
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GRAPH COLORING FOR MULTI-TASK LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

When different objectives conflict with each other in multi-task learning, gradients
begin to interfere and slow convergence, thereby potentially reducing the final
model’s performance. To address this, we introduce SON-GOKU, a scheduler that
computes gradient interference, constructs an interference graph, and then applies
greedy graph-coloring to partition tasks into groups that align well with each other.
At each training step, only one group (color class) of tasks are activated, and the
grouping partition is constantly recomputed as task relationships evolve throughout
training. By ensuring that each mini-batch contains only tasks that pull the model
in the same direction, our method improves the effectiveness of any underlying
multi-task learning optimizer without additional tuning. Since tasks within these
groups will update in compatible directions, multi-task learning will improve model
performance rather than impede it. Empirical results on six different datasets show
that this interference-aware graph-coloring approach consistently outperforms
baselines and state-of-the-art multi-task optimizers. We provide extensive theory
showing why grouping and sequential updates improve multi-task learning, with
guarantees on descent, convergence, and the ability to accurately identify what
tasks conflict or align.

1 INTRODUCTION

Multi-task learning (MTL) trains a single model to solve several tasks simultaneously, sharing
knowledge across them to learn more effectively (Caruana, 1997). This allows models to generalize
better and converge faster. However, a key issue known as negative transfer arises when tasks don’t
align very well with each other (Sener & Koltun, 2018; Shi et al., 2023). When two tasks push the
shared network in different directions their gradients clash, slowing or even reversing learning. Prior
work addresses this issue primarily via (1) gradient manipulation, which reshapes task gradients to
reduce conflicts, and (2) loss reweighting, which rescales task objectives to balance their influence.
While effective in some specific settings, these strategies typically treat conflict locally at the level
of shared-parameter updates and often overlook the evolving global structure of interactions among
tasks throughout training.

Some recent works focus on partitioning tasks into subsets (groups) and updating those groups
separately. These approaches have been found to improve accuracy and training stability by forming
groups with high measured affinity and then updating one group at a time (Fifty et al., 2021; Jeong
& Yoon, 2025). Grouping can outperform gradient manipulation and loss reweighting when tasks
form clusters with aligned gradients, because each update then reduces direct clashes in the shared
layers, lowers gradient variance within the step, and lets compatible tasks reinforce one another while
conflicting tasks wait for their turn.

However, grouping methods often face a few key limitations: (1) many rely on dense pairwise
affinities that grow noisy and costly as the number of tasks rises (Fifty et al., 2021; Standley et al.,
2020; Sherif et al., 2024); (2) others predetermine or rarely update groups, so they drift as task
relations change (Wang et al., 2024; Ruder, 2017); and (3) several use local heuristics that fail to
enforce global compatibility or to specify how groups should rotate over time (Zhang & Yang, 2018;
Malhotra et al., 2022).

Anonymized code implementation is available at this URL: https://anonymous.4open.science/
r/SON-GOKU-ICLR-95AB

1

https://anonymous.4open.science/r/SON-GOKU-ICLR-95AB
https://anonymous.4open.science/r/SON-GOKU-ICLR-95AB

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

We present SON-GOKU (Scheduling via Optimal INterference-aware Graph-COloring for TasK
Grouping in MUltitask Learning). We measure gradient interference, build a graph of tasks from
those measurements, greedily color the graph to form non-conflicting compatible task groups, and
update one color group per step during training. This design addresses the earlier issues. We estimate
the interference graph from lightweight minibatch statistics and keep it sparse, which avoids noisy
dense matrices and scales to many tasks. We recolor the graph at regular intervals so the groups
track changing relations during training. Greedy graph coloring ensures we update only compatible
tasks in each step, and the color order gives a simple way to cycle through the groups. Our proposed
scheduler does not have to work in isolation, it can function on top of existing loss-reweighting and
gradient-manipulation MTL approaches.

In our theoretical analysis (Section 5) we show that, under standard conditions, SON-GOKU tends
to group tasks whose gradients are, on average, aligned within each group, with high probability.
We further show that, over a refresh window, sequentially updating these low-conflict groups yields
at least as much expected descent as a single mixed update, and strictly more when between-group
interference is sufficiently negative. We also prove that SON-GOKU preserves descent and reaches
the usual non-convex SGD rate under mild assumptions, with only a small factor that depends on the
within-group conflict level. In Appendix D we discuss the scheduler’s amortized time complexity
and the tradeoffs it offers between speed and performance. We discuss ways in which practitioners
can reduce its time complexity under certain conditions.

Empirical results from experiments demonstrate that SON-GOKU consistently improves outcomes
compared to other MTL approaches, especially when SON-GOKU is coupled with existing ap-
proaches. Our contributions are as follows:

• We propose SON-GOKU, an interference-aware scheduler that measures cross-task gradient
conflict, builds a conflict graph, colors it to form compatible groups, and activates one group
per step. It can be used on top of standard MTL optimizers.

• We provide theoretical analysis that offers guarantees on SON-GOKU’s grouping, conver-
gence, scheduling behavior, and more.

• Across six datasets, SON-GOKU improves over strong baselines and pairs well with methods
like PCGrad, AdaTask, and GradNorm, delivering consistent gains.

• We perform an ablation study showing that dynamic recoloring and history-averaged conflict
estimates are key contributors to performance.

2 RELATED WORK

Prior work has identified the phenomenon of gradient interference in multi-task learning and explored
several strategies to mitigate it. We group these such strategies into four families: (1) Tuned Loss
Weighting, (2) Adaptive Loss Weighting, (3) Gradient-Level Conflict Mitigation, and (4) Empirical
Task Grouping. SON-GOKU falls into family (4).

Many MTL methods (especially earlier ones) adjust task influence by learning or adapting loss
weights. Examples include uncertainty-based scaling (Kendall et al., 2018), rate-based schemes such
as DWA (Liu et al., 2019), and fast bilevel formulations like FAMO (Liu et al., 2023). FAMO in
particular is notable for its O(1) per-step time complexity. These approaches keep all tasks active
each step while modulating relative magnitudes. A completely different approach, which emerged in
2018 with MGDA (Sener & Koltun, 2018), focuses on updating shared-parameter update directions to
mitigate interference. Methods like PCGrad (Yu et al., 2020), CAGrad (Liu et al., 2021), and MGDA
(Sener & