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Abstract

Material property prediction is essential for
optimizing physical processes and developing
novel materials in physical chemistry and ma-
terials science. Large language models (LLMs)
have emerged as powerful tools for this task
but encounter challenges in physics-related ap-
plications due to limited access to specialized
external knowledge. To overcome these lim-
itations, we present ChatProp, an intelligent
agent that integrates first-principles (FP) calcu-
lations with machine learning-driven potential
energy surface (PES) models to enhance the
accuracy and efficiency of material property
prediction. Leveraging LLMs such as GPT-
4, ChatProp extracts critical information from
textual inputs and generates appropriate re-
sponses, thereby eliminating the need for rigid,
structured queries. The system forms a robust
pipeline for tasks such as data retrieval and
property prediction. In evaluations using GPT-
4, ChatProp achieves accuracy rates of 96.8%
for property prediction. As the first agent to
integrate FP and machine learning PES mod-
els for material property prediction, ChatProp
demonstrates the potential of combining LLMs
with databases and machine learning in physi-
cal chemistry, showcasing transformative capa-
bilities for future scientific advancements.

1 Introduction

In recent years, the field of generative artificial in-
telligence (AI) has experienced an unprecedented
surge, primarily driven by the development of large
language models (LLMs) such as BERT [Ken-
ton and Toutanova, 2019], GPT-4 [OpenAl, 2023],
and PalLM [Chowdhery et al., 2023]. These mod-
els, built on the transformer architecture [Vaswani,
2017], have revolutionized natural language pro-
cessing by effectively handling complex language
tasks and demonstrating capabilities similar to cer-
tain aspects of human cognition, including few-
shot and zero-shot learning [Brown, 2020]. This

proficiency is achieved through the analysis of ex-
tensive text corpora, underscoring the vast potential
of LLMs across various domains. However, LLMs
encounter significant limitations in performing
precise mathematical computations and domain-
specific tasks, such as physical processes[Schick
et al., 2024; Castro Nascimento and Pimentel,
2023]. To address these shortcomings, a signifi-
cant advancement in this swiftly changing domain
is the emergence of autonomous LLLM agents that
augment LLLMs with specialized external tools or
plugins[Lowe et al., 2011; Shen et al., 2024]. They
harness the capabilities of LLMs through prompt
engineering [Reynolds and McDonell, 2021; Po-
lak and Morgan, 2024; Zheng et al., 2023], fine-
tuning [Bakker et al., 2022; Wei et al., 2021; Dunn
et al., 2022], or integrating them with other sci-
entific tools [Shen et al., 2024; Wu et al., 2023;
M. Bran et al., 2024].

Despite significant progress in applying LLMs
across diverse fields such as medicine [Lee et al.,
2023; Waisberg et al., 2023] and biology [Nori
et al., 2023; Wang et al., 2023], the full potential
of this advanced technology within the physical
sciences, particularly in material property predic-
tion [Zhong et al., 2024], remains largely untapped.
This limitation primarily stems from three key chal-
lenges. Firstly, many material entities lack suitable
text-compatible input representations, impeding
LLMs’ ability to fully capture their complex prop-
erties. The inherent difficulties LLMs encounter in
encoding physical structures limit their understand-
ing and processing capabilities, thereby restricting
their effectiveness in accurately predicting material
properties [Hu et al., 2020; Ward et al., 2016]. Sec-
ondly, the scarcity of high-quality, domain-specific
data in physical chemistry further exacerbates this
issue. Unlike other scientific disciplines, physical
chemistry suffers from a limited number of special-
ized databases and datasets, making it challenging
to train sufficiently large-scale LLMs. This data de-



ficiency hampers the ability to represent and learn
from the intricate physical chemical information
necessary for precise property prediction [Zheng
et al., 2023; Dagdelen et al., 2024]. Thirdly, the
level of automation in physical chemistry remains
relatively low compared to other fields, primarily
due to its highly experimental nature [Zhao et al.,
2022]. This lack of automation is particularly pro-
nounced in material property prediction, where
manual interventions are often required to interpret
and validate results. Consequently, these limita-
tions collectively underscore the necessity for an
intelligent agent specifically designed for material
property prediction. Such an agent [M. Bran et al.,
2024] can integrate specialized computational tools
and methodologies, overcoming the constraints of
traditional LLMs and enhancing the accuracy and
efficiency of property predictions in the physical
sciences.

