf{x}_{\text{pool},s} \text{ is processed by } E_{i}^{l} \\ 0, & \text{otherwise} \end{cases}$$
 (12)

We employ the stop-gradient technique to train the capacity predictor, ensuring it focuses solely on the input features which contains vision, conditions and step information at the current layer while preventing it from interfering with the training of the main diffusion transformers. Therefore, $\mathcal{L}_{\mathrm{CP}}$ will not affect actual diffusion loss. During inference, the capacity predictor determines the inference capacity $C_{\mathrm{infer}}^{E_i^l,t}$ for each expert E_i^l at timestep t based on a threshold. Let $\tau_{E_i^l}$ denote the threshold of E_i^l . Using $\mathcal{T} = \{\tau_{E_i^l} \mid i \in \{1,\ldots,N\},\ l \in \{1,\ldots,L\}\}$, the model achieves an adaptive $C_{\mathrm{infer}}^{E_i^l,t}$ allocation at sampling step t tailored to different input tokens as follows:

$$C_{\text{infer}}^{E_i^l,t}(\tau_{E_i^l}) = \frac{N}{BS} \sum_{s=1}^{BS} \delta_{s,i}^l \quad \text{where } \delta_{s,i}^l = \begin{cases} 1, & \text{if } \text{CP}(\mathbf{x}_{\text{pool}})_{s,i} > \tau_{E_i^l} \\ 0, & \text{otherwise} \end{cases}$$
(13)

Then we can calculate $C_{\text{infer}}^{\text{avg}}$

$$C_{\text{infer}}^{\text{avg}}(\mathcal{T}) = \frac{1}{TNL} \sum_{t=1}^{T} \sum_{i=1}^{N} \sum_{l=1}^{L} C_{\text{infer}}^{E_i^l, t}(\tau_{E_i^l}). \tag{14}$$

Dynamic Threshold. We can set the threshold \mathcal{T} to control the number of tokens processed by each expert during inference. It is evident that #tokens processed during inference, decreases as τ_{E^l}

increases for all expert. We can adjust \mathcal{T} flexibly to achieve a better trade-off between computational complexity and generation quality. We employ two distinct approaches for threshold \mathcal{T} determination: *Interval Search* and *Dynamic Threshold*. The interval search method addresses an optimization problem formulated as follows:

$$\min_{\mathcal{T}} \text{FID}(\mathcal{T}) \quad \text{subject to } C_{\text{infer}}^{\text{avg}}(\mathcal{T}) \leq 1. \tag{15}$$

To simplify the optimization problem, we assume that $\tau=\gamma<1, \forall \tau\in\mathcal{T},$ where γ is a constant in our experiments. However, interval search method is labor-intensive and time-consuming, making it impractical for real-world applications. To address this limitation, we propose a dynamic threshold method that automatically maintains thresholds (denoted as $\mathcal{T}^{Dy}=\{\tau_{E_i^l}^{Dy}\mid i\in\{1,\ldots,N\},\ l\in\{1,\ldots,L\}\}$) for all experts during the training phase. To ensure the inference computational cost approximates the training cost (i.e. $C_{\mathrm{infer}}^{\mathrm{avg}}\approx 1$), we employ the Exponential Moving Average (EMA) technique as follows:

$$\operatorname{Quantile}_{E_i^l} \leftarrow \operatorname{CP}(\mathbf{x}_{\operatorname{pool}})_{s_k,i},$$

$$\tau_{E_i^l}^{Dy} \leftarrow \alpha \cdot \tau_{E_i^l}^{Dy} + (1 - \alpha) \cdot \operatorname{Quantile}_{E_i^l},$$
(16)

where s_k denotes the k_{th} value in descending order, α is a constant which is equals to 0.95 in our experiments.

3 EXPERIMENTS

We evaluate DiffMoE on class-conditional and text-to image generation along three key dimensions:

- (1) **Training and Inference Performance** Section 3.2. Tables 1, 2, 3, 4, 5, 12, and 14. Figure 5.
- (2) **Dynamic Computation** Section 3.3. Figure 1, 3, 7, 8. Table 15. Appendix B.
- (3) Scalability and Adaptability Section 3.4. Table 2, 3, 4, 5. Figure 4, 6.

For the convenience of elaboration, we use the flow matching training method to do the following analysis while DDPM results are also provided in the Appendix A.1.

3.1 EXPERIMENT SETUP

Baseline and Model architecture. We compare DiffMoE against Dense-DiT, TC-DiT (Fei et al., 2024), and EC-DiT (Sun et al., 2024) using both flow matching (Ma et al., 2024) and denoising score matching (Peebles & Xie, 2023a). All models follow the naming convention [Model]-[Size]-[#Experts]-[Type]. For class-conditional generation, we replace even FFN layers with MoE layers while maintaining the original DiT architecture (details in Appendix Table 9). For text-to-image generation, we incorporate cross-attention modules (Rombach et al., 2022) to introduce text conditions. In this setup, all the models activates 458M parameters and the total parameters of MoE variants are 1.2B. Further training details are provided in Appendix D.1.

Evaluation. We evaluated DiffMoE through both quantitative and qualitative metrics. Quantitatively, we used FID50K (Heusel et al., 2017) with 250 DDPM/Euler (250 NFEs) steps for class-conditional generation, For text-to-image generation evaluation, we use FID (Heusel et al., 2017), CLIP Score (Radford et al., 2021), PickScore (Kirstain et al., 2023), and HPSv2 (Wu et al., 2023) on COCO prompts. For PickScore and HPSv2, we compute the average score and standard deviation across prompts, ensuring fair comparison using identical prompt-image pairs. We report performance on the GenEval (Ghosh et al., 2023) and T2I-CompBench (Huang et al., 2023) to evaluate all-round capabilities of DiffMoE and baselines following their official protocol.

3.2 Main Results of C2I and T2I

C2I Results. Class-conditional image generation is a task of synthesizing images based on specified class labels. DiffMoE-L-E16 demonstrates superior efficiency by outperforming Dense-DiT-XL

Table 1: **Baseline and Capacity Predictor Effects.** Performance comparison of different model architectures at 700K steps. DiffMoE-L-E16-Flow achieves best FID50K (14.41 w/o CFG) among TC, EC, and Dense variants. ($n \times$) means n times base activated parameters. A.A.P indicates Average Activated Params.

Model (700K)	Config	# A.A.P	FID50K↓
TC-DiT-L-E16-Flow	Token-Choice MoE	458M(1×)	19.06
EC-DiT-L-E16-Flow Dense-DiT-L-Flow	Expert-Choice MoE Dense FFN	$458M(1\times)$ $458M(1\times)$	16.12 17.01
Dense-DiT-XL-Flow	Dense FFN	675M(1.5×)	14.77
DiffMoE-L-E16-Flow	Token Pool Only	458M(1×)	15.25
DiffMoE-L-E16-Flow	Token Pool & Predictor	$454M(0.95\times)$	14.41

Table 2: **Parameter Scaling Behavior** on ImageNet 256×256 Class-Conditional Generation. Diff-MoE demonstrates superior FID scores with fewer parameters after 3000K training steps. Results are reported with guidance scale 1.5 (Ho & Salimans, 2022).

Diffusion Models (3000K)	# A.A.P	FID50K↓	IS↑	Precision [↑]	Recall [†]
Dense-DiT-XL-Flow	675M (1.5×)	2.52	273.78	0.84	0.56
Dense-DiT-XXL-Flow	$951M(2\times)$	2.41	281.96	0.84	0.57
Dense-DiT-XXXL-Flow	$1353M(3\times)$	2.37	291.29	0.84	0.57
DiffMoE-L-E8-Flow	458M (1×)	2.40	280.30	0.83	0.57
DiffMoE-L-E16-Flow	458M (1×)	2.36	287.26	0.83	0.58
DiffMoE-XL-E16-Flow	$675M (1.5 \times)$	2.30	291.23	0.83	0.58

(which uses $1.5 \times$ more parameters) after just 700K steps, as shown in Table 1. And these improvements hold across both the DDPM and Flow Matching paradigms. With extended training for 3000K steps, DiffMoE-L-E16 (with $1 \times$ parameters and FID 2.36) surpasses Dense-DiT-XXXL (with $3 \times$ parameters and FID 2.37), as shown in Table 2. Visualizations are provided in Figures 10 and 11.

T2I Results. In text-to-image generation, DiffMoE consistently outperforms dense and moe variants baselines in various metrics which can evaluate multi-dimensions include visual fidelity, diversity, text-image alignment and prompt understanding. Results are shown in 3, 4, 5.

3.3 DYNAMIC COMPUTATION ANALYSIS

Analysis of Inference Capacity. DiffMoE-L-E16-Flow demonstrates superior parameter efficiency with its inference capacity ($C_{\rm infer}^{\rm avg}$) being 1 less than TC-DiT and EC-DiT, while achieving better performance, as shown in Table 1. Notably, with only 454M(0.95×) average activated parameters, our model outperforms Dense-DiT-XL-Flow (675M 1×), highlighting the effectiveness of dynamic token allocation. Detailed analysis of average activated parameters is provided in the Appendix E.

Ablation of Capacity Predictor. Dynamic token selection through our capacity predictor demonstrates superior performance over traditional static topK token selection, as shown in Figure 3(a) and Table 1. This improvement stems from the predictor's ability to intelligently allocate more computational resources to challenging tasks. The capacity predictor plays a crucial role in unleashing DiffMoE's full potential by dynamically adjusting resource allocation, which is particularly important for optimizing inference efficiency.

Interval Search vs. Dynamic Threshold. Both interval search and dynamic threshold methods achieve optimal performance in DiffMoE, with the dynamic threshold (\mathcal{T}^{Dy}) emerging as our preferred approach due to its elegance and efficiency. Through interval search from 0.0 to 0.999, we identify an optimal threshold $(\gamma \approx 0.4)$ that minimizes FID while maintaining $C_{\text{infer}}^{\text{avg}} \leq 1$. Meanwhile, the dynamic threshold automatically maintains $C_{\text{infer}}^{\text{avg}} \approx 1$ during inference, achieving comparable FID scores within the optimal region, as shown in Figure 3(b) and Table 11. Our experiments reveal a U-shaped relationship between FID and $C_{\text{infer}}^{\text{avg}}$, indicating that both over-activation and underactivation of parameters degrade performance. Both methods successfully identify thresholds within

Table 3: **Text-to-Image results on COCO prompts.** Under the same 458M activated parameters, DiffMoE consistently outperforms all baseline DiT variants across various T2I metrics.

Model	FID10K↓	CLIP Score ↑	PickScore ↑	HPSv2↑
Dense-DiT	46.38	29.58	0.2510 ± 0.111	0.255 ± 0.021
TC-DiT	45.10	29.59	0.2024 ± 0.112	0.256 ± 0.020
EC-DiT	44.80	29.60	0.2527 ± 0.109	0.255 ± 0.020
DiffMoE	44.53	29.75	0.2937 ± 0.112	0.257 ± 0.020

Table 4: **Text-to-Image GenEval Benchmark Results.** DiffMoE outperforms baseline DiT variants across six evaluation aspects, showing better compositionality, faithfulness, and controllability.

Model	Single Obj.↑	Two Obj.↑	Cnt. Obj.↑	Colors ↑	Pos.↑	Attri.↑	Overall [↑]
Dense-DiT	0.656	0.280	0.225	0.481	0.165	0.278	0.346
TC-DiT	0.644	0.298	0.194	0.500	0.178	0.275	0.348
EC-DiT	0.666	0.349	0.181	0.426	0.200	0.235	0.343
DiffMoE	0.688	0.397	0.200	0.500	0.178	0.303	0.377

the optimal region, but the dynamic threshold's straightforward implementation and computational efficiency make it our default choice throughout this paper.

Harder Work Needs More Computation. Figure 1(c) illustrates that different classes demand varying amounts of computation during generation. By analyzing 1K class labels and ranking their $C_{\rm infer}^{\rm avg}$, we observe clear patterns in computational requirements. The most challenging cases often involve objects with intricate details, complex materials, precise structures, or specific viewing angles (e.g., technical instruments and detailed artifacts). In contrast, natural subjects such as common animals (e.g., birds, dogs, cats) generally require less computation. Figures 7 and 8 present the top-10 most and least computationally demanding classes for both flow-based and DDPM models, respectively. For text-to-image generation, we also identify harder and easier prompts by similiar ranking method. Detailed discussions refer to Appendix B.1.

3.4 SCALING BEHAVIOR

Scaling Model Size. DiffMoE demonstrates consistent performance improvements across small (S), base (B), and large (L) configurations, with activated parameters of 32M, 130M, and 458M respectively as shown in Figure 4(a). To explore the upper limits of DiffMoE and quantify its performance efficiency, as analyzed in Section 3.2 DiffMoE-L-E16 (with 1× parameters and FID 2.36) surpasses Dense-DiT-XXXL (with 3× parameters and FID 2.37) with same 3000K training budget. This highlights the exceptional parameter efficiency and scalability of DiffMoE.

Scaling Number of Experts. As shown in Figure 4(b), model performance improves consistently when scaling experts from 2 to 16, with diminishing returns between E8 and E16. Based on this analysis, we trained DiffMoE-L-E8 for 7000K iterations, achieving optimal performance-efficiency trade-off and state-of-the-art results.

3.5 LIMITATIONS AND BROADER IMPACT

While DiffMoE demonstrates promising results, our study has two limitations. First, due to computational constraints, we have not validated the framework on text-to-video generation tasks, leaving this extension for future work. Second, like other generative models, DiffMoE could potentially be misused to create harmful content, warranting careful consideration of ethical deployment.

4 RELATED WORKS

Diffusion Models. Diffusion models (Ho et al., 2020; Podell et al., 2023; Peebles & Xie, 2023a; Esser et al., 2024b) have emerged as the dominant paradigm in visual generation in recent years.

Table 5: **Text-to-Image T2I-CompBench Results.** DiffMoE consistently outperforms baseline DiT variants across color, texture, shape, number, spatial, and complex compositional aspects.

Model	Color ↑	Texture ↑	Shape ↑	Number ↑	3D-Spatial ↑	2D-Spatial ↑	Non-Spatial ↑	Complex ↑
Dense-DiT	0.598	0.485	0.320	0.373	0.261	0.0163	0.292	0.292
TC-DiT	0.582	0.519	0.338	0.377	0.256	0.0178	0.290	0.293
EC-DiT	0.598	0.532	0.369	0.335	0.242	0.0205	0.293	0.302
DiffMoE	0.601	0.547	0.395	0.432	0.264	0.0234	0.295	0.311

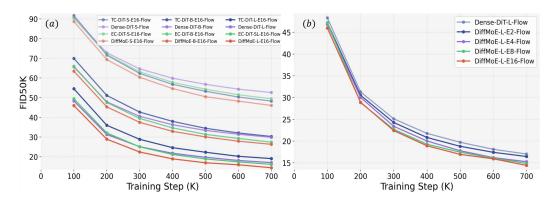


Figure 4: Scaling Analysis. (a) Scaling Model Size: DiffMoE consistently outperforms the corresponding baseline models across all scales (Small/Medium/Large). (b) Scaling Number of Experts: Comparison of FID50K scores during training between Dense-DiT-L-Flow (E1) and models with increasing expert counts (E2, E4, E8, E16).

These models transform gaussian distribution into target data distribution through iterative processes, with two primary training paradigms: Denoising Diffusion Probabilistic Models (DDPM) trained via score-matching (Ho et al., 2020; Song et al., 2021), which learns the inverse of a diffusion process and Rectified Flow approaches optimized through flow-matching (Lipman et al., 2022; Ma et al., 2024; Esser et al., 2024b), which is a more generic modeling technique and can construct a straight probaility path connecting data and noise. We implement DiffMoE using both paradigms, demonstrating its versatility across these complementary training methodologies.

Mixture of Experts. Mixture of Experts (MoE) (Shazeer et al., 2017; Lepikhin et al., 2020) enables efficient model scaling through conditional computation by selectively activating expert subsets. This approach has demonstrated remarkable success in Large Language Models (LLMs), as evidenced by cutting-edge implementations like DeepSeek-V3 (DeepSeek-AI et al., 2024). Recent works have explored incorporating MoE architectures into diffusion models, but face several limitations. MEME (Lee et al., 2023), eDiff-I (Balaji et al., 2022), and ERNIE-ViLG 2.0 (Feng et al., 2023) restrict experts to specific timestep ranges. SegMoE (Yatharth Gupta, 2024) and DiT-MoE (Fei et al., 2024) suffer from expert utilization imbalance due to isolated token processing. While EC-DiT (Sehwag et al., 2024; Sun et al., 2024) recognizes complex tokens' need for additional computation, it constrains token selection within individual samples and requires longer training for marginal improvements. These approaches, by limiting global token distribution across noise levels and conditions, fail to capture diffusion processes' inherent heterogeneity. DiffMoE addresses these challenges through batch-level global token pool for training, and dynamically adapting computation to both noise levels and sample complexity for inference.

5 CONCLUSION

In this work, we propose DiffMoE, a simple yet effective framework for scaling diffusion models via dynamic token selection and global token accessibility. By overcoming the uniform processing bottleneck of diffusion transformers, DiffMoE achieves superior performance over TC-MoE, EC-MoE, and even dense models with 3× parameters, while keeping computational costs comparable. Our results highlight its broad applicability to both class-conditional and text-to-image generation, positioning DiffMoE as a scalable and efficient foundation for advancing large-scale diffusion models.

REFERENCES

- Michael S. Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants, 2023. URL https://arxiv.org/abs/2209.15571.
- Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Jiaming Song, Qinsheng Zhang, Karsten Kreis, Miika Aittala, Timo Aila, Samuli Laine, Bryan Catanzaro, Tero Karras, and Ming-Yu Liu. ediff-i: Text-to-image diffusion models with ensemble of expert denoisers. *arXiv preprint arXiv:2211.01324*, 2022.
- Weilin Cai, Juyong Jiang, Fan Wang, Jing Tang, Sunghun Kim, and Jiayi Huang. A survey on mixture of experts, 2024. URL https://arxiv.org/abs/2407.06204.
- Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential equations. *Advances in neural information processing systems*, 31, 2018.
- Damai Dai, Chengqi Deng, Chenggang Zhao, R. X. Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li, Panpan Huang, Fuli Luo, Chong Ruan, Zhifang Sui, and Wenfeng Liang. Deepseekmoe: Towards ultimate expert specialization in mixture-of-experts language models, 2024. URL https://arxiv.org/abs/2401.06066.
- DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, et al. Deepseek-v3 technical report, 2024. URL https://arxiv.org/abs/2412.19437.
- Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis. *arXiv preprint arXiv:2403.03206*, 2024a.
- Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English, Kyle Lacey, Alex Goodwin, Yannik Marek, and Robin Rombach. Scaling rectified flow transformers for high-resolution image synthesis, 2024b. URL https://arxiv.org/abs/2403.03206.
- Zhengcong Fei, Mingyuan Fan, Changqian Yu, Debang Li, and Jusnshi Huang. Scaling diffusion transformers to 16 billion parameters. *arXiv preprint*, 2024.
- Zhida Feng, Zhenyu Zhang, Xintong Yu, Yewei Fang, Lanxin Li, Xuyi Chen, Yuxiang Lu, Jiaxiang Liu, Weichong Yin, Shikun Feng, Yu Sun, Li Chen, Hao Tian, Hua Wu, and Haifeng Wang. Ernie-vilg 2.0: Improving text-to-image diffusion model with knowledge-enhanced mixture-of-denoising-experts, 2023. URL https://arxiv.org/abs/2210.15257.
- Dhruba Ghosh, Hanna Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework for evaluating text-to-image alignment, 2023. URL https://arxiv.org/abs/2310.11513.
- Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/8ald694707eb0fefe65871369074926d-Paper.pdf.
- Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance, 2022. URL https://arxiv.org/abs/2207.12598.
- Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *NeurIPS*, 33: 6840–6851, 2020.
- Kaiyi Huang, Kaiyue Sun, Enze Xie, Zhenguo Li, and Xihui Liu. T2i-compbench: A comprehensive benchmark for open-world compositional text-to-image generation. *Advances in Neural Information Processing Systems*, 36:78723–78747, 2023.

- Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. *NeurIPS*,
 34:21696–21707, 2021.
 - Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Picka-pic: An open dataset of user preferences for text-to-image generation, 2023. URL https://arxiv.org/abs/2305.01569.
 - Yunsung Lee, Jin-Young Kim, Hyojun Go, Myeongho Jeong, Shinhyeok Oh, and Seungtaek Choi. Multi-architecture multi-expert diffusion models, 2023. URL https://arxiv.org/abs/2306.04990.
 - Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional computation and automatic sharding, 2020. URL https://arxiv.org/abs/2006.16668.
 - Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.
 - Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching for generative modeling, 2023. URL https://arxiv.org/abs/2210.02747.
 - Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022a.
 - Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and transfer data with rectified flow, 2022b. URL https://arxiv.org/abs/2209.03003.
 - Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, et al. Instaflow: One step is enough for high-quality diffusion-based text-to-image generation. In *The Twelfth International Conference on Learning Representations*, 2023.
 - Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint arXiv:1711.05101*, 2017.
 - Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant transformers. *arXiv preprint arXiv:2401.08740*, 2024.
 - MiniMax, Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang, Congchao Guo, Da Chen, Dong Li, Enwei Jiao, Gengxin Li, Guojun Zhang, Haohai Sun, Houze Dong, Jiadai Zhu, Jiaqi Zhuang, Jiayuan Song, Jin Zhu, Jingtao Han, Jingyang Li, Junbin Xie, Junhao Xu, Junjie Yan, Kaishun Zhang, Kecheng Xiao, Kexi Kang, et al. Minimax-01: Scaling foundation models with lightning attention, 2025. URL https://arxiv.org/abs/2501.08313.
 - Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Weijia Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, Yuling Gu, Shane Arora, Akshita Bhagia, Dustin Schwenk, David Wadden, Alexander Wettig, Binyuan Hui, Tim Dettmers, Douwe Kiela, Ali Farhadi, Noah A. Smith, Pang Wei Koh, Amanpreet Singh, and Hannaneh Hajishirzi. Olmoe: Open mixture-of-experts language models, 2024. URL https://arxiv.org/abs/2409.02060.
 - Junting Pan, Keqiang Sun, Yuying Ge, Hao Li, Haodong Duan, Xiaoshi Wu, Renrui Zhang, Aojun Zhou, Zipeng Qin, Yi Wang, Jifeng Dai, Yu Qiao, and Hongsheng Li. Journeydb: A benchmark for generative image understanding, 2023.
 - William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 4195–4205, 2023a.
 - William Peebles and Saining Xie. Scalable diffusion models with transformers, 2023b. URL https://arxiv.org/abs/2212.09748.
 - Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image synthesis. *arXiv preprint arXiv:2307.01952*, 2023.

- Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models from natural language supervision, 2021. URL https://arxiv.org/abs/2103.00020.
- Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *CVPR*, pp. 10684–10695, 2022.
- Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. *International Journal of Computer Vision (IJCV)*, 115 (3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.
- Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis, Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open dataset of clip-filtered 400 million image-text pairs. *arXiv preprint arXiv:2111.02114*, 2021.
- Vikash Sehwag, Xianghao Kong, Jingtao Li, Michael Spranger, and Lingjuan Lyu. Stretching each dollar: Diffusion training from scratch on a micro-budget, 2024. URL https://arxiv.org/abs/2407.15811.
- Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer, 2017. URL https://arxiv.org/abs/1701.06538.
- Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catanzaro. Megatron-lm: Training multi-billion parameter language models using model parallelism. *arXiv preprint arXiv:1909.08053*, 2019.
- Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning using nonequilibrium thermodynamics. In *ICML*, pp. 2256–2265. PMLR, 2015.
- Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. In *ICLR*, 2021.
- Haotian Sun, Tao Lei, Bowen Zhang, Yanghao Li, Haoshuo Huang, Ruoming Pang, Bo Dai, and Nan Du. Ec-dit: Scaling diffusion transformers with adaptive expert-choice routing, 2024. URL https://arxiv.org/abs/2410.02098.
- Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li. Human preference score v2: A solid benchmark for evaluating human preferences of text-to-image synthesis. *arXiv* preprint arXiv:2306.09341, 2023.
- Harish Prabhala Yatharth Gupta, Vishnu V Jaddipal. Segmoe: Segmind mixture of diffusion experts. https://github.com/segmind/segmoe, 2024.
- Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew Dai, Zhifeng Chen, Quoc Le, and James Laudon. Mixture-of-experts with expert choice routing, 2022. URL https://arxiv.org/abs/2202.09368.

A MORE DIFFMOE ANALYSIS

- A.1 ADDITIONAL DIFFMOE DDPM CLASS-CONDITIONAL GENERATION QUALITATIVE AND QUANTITATIVE RESULTS
- We present comprehensive evaluations of DiffMoE-L-E16-DDPM series models. Table 12 shows the experimental results, while Figure 5 illustrates the diffusion loss comparison against the baseline model, revealing substantial performance improvements. Furthermore, Figure 6 demonstrates the scaling capabilities of our DiffMoE-DDPM architecture.

A.2 COMPUTATIONAL OVERHEAD AND HARDWARE PERFORMANCE ANALYSIS

A.2.1 COMPUTATIONAL OVERHEAD ANALYSIS

DiffMoE maintains high training efficiency while introducing minimal overhead. Compared with the cost of a standard feed-forward network (FFN), the computational cost of the MoE router is negligible. The primary overhead arises from the top-K selection operation, whose complexity grows logarithmically with respect to the number of tokens or experts. Additionally, token indexing operations (e.g., y[mask] = gate[mask] * x[mask] to gather routed tokens) can introduce extra computational cost compared with dense models if implemented naively.

Table 6: Computation Complexity Analysis

MoE Method	Top-K Complexity	FFN Complexity	Relative Overhead	Token Indexing	Training Speed (steps/sec)
Dense-DiT	N/A	$\mathcal{O}(BSD^2)$	N/A	N/A	1.9
TC-MoE	$\mathcal{O}(BSE \log(E))$	$\mathcal{O}(BSD^2)$	10 ^{−5} (negligible)	Required	1.5
EC-MoE	$\mathcal{O}(BSE\log(S))$	$\mathcal{O}(BSD^2)$	10^{-3}	Required	1.6
DiffMoE	$\mathcal{O}(BSE\log(BS))$	$\mathcal{O}(BSD^2)$	10^{-2} (minor)	Required	1.6

Note: B denotes batch size, S sequence length, D embedding dimension, and E number of experts.

A.2.2 HARDWARE-RELATED PERFORMANCE METRICS

We benchmarked training and inference on NVIDIA H800 GPUs using Fully Sharded Data Parallel (FSDP). Training was conducted with a batch size of 64, while inference used a single GPU with batch size 20. Input resolution was fixed at 256×256 pixels.

Table 7: Training Time Hardware-related Performance Metrics

Model	Active Params (M)	Training Speed (iters/sec)	Training Memory Consumption (GB)
Dense-DiT	458	1.9	29
TC-DiT	458	1.5	31
EC-DiT	458	1.6	31
DiffMoE	458	1.6	31

Table 8: Inference Time Hardware-related Performance Metrics

Model	Active Params (M)	Throughput (images/sec)	Latency (sec/image)	Inference Speed (step/sec)
Dense-DiT	458	6.57	0.152	8.22
TC-DiT	458	4.8	0.208	6
EC-DiT	458	5.75	0.173	7.19
DiffMoE	458	5.74	0.174	7.18

All sparse models maintain the same number of active parameters as the dense baseline, ensuring a fair comparison. While a slight increase in memory usage (approximately 2GB) and a modest decrease in throughput are observed, these overheads are minor and do not affect DiffMoE's deployment feasibility. MoE models can be further improved by advanced frameworks like Megatron Shoeybi et al. (2019).

A.3 ANALYSIS OF TOKEN INTERACTION STRATEGIES.

As shown in Figure 1. The interaction levels (L1/L2/L3) represent: L1 for isolated token processing, L2 for local token routing within samples, and L3 for global token routing across sample. Table 14 presents a comprehensive comparison of different token interaction strategies in diffusion models. The baseline models with L1 strategy (TC-DiT-L-Flow and Dense-DiT-L-Flow) process tokens independently, resulting in limited performance (FID: 19.06 and 17.01). The L2 strategy, implemented in EC-DiT-L-Flow, enables local token routing within samples, showing improved performance (FID: 16.12) with the same parameter count. Our proposed L3 strategy in DiffMoE-L-Flow introduces cross-sample token routing, achieving superior results (FID: 14.41) even compared to the 1.5x larger

Table 9: **DiffMoE Model Configurations**. Hyperparameter settings and computational specifications for class-conditional models. See Appendix E for activated parameter calculations.

