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ABSTRACT

Diffusion Transformers (DiTs) have become the leading architecture for visual
generation tasks. However, their uniform treatment of inputs across different
conditions and noise levels overlooks the inherent heterogeneity of the diffusion
process. While recent mixture-of-experts (MoE) in diffusion approaches attempt to
address this limitation, they struggle to achieve significant improvements due to
their restricted token accessibility and fixed computational patterns. We present
DiffMoE, a novel MoE-based architecture that enables experts to access global
token distributions through a batch-level global token pool during training, pro-
moting specialized expert behavior. To unleash the full potential of inherent
heterogeneity, DiffMoE incorporates capacity predictor and dynamic threshold
that adpatively allocates computational resources based on noise levels and sample
complexity. Through comprehensive evaluation, DiffMoE achieves state-of-the-art
performance among diffusion transformers on ImageNet benchmark, substantially
outperforming both dense architectures with 3x activated parameters and exist-
ing MoE approaches while maintaining 1x activated parameters. Our approach
demonstrates efficacy not only in class-conditional generation but also in more
complex tasks such as text-to-image synthesis, outperforming both dense models
and various DiT baselines. This underscores its broad applicability across diverse
diffusion model applications.
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Figure 1: Token Accessibility and Dynamic Computation. (a) Token accessibility levels from
token isolation to cross-sample interaction. (b) Computational dynamics during diffusion sampling,
showing adaptive computation from noise to image. (c¢) Class-wise computation allocation from hard
(technical diagrams) to easy (natural photos) tasks. Results from DiffMoE-L-E16-Flow (700K).

1 INTRODUCTION

The Mixture-of-Experts (MoE) framework (Lepikhin et al., 2020; Shazeer et al., 2017) has emerged as
a powerful paradigm for enhancing overall multi-task performance while maintaining computational
efficiency. This is achieved by combining multiple expert networks, each focusing on a distinct task,
with their outputs integrated through a gating mechanism. In language modeling, MoE has achieved
performance comparable to dense models of 2x — 3 X activated parameters (DeepSeek-Al et al.,
2024; MiniMax et al., 2025; Muennighoff et al., 2024). The current MoE primarily follows two
gating paradigms: Token-Choice (TC), where each token independently selects a subset of experts for
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processing; and Expert-Choice (EC), where each expert selects a subset of tokens from the sequence
for processing.

Diffusion (Ho et al., 2020; Rombach et al., 2022; Podell et al., 2023; Song et al., 2021) and flow-based
(Ma et al., 2024; Esser et al., 2024b; Liu et al., 2023) models inherently represent multi-task learning
frameworks, as they process varying token distributions across different noise levels and conditional
inputs. While this heterogeneity characteristic naturally aligns with the MoE framework’s ability
for multi-task handling, existing attempts (Fei et al., 2024; Sun et al., 2024; Yatharth Gupta, 2024;
Sehwag et al., 2024) to integrate MoE with diffusion models have yielded suboptimal results, failing
to achieve the remarkable improvements observed in language models. Specifically, Token-choice
MOoE (TC-MoE) (Fei et al., 2024) often underperforms compared to conventional dense architectures
under the same number of activations; Expert-choice MoE (EC-MoE) (Sehwag et al., 2024; Sun et al.,
2024) shows marginal improvements over dense models, but only when trained for much longer.

We are curious about what fundamentally limits MoE’s effectiveness in diffusion models. Our key
finding reveals that global token distribution accessibility is crucial for MoE success in diffusion
models, necessitating the model learn and dynamically process the tokens from different noise
levels and conditions, as illustrated in Figure 1(b)(c). Previous approaches have neglected this
crucial component, resulting in compromised performance. Specifically, Dense models and TC-MoE
isolates tokens, preventing them from interacting with others during expert selection, while EC-DiT
restricts intra-sample token interaction, which fails to access other samples with different noise
levels and conditions. These limitations hinder the model’s ability to capture the full spectrum of the
heterogeneity inherent in diffusion processes.

To address these limitations, we introduce DiffMoE, a novel architecture that features a batch-level
global token pool for enhanced cross-sample token interaction during training, as illustrated
in Figure 2. This approach approximates the complete token distribution across different noise
levels and samples, facilitating more specialized expert learning through comprehensive global token
information access. Our empirical analysis demonstrates that the global token pool is instrumental in
accelerating loss convergence. Compared to dense models with an equivalent number of activation
parameters, it achieves significantly faster convergence.

However, conventional MoE inference strategies, which maintain fixed computational resource
allocation across different noise levels and conditions, fail to fully leverage the potential of DiffMoE’s
batch-level global token pool. To optimize token selection during inference, we propose a capacity
predictor that dynamically adjusts resource allocation. This adaptive mechanism learns from training-
time token routing patterns, efficiently distributing computational resources between complex and
simple cases. Furthermore, we implement a dynamic threshold at inference time to achieve flexible
performance-computation trade-offs. By integrating the global token pool and capacity predictor,
DiffMoE achieves superior performance over dense models with 3x activated parameters while
maintaining efficient scaling properties (See Table 2). Our approach offers extra several advantages
over existing methods: it eliminates the potentially detrimental load balancing losses present in TC-
MOoE and overcomes the intra-sample token selection constraints of EC-MoE, resulting in enhanced
flexibility and scalability. Extensive empirical evaluations demonstrate DiffMoE’s superior scaling
efficiency and performance improvements across diverse diffusion applications.

Our contributions can be summarized as follows:

(1) We identify the critical role of global token distribution accessibility in enabling dynamic token
selection for MoE-based diffusion models.

(2) We propose DiffMoE, a scalable framework with a global token pool, capacity predictor, and
dynamic threshold for efficient computation.

(3) We demonstrate superior performance on ImageNet and T2I benchmarks via dynamic computation
allocation without sacrificing efficiency.

(4) We provide extensive experiments across diverse diffusion tasks, validating the effectiveness and
generality of our approach.
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Figure 2: DiffMoE Architecture Overview. DiffMoE flattens tokens into a batch-level global token
pool, where each expert maintains a fixed training capacity of Cin = 1. During inference, a dynamic
capacity predictor adaptively routes tokens across different sampling steps and conditions. Different
colors denote tokens from distinct samples, while ¢; represents corresponding noise levels.

Global
Token Pool

2 METHODOLOGY

Diffusion Models. Diffusion models (Ho et al., 2020; Rombach et al., 2022; Sohl-Dickstein et al.,
2015; Song et al., 2021) are a powerful family of generative models, which can transform the
noise distribution p; (x) to the data distribution po(x). The diffusion process can be represented as:
x¢ = ayxg + o, t€[0,1], €~ N(0,I), Where a; and o are monotonically decreasing and
increasing functions of ¢, respectively. The marginal distribution p; (x) converges to A/(0, I), when
a1:00:0,a0:01:1.

To train a diffusion model, we can use the denoising score matching method (Song et al., 2021) which
constructs a score prediction model €y(x:,t) to estimate the scaled score function —o;Vy log p;(x:)
with training objective formulated in Eq. 21. Sampling from a diffusion model can be achieved by
solving the reverse-time SDE or the corresponding diffusion ODE (Song et al., 2021) in an iterative
manner. Recently, flow-based models (Liu et al., 2022a; Lipman et al., 2022; Esser et al., 2024a)
have shown superior performance through alternative training objective formulated in Eq. 30 while
maintaining the same architecture as DiT (Peebles & Xie, 2023a). Sampling from a flow-based model
can be achieved by solving the probability flow ODE.

Mixture of Experts. Mixture of Experts (MoE) (Shazeer et al., 2017; Cai et al., 2024) is based
on a fundamental insight: different parts of a model can specialize in handling distinct tasks. By
selectively activating only relevant components, MoE enables efficient scaling of model capacity while
maintaining computational efficiency. MoE layers generally consist of N experts, each implemented
as a Feed-Forward Network (FFN) with identical architecture, denoted by E(x), ..., En(x) with
input x. A routing matrix W,. € RP>*¥ is used to calculate token-expert affinity matrix:

M = softmaxp(xW,), x e RBEXS*D (D

where B is the batch size, S is the token length of one sample, D is the hidden dimension, softmaxpg
denotes the softmax operation along the expert axis. There are two common gating paradigms:
Token-Choice (TC) (Shazeer et al., 2017; Fei et al., 2024) and Expert-Choice (EC) (Zhou et al.,
2022; Sun et al., 2024). For TC, each token of each sample individually selects t op-K experts via a
gating function, the gating function and output of TC-MoE layers are defined as follows:

M,,;, M, SK({M, Y
QTe — ER) 5,0 E top ({ S,l}zzl) )
0, otherwise
K
ys=» GI{E(x,),x, e R™P s€{1,...,5}. 3)
i=1
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Figure 3: (a) Effectiveness of Capacity Predictor. Comparison of sampling strategies with Diff MoE-
L-E16-Flow (Batch Size = 1). For each group, Top: Sampling w/o Capacity Predictor (with Fixed
TopK Method.) Bottom: Sampling with Capacity Predictor. (b) Different Threshold Methods:
We employ two distinct approaches for threshold determination: dynamic threshold (red point) and
interval search (blue points). Visualization using DiffMoE-L-E16-Flow (700K).