Current computational methods for material
property prediction primarily involve machine
learning (ML)-based potential energy surface
(PES) models and first-principles (FP) calculations.
FP methods, which do not rely on empirical force
fields, begin with the initial configuration of a sys-
tem and solve the Schrédinger equation based on
atomic interactions and fundamental principles of
quantum mechanics [Schleder et al., 2019]. In con-
trast, ML-based PES models significantly reduce
computational costs [Lanzoni et al., 2022]. How-
ever, their applicability is limited to certain materi-
als because of their specific model structures and
specific training data, underscoring the continued
necessity of FP calculations [Marcato et al., 2023].
Many current studies overly rely on pre-trained
ML-based PES models, neglecting the critical role
of FP methods and thereby constraining their sys-
tems’ capabilities. For instance, in [Kang and Kim,
2024], the authors employ pre-trained models to
predict material properties without considering the
importance of FP methods. To address these chal-
lenges, we have developed ChatProp, an intelligent
agent that synergistically integrates FP software
predictions with ML-driven PES models. Contem-
poraneously with this work, a strategy is introduced
to augment an LLLM with external tools to accom-
plish complex tasks in physical chemistry [Boiko
et al., 2023], which GPT-4 alone cannot handle.
While their focus is on cloud laboratories, our ap-
proach encompasses a broader array of tasks and
tools. Our agent overcomes the obstacles by seam-
lessly combining FP and ML-based PES models,

facilitating accurate and efficient material property
prediction without requiring extensive computa-
tional skills from users.

In this work, we present ChatProp, a pioneering
intelligent agent developed for material property
prediction, specifically tailored to materials science.
Unlike other systems, ChatProp integrates both FP
calculations and ML-driven PES models, marking
the first such approach in the field. We have im-
plemented nine tools, as shown in Figure 1 and
detailed in Section 2, that empower ChatProp with
comprehensive knowledge of material properties
and the capacity to execute tasks using FP calcu-
lation software or pre-trained ML models directly.
While the current set of tools is not exhaustive,
ChatProp is designed to be flexible and can easily
incorporate new tools to support emerging applica-
tions. Serving both as an assistant to expert scien-
tists and a user-friendly interface for non-experts,
ChatProp bridges the gap between complex ma-
terial property prediction and accessible, accurate
physical knowledge.

2 Methodology

By leveraging computational methods, researchers
can efficiently explore vast physical spaces, thereby
reducing reliance on time-consuming and costly
experimental procedures. Inspired by successful
applications in other fields [Schick et al., 2024;
Yang et al., 2023; Shen et al., 2024], we propose
ChatProp, an LLM-powered physical chemistry en-
gine designed to streamline the reasoning process
for various material property prediction tasks.

2.1 Design of ChatProp

ChatProp leverages multiple expert-designed tools
for physical chemistry and operates by prompting
an LLM (GPT-4 in our experiments) with specific
instructions about the task and the desired format,
as depicted in [Yao et al., 2022]. This process re-
quires the LLM to reason about the current state of
the task, consider its relevance to the final goal, and
plan the next steps accordingly, thereby demonstrat-
ing its level of understanding. After the reasoning
in the “Thought” step, the LLM requests a tool (pre-
ceded by the keyword “Action”) and the input for
this tool (preceded by the keyword “Action Input”).
The text generation then pauses, and the program
attempts to execute the requested function using the
provided input. The result is returned to the LLM,
preceded by the keyword “Evaluate”, and the LLM
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Figure 1: Schematic representation of ChatProp. The LLM proceeds through an automatic, iterative chain-of-
thought process, which comprises four core components: Thought, Action, Action Input and Evaluate. A set of
tools is created using a variety of physics-related packages and software, enabling the intelligent construction of
first-principles (FP) and machine learning (ML) potential energy surfaces (PES) models. These tools and a user
input are then given to an LLM. Upon receiving a query from human, the agent formulates a plan and selects a
suitable toolkit. Subsequently, the toolkit generates outputs following the proposed plan, and the LLM evaluates the
output obtained from tools and makes these results into a final response.

proceeds to the “Thought” step again. It continues
iteratively until the final answer is reached.

The effectiveness of autonomous LLM agents is
predicated on their capability to accurately extract
essential details from textual inputs and offer rel-
evant responses, irrespective of the presence of a
rigidly structured query. This concept is clearly il-
lustrated in ChatProp, as demonstrated in Figure 1.
A user may pose a query in textual form regard-
ing the properties of a material, to which ChatProp
responds by supplying a detailed description re-
lated to the material in question. Moreover, the
operational scope of this system extends beyond
the simple retrieval of information. When a user
expresses the need to get properties for specific
materials, ChatProp is capable of generating the
requested material properties accordingly.

2.2 Toolkit

While our current implementation incorporates a
limited assortment of tools, it is important to high-
light that this toolkit is highly extensible and can
be easily expanded based on specific requirements
and resource availability. The tools are categorized
into two groups: general tools and prediction tools.

2.2.1 General Tools

Literature Search. The LitSearch tool is designed
to extract pertinent information from scientific doc-
uments, including PDFs and text files (such as
raw HTML), to generate precise and well-founded
answers to user queries. This tool utilizes the
paper-ga Python package [Skarlinski et al., 2024;
Léla et al., 2023]. By employing OpenAl Embed-
dings and FAISS—a vector database—it efficiently
embeds and searches through documents. Subse-
quently, a language model assists in formulating
responses based on these embedded vectors.

Web Search. The WebSearch tool enables the
language model to access relevant information
from the internet. Using SerpAPI, the tool sends
queries to search engines and aggregates snippets
from the first page of Google search results. A
notable feature of this tool is its ability to serve as
a fallback option when the model faces a query it
cannot handle or is uncertain about which tool to
employ.

Code Interpreter. As one of LangChain’s stan-
dard tools, Python REPL supplies ChatProp with
an operational Python shell. This tool allows the
LLM to write and execute Python code directly,
facilitating the completion of a wide range of intri-



cate tasks, including numerical computations, Al
model training, and data analysis.

Human Expert. The Human tool functions as a
direct interface for interacting with users, enabling
the engine to pose questions and receive responses
from the user. The LLM may invoke this tool when
it encounters challenges or uncertainties regarding
the subsequent steps.

2.2.2 Prediction Tools

Dataset Search. When a user requests informa-
tion about specific material structures present in
the databases, ChatProp can identify and provide
the required information from the pre-tabulated
data. Upon receiving a user query, ChatProp au-
tonomously selects the most suitable method to re-
trieve the necessary data. It then generates Python
code tailored to extract specific information from
the database according to the predefined strategy,
typically utilizing the pandas library for data ex-
traction or filtering. The generated code is sub-
sequently executed within ChatProp’s designated
executor. After processing the results, ChatProp
autonomously determines the next steps required to
formulate the final answer, which is then presented
as the requested response.
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Figure 2: Tasks of ChatProp for predicting material
properties. Given an input containing the materials’
relevant information, the structure generate tool first
obtains the molecular structure information R. Then
the Predictor Select tool explores R to decide whether
to use FP predictor or ML predictor. The properties
obtained from Ab initio calculations will be stored in a
dataset and used to train a pre-trained model, enabling
fast prediction of properties for similar substances.

Predictor Select. The accuracy of the look-
up table search is contingent on the precalculated
values available in the specific files. For queries
regarding the properties of materials that are not

available, computational simulation can serve as
an attractive alternative method; however, simula-
tions are time-intensive processes and require an
abundance of computational resources. The best
resolution to such challenges is to first judge and
choose the appropriate calculation method. In this
work, ChatProp determines whether to choose FP
calculation or ML models based on the following
methods [Zhang et al., 2020].

Given a configuration R, with ¢ labeling a con-
tinuous or discrete series of operations, we define
the error indicator ¢; as the maximal standard de-
viation of the atomic force predicted by the model
ensemble,

er = max /([[Fu,i(Re) = (Fua(R))IP) (1)

where Fy, ;(R¢) = —V,;Ey(R¢) denotes the force
on the atom with index ¢ predicted by the model
FE,,, and V; denotes the derivative with respect
to the coordinate of the ¢-th atom. Both of the
notations (.. .) in Eq. 2 denote the expectation with
respect to the ensemble of models and are estimated
by the average of model predictions. For example,
(Fyi(R¢)) is estimated by

1 N,

= 3 2 Fuai(Re)

=1

(Fu,i(Re)) 2

In our approach, the selection of the appropriate
computational tool for predicting material proper-
ties is governed by a threshold oy,. This threshold
is carefully chosen, not arbitrarily small, but rather
set slightly above the accuracy achieved during
model training. This ensures that the model is not
overly confident in its predictions for configura-
tions that are less reliable, while still leveraging
the power of the pre-trained models where appro-
priate. To facilitate this tool selection process, we
design Algorithm 1 to classify molecular configu-
rations into two distinct sets: Iy and Rg,. These
sets represent the configurations that are suitable
for prediction by the ML Predictor tool and the
FP Predictor tool, respectively. Specifically, con-
figurations in the Ry set are those for which the
predicted atomic forces fall within the acceptable
error range defined by €; < 0}o, meaning that the
pre-trained ML models can be confidently used for
prediction. On the other hand, configurations in
the Ry, set have larger prediction errors (¢; > 0yo),
indicating that more accurate calculations should
be performed using FP methods.

Therefore, for a new structure, the algorithm
determines whether it belongs to Ry, or Ry, based
on the calculated error indicator ¢;. This decision-



Algorithm 1 Prediction Tool Selection Algorithm

Require: Ensemble of Models {E1, Fs, ..., En,, }, Set of
Configurations {R1, Rz, ..., R}, Threshold oy,
Ensure: Output Sets R, Rip
1: Initialize R <+ 0
2: Initialize Ry, — 0

3: for each configuration R in {R1,...,R,} do

4: for each model E, in {E1, ..., EnN,, } do

5 Compute Fyy o,i(Rt) = —ViEw(R¢) for each
atom ¢

6 end for

7: for each atom ¢ do

8: e = max; /([ Fu,i(Re) — (Fu,i(Re))[?)

9: (Fui(Re)) = 5= 0™ Fu,a,i(Re)

10: end for

11: €; < Mmax; o;

12: if ¢, > o), then Add R to

13: pr = {Rn | n e pr,[fp = {n | € > 0'10}}

14: elseAdd R; to

15: R = {Rn ‘ n e Iml7Iml = {'I’L ‘ € < Ul(y}}

16: end if

17: end for

18: return Ry, Ry

making process ensures that the most appropriate
and computationally efficient tool is used for each
material property prediction.

Structure Generate. The Structure Generation
tool utilizes the Material Project database to obtain
accurate and reliable molecular structures. The Ma-
terial Project offers a comprehensive repository of
material properties and structures, enabling Chat-
Prop to access high-quality data essential for subse-
quent predictive tasks. After acquiring the molecu-
lar structure, it undergoes a normalization process
to ensure consistency and enhance computational
efficiency. This normalization is performed using

the Gram-Schmidt orthogonalization method:
k—1

wn = v — 3 At 3

i=1 {us, ua)
where vy, is the original vector representing the k-th
atomic position in the molecular structure, and u;
are the orthonormal basis vectors derived from the
preceding steps (t = 1,2,...,k — 1).

ML Predictor. As shown in Figure 2, due to
its ability to efficiently handle high-dimensional
potential energy surfaces and accurately model
complex material behaviors through deep learn-
ing techniques, the DeePMD [Wen et al., 2021] is
employed by the ML Predictor to predict material
properties. ML-based PES models provide substan-
tial reductions in computational costs while main-
taining comparable accuracy. By training on ex-
tensive datasets derived from FP calculations, ML
models can learn complex relationships between
molecular structures and their properties [Lanzoni

et al., 2022]. A common approach involves repre-
senting the potential energy Fpgs(R) as a function
learned by the ML model:

EPES (R) ~ ML Model(R), (4)

where R denotes the atomic coordinates of the
molecule.

Techniques such as neural networks, Gaussian
processes, and kernel ridge regression have been
employed to develop PES models capable of pre-
dicting properties like binding energies, reaction
rates, and molecular conformations with impressive
speed. For instance, the Neural Network Potential
(NNP) can be expressed as

N
Ennp(R) = Y N(Gy), Q)
i=1

where NV (G;) is the neural network function ap-
plied to the symmetry functions G;, which repre-
sent the local environment of the i-th atom, and NV
is the total number of atoms in the system.

In this work, we utilize the DeePMD, which em-
ploys deep neural networks to accurately represent
the PES. It maps the symmetry functions to an
energy contribution

E; = Deep Neural Network(G;), (6)

where G; represents a different symmetry function
for the ¢-th atom.

Then, the DeePMD model expresses the total
energy as a sum of atomic contributions as

N
Eiotal = Z E;, @)
i=1

where F; is the energy contribution from the ¢-th
atom, and N is the total number of atoms in the
system.

FP Predictor. The plane-wave density func-
tional theory (PWDFT) platform [Hu et al.,
2017a,b, 2021; Feng et al., 2024; Wu et al., 2024]
is capable of computing detailed material proper-
ties while supporting multi-accelerator and paral-
lel modes, which facilitates the rapid training and
deployment of neural network PES models. There-
fore, as shown in Figure 2, the FP Predictor utilizes
PWDFEFT as the FP calculation software to obtain
material properties. This tool performs FP cal-
culations to determine energies, forces, and other
relevant material properties. The process can be
summarized as follows:

First-Principles Calculation. FP methods, rooted
in quantum mechanics, provide a fundamental
framework for predicting material properties with-
out empirical parameters. They are renowned for



their high precision and reliability, making them
indispensable for studying complex physical and
chemical systems and reactions. The foundation of
FP methods lies in solving the Schrodinger equa-
tion: .

HVU = EV, ®)
where H is the Hamiltonian operator, ¥ is the
wavefunction of the system, and E is the energy
eigenvalue. In the context of density functional
theory (DFT), the energy of a system is expressed
as a functional of the electron density p(r):

/Vext dI‘+
/
5//Wdrdr +Exc[p],

where T'[p] is the kinetic energy functional, Vex(r)
is the external potential, and Fx.[p] represents the
exchange-correlation energy functional.

The Kohn-Sham equations, which are central to
DFT, are given by

(-7 + Ven®)) ) = ). 10)

where 1);(r) are the Kohn-Sham orbitals, €; are the
orbital energies, and V¢ (r) is the effective poten-

tial,
v OB
Vegp(r) = Vext(r / = 5;&[; L an

Here, § Exc[p]/dp(r) denotes the functional deriva-
tive of the exchange-correlation energy with re-
spect to the electron density p(r).

Additionally, AIMD integrates these calcula-
tions into the equations of motion:

d’R;
dt?
where m; is the mass of the i-th atom, R; is the
position vector of the i-th atom, and Vg, E[p] is the
gradient of the energy with respect to the position

of the i-th atom.

The FP Predictor performs the PWDFT to obtain
the total energy Eioa1, forces F;, and other relevant
properties for a given molecular structure.

Data Storage. The computed properties are
stored in the dataset with corresponding molecu-
lar identifiers, facilitating quick retrieval for future
predictions.

Training DeePMD. The stored data is used to
train the DeePMD model. The training process
involves optimizing the network parameters 6 to
minimize the loss function:

N
)= (B - mns) +Alel?, a3

=1

©

= —Vr, E[p], 12)

ms

where Ept | is the predicted total energy, E{, is

the true total energy from FP calculations, A is a
regularization parameter, and ||0||? is the L2 norm
of the network parameters to prevent overfitting.

Model Utilization. Once trained, the DeePMD
model can predict the properties of similar
molecules directly, bypassing the need for repeti-
tive FP calculations and thereby enhancing compu-
tational efficiency.

3 Experiments

In this section, we delineate the experimental set-
tings, procedures, and outcomes employed to evalu-
ate the performance of ChatProp. The experiments
are structured to assess the accuracy and efficiency
of ChatProp in managing both data retrieval and
property prediction tasks.

3.1 Experimental Settings
3.1.1 Model and Task Division

The primary model utilized in our experiments is
GPT-4, integrated into the ChatProp framework.
ChatProp employs a suite of specialized tools to ex-
ecute material property predictions, which are cat-
egorized into two primary tasks. Dataset Search
Task: This task involves retrieving material prop-
erty data from existing databases; Prediction Task:
This task entails predicting material properties us-
ing computational models when data retrieval is
unsuccessful.

3.1.2 Experimental Metrics

Accuracies are evaluated using three categories:
True, indicating that the task was completed suc-
cessfully with correct and reliable results; Token
False, signifying that the model’s response ex-
ceeded the maximum token allowance, resulting in
an incomplete output; and Logic False, denoting
that ChatProp encountered a logical error during
task execution, leading to incorrect or anomalous
responses. These categories provide a comprehen-
sive framework for assessing the performance and
reliability of ChatProp across various scenarios.
Furthermore, the average time is utilized to mea-
sure the duration of each task within each set of
experiments.

3.2 Experimental Process and Results

To ensure the reliability and robustness of our eval-
uation, each experimental task has been conducted
three times, resulting in a total of six experiments
(three runs for each task type). Each run comprises
100 sample questions for both the Dataset Search
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Figure 3: Depiction of average accuracies for tasks
utilizing the GPT-4 model—search and prediction. Ac-
curacies are evaluated based on three categories: True,
Token False, and Logic False. Token False indicates
that the Large Language Model (LLM) has exceeded
the maximum token allowance, while Logic False indi-
cates that ChatProp’s logic has resulted in an incorrect
response or anomaly. The numbers within the bars rep-
resent the counts of each category.

and Prediction tasks. Conducting multiple runs al-
lows us to account for inherent variability in the
model’s performance and to compute average ac-
curacies that more accurately reflect ChatProp’s
true capabilities. Figure 3 presents the accuracy
measurements for the two tasks using ChatProp
with GPT-4. Accuracy is evaluated over three runs,
each comprising 100 sample questions for both the
Dataset Search and Prediction tasks. The bar graph
displays the number of questions in each accuracy
category: True, Token False, and Logic False.

As shown in Table 1, for the Dataset Search Task,
out of 100 questions, 95 are answered correctly
(True), 3 exceed the token limit, and 2 contain logic
errors. Excluding the instances where the token
limit is exceeded, the Dataset Search Task achieves
an accuracy of approximately 97.9%. Similarly, for
the Prediction Task, 92 out of 100 questions are
answered correctly (True), 5 exceed the token limit,
and 3 contain logic errors, resulting in an accuracy
of approximately 96.8% when excluding instances
where the token limit is exceeded. The slightly
lower accuracy observed in the Prediction Task
compared to the Dataset Search Task is attributed
to the inherent complexity of predictive modeling,
which involves multiple computational steps and
the integration of various tools.