Model Config	#Avg. Activated Params ($C_{\text{infer}}^{\text{avg}} = 1$).	#Total Params.	#Blocks L	#Hidden dim. D	#Head n	#Experts	C_{train}
DiffMoE-S-E16	32M	139M	12	384	6	16	1
DiffMoE-B-E16	130M	555M	12	768	12	16	1
DiffMoE-L-E8	458M	1.176B	24	1024	16	8	1
DiffMoE-L-E16	458M	1.982B	24	1024	16	16	1
DiffMoE-XL-E16	675M	2.925B	28	1152	16	16	1

Table 10: **Module Parameters and Percentage.** We have counted the number of parameters (M) of various modules to facilitate our analysis.

Model	FFN	Attention	AdaLN	Others	Total
Dense-DiT-L	201.44(44.0%)	100.7(22.0%)	151(33.0%)	4.7(1.0%)	457.84
DiffMoE-L-E2	314.8(55.1%)	100.7(17.6%)	151(26.4%)	4.7(0.8%)	571.2
DiffMoE-L-E4	516.3(66.8%)	100.7(13.0%)	151(19.5%)	4.7((0.6%)	772.7
DiffMoE-L-E8	919.3(78.2%)	100.7(8.6%)	151(12.8%)	4.7(0.4%)	1175.7
DiffMoF-L-F16	1725 3(87 1%)	100 7(5 1%)	151(7.6%))	4.7(0.2%)	1981 7

Table 11: **Different Threshold Method.** We use both interval search and dynamic threshold method to find out the optimal τ_{E_i} . We find that the dynamic threshold makes a good balance between $C_{\text{infer}}^{\text{avg}}$ and performance.

\mathcal{T}	$C_{\text{infer}}^{\text{avg}}$	FID50K↓	_	\mathcal{T}	$C_{\text{infer}}^{\text{avg}}$	FID50K↓
0.999	0.41	36.28		0.2	1.10	13.38
0.99	0.51	24.22		0.1	1.22	12.92
0.9	0.71	17.59		1E-2	1.71	12.14
0.8	0.78	16.21		1E-3	2.33	11.82
0.7	0.83	15.51		1E-3	3.17	11.87
0.6	0.88	15.00				
0.5	0.92	14.59		1E-5	4.36	12.47
0.4	0.97	14.16		1E-6	6.01	13.51
0.3	1.03	13.75		1E-7	7.88	13.96
0.2	1.10	13.38		1E-8	9.67	16.85
0.1	1.22	12.92		1E-9	11.18	18.90
Dynamic	0.95	14.41		0.0	16	29.39

Table 12: **Comparisons with the Baseline Models.** (**DDPM**) We compare TC, EC and Dense Model and show the average activated parameters of all the experts across all the sampling steps.

Model (700K)	# Avg. Activated Params.	$C_{\text{infer}}^{\text{avg}}$	FID50K↓
TC-DiT-L-E16-DDPM	458M	1	20.81
EC-DiT-L-E16-DDPM	458M	1	17.65
Dense-DiT-L-DDPM	458M	1	17.87
Dense-DiT-XL-DDPM	675M	1	15.28
DiffMoE-L-E16-DDPM	458M	1	14.60

Table 13: **Decoder Ablation Study**. Evaluation of various pre-trained VAE decoder weights. †: results from Ma et al. (2024) (DDPM) and Peebles & Xie (2023a) (Flow). *: our reproduction. All other results are from our experiments. In general, with VAE decoder EMA version, the FID score is consistently lower than MSE version.

Model	Training Steps	VAE-Decoder	Sampler	Batch Size	FID50K↓
Dense-DiT-XL-Flow	400K	ft-MSE	Euler	125	18.80
Dense-DiT-XL-Flow	400K	ft-EMA	Euler	125	18.74
Dense-DiT-XL-Flow	400K	ft-MSE	Dopri5	125	18.63
Dense-DiT-XL-Flow	400K	ft-EMA	Dopri5	125	18.45
Dense-DiT-XL-Flow*	7000K	ft-MSE	Heun	125	9.66
Dense-DiT-XL-Flow*	7000K	ft-EMA	Heun	125	9.63
Dense-DiT-XL-Flow*	7000K	ft-MSE	Dopri5	125	9.51
Dense-DiT-XL-Flow*	7000K	ft-EMA	Dopri5	125	9.48
Dense-DiT-XL-DDPM-G †	7000K	ft-MSE	DDPM	125	2.30
Dense-DiT-XL-DDPM-G †	7000K	ft-EMA	DDPM	125	2.27

Dense-DiT-XL-Flow (675M parameters). Notably, when combined with Dynamic Global CP, our model not only achieves the best FID score but also reduces the computational capacity to 0.95x, demonstrating both effectiveness and efficiency.

B DYNAMIC CONDITIONAL COMPUTATION

B.1 HARDER WORK NEEDS MORE COMPUTATION

Dynamic Computation in C21: Figure 1 demonstrates that different classes require varying computational resources during generation. To analyze this variation, we sample 1K different class labels in a batch and rank their $C_{\rm infer}^{\rm avg}$ in descending order, revealing the computational complexity of generation across classes. The top-10 most computationally intensive classes for both flow-based and DDPM models are displayed in Figure 7. The top-10 least computationally intensive classes for both flow-based and DDPM models are displayed in Figure 8.

Dynamic Computation in T2I:

The dynamic computation paradigm has also been explored in text-to-image (T2I) generation tasks. To investigate its effectiveness, we used 10K text prompts sampled from GPT-40 to synthesize images for evaluation. We measured and ranked the per-sample inference capacity \mathcal{C} , which reflects the computational demand. By analyzing the distribution of \mathcal{C} , we identify distinctive features of both challenging and straightforward samples in text-to-image tasks.

Hard Samples typically exhibit the following characteristics:

(a) Loss Comparison of L-Flow Series

(b) Loss Comparison of L-DDPM Series

Figure 5: Loss Comparison of L-Flow and L-DDPM Series. The relative losses illustrated in subfigures (a) and (b) demonstrate the exceptional training dynamics of DiffMoE, consistently outperforming all baseline models.

Table 14: **Performance comparison of different diffusion models with varying token interaction strategies**. All models are trained with Flow Matching for 700K steps. The interaction levels (L1/L2/L3) represent: L1 (Iso) for isolated token processing, L2 (Loc) for local token routing within samples, and L3 (Glob) for global token routing across samples. Our DiffMoE-L-Flow with Dynamic Global CP achieves the best FID score of 14.41 while maintaining parameter efficiency and reduced computational cost. # A.A.P. denotes # Avg. Act. Params.

Model	# A.A.P.	Train	Infer	FID50K↓
TC-DiT-L-E16-Flow	458M	L1 (Isolated)	L1 (Isolated)	19.06
Dense-DiT-L-Flow	458M	L1 (Isolated)	L1 (Isolated)	17.01
EC-DiT-L-E16-Flow	458M	L2 (Local)	L2 (Loc, Stat TopK)	16.12
EC-DiT-L-E16-Flow	458M	L2 (Local)	L2 (Loc, Dyn Intra Sample)	23.74
DiffMoE-L-E16-Flow	458M	L3 (Global)	L3 (Glob, Stat TopK)	15.25
Dense-DiT-XL-Flow	675M	L1 (Isolated)	L1 (Isolated)	14.77
DiffMoE-L-E16-Flow	454M	L3 (Global)	L3 (Glob, Dyn Cross Sample)	14.41

- Fine-grained text rendering: e.g., a signboard with multiple handwritten fonts, or a calendar with circled dates and notes.
- **Complex spatial relations:** e.g., objects arranged in layered or interleaved configurations, such as furniture in a cluttered room.
- **Multi-object interactions:** e.g., a group of people passing a basketball, or multiple bowls each containing different items.
- Material fidelity and surface effects: e.g., shiny or translucent surfaces like glass cups, glossy donuts, or metallic reflections.

Easy Samples are characterized by:

- Simple compositions: e.g., a single flower, or one object on a plain background.
- Clear and minimal semantics: e.g., a sunset over the ocean, or a green apple on a white table.
- Simple attribute emphasis: e.g., a red book, or a yellow balloon.

Our method effectively adapts computation allocation based on such sample-level difficulty, thereby improving generation quality without requiring manually defined classes or handcrafted heuristics. These findings demonstrate the benefit of dynamic token routing in adapting to varying sample difficulty, providing insights for future research on adaptive computation in generative models. Table 15 provides concrete examples illustrating the correlation between prompt characteristics and computational difficulty.

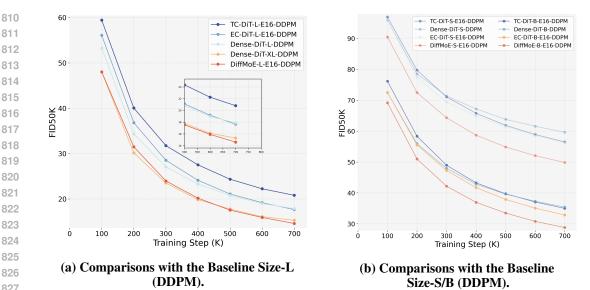


Figure 6: Comparisons with the Baseline Models. (a) We compare TC, EC, and Dense Models and show the average activated parameters of all experts across all sampling steps. DiffMoE-L-E16-DDPM even surpasses DenseDiT-XL-DDPM (1.5x params). (b) We also examine S/B size DiffMoE models to further demonstrate the scalability.