Different from TC, EC makes every expert selects K’ tokens from each sample of the input x €
RB*5%P The gating function GF'{’ can be implemented analogously to Eq. 2, with the modification

that the t op operation selects K  tokens along the token dimension, i.e. S. Similar to Eq. 3, the
N

output for a token x4 of EC-MOoE layers can be calculated as: y, = GSElC E(x,),xs € RYXD,
i=1

Both TC and EC struggle to achieve significant improvements comparir?g with dense models due to
their restricted token accessibility and fixed computational patterns.

2.1 DIFFMOE: DYNAMIC TOKEN SELECTION

Batch-level Global Token Pool. Since MoE architectures replace FFN layers, both TC and EC
paradigms in diffusion models are inherently limited to processing tokens within individual samples,
where gating mechanisms operate exclusively on tokens sharing identical conditions and noise levels.
This architectural constraint not only prevents experts from learning crucial contrastive patterns but,
more fundamentally, restricts their access to the global token distribution that characterizes the full
spectrum of the diffusion process. To capture this essential global context, we introduce a Batch-level
Global Token Pool for DiftMoE by flattening batch and token dimensions, enabling experts to access
a comprehensive token distribution spanning different noise levels and conditions. This design, which
simulate the true token distribution of the entire dataset during training, can be formulated as follows:

GRBXSXD*)XI)OOIGRBSXD- (4)

During the training phase, we push expert E to select K2, tokens, forcing each expert to capture the
characteristics of tokens from different conditional information and noise levels, while keeping expert
load balance during training. The corresponding batch-level global token-expert affinity matrix will

be calculated as follows:
MDy = XpOOIWT7 Xpool € RBSXD; Wr S RDXN' (5)

Then, using MPY € RBSXN | the gating value of MoE and the output of DiffMoE layers can be
computed as follows:

D D D
by _ (M2 MDY € cop L, (M) ©
5t 0, otherwise
Z GIVE(x,). )

Capacity and Computational Cost. To establish a rigorous and fair comparison framework, we
define the capacity C'’* for a single expert E, which serves as a standardized metric for quantifying
computational costs. This capacity metric enables fair comparisons between DiffMoE and baseline
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models by accurately measuring the computational resources utilized by each expert:

N x # tokens processed by £ NKFE
# all input tokens ~ BS’

cF = ®)

where K'¥ denotes the number of tokens assigned to expert F, N is the number of experts, and B.S
represents the size of global token pool. Here, we define the capacity C' for one forward process for
both training and inference phases:

1 L N
B!
e L ©)

=1 i=1

where Ef denotes iy, expert in the ly;, MoE layer. During training phase, C,ip, is fixed to 1 across all
the MoE models, indicating that they keep the same computational cost as dense models. Specifically,
DiffMoE keeps thfam = BS/N for Ciain = 1. TC-DIT selects the top-1 expert, while EC-
DiT selects t op-(S/N) tokens per sample in a batch to ensure the same computation. During the

inference phase, we compute the global average inference capacity C/ ¢ by averaging over all

mfer

timesteps: C\8

oy = T Z =1 CL tors where C ¢ represents the inference capacity at sampling step ¢.

Capacity Predictor. Although batch-level global token routing enables efficient model training,
conventional MoE inference strategies with fixed computational resource allocation fail to fully
leverage its potential. This limitation stems from the static resource distribution across different
noise levels and conditional information during inference. To optimize token selection, we propose a
capacity predictor—a lightweight structure that dynamically determines token selection per expert
through a two-layer MLP with SiLLU activations. This adaptive mechanism learns from training-time
token routing patterns, efficiently distributing computational resources between complex and simple
cases. Formally, let CP(Xpo01) € RES*¥ denote the predictor’s output for input Xpeo € RZ5*P

CP(Xpool) = Wa0sir,u(W1Xpool)- (10)

We can optimize the capacity predictor by minimizing the object function:
Lcp = BCELoss(0, CP(sg[Xpool]) (11)

RLXBSXN

where sg denotes the stop—gradient operation, and O € is defined as follows:

Ol = {1’ if Xpool,s is processed by El )

0, otherwise

We employ the stop—gradient technique to train the capacity predictor, ensuring it focuses solely
on the input features which contains vision, conditions and step information at the current layer while
preventing it from interfering with the training of the main diffusion transformers. Therefore, Lcp
will not affect actual diffusion loss. During inference, the capacity predictor determines the inference

capacity CZt for each expert E! at timestep ¢ based on a threshold. Let Tp! denote the threshold

1nfer

of E!. Using T = {7 | i € {1,...,N}, l € {1,..., L}}, the model achieves an adaptive Cmfer
allocation at sampling step  tailored to different input tokens as follows:

CEt(

1nfer

1, if CP(Xpool)s.i > Tt
= oL, wheredl ;=< " pooiet = B 13
El BS Z WHETE 9,4 {0, otherwise (13)

Then we can calculate Cmfe]r

. 1 T N L
Clnfger ) = m ; ; ; C'mfelr 7—El (14)

Dynamic Threshold. We can set the threshold 7 to control the number of tokens processed by
each expert during inference. It is evident that #ftokens processed during inference, decreases as 7y



Under review as a conference paper at ICLR 2026

increases for all expert. We can adjust 7 flexibly to achieve a better trade-off between computational
complexity and generation quality. We employ two distinct approaches for threshold 7~ determination:
Interval Search and Dynamic Threshold. The interval search method addresses an optimization
problem formulated as follows:

mTinFID(T) subject to Cie (T) < 1. (15)

infer

To simplify the optimization problem, we assume that 7 = v < 1,V7 € T, where + is a constant in
our experiments. However, interval search method is labor-intensive and time-consuming, making it
impractical for real-world applications. To address this limitation, we propose a dynamic threshold

method that automatically maintains thresholds (denoted as TPY = {T;y |ie{l,....,N}, [ €

{1,...,L}}) for all experts during the training phase. To ensure the inference computational cost
approximates the training cost (i.e. C o & 1), we employ the Exponential Moving Average (EMA)
technique as follows:

Quantile CP(Xpool ) sy,is

7-Dy “— - TEDﬁy —+ (1 — 0() . QuantileEi, (16)

E!
where s; denotes the ky, value in descending order, « is a constant which is equals to 0.95 in our
experiments.

3 EXPERIMENTS

We evaluate DiffMoE on class-conditional and text-to image generation along three key dimensions:

(1) Training and Inference Performance Section 3.2. Tables 1, 2, 3, 4, 5, 12, and 14. Figure 5.
(2) Dynamic Computation Section 3.3. Figure 1, 3, 7, 8. Table 15. Appendix B.

(3) Scalability and Adaptability Section 3.4. Table 2, 3, 4, 5. Figure 4, 6.

For the convenience of elaboration, we use the flow matching training method to do the following
analysis while DDPM results are also provided in the Appendix A.1.

3.1 EXPERIMENT SETUP

Baseline and Model architecture. We compare DiffMoE against Dense-DiT, TC-DiT (Fei et al.,
2024), and EC-DiT (Sun et al., 2024) using both flow matching (Ma et al., 2024) and denoising
score matching (Peebles & Xie, 2023a). All models follow the naming convention [Model]-[Size]-
[#Experts]-[Type]. For class-conditional generation, we replace even FFN layers with MoE layers
while maintaining the original DiT architecture (details in Appendix Table 9). For text-to-image
generation, we incorporate cross-attention modules (Rombach et al., 2022) to introduce text conditions.
In this setup, all the models activates 458M parameters and the total parameters of MoE variants are
1.2B. Further training details are provided in Appendix D.1.

Evaluation. We evaluated DiffMoE through both quantitative and qualitative metrics. Quantita-
tively, we used FID50K (Heusel et al., 2017) with 250 DDPM/Euler (250 NFEs) steps for class-
conditional generation, For text-to-image generation evaluation, we use FID (Heusel et al., 2017),
CLIP Score (Radford et al., 2021), PickScore (Kirstain et al., 2023), and HPSv2 (Wu et al., 2023) on
COCO prompts. For PickScore and HPSv2, we compute the average score and standard deviation
across prompts, ensuring fair comparison using identical prompt-image pairs. We report performance
on the GenEval (Ghosh et al., 2023) and T2I-CompBench (Huang et al., 2023) to evaluate all-round
capabilities of DiffMoE and baselines following their official protocol.

3.2 MAIN RESULTS OF C2I AND T2I

C2I Results. Class-conditional image generation is a task of synthesizing images based on specified
class labels. DiffMoE-L-E16 demonstrates superior efficiency by outperforming Dense-DiT-XL
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Table 1: Baseline and Capacity Predictor Effects. Performance comparison of different model
architectures at 700K steps. DiffMoE-L-E16-Flow achieves best FID50K (14.41 w/o CFG) among
TC, EC, and Dense variants. (n X) means n times base activated parameters. A.A.P indicates Average
Activated Params.

Model (700K) Config #A.AP FID50K |
TC-DiT-L-E16-Flow Token-Choice MoE 458M(1x) 19.06
EC-DiT-L-E16-Flow Expert-Choice MoE 458M(1x) 16.12
Dense-DiT-L-Flow Dense FEN 458M(1x) 17.01
Dense-DiT-XL-Flow Dense FFN 675M(1.5x%) 14.77
DiffMoE-L-E16-Flow Token Pool Only 458M(1x) 15.25

DiffMoE-L-E16-Flow Token Pool & Predictor  454M(0.95x) 14.41

Table 2: Parameter Scaling Behavior on ImageNet 256x256 Class-Conditional Generation. Diff-
MOoE demonstrates superior FID scores with fewer parameters after 3000K training steps. Results are
reported with guidance scale 1.5 (Ho & Salimans, 2022).

Diffusion Models (3000K) # A.A.P FIDS0K| ISt Precisionf Recallt
Dense-DiT-XL-Flow 675M (1.5%) 2.52 273.78 0.84 0.56
Dense-DiT-XXL-Flow 951M (2x) 241 281.96 0.84 0.57
Dense-DiT-XXXL-Flow 1353M (3x) 2.37 291.29 0.84 0.57
DiffMoE-L-E8-Flow 458M (1x) 2.40 280.30 0.83 0.57
DiffMoE-L-E16-Flow 458M (1x) 2.36 287.26 0.83 0.58
DiffMoE-XL-E16-Flow 675M (1.5%) 2.30 291.23 0.83 0.58

(which uses 1.5x more parameters) after just 700K steps, as shown in Table 1. And these improve-
ments hold across both the DDPM and Flow Matching paradigms. With extended training for 3000K
steps, DiffMoE-L-E16 (with 1x parameters and FID 2.36) surpasses Dense-DiT-XXXL (with 3x
parameters and FID 2.37), as shown in Table 2. Visualizations are provided in Figures 10 and 11.

T2I Results. In text-to-image generation, DiffMoE consistently outperforms dense and moe variants
baselines in various metrics which can evaluate multi-dimensions include visual fidelity, diversity,
text-image alignment and prompt understanding. Results are shown in 3, 4, 5.

3.3 DyNAaMIC COMPUTATION ANALYSIS

Analysis of Inference Capacity. DiffMoE-L-E16-Flow demonstrates superior parameter efficiency
with its inference capacity (C{2 ) being 1 less than TC-DiT and EC-DiT, while achieving better
performance, as shown in Table 1. Notably, with only 454M(0.95 x) average activated parameters,
our model outperforms Dense-DiT-XL-Flow (675M 1 x), highlighting the effectiveness of dynamic

token allocation. Detailed analysis of average activated parameters is provided in the Appendix E.

Ablation of Capacity Predictor. Dynamic token selection through our capacity predictor demon-
strates superior performance over traditional static topK token selection, as shown in Figure 3(a)
and Table 1. This improvement stems from the predictor’s ability to intelligently allocate more com-
putational resources to challenging tasks. The capacity predictor plays a crucial role in unleashing
DiffMoE’s full potential by dynamically adjusting resource allocation, which is particularly important
for optimizing inference efficiency.

Interval Search vs. Dynamic Threshold. Both interval search and dynamic threshold methods
achieve optimal performance in DiffMoE, with the dynamic threshold (7 °¥) emerging as our
preferred approach due to its elegance and efficiency. Through interval search from 0.0 to 0.999, we
identify an optimal threshold (y ~ 0.4) that minimizes FID while maintaining C{ 5 < 1. Meanwhile,
the dynamic threshold automatically maintains C{;> = 1 during inference, achieving comparable
FID scores within the optimal region, as shown in Figure 3(b) and Table 11. Our experiments reveal
a U-shaped relationship between FID and C:.¢ , indicating that both over-activation and under-
activation of parameters degrade performance. Both methods successfully identify thresholds within
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Table 3: Text-to-Image results on COCO prompts. Under the same 458M activated parameters,
DiffMoE consistently outperforms all baseline DiT variants across various T2I metrics.

Model FID10K| CLIP Scoret  PickScore? HPSv21

Dense-DiT 46.38 29.58 0.2510+0.111  0.255+0.021
TC-DiT 45.10 29.59 0.2024+0.112  0.256+0.020
EC-DiT 44.80 29.60 0.25274+0.109  0.255+0.020
DiffMoE 44.53 29.75 0.2937+0.112  0.257+0.020

Table 4: Text-to-Image GenEval Benchmark Results. DiffMoE outperforms baseline DiT variants
across six evaluation aspects, showing better compositionality, faithfulness, and controllability.

Model Single Obj.T Two Obj. Cnt. Obj.t Colorst Pos.t Attri.t Overall
Dense-DiT 0.656 0.280 0.225 0.481 0.165 0.278 0.346
TC-DiT 0.644 0.298 0.194 0.500 0.178 0.275 0.348
EC-DiT 0.666 0.349 0.181 0426  0.200 0.235 0.343
DiffMoE 0.688 0.397 0.200 0.500 0.178 0.303 0.377

the optimal region, but the dynamic threshold’s straightforward implementation and computational
efficiency make it our default choice throughout this paper.

Harder Work Needs More Computation. Figure 1(c) illustrates that different classes demand
varying amounts of computation during generation. By analyzing 1K class labels and ranking their
CoE , we observe clear patterns in computational requirements. The most challenging cases often
involve objects with intricate details, complex materials, precise structures, or specific viewing angles
(e.g., technical instruments and detailed artifacts). In contrast, natural subjects such as common
animals (e.g., birds, dogs, cats) generally require less computation. Figures 7 and 8 present the
top-10 most and least computationally demanding classes for both flow-based and DDPM models,
respectively. For text-to-image generation, we also identify harder and easier prompts by similiar

ranking method. Detailed discussions refer to Appendix B.1.

3.4 SCALING BEHAVIOR

Scaling Model Size. DiffMoE demonstrates consistent performance improvements across small
(S), base (B), and large (L) configurations, with activated parameters of 32M, 130M, and 458M
respectively as shown in Figure 4(a). To explore the upper limits of DiffMoE and quantify its
performance efficiency, as analyzed in Section 3.2 DiffMoE-L-E16 (with 1x parameters and FID
2.36) surpasses Dense-DiT-XXXL (with 3x parameters and FID 2.37) with same 3000K training
budget. This highlights the exceptional parameter efficiency and scalability of DiffMoE.

Scaling Number of Experts. As shown in Figure 4(b), model performance improves consistently
when scaling experts from 2 to 16, with diminishing returns between E8 and E16. Based on this
analysis, we trained DiffMoE-L-E8 for 7000K iterations, achieving optimal performance-efficiency
trade-off and state-of-the-art results.

3.5 LIMITATIONS AND BROADER IMPACT

While DiffMoE demonstrates promising results, our study has two limitations. First, due to computa-
tional constraints, we have not validated the framework on text-to-video generation tasks, leaving
this extension for future work. Second, like other generative models, DiffMoE could potentially be
misused to create harmful content, warranting careful consideration of ethical deployment.

4 RELATED WORKS

Diffusion Models. Diffusion models (Ho et al., 2020; Podell et al., 2023; Peebles & Xie, 2023a;
Esser et al., 2024b) have emerged as the dominant paradigm in visual generation in recent years.
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Table 5: Text-to-Image T2I-CompBench Results. DiffMoE consistently outperforms baseline DiT
variants across color, texture, shape, number, spatial, and complex compositional aspects.

Model Color T Texture f Shape? Number? 3D-Spatial T 2D-Spatial{ Non-Spatial T Complex T
Dense-DiT  0.598 0.485 0.320 0.373 0.261 0.0163 0.292 0.292
TC-DiT 0.582 0.519 0.338 0.377 0.256 0.0178 0.290 0.293
EC-DiT 0.598 0.532 0.369 0.335 0.242 0.0205 0.293 0.302
DiffMoE 0.601 0.547 0.395 0.432 0.264 0.0234 0.295 0.311
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Figure 4: Scaling Analysis. (a) Scaling Model Size: DiffMoE consistently outperforms the
corresponding baseline models across all scales (Small/Medium/Large). (b) Scaling Number of
Experts : Comparison of FID50K scores during training between Dense-DiT-L-Flow (E1) and
models with increasing expert counts (E2, E4, ES, E16).

These models transform gaussian distribution into target data distribution through iterative processes,
with two primary training paradigms: Denoising Diffusion Probabilistic Models (DDPM) trained
via score-matching (Ho et al., 2020; Song et al., 2021), which learns the inverse of a diffusion
process and Rectified Flow approaches optimized through flow-matching (Lipman et al., 2022; Ma
et al., 2024; Esser et al., 2024b), which is a more generic modeling techinique and can construct a
straight probaility path connecting data and noise. We implement DiffMoE using both paradigms,
demonstrating its versatility across these complementary training methodologies.

Mixture of Experts. Mixture of Experts (MoE) (Shazeer et al., 2017; Lepikhin et al., 2020) enables
efficient model scaling through conditional computation by selectively activating expert subsets. This
approach has demonstrated remarkable success in Large Language Models (LLMs), as evidenced
by cutting-edge implementations like DeepSeek-V3 (DeepSeek-Al et al., 2024). Recent works
have explored incorporating MoE architectures into diffusion models, but face several limitations.
MEME (Lee et al., 2023), eDiff-I (Balaji et al., 2022), and ERNIE-VIiLG 2.0 (Feng et al., 2023)
restrict experts to specific timestep ranges. SegMoE (Yatharth Gupta, 2024) and DiT-MoE (Fei
et al., 2024) suffer from expert utilization imbalance due to isolated token processing. While
EC-DiT (Sehwag et al., 2024; Sun et al., 2024) recognizes complex tokens’ need for additional
computation, it constrains token selection within individual samples and requires longer training for
marginal improvements. These approaches, by limiting global token distribution across noise levels
and conditions, fail to capture diffusion processes’ inherent heterogeneity. Diff MoE addresses these
challenges through batch-level global token pool for training, and dynamically adapting computation
to both noise levels and sample complexity for inference.

5 CONCLUSION

In this work, we propose DiffMoE, a simple yet effective framework for scaling diffusion models
via dynamic token selection and global token accessibility. By overcoming the uniform processing
bottleneck of diffusion transformers, DiffMoE achieves superior performance over TC-MoE, EC-
MoE, and even dense models with 3x parameters, while keeping computational costs comparable.
Our results highlight its broad applicability to both class-conditional and text-to-image generation,
positioning DiffMoE as a scalable and efficient foundation for advancing large-scale diffusion models.
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A MORE DIFFMOE ANALYSIS

A.1 ADDITIONAL DIFFMOE DDPM CLASS-CONDITIONAL GENERATION QUALITATIVE AND
QUANTITATIVE RESULTS

We present comprehensive evaluations of Diff MoE-L-E16-DDPM series models. Table 12 shows
the experimental results, while Figure 5 illustrates the diffusion loss comparison against the baseline
model, revealing substantial performance improvements. Furthermore, Figure 6 demonstrates the
scaling capabilities of our DiffMoE-DDPM architecture.
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A.2 COMPUTATIONAL OVERHEAD AND HARDWARE PERFORMANCE ANALYSIS
A.2.1 COMPUTATIONAL OVERHEAD ANALYSIS

DiffMoE maintains high training efficiency while introducing minimal overhead. Compared with
the cost of a standard feed-forward network (FFN), the computational cost of the MoE router is
negligible. The primary overhead arises from the top-K selection operation, whose complexity
grows logarithmically with respect to the number of tokens or experts. Additionally, token indexing
operations (e.g., y [mask] = gate[mask] * x[mask] to gather routed tokens) can introduce
extra computational cost compared with dense models if implemented naively.

Table 6: Computation Complexity Analysis

MOoE Method Top-K Complexity FFN Complexity Relative Overhead Token Indexing Training Speed (steps/sec)

Dense-DiT N/A O(BSD?) N/A N/A 1.9
TC-MoE O(BSElog(E)) O(BSD?) 10~° (negligible) Required 1.5
EC-MoE O(BSElog(S)) O(BSD?) 1073 Required 1.6
DiffMoE O(BSElog(BS))  O(BSD?) 102 (minor) Required 1.6

Note: B denotes batch size, S sequence length, D embedding dimension, and £ number of experts.

A.2.2 HARDWARE-RELATED PERFORMANCE METRICS

We benchmarked training and inference on NVIDIA H800 GPUs using Fully Sharded Data Parallel
(FSDP). Training was conducted with a batch size of 64, while inference used a single GPU with
batch size 20. Input resolution was fixed at 256 x 256 pixels.

Table 7: Training Time Hardware-related Performance Metrics

Model Active Params (M) Training Speed (iters/sec) Training Memory Consumption (GB)
Dense-DiT 458 1.9 29
TC-DiT 458 1.5 31
EC-DiT 458 1.6 31
DiffMoE 458 1.6 31

Table 8: Inference Time Hardware-related Performance Metrics

Model Active Params (M) Throughput (images/sec) Latency (sec/image) Inference Speed (step/sec)
Dense-DiT 458 6.57 0.152 8.22

TC-DiT 458 4.8 0.208 6

EC-DiT 458 5.75 0.173 7.19

DiffMoE 458 5.74 0.174 7.18

All sparse models maintain the same number of active parameters as the dense baseline, ensuring a fair
comparison. While a slight increase in memory usage (approximately 2GB) and a modest decrease
in throughput are observed, these overheads are minor and do not affect DiffMoE’s deployment
feasibility. MoE models can be further improved by advanced frameworks like Megatron Shoeybi
et al. (2019).

A.3 ANALYSIS OF TOKEN INTERACTION STRATEGIES.

As shown in Figure 1. The interaction levels (L1/L2/L3) represent: L1 for isolated token processing,
L2 for local token routing within samples, and L3 for global token routing across sample. Table 14
presents a comprehensive comparison of different token interaction strategies in diffusion models.
The baseline models with L1 strategy (TC-DiT-L-Flow and Dense-DiT-L-Flow) process tokens
independently, resulting in limited performance (FID: 19.06 and 17.01). The L2 strategy, implemented
in EC-DiT-L-Flow, enables local token routing within samples, showing improved performance (FID:
16.12) with the same parameter count. Our proposed L3 strategy in Diff MoE-L-Flow introduces
cross-sample token routing, achieving superior results (FID: 14.41) even compared to the 1.5x larger
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Table 9: DiffMoE Model Configurations. Hyperparameter settings and computational specifications
for class-conditional models. See Appendix E for activated parameter calculations.

Model Config #Avg. Activated Params (Cj,¢ = 1). #Total Params. #Blocks L #Hidden dim. D #Headn #Experts Ciain
DiffMoE-S-E16 32M 139M 12 384 6 16 1
DiffMoE-B-E16 130M 555M 12 768 12 16 1
DiffMoE-L-E8 458M 1.176B 24 1024 16 8 1
DiffMoE-L-E16 458M 1.982B 24 1024 16 16 1
DiffMoE-XL-E16 675M 2.925B 28 1152 16 16 1

Table 10: Module Parameters and Percent- Table 12: Comparisons with the Baseline Mod-
age. We have counted the number of parameters  els. (DDPM) We compare TC, EC and Dense
(M) of various modules to facilitate our analy- ~ Model and show the average activated parameters

sis. of all the experts across all the sampling steps.
Model FFN Attention AdaLN Others Total Model (700K) # Avg. Activated Params. C;Vfir FID50K |
Dense-DiT-L  201.44(44.0%) 100.7(22.0%) 151(33.0%) 4.7(1.0%) 457.84 -
DiffMoE-L-E2  314.8(55.1%)  100.7(17.6%) 151(26.4%) 4.7(0.8%) 571.2 TC’D?T'L'EI 6-DDPM 458M 1 20.81
DiffMoE-L-E4  516.3(66.8%)  100.7(13.0%) 151(19.5%) 4.7((0.6%) 772.7 EC-DiT-L-E16-DDPM 458M 1 17.65
DiffMoE-L-E8  919.3(78.2%)  100.78.6%)  151(12.8%) 4.7(0.4%) 1175.7 Dense-DiT-L-DDPM 458M 1 17.87
DiffMoE-L-E16  17253(87.1%) 100.7(5.1%)  151(7.6%)) 4.700.2%)  1981.7 Dense-DiT-XL-DDPM 675M 1 15.28
DiffMoE-L-E16-DDPM 458M 1 14.60

Table 11: Different Threshold Method. We

use both interval search and dynamic threshold ~ Table 13: Decoder Ablation Study. Evaluation
method to find out the optimal 7. We find that ~ of various pre-trained VAE decoder weights. T:
the dynamic threshold makes a good balance  results from Ma et al. (2024) (DDPM) and Peebles

between C?"fi and performance. & Xie (2023a) (Flow). *: our reproduction. All
miler .
other results are from our experiments. In general,
T C™E FIDSOK | T C™% FID50K | with VAE decoder EMA version, the FID score is
0.999 041 3628 02 L10 1338 consistently lower than MSE version.
0.99 0.51 24.22 0.1 1.22 12.92
0.9 0.71 17.59
0.8 078 16.21 IE-2 171 12.14 Model Training Steps  VAE-Decoder Sampler Batch Size  FIDSOK |
0.7 0.83 15.51 IE-3 233 11.82 Dense-DiT-XL-Flow 400K f-MSE Euler 125 18.80
06 088 1500 IE-4 317 RN Deme-DIT-XL Flow WOk NMSE  pois 13 16
. - . ense-DiT-XL-Flow 5 opris b
0.5 0.92 14.59 1IE-5 436 12.47 Dense-DiT-XL-Flow 400K fEMA Dngns 125 18.45
0.4 0.97 14.16 1E-6  6.01 13.51 Dense-DiT-XL-Flow" 7000K ft-MSE Heun 125 9.66
03 1.03 13.75 1E-7 7.88 13.96 Dense-DiT-XL-Flow* 7000K ft-EMA Heun 125 9.63
o T L : : Dense-DiT-XL-Flow* 000K ft-MSE Dopri5 125 9.51
0.2 1.10 13.38 1E-8  9.67 16.85 Dense-DiT-XL-Flow* ;(mm( (LEMA Do:)riS 125 9.48
0.1 1.22 12.92 1E-9 11.18 18.90 Dense-DiT-XL-DDPM-G 7000K ft-MSE DDPM 125 230
Dynamic 0.95 14.41 00 16 2939 Dense-DiT-XL-DDPM-G T 7000K ft-EMA DDPM 125 227

Dense-DiT-XL-Flow (675M parameters). Notably, when combined with Dynamic Global CP, our
model not only achieves the best FID score but also reduces the computational capacity to 0.95x,
demonstrating both effectiveness and efficiency.

B DyNAMIC CONDITIONAL COMPUTATION

B.1 HARDER WORK NEEDS MORE COMPUTATION

Dynamic Computation in C2I: Figure 1 demonstrates that different classes require varying com-

putational resources during generation. To analyze this variation, we sample 1K different class
labels in a batch and rank their C:¢ in descending order, revealing the computational complexity of
generation across classes. The top-10 most computationally intensive classes for both flow-based and
DDPM models are displayed in Figure 7. The top-10 least computationally intensive classes for both

flow-based and DDPM models are displayed in Figure 8.
Dynamic Computation in T2I:

The dynamic computation paradigm has also been explored in text-to-image (T2I) generation tasks.
To investigate its effectiveness, we used 10K text prompts sampled from GPT-4o to synthesize images
for evaluation. We measured and ranked the per-sample inference capacity C, which reflects the
computational demand. By analyzing the distribution of C, we identify distinctive features of both
challenging and straightforward samples in text-to-image tasks.

Hard Samples typically exhibit the following characteristics:
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0.785- —e— TC-DiT-L-Flow-458M —e— TC-DiT-L-DDPM-458M
—e— Dense-DiT-L-Flow-458M 0.152- —e— Dense-DiT-L-DDPM-458M
0.780- EC-DiT-L-Flow-458M EC-DiT-L-DDPM-458M

—e— DiffMoE-L-E16-Flow-458M 0.150- —e— DiffMoE-L-E16-DDPM-458M

0.148-

Loss
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(a) Loss Comparison of L-Flow Series (b) Loss Comparison of L-DDPM Series

Figure 5: Loss Comparison of L-Flow and L-DDPM Series. The relative losses illustrated in
subfigures (a) and (b) demonstrate the exceptional training dynamics of DiffMoE, consistently
outperforming all baseline models.

Table 14: Performance comparison of different diffusion models with varying token interaction
strategies. All models are trained with Flow Matching for 700K steps. The interaction levels
(L1/L2/L3) represent: L1 (Iso) for isolated token processing, L2 (Loc) for local token routing within
samples, and L3 (Glob) for global token routing across samples. Our Diff MoE-L-Flow with Dynamic
Global CP achieves the best FID score of 14.41 while maintaining parameter efficiency and reduced
computational cost. # A.A.P. denotes # Avg. Act. Params.

Model #A.AP. Train Infer FID50K |
TC-DiT-L-E16-Flow 458M L1 (Isolated) L1 (Isolated) 19.06
Dense-DiT-L-Flow 458M L1 (Isolated) L1 (Isolated) 17.01
EC-DiT-L-E16-Flow 458M L2 (Local) L2 (Loc, Stat TopK) 16.12
EC-DiT-L-E16-Flow 458M L2 (Local) L2 (Loc, Dyn Intra Sample) 23.74
DiffMoE-L-E16-Flow 458M L3 (Global) L3 (Glob, Stat TopK) 15.25
Dense-DiT-XL-Flow 675M L1 (Isolated) L1 (Isolated) 14.77

DifftMoE-L-E16-Flow 454M L3 (Global) L3 (Glob, Dyn Cross Sample) 14.41

* Fine-grained text rendering: e.g., a signboard with multiple handwritten fonts, or a
calendar with circled dates and notes.

* Complex spatial relations: e.g., objects arranged in layered or interleaved configurations,
such as furniture in a cluttered room.

* Multi-object interactions: e.g., a group of people passing a basketball, or multiple bowls
each containing different items.

* Material fidelity and surface effects: e.g., shiny or translucent surfaces like glass cups,
glossy donuts, or metallic reflections.

Easy Samples are characterized by:

» Simple compositions: e.g., a single flower, or one object on a plain background.

* Clear and minimal semantics: e.g., a sunset over the ocean, or a green apple on a white
table.

 Simple attribute emphasis: e.g., a red book, or a yellow balloon.

Our method effectively adapts computation allocation based on such sample-level difficulty, thereby
improving generation quality without requiring manually defined classes or handcrafted heuristics.
These findings demonstrate the benefit of dynamic token routing in adapting to varying sample
difficulty, providing insights for future research on adaptive computation in generative models.
Table 15 provides concrete examples illustrating the correlation between prompt characteristics and
computational difficulty.
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Figure 6: Comparisons with the Baseline Models. (a) We compare TC, EC, and Dense Models
and show the average activated parameters of all experts across all sampling steps. DiffMoE-L-E16-
DDPM even surpasses DenseDiT-XL-DDPM (1.5x params). (b) We also examine S/B size DiffMoE
models to further demonstrate the scalability.

Table 15: Representative text prompts across different difficulty levels.C{» denotes the average

inference capacity, where higher values indicate greater computational demand.

Key Feature Example Prompt Difficulty C¢
Text rendering; complex spa- A close-up view of a calendar. A specific date, the 20th, Hard 1.13
tial relations is circled and has the word “Branch!” written next to

it. A pen is positioned on top of the calendar, pointing
towards the circled date.

Multi-object; complex spatial ~ Three wooden bowls placed side by side on a textured Hard 1.07
relations surface. Each bowl contains a different type of legume.

Simple object; single color A vibrant pink flower with delicate petals. Easy 0.92
Simple composition; attribute A heart-shaped padlock with a shiny silver keyhole, set Easy 0.93
emphasis against a vibrant pink background.

B.2 DYNAMIC TOKEN SELECTION ACROSS NETWORK LAYERS

As illustrated in Figure 9, our analysis reveals distinctive expert utilization patterns across different
network depths. The shallow Layer 1 exhibits pronounced fluctuations and sharp capacity spikes,
indicating intensive early-stage feature extraction. Moving to intermediate Layer 7, we observe
more stabilized capacity patterns, suggesting balanced processing of mid-level features. Layer 13
demonstrates gradual, long-term capacity transitions, while the deep Layer 19 shows notably uniform
expert utilization. This systematic progression from volatile to stable expert engagement reflects the
natural specialization of experts: from low-level feature detection in early layers to refined semantic
processing in deeper layers. Such hierarchical organization of expert behaviors aligns with the
progressive nature of diffusion-based generation.

C DETAILED BACKGROUND OF GENERATIVE MODELING.

In this section, we will provide a detailed bachground of generative modeling of both DDPM Ho
et al. (2020); Song et al. (2021); Rombach et al. (2022) and Rectified Flow (Lipman et al., 2023;
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Figure 7: Top 10 Hardest Classes. The 10 classes with the highest computational cost, sampled
from the training set.

Ma et al., 2024; Esser et al., 2024b) which is helpful to understand the difference and relationship
between them.

Generative modeling essentially defines a mapping between x; from a noise distribution p; (x) to xq
from a data distribution pg(x) leads to time-dependent processes represented as below

Xt = auXg + o€, t € [0, 1], (17)

where o is a decreasing function of ¢ and o is an increasing function of t. We set g = 1,009 =0
and oy = 0,00 = 1 to make the marginals p;(x;) = Ecar(o,1P¢(X¢|€) are consistent with data
po(x) and noise p; (x) distirbution. p; (x) usually be chosen as gaussion distribution A/(0,1).

Different forward path from data to noise leads to different training object which significantly affect
the performance of the model. Next we will introduce DDPM and Rectified Flow.
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Figure 8: Top 10 Easiest Classes. The 10 classes with the lowest computational cost, sampled from
the training set.

C.1 DENOSING DIFFUSION PROBABILISTIC MODELS (DDPM)

In DDPM the choice for «; and o is referred to as the noise schedule and the signal-to-noise-ratio
(SNR) a? /o2 is strictly decreasing w.r.t + (Kingma et al., 2021). Moreover, (Kingma et al., 2021)
prove that the following stochastic differential Eq. (SDE) has same transition distribution as p(x+|xo)
forany ¢t € [0, 1]:

dx; = f(t)x:dt + g(t)dwy, t € [0,1],%0 ~ po(x0), (18)

where w;, € EP is the standard Wiener process, and

_ dlogay

do? dlog
20y _ G0y jdlogoy o
A A TR TR

f(@®) 2, (19)

(Song et al., 2021) proved that the forward path in Eq. 18 has an equivalent reverse process from
time 1 to 0 under some regularity conditions, starting with p(x7)

dx; = [f(t)x: — g(t)*Vx log p(x¢)|dt + g(t)dWe, X7 ~ pr(XT), (20)
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Figure 9: Expert Dynamics across Network Layers. Visualization of expert capacity patterns in
network layers (1, 7, 13, 19). Early layers show high-amplitude fluctuations, while deeper layers

exhibit increasingly stable utilization, demonstrating natural expert specialization throughout the
diffusion process.

where w; € EP is the standard Wiener process. We can esitimate the score term Vy log p;(x¢) as
each time ¢ to iterativtely solve the reverse process, then get the gernerated target. DPMs train a
neural network eg(x, ¢) parameterized by 0 to esitimated the scaled score function —oVy log p;(x:).
To optimize €y, we minimize the following objective (Ho et al., 2020; Song et al., 2021; Ma et al.,
2024)

Lpppm(0) = Bt po (x0) (¢ 1x0) [)\(t)HGe(Xt’ t) + 0+ Vx 10gpt(Xt)H§} , 21

where ); is a time-dependent coefficent. €p(x;,t) can be interpreted as predicting the Gaussian
noise added to x;, thus it is commonly referred to as a noise prediction model. Consequently, the
diffusion model is known as a denoising diffusion probabilistic model. Substitute score term in
equation 20 with —eg(xy, t)/o, we can solve the reverse process and generate samples from DPMs
with numerical solvers. To further accelerate the sampling process, (Song et al., 2021) proved that
the equvivalent probability flow ODE is
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dxy
dt

g2 (t)

%0, eo(x4,t), x1 ~N(0,I). (22)

= vp(xy,t) = f(t)x +

Thus samples can be also generated by solving the ODE from time 1 to 0.

C.2 RECTIFIED FLOW MODELS (FLOW)

Recified flow models (Liu et al., 2022b; Albergo & Vanden-Eijnden, 2023; Lipman et al., 2023)
connects data x( and noise € on a straight line as follows

x; = (1—t)xg+te, tel0,1]. (23)

To precisely express the relationship between x;, xq, and €, we first construct a time-dependent
vector field u : [0,1] x RP — RP. This vector field u; can be used to construct a time-dependent
diffeomorphic map, known as a flow ¢ : [0, 1] x RP — RP through the following ODE:

(o) = w(61(x0) e
$0(x0) = Xo- (25)

The vector field u; can be modeled as a neural network vy (Chen et al., 2018) which leads to a
deep parametric model of the flow ¢,, called a Continuous Normalizing Flow (CNF). We can using
conditional flow matching (CFM) technique (Lipman et al., 2022) to training a CNF. Now we can
define the flow we need as follows:

P (-€) : xo = arxg + ore. (26)
The corresponding velocity vector field of the flow ), can be represented as:

d
ug (Yi(-le)le) = E%(Xok) = yXg + 01€ = € — Xp. (27)

Using conditional flow matching technique, v(x;,t) in Eq. equation 22 can be modeled as a neural
network vy (x¢, t) by minimziing the following objective

d
L¥iow (9) = Et,po(xo),p1 (e) ||V0 (Xta t) - &wt (X0|€)”§ (28)
= Bt po (x0) () Vo (X¢, 1) — (ciexo + G€) |3 (29)
= Et o (x0),p(0) | Vo (Xt5 1) = (€ = x0)[[3- (30)

Samples can be generated by sovling the probability flow ODE below with learned velocity using
numerical sovler like Euler, Heun, Runge-Kutta method.

dx; = vg(x¢, t)dt, x; =€~ N(0,1). (31
C.3 RELATIONSHIP DDPM AND FLOW

There exists a straightforward connection between vy (x;,t) and the score term —o;Vy log p:(x¢)
can be derived as follows

2(t
ol ) = S0+ S o, 32
~ Sty g (dt - ‘“) (=0 Ve log pi (x1)). (33)
(673 Qg
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Let (; = 64 — %’ and we have €p(x¢,t) = —0yVx log pi(x:, then we can get vg(xy,t) = %Xt +
Greo (Xt 1)
By plugging equation 33 into the loss Lrjow in Eq. equation 30 we have:

LF1ow (0) = ]Et,po(x()),pl (e) HVG (Xta t) - (dtxo + dte) ||§ (34
« .
= Et,po(Xo),p(E)HOTtxt + Greg(x¢, t) — O't€||§ (35)
t
= ]Etypo(xo),P(e) HCtE@ (Xt7 t) - CteHg (36)
= E o (xo),p(e) [CF ll€0(xe: 1) —€l[3] - (37)

Considering Eq. equation 17, we have x; ~ N (ayXg, 0:I) and Vi log p(x;) = o 1 (x; — ayxg) =
o; *(o4€) = €. Then, we can get the equivilant loss function as below:

Lriow (0) = Bt po (w0),p(xs]x0) [Cf lleo(xs,t) + 0¢ Vi logpt(xt)llﬂ . (38)

Recall that Lpppum (9) = Et,po(xo),p(xt|xo) [/\(lf)”ég (Xt, t) + 0:Vy logpt(xt) ||%] .

We can find that Lpppy and Lpyow have the same form, with the only difference being their time-
dependent weighting functions, which lead to different trajectories and properties.

D MORE IMPLEMENTATION DETAILS

D.1 TRAINING SETUP.

We train class-conditional DiffMoE and baseline models at 256x256 image resolution on the ImageNet
dataset (Russakovsky et al., 2015) a highly-competitive generative benchmark, which contains
1281167 training images. We use horizontal flips as the only data augmentation. We train all models
with AdamW (Loshchilov & Hutter, 2017). We use a constant learning rate of 1 x 1074, no weight
decay and a fixed global batch size of 256, following (Peebles & Xie, 2023b). We also maintain
an exponential moving average(EMA) of DiffMoE and baseline model weights over training with
a decay of 0.9999. All results reported use the EMA mode. For most experiments, we utilized 4
NVIDIA H800 GPUs during training. To achieve state-of-the-art results, we extended the training
process with 8 NVIDIA H800 GPUs for improved efficiency. For text-to-image experiments, we train
all baseline models Dense-DiT, TC-DiT, EC-DiT, and our DiffMoE on a dataset of 25M 256x256
text-image pairs (mixed from LAION (Schuhmann et al., 2021) and JourneyDB (Pan et al., 2023))
for 576 H800 GPU hours.

D.2 IMPLEMENTATION ALGORITHMS.

We provide a detailed illustration of the Diff MoE layer during training and inference in Algorithm 3
and 4, respectively. We also implemented the same EC-DiT layer in Algorithm [ as (Sun et al.,
2024). We implemented TC-DiT in layer in Algorithm 2 similar to (Dai et al., 2024; Fei et al., 2024)

E CALCULATION OF AVERAGE ACTIVATED PARAMETERS AND AVERAGE
CAPACITY

E.1 COMPUTING AVERAGE INFERENCE CAPACITY

To compute the global average capacity (C % ), we analyze 50K samples across all experts and
sampling steps. For a quick approximation, sampling 1K samples is sufficient due to DiffMoE’s

stable performance characteristics.
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E.2 ESTIMATING AVERAGE ACTIVATED PARAMETERS USING AVERAGE INFERENCE
CAPACITY

We will introduce the relationship between average activated parameters and average capacity in
detail. Let #Module denote the number of parameters a certain Module, Ng denote the number of
experts. Under approximate conditions, for DiT (Peebles & Xie, 2023a) models, we have

In our model, we adopt an interlaced arrangement of the Mixture of Experts (MoE) layer and the
dense layer. Here, #FFN represents the total number of parameters of all Feed - Forward Neural
Network (FFN) layers. Given that the total number of layers is NV, the calculation of the average
activated parameters is as follows:

The contribution of FFN layers to the average activated parameters can be derived step - by - step.
First, consider the proportion of active FFN layers. Since MoE and dense layers are interlaced, the
number of active FFN layers is approximately N/2.

The formula for the average activated parameters of FFN layers is:

# Average Activated Parameters of FFN layers

N/2 N/2 x O 1+ 0™
~ FEN infer FEN = (-~ Cinfer ) o 4ppN
NaTNaxNg TNt N TN Ny < T TN, ) <7

Combining with the contributions from other components (Attention, AdaLLN, and other modules),
the overall average activated parameters of the model can be approximated as:

1+ CoE
# Average Activated Parameters = <1—:_]{';fer) #FFN-+# Attention+# AdalLN+#Other Modules
E
(39)

Table 10 displays the parameters and their corresponding percentages of the main modules of
large-size DiffMoE.

F FID SENSIBILITY AND ABLATION STUDY

FID scores are sensitive to implementation details, necessitating careful ablation studies to understand
the differences between various implementations. Through these studies, we aim to provide the
academic community with clearer insights for fair comparisons between diffusion models.

The observed FID degradation at higher CFG scales is well-documented (Ma et al., 2024), primarily
due to ImageNet’s diverse image quality distribution. When generating high-quality samples, the
deviation from ImageNet’s mixed-quality dataset can lead to increased FID scores, despite improved
visual quality.

For FID calculation, we follow the implementations from SiT (Ma et al., 2024) and DiT (Peebles &
Xie, 2023a). Results marked with T are directly quoted from (Ma et al., 2024) (DDPM) and (Peebles
& Xie, 2023a) (Flow). For results marked with *, we reproduce the experiments using officially
released checkpoints under identical evaluation conditions.

F.1 VAE DECODER ABLATIONS

Following (Peebles & Xie, 2023a), throughout our experiments, we employed pre-trained VAE
models. Specifically, we utilized fine-tuned versions (ft-MSE and ft-EMA) of the original LDM “{8”
model, where only the decoder weights were fine-tuned. For the analysis presented in Experiments
section 3 and Tables 12 and 11 , we tracked metrics using the ft-MSE decoder, while the final
metrics reported in Table 2 was obtained using the ft-EMA decoder. In this section, we examine the
impact of two distinct VAE decoders for our experiments - the two fine-tuned variants employed in
Stable Diffusion. Since all models share identical encoders, we can interchange decoders without
necessitating diffusion model retraining. As demonstrated in Table 13, the DiffMoE model maintains
its superior performance over existing diffusion models.
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Table 17: CFG Scale Ablation Study: FID

Table 16: Batch Size Ablation Study: FID  SCOTEs across different CFG scal.es gsing fine-
scores under different batch sizes using fine- tuned EMA VAE decoder. Bold indicates best

tuned EMA VAE decoder and Heun sampler. performance in its cell.
Bold indicates best performance in its cell.

Model Training Steps ~ Sampler CFG  Batch Size FID50K |

DiffMoE_—L-ES-F]ow 4900K Heun 1.0 125 9.21
Model Training Steps  CFG  Batch Size  FIDS0K | D D o Tonox fem 10 oo
DiffMoE-L-E8-Flow 7000K 1.0 10 9.60 DiffMoE-L-E8-Flow 4900K Heun 143 125 2.14
DiffMoE-L-E8-Flow 7000K 1.0 15 9.62 Dense-DiT-XL-Flow* 7000K Heun 143 125 2.08
DiffMoE-L-E8-Flow 7000K 1.0 32 9.77 DiffMoE-L-E8-Flow 7000K Heun 1.43 125 2.13
DiffMoE-L-E8-Flow 7000K 1.0 50 9.98 DiffMoE-L-E8-Flow 4900K Heun 15 125 228
DiffMoE-L-E8-Flow 7000K 1.0 75 9.90 Dense-DiT-XL-Flow* 7000K Heun 15 125 221
DiffMoE-L-E8-Flow 7000K 1.0 100 9.76 DiffMoE-L-E8-Flow 7000K Heun 15 125 2.18
DiffMoE-L-E8-Flow 7000K 1.0 125 9.78 DiffMoE-L-E8-DDPM 6500K DDPM 1.0 125 9.39

" " Dense-DiT-XL-DDPM* 7000K DDPM 1.0 125 9.63
gcnsc-g!¥-§l]:-;:ow ;838; :g }2 gi; DiffMoE-L-ES-DDPM 7000K DDPM 1.0 125 9.17

ense-DiT-XL-Flow* K . "

. . DiffMoE-L-E8-DDPM 6500K DDPM 1.5 125 227
Dense-DiT-XL-Flow 7000K 1.0 50 9.84 Dense-DiT-XL-DDPM*  7000K  DDPM 15 125 232
Dense-DiT-XL-Flow* 7000K 1.0 75 9.67 DiffMoE-L-ES-DDPM 7000K DDPM 1.5 125 2.32
Dense-DiT-XL-Flow™ 7000K 1.0 100 9.65
Dense-DIT-XL-Flow 7000K 10 125 964 Table 18: Flow ODE Sampler Ablation
DiffMoE-L-E8-Flow 7000K 15 10 2.19 . .

DIffMOE-LES Flow J000K s » AT Study: FID scores across different ODE sam-
DiffMoE-L-E8-Flow 000K L5 30 216 plers with CFG scale 1.0 and fine-tuned EMA
DiffMoE-L-E8-Flow 7000K 15 75 2.13 N
DiffMoE-L-E8-Flow 7000K L5 100 2.17 VAE decoder. Bold indicates best performance
DiffMoE-L-E8-Fl 7000K 1.5 125 2.18 P
o o in its cell.

Dense-DiT-XL-Flow* 7000K 1.5 10 2.23
Dense-DiT-XL-Flow* 7000K 1.5 15 2.23
Dense-DiT—XL-FloWI 7000K L5 50 2.21 Model Training Steps ~ Sampler  Batch Size  FID50K |
Dense-DiT-XL-Flow* 7000K L3 7 240 DiffMoE-L-E8-Flow 4900K Euler 125 9.37
Dense-DiT-XL-Flow 7000K 1.5 100 2.22 !
Dense-DIT-XL-Flow* J000K 3 125 o DiffMoE-L-E8-Flow 4900K Heun 125 9.21

' - DiffMoE-L-E8-Flow 4900K Euler 250 9.39
DiffMoE-L-E8-DDPM 7000K 15 50 2.30 DiffMoE-L-E8-Flow 4900K Dopri5 250 9.06
DiffMoE-L-E8-DDPM 7000K L5 75 233 DiffMoE-L-E8-Flow 7000K Euler 125 9.86
DiffMoE-L-ES-DDPM 7000K 1.5 100 2:5Y) DiffMoE-L-E8-Flow ~ 7000K Heun 125 9.78
DiffMoE-L-E8-DDPM 7000K 15 125 232 DiffMoE-L-E8-Flow 7000K Euler 250 9.94

DiffMoE-L-E8-Flow 7000K Dopri5 250 9.56

F.2 FLow ODE-SAMPLER ABLATIONS

Higher-order ODE samplers generally achieve better FID scores. As shown in Table 18, the black-
box dopri5 sampler outperforms heun (NFE=250), which in turn surpasses euler (NFE). For fair
comparison with baseline models, we employ the euler sampler in flow-based experiments. However,
to benchmark against SiT-XL (Dense-DiT-XL-Flow) (Ma et al., 2024), we use the heun sampler to
achieve SOTA results.

F.3 CLASSIFIER-FREE-GUIDENCE ABLATIONS

We evaluate different models with varying classifier-free guidance (CFG) scales in Table 17, and
discover that the CFG scale of 1.5 adopted in DiT (Peebles & Xie, 2023a) and SiT (Ma et al., 2024)
studies may not be universally optimal. Our analysis reveals the best CFG scale approximates to 1.43
through comprehensive comparisons. However, different models exhibit distinct characteristics that
lead to varying optimal CFG scales, suggesting that fixing a uniform scale across all models could
introduce evaluation bias. To ensure relatively fair comparisons while maintaining consistency with
established practices, we ultimately adopt CFG 1.5 as the default setting in our experiments. This
decision aligns with the well-documented trade-off in diffusion models: higher CFG scales (e.g., 4.0)
typically enhance image fidelity at the cost of increased FID scores, while lower scales (e.g., 1.5)
yield better FID metrics despite reduced perceptual quality. This phenomenon primarily stems from
FID’s sensitivity to distributional coverage - higher guidance scales tend to produce samples with
reduced diversity that more closely match the training distribution statistics, paradoxically resulting
in worse FID scores despite improved individual sample quality.

F.4 BATCH SIZES ABLATIONS
The batch sizes ablation study reveals critical insights into the interplay between batch size and

classifier-free guidance (CFG) scales for the DiffMoE-L-E8-Flow model. At CFG=1.0, FID scores
remain elevated (9.60-9.98), with smaller batch sizes (e.g., bs=10) marginally outperforming larger
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Algorithm 1 EC - DiT Layer

Require: z (input tensor)
B (batch size), S (sequence length), d (hidden dim), W,. (routing weights), experts (list of
expert FFNs)
E (number of experts), C' (expert capacity)
Step 1: Compute Token - Expert Affinity Matrix
logits « einsum(‘bsd, de — bse’, x, W,.)
scores + softmax(logits, dim = —1).permute(—1, —2)
Step 2: Select top - k tokens for each expert
gating, index < top_k(scores, k = C,dim = —1)
dispatch «+ one_hot(index, num_classes = .S)
Step 3: Process tokens through experts and combine
Zin < einsum(‘becs, bsd — becd', dispatch, x)
x. + [experts[e](x;n[:, €]) for e in range(E)]
10: z, < stack(z.,dim = 1)
11: 4y < einsum(‘becs, bec, becd — bsd’, dispatch, gating, )
Ensure: z,,;

A U S

N

configurations, exhibiting a U-shaped trend. However, elevating CFG to 1.5 drastically reduces FID
to 2.13-2.19, achieving optimal performance at bs=75 (2.13), while demonstrating remarkable
robustness to batch size variations (A=0.06 vs. A=0.38 at CFG=1.0).

F.5 CONCLUSION: A LITTLE THOUGHT ABOUT FID

While Fréchet Inception Distance (FID) is widely adopted for evaluating generative models, par-
ticularly on ImageNet, it exhibits several notable limitations. Our analysis reveals counterintuitive
behaviors, especially when evaluating models with classifier-free guidance (CFG). For example,
higher CFG scales typically enhance perceptual quality but paradoxically result in worse FID scores,
despite producing visually superior images. This discrepancy stems from FID’s fundamental mecha-
nism: it measures statistical similarities between generated and real distributions in the Inception
network’s feature space, often failing to capture perceptual quality and fine-grained details. Moreover,
FID scores are susceptible to various implementation factors, including choice of ODE samplers,
hardware configurations, random seeds, and sample size for estimation. These sensitivities can impact
reproducibility and comparison across different studies. Furthermore, FID’s focus on distributional
overlap overlooks critical aspects such as mode collapse and overfitting, as it does not explicitly eval-
uate sample diversity or novelty. These limitations underscore the pressing need for more robust and
comprehensive metrics that can better reflect the true modeling capabilities of generative models. We
advocate for developing new evaluation frameworks that combine precision-recall curves, perceptual
quality metrics, and human evaluation studies, which would provide a more reliable assessment of
generative model performance.

G VISUAL GENERATION RESULTS

G.1 CLASS-CONDITIONAL IMAGE GENERATION

To demonstrate the generation capabilities of our model, we showcase diverse images sampled
from DiffMoE-L-E8-Flow and DiffMoE-L-E8-DDPM, conditioned on ImageNet class labels. These
visualizations illustrate the model’s ability to generate high-quality, class-specific images. See Figure
10 and 11.

G.2 TEXT-CONDITIONAL IMAGE GENERATION
We present a collection of images generated by our DiffMoE-T2I-Flow model using various text

prompts as conditioning inputs. These examples demonstrate the model’s versatility in translating
textual descriptions into corresponding visual representations. See Figure 12.
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Algorithm 2 TC - DiT layer

Require: z (input tensor), W, (routing weights), experts (list of expert FFNs)
B (batch size), S (sequence length), d (hidden dim), K (experts per token)
Step 1: Save original input shape
orig_shape < shape(x)
Step 2: Compute Token - Expert Affinity Matrix
logits < einsum(‘bsd, de — bse’, x, W,.)
scores + softmax(logits, dim = —1)
Step 3: Select top - k tokens for each expert
gating, index < top_k(scores, k = K,dim = —1)
Step 4: Flatten x and top - k indices
9: x  view(x, (—1, z.shape[—1]))
10: flat_topk_idx < view(topk.idx, (—1))
11: Step 5: Process tokens through experts
12: x < repeat_interleave(z, K, dim = 0)
13: y < empty_like(z)
14: for i + 1 to len(experts) do
15: y[flat_topk_idx == i] < expert, (z[flat_topk idx == i])
16: end for
17: y + sum(view(y, (xgating.shape, —1)) - gating.unsqueeze(—1),dim = 1)
18: y <« view(y, orig_shape)
Ensure: y

PRDIUN AR

Algorithm 3 DiffMoE layer (Training)

Require: z (input tensor)
B (batch size), S (flattened sequence length), D (hidden dim), N (number of experts)
W, (routing weights), experts (list of expert FFNs), C' (expert capacity)

Step 1: Batch-level token pool and compute capacity prediction

x + view(z, (-1, D))

S« shape(z)[0]

capacity_pred < capacity_predictor(detach(z))

Clrain < int((S/N) x C)

Step 2: Compute token - expert affinity scores

logits < einsum(‘sd, de — se’, x, W,.)

scores < softmax(logits, dim = —1).permute(—1, —2)

9: gating, index < top_k(scores, k = Cipin, dim = —1, sorted = False)

10: Step 3: Process tokens through experts

11: y < zeros_like(z), ones <— zeros(N, S)

12: fori <— 1to N do

A A S ey

13: ylindex[i], ] +— y[index][d], :] 4 gating[i].unsqueeze(—1) x expert,(x[index][d], :])
14: ones|[i|[index[i]] + 1
15: end for

16: Step 4: Update capacity threshold
17: update_threshold(capacity_pred)
18: Step 5: Reshape output

19: xou < view(y, (B, s, D))

Ensure: z,,, ones, capacity_pred

H STATEMENT ON LLM ASSISTANCE

Portions of this manuscript were refined for clarity and readability using Claude and DeepSeek. The
authors remain solely responsible for the technical content and conclusions presented in this work.
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Algorithm 4 DiffMoE layer (Inference)

Require: z (input tensor)

°

10:
11:
12:
13:
14:

15

16:

A A S e

B (batch size), S (flattened sequence length), D (hidden dim), N (number of experts)
W, (routing weights), experts (list of expert FFNs), C' (expert capacity)
threshold (expert threshold)
Step 1: Reshape input and compute capacity prediction
x + view(z, (=1, D))
S < shape(z)[0]
capacity_pred < sigmoid(capacity_predictor(detach(z)))
Step 2: Compute token - expert affinity scores
logits «+ einsum(‘sd, de — se’, x, W,.)
scores < softmax(logits, dim = —1).permute(—1, —2)
Step 3: Process tokens through experts
y < zeros_like(x)
fori < 1to N do
Eprea <— sum(where(capacity_pred[:,i| > threshold[i], 1,0))
gating, index < top_k(scores[i], k = kpreq, dim = —1, sorted = False)
ylindex, :] + ylindex, :] + gating.unsqueeze(—1) x expert, (z[index, :])
end for
: Step 4: Reshape output
Tou  view(y, (B, s, D))

Ensure: .y

Figure 10: Class-conditional Generation. Uncurated 256x256 DiffMoE-L-E8-Flow samples
CFG scale = 4.0.
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Figure 11: Class-conditional Generation. Uncurated 256 x256 DiffMoE-L-E8-DDPM samples
CFG scale = 4.0.
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Figure 12: Text-to-Image Generation. Uncurated 256 X256 Images generated by DiffMoE-E16-
T2I-Flow
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