Owing to the high accuracy rates, both tasks
demonstrate ChatProp’s effectiveness in providing
reliable answers. These tasks are particularly sig-
nificant because they address questions that cannot

be effectively answered by directly querying LLMs.
LLMs often fall short in delivering precise informa-
tion due to their lack of detailed material-specific
data, especially for properties that are challenging
to ascertain through internet searches alone.

Run Task True Token False Logic False
1 Dataset Search 95 3 2
1 Prediction Task 92 5 3
2 Dataset Search 94 4 2
2 Prediction Task 93 4 3
3 Dataset Search 96 2 2
3 Prediction Task 91 6 3

Table 1: Accuracy measurements for dataset search and
prediction tasks across three runs. The table presents
the number of True, Token False, and Logic False out-
comes for each run of the Dataset Search and Prediction
tasks. Three experimental runs were conducted, each
consisting of 100 sample questions per task.

Building upon our initial experiments, which
demonstrate ChatProp’s overall task completion ca-
pabilities, we have designed an ablation study to
specifically evaluate its performance in completing
prediction tasks and also compared it with existing
chemical and physical agent strategies for predict-
ing material properties. Additionally, the experi-
mental results indicate that ChatProp outperforms
existing physical chemistry agent strategies in pre-
dicting material properties [Kang and Kim, 2024].
This study compares three distinct approaches: us-
ing only ML models, using only FP software, and
using both ML and FP methods as implemented in
ChatProp. The rationale behind this comparison is
to assess the effectiveness and efficiency of Chat-
Prop in leveraging both computational strategies to
enhance material property predictions.

The ablation experiments have been conducted
by testing 100 tasks under each approach. The
results, summarized in Table 2, reveal that using
only pre-trained models results in a completion
rate of 41.3%. The completion rate of the ML
Group’s tasks is much lower than that of the other
two groups, indicating the serious shortcomings of
existing methods. This is because that the effective-
ness of the ML models is contingent upon the qual-
ity and diversity of the training data. In contrast to
ML Group, the FP Group can achieve a higher ac-
curacy but the time it spends on each task is much
longer than that of the ML Group. It is notewor-
thy that relying solely on FP software achieves an
87.5% completion rate, albeit with each task taking
more than twice the average time required by Chat-



Prop. Therefore, the FP Predictor tool is necessary.
Further, when combining both ML and FP methods,
ChatProp maintains a 96.8% completion rate while
significantly reducing the average task completion
time compared to the FP-only approach. These
findings highlight the advantage of ChatProp in ef-
fectively integrating both computational methods
to improve prediction accuracy and efficiency.

Method Accuracy (%) Average Time (min)
ML Group 41.3 0.856

FP Group 87.5 50.937
ChatProp 96.8 23.685

Table 2: Comparison of task completion and average
time across different approaches. The table presents the
average accuracies and average time per task for three
groups: ML Group, which adopts only ML models; FP
Group, which utilizes only first-principles software; and
ChatProp. ChatProp achieves the highest accuracy with
an average task completion time less than twice that of
the FP-only approach.

To further illustrate ChatProp’s capabilities, we
conduct a case study addressing the following ques-
tion: “How do the total energy and the force for
the centroid of (H2O)g compare with those of
(NHg3)42”. In response, ChatProp first utilizes the
Dataset Search tool to retrieve the total energy and
force for the centroid of (H20)g from the database.
However, it cannot locate corresponding proper-
ties for (NH3)4. Consequently, ChatProp invokes
the Structure Generator tool to obtain the molec-
ular structure of (NHs)4. Utilizing this structure,
it employs the ML Predictor to calculate the total
energy and the FP Predictor to determine the force
for the centroid of (NH3)4. This sequential pro-
cess enables ChatProp to provide a comprehensive
comparison between the two molecular clusters,
demonstrating its capability to effectively integrate
data retrieval and predictive modeling. The detailed
workflow of this process is illustrated in Figure 4.

4 Conclusion and Discussion

The investigation into the role of generative Al
in natural science, specifically through the lens
of ChatProp leveraging the strengths of FP calcu-
lations and ML-based PES models, unveils sub-
stantial potential for predicting material properties.
Through the Dataset Search and Prediction Task
frameworks, ChatProp demonstrates high accuracy
rates of 97.9% and 96.8%, respectively, across
three experimental runs involving 100 sample ques-

with (NHz),.
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Euestion: How does the total energy and the max force magnitude of (H,0)s compare ]
N
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Thought: | need to find the total energy and the max force magnitude of (H,0)s and (NH3),.
Action: Dataset search

Action Input: “ What is the total energy and the max force magnitude of (H,0)s “
[Dataset Search] Thought: To find the total energy and the force for centroid of (H,0)s, ...

python

import pandas as pd

print(df.loc[df['name’] == ‘(H,0)g'][‘Etot [a.u.]’, ‘Max force magnitude [a.u.]'].to_markdown())
print(df.loc[df['name’] == ‘(NH3),][‘Etot [a.u.]', ‘Max force magnitude [a.u.]'].to_markdown())

[Dataset Search] Evaluate:

name Etot [a.u.]
(H20)g -19.170570
[Dataset Search] Final Answer : the total energy of (H,0)g is -19.170570 [a.u] and the ...

Evaluate: | have known the total energy and the max force magnitude of the (H,0), but | do
not know any information of (NH3),.
Thought: I need to find the total energy and the max force magnitude of (NHy),.

Max force magnitude [a.u.]
42.1522951

Action: Predictor Select
Action Input: “ I need to determine if there is a suitable model that can calculate... *
[Predictor Select] Thought: I need to get the structure information of (NH3), first.

[Structure Generate] Final Answer: The structure information of (NH3), is saved in POSCAR.
[Predictor Select] Final Answer: The total energy of (NH3), can be calculated by model ...

Evaluate: The total energy of (NHs), can be calculated by the model and the max force
magnitude need to be calculated by the first-principles method.

Thought: I need to calculate the total of (NH),.

Action: ML Predictor

ML Predictor] Thought: I need to calculate the total energy of (NHs), by pre-trained ...
[ML Predictor] PTModel: Etol_(NH3),

[ML Predictor] Final Thought: The total energy of (NHs), is -13.324207 [a.u.].

Action: FP Predictor

FP Predictor] Thought: I need to calculate the max force magnitude of (NHz),.

[FP Predictor] Final Thought: Based on the result, the max force magnitude of (NHs), is
2.94837607 [a.u.].

Thought: I now know the final answer.

\

I(Answer: The total energy of (H,0)g is -19.170570 [a.u.] which is similar to that of
| (NH3), (-13.324207 [a.u.]). The max force magnitude of (H,0)g is much higher |
than that of (NH3), by 42.1522951 [a.u.] and 2.94837607 [a.u.], respectively.

|
e e i o

N\
|

AN
]

Figure 4: Example of a predictor for the question “How
do the total energy and the force for the centroid of
(H20)g compare with those of (NH3),?” ChatProp ac-
complishes the task by employing the Dataset Search
tool, the Structure Generator tool, ML Predictor tool,
and FP Predictor tool.

tions each. Furthermore, an ablation experiment
is designed, and the comparison of experimental
results further highlights the advantages of using
this integration strategy. These results underscore
ChatProp’s reliability and effectiveness in provid-
ing precise material property predictions, partic-
ularly for complex queries that exceed the direct
capabilities of standard LLMs.

5 Limitations

Despite its impressive performance, ChatProp’s
reliance on external computational tools such as
DeePMD and PWDFT necessitates substantial
computational resources, which may limit its scala-
bility for extremely large or highly complex molec-
ular systems. Future work focuses on addressing
these limitations by optimizing the integration of
computational tools to enhance scalability and effi-
ciency.
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