Table 15: Representative text prompts across different difficulty levels. $C_{\rm infer}^{\rm avg}$ denotes the average inference capacity, where higher values indicate greater computational demand.

Key Feature	Example Prompt	Difficulty	$C_{\text{infer}}^{\text{avg}}$
Text rendering; complex spatial relations	A close-up view of a calendar. A specific date, the 20th, is circled and has the word "Branch!" written next to it. A pen is positioned on top of the calendar, pointing towards the circled date.	Hard	1.13
Multi-object; complex spatial relations	Three wooden bowls placed side by side on a textured surface. Each bowl contains a different type of legume.	Hard	1.07
Simple object; single color	A vibrant pink flower with delicate petals.	Easy	0.92
Simple composition; attribute emphasis	A heart-shaped padlock with a shiny silver keyhole, set against a vibrant pink background.	Easy	0.93

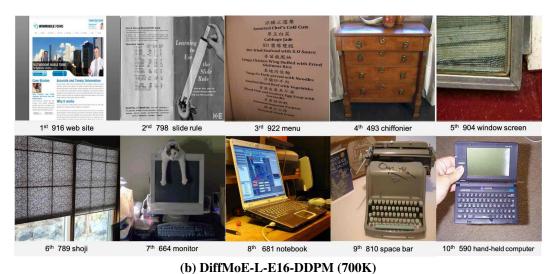
B.2 Dynamic Token Selection across Network Layers

As illustrated in Figure 9, our analysis reveals distinctive expert utilization patterns across different network depths. The shallow Layer 1 exhibits pronounced fluctuations and sharp capacity spikes, indicating intensive early-stage feature extraction. Moving to intermediate Layer 7, we observe more stabilized capacity patterns, suggesting balanced processing of mid-level features. Layer 13 demonstrates gradual, long-term capacity transitions, while the deep Layer 19 shows notably uniform expert utilization. This systematic progression from volatile to stable expert engagement reflects the natural specialization of experts: from low-level feature detection in early layers to refined semantic processing in deeper layers. Such hierarchical organization of expert behaviors aligns with the progressive nature of diffusion-based generation.

DETAILED BACKGROUND OF GENERATIVE MODELING.

In this section, we will provide a detailed bachground of generative modeling of both DDPM Ho et al. (2020); Song et al. (2021); Rombach et al. (2022) and Rectified Flow (Lipman et al., 2023;

(a) DiffMoE-L-E16-Flow (700K)



(b) Diffice E E10 DDI WI (700H)

Figure 7: **Top 10 Hardest Classes.** The 10 classes with the highest computational cost, sampled from the training set.

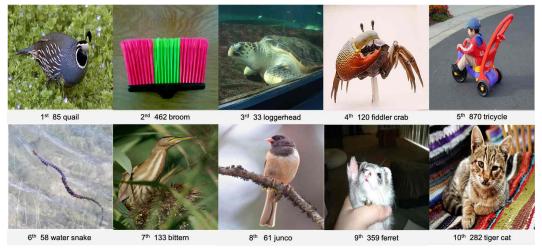
Ma et al., 2024; Esser et al., 2024b) which is helpful to understand the difference and relationship between them.

Generative modeling essentially defines a mapping between \mathbf{x}_1 from a noise distribution $p_1(\mathbf{x})$ to \mathbf{x}_0 from a data distribution $p_0(\mathbf{x})$ leads to time-dependent processes represented as below

$$\mathbf{x}_t = \alpha_t \mathbf{x}_0 + \sigma_t \epsilon, t \in [0, 1], \tag{17}$$

where α_t is a decreasing function of t and σ_t is an increasing function of t. We set $\alpha_0 = 1, \sigma_0 = 0$ and $\alpha_1 = 0, \sigma_0 = 1$ to make the marginals $p_t(\mathbf{x}_t) = \mathbb{E}_{\epsilon \sim \mathcal{N}(0,1)} p_t(\mathbf{x}_t|\epsilon)$ are consistent with data $p_0(\mathbf{x})$ and noise $p_1(\mathbf{x})$ distirbution. $p_1(\mathbf{x})$ usually be chosen as gaussion distribution $\mathcal{N}(0,1)$.

Different forward path from data to noise leads to different training object which significantly affect the performance of the model. Next we will introduce DDPM and Rectified Flow.



(a) DiffMoE-L-E16-Flow (700K)

(b) DiffMoE-L-E16-DDPM (700K)

Figure 8: **Top 10 Easiest Classes.** The 10 classes with the lowest computational cost, sampled from the training set.

C.1 DENOSING DIFFUSION PROBABILISTIC MODELS (DDPM)

In DDPM the choice for α_t and σ_t is referred to as the noise schedule and the signal-to-noise-ratio (SNR) α_t^2/σ_t^2 is strictly decreasing w.r.t t (Kingma et al., 2021). Moreover, (Kingma et al., 2021) prove that the following stochastic differential Eq. (SDE) has same transition distribution as $p_t(\mathbf{x}_t|\mathbf{x}_0)$ for any $t \in [0,1]$:

$$d\mathbf{x}_t = f(t)\mathbf{x}_t dt + g(t)d\mathbf{w}_t, t \in [0, 1], \mathbf{x}_0 \sim p_0(\mathbf{x}_0), \tag{18}$$

where $\mathbf{w}_t \in \mathbb{E}^D$ is the standard Wiener process, and

$$f(t) = \frac{\mathrm{d}\log\alpha_t}{\mathrm{d}t}, \quad g^2(t) = \frac{\mathrm{d}\sigma_t^2}{\mathrm{d}t} - 2\frac{\mathrm{d}\log\alpha_t}{\mathrm{d}t}\sigma_t^2. \tag{19}$$

(Song et al., 2021) proved that the forward path in Eq. 18 has an equivalent reverse process from time 1 to 0 under some regularity conditions, starting with $p_T(\mathbf{x}_T)$

$$d\mathbf{x}_t = [f(t)\mathbf{x}_t - g(t)^2 \nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t)] dt + g(t) d\bar{\mathbf{w}}_t, \quad \mathbf{x}_T \sim p_T(\mathbf{x}_T),$$
 (20)

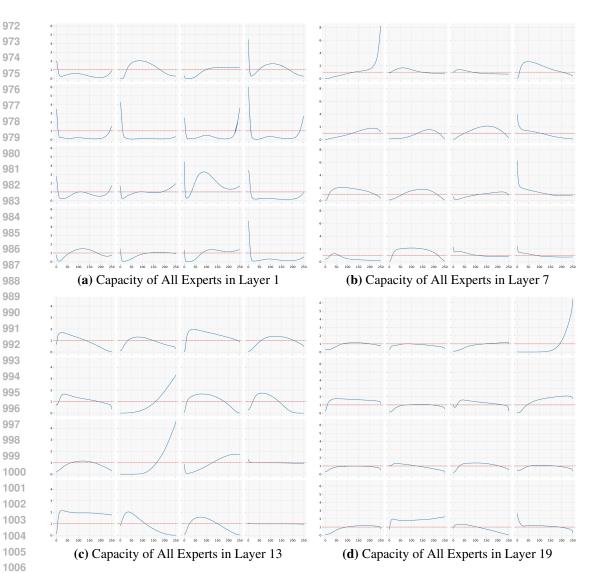


Figure 9: **Expert Dynamics across Network Layers.** Visualization of expert capacity patterns in network layers (1, 7, 13, 19). Early layers show high-amplitude fluctuations, while deeper layers exhibit increasingly stable utilization, demonstrating natural expert specialization throughout the diffusion process.

where $\bar{\mathbf{w}}_t \in \mathbb{E}^D$ is the standard Wiener process. We can esitimate the score term $\nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t)$ as each time t to iteratively solve the reverse process, then get the gernerated target. DPMs train a neural network $\epsilon_{\theta}(\mathbf{x},t)$ parameterized by θ to esitimated the scaled score function $-\sigma \nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t)$. To optimize ϵ_{θ} , we minimize the following objective (Ho et al., 2020; Song et al., 2021; Ma et al., 2024)

$$\mathcal{L}_{\text{DDPM}}(\theta) = \mathbb{E}_{t,p_0(\mathbf{x}_0),p(\mathbf{x}_t|\mathbf{x}_0)} \left[\lambda(t) \| \epsilon_{\theta}(\mathbf{x}_t,t) + \sigma_t \nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t) \|_2^2 \right], \tag{21}$$

where λ_t is a time-dependent coefficent. $\epsilon_{\theta}(\mathbf{x}_t,t)$ can be interpreted as predicting the Gaussian noise added to \mathbf{x}_t , thus it is commonly referred to as a noise prediction model. Consequently, the diffusion model is known as a denoising diffusion probabilistic model. Substitute score term in equation 20 with $-\epsilon_{\theta}(\mathbf{x}_t,t)/\sigma_t$, we can solve the reverse process and generate samples from DPMs with numerical solvers. To further accelerate the sampling process, (Song et al., 2021) proved that the equvivalent probability flow ODE is

$$\frac{\mathrm{d}\mathbf{x}_t}{\mathrm{d}t} = \mathbf{v}_{\theta}(\mathbf{x}_t, t) := f(t)\mathbf{x}_t + \frac{g^2(t)}{2\sigma_t} \epsilon_{\theta}(\mathbf{x}_t, t), \quad \mathbf{x}_1 \sim \mathcal{N}(0, \mathbf{I}).$$
 (22)

Thus samples can be also generated by solving the ODE from time 1 to 0.

C.2 RECTIFIED FLOW MODELS (FLOW)

Recified flow models (Liu et al., 2022b; Albergo & Vanden-Eijnden, 2023; Lipman et al., 2023) connects data \mathbf{x}_0 and noise ϵ on a straight line as follows

$$\mathbf{x}_t = (1 - t)\mathbf{x}_0 + t\epsilon, \quad t \in [0, 1]. \tag{23}$$

To precisely express the relationship between \mathbf{x}_t , \mathbf{x}_0 , and ϵ , we first construct a time-dependent vector field $u:[0,1]\times\mathbb{R}^D\to\mathbb{R}^D$. This vector field u_t can be used to construct a time-dependent diffeomorphic map, known as a flow $\phi:[0,1]\times\mathbb{R}^D\to\mathbb{R}^D$, through the following ODE:

$$\frac{\mathrm{d}}{\mathrm{d}t}\phi_t(\mathbf{x}_0) = u_t(\phi_t(\mathbf{x}_0)) \tag{24}$$

$$\phi_0(\mathbf{x}_0) = \mathbf{x}_0. \tag{25}$$

The vector field u_t can be modeled as a neural network \mathbf{v}_{θ} (Chen et al., 2018) which leads to a deep parametric model of the flow ϕ_t , called a *Continuous Normalizing Flow* (CNF). We can using *conditional flow matching* (CFM) technique (Lipman et al., 2022) to training a CNF. Now we can define the flow we need as follows:

$$\psi_t(\cdot|\epsilon): \mathbf{x}_0 \mapsto \alpha_t \mathbf{x}_0 + \sigma_t \epsilon. \tag{26}$$

The corresponding velocity vector field of the flow ψ_t can be represented as:

$$u_t(\psi_t(\cdot|\epsilon)|\epsilon) = \frac{\mathrm{d}}{\mathrm{d}t}\psi_t(\mathbf{x}_0|\epsilon) = \dot{\alpha}_t\mathbf{x}_0 + \dot{\sigma}_t\epsilon = \epsilon - \mathbf{x}_0.$$
 (27)

Using conditional flow matching technique, $\mathbf{v}(\mathbf{x}_t, t)$ in Eq. equation 22 can be modeled as a neural network $\mathbf{v}_{\theta}(\mathbf{x}_t, t)$ by minimizing the following objective

$$\mathcal{L}_{\text{Flow}}(\theta) = \mathbb{E}_{t, p_0(\mathbf{x}_0), p_1(\epsilon)} \| \mathbf{v}_{\theta}(\mathbf{x}_t, t) - \frac{\mathrm{d}}{\mathrm{d}t} \psi_t(\mathbf{x}_0 | \epsilon) \|_2^2$$
(28)

$$= \mathbb{E}_{t,p_0(\mathbf{x}_0),p(\epsilon)} \|\mathbf{v}_{\theta}(\mathbf{x}_t,t) - (\dot{\alpha}_t \mathbf{x}_0 + \dot{\sigma}_t \epsilon)\|_2^2$$
(29)

$$= \mathbb{E}_{t,p_0(\mathbf{x}_0),p(\epsilon)} \|\mathbf{v}_{\theta}(\mathbf{x}_t,t) - (\epsilon - \mathbf{x}_0)\|_2^2.$$
(30)

 Samples can be generated by sovling the probability flow ODE below with learned velocity using numerical sovler like Euler, Heun, Runge-Kutta method.

$$d\mathbf{x}_t = \mathbf{v}_{\theta}(\mathbf{x}_t, t)dt, \quad \mathbf{x}_1 = \epsilon \sim \mathcal{N}(0, 1).$$
 (31)

C.3 RELATIONSHIP DDPM AND FLOW

There exists a straightforward connection between $\mathbf{v}_{\theta}(\mathbf{x}_t, t)$ and the score term $-\sigma_t \nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t)$ can be derived as follows

$$\mathbf{v}_{\theta}(\mathbf{x}_{t}, t) = f(t)\mathbf{x}_{t} + \frac{g^{2}(t)}{2\sigma_{t}}\epsilon_{\theta}(\mathbf{x}_{t}, t)$$
(32)

$$\approx \frac{\dot{\alpha}_t}{\alpha_t} \mathbf{x}_t + \left(\dot{\sigma}_t - \frac{\dot{\alpha}_t}{\alpha_t} \right) \left(-\sigma_t \nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t) \right). \tag{33}$$

Let $\zeta_t = \dot{\sigma}_t - \frac{\dot{\alpha}_t}{\alpha_t}$, and we have $\epsilon_{\theta}(\mathbf{x}_t, t) \approx -\sigma_t \nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t, t)$ then we can get $\mathbf{v}_{\theta}(\mathbf{x}_t, t) = \frac{\dot{\alpha}_t}{\alpha_t} \mathbf{x}_t + \zeta_t \epsilon_{\theta}(\mathbf{x}_t, t)$

By plugging equation 33 into the loss \mathcal{L}_{Flow} in Eq. equation 30 we have:

$$\mathcal{L}_{\text{Flow}}(\theta) = \mathbb{E}_{t, p_0(\mathbf{x}_0), p_1(\epsilon)} \| \mathbf{v}_{\theta}(\mathbf{x}_t, t) - (\dot{\alpha}_t \mathbf{x}_0 + \dot{\sigma}_t \epsilon) \|_2^2$$
(34)

$$= \mathbb{E}_{t,p_0(\mathbf{x}_0),p(\epsilon)} \| \frac{\dot{\alpha}_t}{\alpha_t} \mathbf{x}_t + \zeta_t \epsilon_{\theta}(\mathbf{x}_t,t) - \dot{\sigma}_t \epsilon \|_2^2$$
(35)

$$= \mathbb{E}_{t,p_0(\mathbf{x}_0),p(\epsilon)} \| \zeta_t \epsilon_{\theta}(\mathbf{x}_t,t) - \zeta_t \epsilon \|_2^2$$
(36)

$$= \mathbb{E}_{t,p_0(\mathbf{x}_0),p(\epsilon)} \left[\zeta_t^2 \| \epsilon_{\theta}(\mathbf{x}_t, t) - \epsilon \|_2^2 \right]. \tag{37}$$

Considering Eq. equation 17, we have $\mathbf{x}_t \sim \mathcal{N}(\alpha_t \mathbf{x}_0, \sigma_t \mathbf{I})$ and $\nabla_{\mathbf{x}} \log p(\mathbf{x}_t) = \sigma_t^{-1}(\mathbf{x}_t - \alpha_t \mathbf{x}_0) = \sigma_t^{-1}(\sigma_t \epsilon) = \epsilon$. Then, we can get the equivilant loss function as below:

$$\mathcal{L}_{\text{Flow}}(\theta) = \mathbb{E}_{t,p_0(x_0),p(\mathbf{x}_t|\mathbf{x}_0)} \left[\zeta_t^2 \left\| \epsilon_{\theta}(\mathbf{x}_t, t) + \sigma_t \nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t) \right\|_2^2 \right]. \tag{38}$$

Recall that $\mathcal{L}_{\text{DDPM}}(\theta) = \mathbb{E}_{t,p_0(\mathbf{x}_0),p(\mathbf{x}_t|\mathbf{x}_0)} \left[\lambda(t) \| \epsilon_{\theta}(\mathbf{x}_t,t) + \sigma_t \nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t) \|_2^2 \right]$.

We can find that $\mathcal{L}_{\mathrm{DDPM}}$ and $\mathcal{L}_{\mathrm{Flow}}$ have the same form, with the only difference being their time-dependent weighting functions, which lead to different trajectories and properties.

D MORE IMPLEMENTATION DETAILS

D.1 TRAINING SETUP.

We train class-conditional DiffMoE and baseline models at 256x256 image resolution on the ImageNet dataset (Russakovsky et al., 2015) a highly-competitive generative benchmark, which contains 1281167 training images. We use horizontal flips as the only data augmentation. We train all models with AdamW (Loshchilov & Hutter, 2017). We use a constant learning rate of 1×10^{-4} , no weight decay and a fixed global batch size of 256, following (Peebles & Xie, 2023b). We also maintain an exponential moving average(EMA) of DiffMoE and baseline model weights over training with a decay of 0.9999. All results reported use the EMA mode. For most experiments, we utilized 4 NVIDIA H800 GPUs during training. To achieve state-of-the-art results, we extended the training process with 8 NVIDIA H800 GPUs for improved efficiency. For text-to-image experiments, we train all baseline models Dense-DiT, TC-DiT, EC-DiT, and our DiffMoE on a dataset of 25M 256×256 text-image pairs (mixed from LAION (Schuhmann et al., 2021) and JourneyDB (Pan et al., 2023)) for 576 H800 GPU hours.

D.2 IMPLEMENTATION ALGORITHMS.

We provide a detailed illustration of the DiffMoE layer during training and inference in Algorithm 3 and 4, respectively. We also implemented the same EC-DiT layer in Algorithm 1 as (Sun et al., 2024). We implemented TC-DiT in layer in Algorithm 2 similar to (Dai et al., 2024; Fei et al., 2024)

E CALCULATION OF AVERAGE ACTIVATED PARAMETERS AND AVERAGE CAPACITY

E.1 COMPUTING AVERAGE INFERENCE CAPACITY

To compute the global average capacity ($C_{\rm infer}^{\rm avg}$), we analyze 50K samples across all experts and sampling steps. For a quick approximation, sampling 1K samples is sufficient due to DiffMoE's stable performance characteristics.

E.2 ESTIMATING AVERAGE ACTIVATED PARAMETERS USING AVERAGE INFERENCE CAPACITY

We will introduce the relationship between average activated parameters and average capacity in detail. Let #Module denote the number of parameters a certain Module, N_E denote the number of experts. Under approximate conditions, for DiT (Peebles & Xie, 2023a) models, we have

In our model, we adopt an interlaced arrangement of the Mixture of Experts (MoE) layer and the dense layer. Here, #FFN represents the total number of parameters of all Feed - Forward Neural Network (FFN) layers. Given that the total number of layers is N, the calculation of the average activated parameters is as follows:

The contribution of FFN layers to the average activated parameters can be derived step - by - step. First, consider the proportion of active FFN layers. Since MoE and dense layers are interlaced, the number of active FFN layers is approximately N/2.

The formula for the average activated parameters of FFN layers is:

Average Activated Parameters of FFN layers

$$\approx \frac{N/2}{N/2 + N/2 \times N_E} \times \#\text{FFN} + \frac{N/2 \times C_{\text{infer}}^{\text{avg}}}{N/2 + N/2 \times N_E} \times \#\text{FFN} = \left(\frac{1 + C_{\text{infer}}^{\text{avg}}}{1 + N_E}\right) \times \#\text{FFN}$$

Combining with the contributions from other components (Attention, AdaLN, and other modules), the overall average activated parameters of the model can be approximated as:

Average Activated Parameters
$$\approx \left(\frac{1+C_{\rm infer}^{\rm avg}}{1+N_E}\right)$$
 #FFN+#Attention+#AdaLN+#Other Modules (39)

Table 10 displays the parameters and their corresponding percentages of the main modules of large-size DiffMoE.

F FID SENSIBILITY AND ABLATION STUDY

FID scores are sensitive to implementation details, necessitating careful ablation studies to understand the differences between various implementations. Through these studies, we aim to provide the academic community with clearer insights for fair comparisons between diffusion models.

The observed FID degradation at higher CFG scales is well-documented (Ma et al., 2024), primarily due to ImageNet's diverse image quality distribution. When generating high-quality samples, the deviation from ImageNet's mixed-quality dataset can lead to increased FID scores, despite improved visual quality.

For FID calculation, we follow the implementations from SiT (Ma et al., 2024) and DiT (Peebles & Xie, 2023a). Results marked with † are directly quoted from (Ma et al., 2024) (DDPM) and (Peebles & Xie, 2023a) (Flow). For results marked with *, we reproduce the experiments using officially released checkpoints under identical evaluation conditions.

F.1 VAE DECODER ABLATIONS

Following (Peebles & Xie, 2023a), throughout our experiments, we employed pre-trained VAE models. Specifically, we utilized fine-tuned versions (ft-MSE and ft-EMA) of the original LDM "f8" model, where only the decoder weights were fine-tuned. For the analysis presented in Experiments section 3 and Tables 12 and 11, we tracked metrics using the ft-MSE decoder, while the final metrics reported in Table 2 was obtained using the ft-EMA decoder. In this section, we examine the impact of two distinct VAE decoders for our experiments - the two fine-tuned variants employed in Stable Diffusion. Since all models share identical encoders, we can interchange decoders without necessitating diffusion model retraining. As demonstrated in Table 13, the DiffMoE model maintains its superior performance over existing diffusion models.

Table 16: **Batch Size Ablation Study:** FID scores under different batch sizes using fine-tuned EMA VAE decoder and Heun sampler. **Bold** indicates best performance in its cell.

Model	Training Steps	CFG	Batch Size	FID50K \downarrow
DiffMoE-L-E8-Flow	7000K	1.0	10	9.60
DiffMoE-L-E8-Flow	7000K	1.0	15	9.62
DiffMoE-L-E8-Flow	7000K	1.0	32	9.77
DiffMoE-L-E8-Flow	7000K	1.0	50	9.98
DiffMoE-L-E8-Flow	7000K	1.0	75	9.90
DiffMoE-L-E8-Flow	7000K	1.0	100	9.76
DiffMoE-L-E8-Flow	7000K	1.0	125	9.78
Dense-DiT-XL-Flow*	7000K	1.0	10	9.57
Dense-DiT-XL-Flow*	7000K	1.0	15	9.47
Dense-DiT-XL-Flow*	7000K	1.0	50	9.84
Dense-DiT-XL-Flow*	7000K	1.0	75	9.67
Dense-DiT-XL-Flow*	7000K	1.0	100	9.65
Dense-DiT-XL-Flow*	7000K	1.0	125	9.64
DiffMoE-L-E8-Flow	7000K	1.5	10	2.19
DiffMoE-L-E8-Flow	7000K	1.5	32	2.16
DiffMoE-L-E8-Flow	7000K	1.5	50	2.16
DiffMoE-L-E8-Flow	7000K	1.5	75	2.13
DiffMoE-L-E8-Flow	7000K	1.5	100	2.17
DiffMoE-L-E8-Flow	7000K	1.5	125	2.18
Dense-DiT-XL-Flow*	7000K	1.5	10	2.23
Dense-DiT-XL-Flow*	7000K	1.5	15	2.23
Dense-DiT-XL-Flow*	7000K	1.5	50	2.21
Dense-DiT-XL-Flow*	7000K	1.5	75	2.19
Dense-DiT-XL-Flow*	7000K	1.5	100	2.22
Dense-DiT-XL-Flow*	7000K	1.5	125	2.21
DiffMoE-L-E8-DDPM	7000K	1.5	50	2.30
DiffMoE-L-E8-DDPM	7000K	1.5	75	2.33
DiffMoE-L-E8-DDPM	7000K	1.5	100	2.32
DiffMoE-L-E8-DDPM	7000K	1.5	125	2.32

Table 17: **CFG Scale Ablation Study:** FID scores across different CFG scales using fine-tuned EMA VAE decoder. **Bold** indicates best performance in its cell.

Model	Training Steps	Sampler	CFG	Batch Size	FID50K↓
DiffMoE-L-E8-Flow	4900K	Heun	1.0	125	9.21
Dense-DiT-XL-Flow*	7000K	Heun	1.0	125	9.64
DiffMoE-L-E8-Flow	7000K	Heun	1.0	125	9.78
DiffMoE-L-E8-Flow	4900K	Heun	1.43	125	2.14
Dense-DiT-XL-Flow*	7000K	Heun	1.43	125	2.08
DiffMoE-L-E8-Flow	7000K	Heun	1.43	125	2.13
DiffMoE-L-E8-Flow	4900K	Heun	1.5	125	2.28
Dense-DiT-XL-Flow*	7000K	Heun	1.5	125	2.21
DiffMoE-L-E8-Flow	7000K	Heun	1.5	125	2.18
DiffMoE-L-E8-DDPM	6500K	DDPM	1.0	125	9.39
Dense-DiT-XL-DDPM*	7000K	DDPM	1.0	125	9.63
DiffMoE-L-E8-DDPM	7000K	DDPM	1.0	125	9.17
DiffMoE-L-E8-DDPM	6500K	DDPM	1.5	125	2.27
Dense-DiT-XL-DDPM*	7000K	DDPM	1.5	125	2.32
DiffMoE-L-E8-DDPM	7000K	DDPM	1.5	125	2.32

Table 18: **Flow ODE Sampler Ablation Study:** FID scores across different ODE samplers with CFG scale 1.0 and fine-tuned EMA VAE decoder. **Bold** indicates best performance in its cell.

Model	Training Steps	Sampler	Batch Size	FID50K ↓
DiffMoE-L-E8-Flow	4900K	Euler	125	9.37
DiffMoE-L-E8-Flow	4900K	Heun	125	9.21
DiffMoE-L-E8-Flow	4900K	Euler	250	9.39
DiffMoE-L-E8-Flow	4900K	Dopri5	250	9.06
DiffMoE-L-E8-Flow	7000K	Euler	125	9.86
DiffMoE-L-E8-Flow	7000K	Heun	125	9.78
DiffMoE-L-E8-Flow	7000K	Euler	250	9.94
DiffMoE-L-E8-Flow	7000K	Dopri5	250	9.56

F.2 FLOW ODE-SAMPLER ABLATIONS

Higher-order ODE samplers generally achieve better FID scores. As shown in Table 18, the black-box dopri5 sampler outperforms heun (NFE=250), which in turn surpasses euler (NFE). For fair comparison with baseline models, we employ the euler sampler in flow-based experiments. However, to benchmark against SiT-XL (Dense-DiT-XL-Flow) (Ma et al., 2024), we use the heun sampler to achieve SOTA results.

F.3 CLASSIFIER-FREE-GUIDENCE ABLATIONS

We evaluate different models with varying classifier-free guidance (CFG) scales in Table 17, and discover that the CFG scale of 1.5 adopted in DiT (Peebles & Xie, 2023a) and SiT (Ma et al., 2024) studies may not be universally optimal. Our analysis reveals the best CFG scale approximates to 1.43 through comprehensive comparisons. However, different models exhibit distinct characteristics that lead to varying optimal CFG scales, suggesting that fixing a uniform scale across all models could introduce evaluation bias. To ensure relatively fair comparisons while maintaining consistency with established practices, we ultimately adopt CFG 1.5 as the default setting in our experiments. This decision aligns with the well-documented trade-off in diffusion models: higher CFG scales (e.g., 4.0) typically enhance image fidelity at the cost of increased FID scores, while lower scales (e.g., 1.5) yield better FID metrics despite reduced perceptual quality. This phenomenon primarily stems from FID's sensitivity to distributional coverage - higher guidance scales tend to produce samples with reduced diversity that more closely match the training distribution statistics, paradoxically resulting in worse FID scores despite improved individual sample quality.

F.4 BATCH SIZES ABLATIONS

The batch sizes ablation study reveals critical insights into the interplay between batch size and classifier-free guidance (CFG) scales for the DiffMoE-L-E8-Flow model. At CFG=1.0, FID scores remain elevated (9.60–9.98), with smaller batch sizes (e.g., bs=10) marginally outperforming larger

1242 Algorithm 1 EC - DiT Layer 1243 **Require:** x (input tensor) 1244 B (batch size), S (sequence length), d (hidden dim), W_T (routing weights), experts (list of 1245 expert FFNs) 1246 E (number of experts), C (expert capacity) 1247 1: Step 1: Compute Token - Expert Affinity Matrix 1248 2: logits \leftarrow einsum('bsd, $de \rightarrow bse', x, W_r$) 1249 3: scores \leftarrow softmax(logits, dim = -1).permute(-1, -2) 1250 4: Step 2: Select top - k tokens for each expert 5: gating, index \leftarrow top_k(scores, k = C, dim = -1) 1251 6: dispatch \leftarrow one_hot(index, num_classes = S) 1252 7: Step 3: Process tokens through experts and combine 1253 8: $x_{in} \leftarrow \text{einsum}(`becs, bsd \rightarrow becd', \text{dispatch}, x)$ 1254 9: $x_e \leftarrow [\text{experts}[e](x_{in}[:,e]) \text{ for } e \text{ in range}(E)]$ 1255 10: $x_e \leftarrow \operatorname{stack}(x_e, \dim = 1)$ 1256 11: $x_{out} \leftarrow \text{einsum}(`becs, bec, becd \rightarrow bsd', \text{dispatch}, \text{gating}, x_e)$ 1257 Ensure: x_{out}

configurations, exhibiting a U-shaped trend. However, elevating CFG to 1.5 drastically reduces FID to 2.13–2.19, achieving optimal performance at bs=75 (**2.13**), while demonstrating remarkable robustness to batch size variations (Δ =0.06 vs. Δ =0.38 at CFG=1.0).

F.5 CONCLUSION: A LITTLE THOUGHT ABOUT FID

1259 1260

1261

1262

1263 1264

1265 1266

1267

1268

1269

1270

1271

1272

1273

1275

1276

1277

1278

1279

1280

1281 1282

1283 1284 1285

1286

1287

1288

1289

1290 1291

1293

1294

1295

While Fréchet Inception Distance (FID) is widely adopted for evaluating generative models, particularly on ImageNet, it exhibits several notable limitations. Our analysis reveals counterintuitive behaviors, especially when evaluating models with classifier-free guidance (CFG). For example, higher CFG scales typically enhance perceptual quality but paradoxically result in worse FID scores, despite producing visually superior images. This discrepancy stems from FID's fundamental mechanism: it measures statistical similarities between generated and real distributions in the Inception network's feature space, often failing to capture perceptual quality and fine-grained details. Moreover, FID scores are susceptible to various implementation factors, including choice of ODE samplers, hardware configurations, random seeds, and sample size for estimation. These sensitivities can impact reproducibility and comparison across different studies. Furthermore, FID's focus on distributional overlap overlooks critical aspects such as mode collapse and overfitting, as it does not explicitly evaluate sample diversity or novelty. These limitations underscore the pressing need for more robust and comprehensive metrics that can better reflect the true modeling capabilities of generative models. We advocate for developing new evaluation frameworks that combine precision-recall curves, perceptual quality metrics, and human evaluation studies, which would provide a more reliable assessment of generative model performance.

G VISUAL GENERATION RESULTS

G.1 CLASS-CONDITIONAL IMAGE GENERATION

To demonstrate the generation capabilities of our model, we showcase diverse images sampled from DiffMoE-L-E8-Flow and DiffMoE-L-E8-DDPM, conditioned on ImageNet class labels. These visualizations illustrate the model's ability to generate high-quality, class-specific images. See Figure 10 and 11.

G.2 TEXT-CONDITIONAL IMAGE GENERATION

We present a collection of images generated by our DiffMoE-T2I-Flow model using various text prompts as conditioning inputs. These examples demonstrate the model's versatility in translating textual descriptions into corresponding visual representations. See Figure 12.

```
1296
          Algorithm 2 TC - DiT layer
1297
          Require: x (input tensor), W_r (routing weights), experts (list of expert FFNs)
1298
                      B (batch size), S (sequence length), d (hidden dim), K (experts per token)
1299
           1: Step 1: Save original input shape
1300
           2: orig_shape \leftarrow shape(x)
1301
           3: Step 2: Compute Token - Expert Affinity Matrix
1302
           4: logits \leftarrow einsum('bsd, de \rightarrow bse', x, W_r)
1303
           5: scores \leftarrow softmax(logits, dim = -1)
1304
           6: Step 3: Select top - k tokens for each expert
           7: gating, index \leftarrow top_k(scores, k = K, dim = -1)
1305
           8: Step 4: Flatten x and top - k indices
1306
           9: x \leftarrow \text{view}(x, (-1, x.shape[-1]))
1307
          10: flat_topk_idx \leftarrow view(topk_idx, (-1))
1308
          11: Step 5: Process tokens through experts
1309
          12: x \leftarrow \text{repeat\_interleave}(x, K, \text{dim} = 0)
1310
          13: y \leftarrow \text{empty\_like}(x)
1311
          14: for i \leftarrow 1 to len(experts) do
1312
          15:
                   y[\text{flat\_topk\_idx} == i] \leftarrow \text{expert}_i(x[\text{flat\_topk\_idx} == i])
1313
          16: end for
          17: y \leftarrow \text{sum}(\text{view}(y, (*\text{gating}.shape, -1)) \cdot \text{gating}.unsqueeze(-1), \text{dim} = 1)
1315
          18: y \leftarrow \text{view}(y, \text{orig\_shape})
          Ensure: y
1316
1317
1318
          Algorithm 3 DiffMoE layer (Training)
1319
          Require: x (input tensor)
1320
                      B (batch size), S (flattened sequence length), D (hidden dim), N (number of experts)
1321
                      W_r (routing weights), experts (list of expert FFNs), C (expert capacity)
1322
           1: Step 1: Batch-level token pool and compute capacity prediction
1323
           2: x \leftarrow \text{view}(x, (-1, D))
1324
           3: S \leftarrow \operatorname{shape}(x)[0]
1325
           4: capacity_pred \leftarrow capacity_predictor(detach(x))
1326
           5: C_{\text{train}} \leftarrow \text{int}((S/N) \times C)
           6: Step 2: Compute token - expert affinity scores
1327
           7: logits \leftarrow einsum('sd, de \rightarrow se', x, W_r)
           8: scores \leftarrow softmax(logits, dim = -1).permute(-1, -2)
           9: gating, index \leftarrow top_k(scores, k = C_{\text{train}}, dim = -1, sorted = False)
          10: Step 3: Process tokens through experts
1331
          11: y \leftarrow \operatorname{zeros\_like}(x), ones \leftarrow \operatorname{zeros}(N, S)
1332
          12: for i \leftarrow 1 to N do
1333
                   y[index[i],:] \leftarrow y[index[i],:] + gating[i].unsqueeze(-1) \times expert_i(x[index[i],:])
          13:
1334
          14:
                   ones[i][index[i]] \leftarrow 1
1335
          15: end for
1336
          16: Step 4: Update capacity threshold
1337
          17: update_threshold(capacity_pred)
          18: Step 5: Reshape output
1338
          19: x_{\text{out}} \leftarrow \text{view}(y, (B, s, D))
1339
          Ensure: x_{\text{out}}, ones, capacity_pred
1340
```

H STATEMENT ON LLM ASSISTANCE

1341 1342

1343 1344

1345

1346 1347 1348 Portions of this manuscript were refined for clarity and readability using Claude and DeepSeek. The authors remain solely responsible for the technical content and conclusions presented in this work.

```
1350
1351
          Algorithm 4 DiffMoE layer (Inference)
1352
          Require: x (input tensor)
1353
                     B (batch size), S (flattened sequence length), D (hidden dim), N (number of experts)
1354
                     W_r (routing weights), experts (list of expert FFNs), C (expert capacity)
1355
                     threshold (expert threshold)
1356
           1: Step 1: Reshape input and compute capacity prediction
1357
           2: x \leftarrow \text{view}(x, (-1, D))
           3: S \leftarrow \operatorname{shape}(x)[0]
1358
           4: capacity_pred \leftarrow sigmoid(capacity_predictor(detach(x)))
1359
           5: Step 2: Compute token - expert affinity scores
1360
           6: logits \leftarrow einsum('sd, de \rightarrow se', x, W_r)
1361
           7: scores \leftarrow softmax(logits, dim = -1).permute(-1, -2)
1362
           8: Step 3: Process tokens through experts
1363
           9: y \leftarrow \text{zeros\_like}(x)
1364
          10: for i \leftarrow 1 to N do
1365
                   k_{\text{pred}} \leftarrow \text{sum}(\text{where}(\text{capacity\_pred}[:, i] > \text{threshold}[i], 1, 0))
          11:
1366
                   gating, index \leftarrow top_k(scores[i], k = k_{pred}, dim = -1, sorted = False)
          12:
1367
          13:
                   y[index, :] \leftarrow y[index, :] + gating.unsqueeze(-1) \times expert_i(x[index, :])
1368
          14: end for
1369
          15: Step 4: Reshape output
          16: x_{\text{out}} \leftarrow \text{view}(y, (B, s, D))
1370
          Ensure: x_{\text{out}}
1371
```


Figure 10: Class-conditional Generation. Uncurated 256×256 DiffMoE-L-E8-Flow samples CFG scale = 4.0.

Figure 11: Class-conditional Generation. Uncurated 256×256 DiffMoE-L-E8-DDPM samples CFG scale = 4.0.

Figure 12: **Text-to-Image Generation. Uncurated** 256×256 Images generated by **DiffMoE-E16-T2I-Flow**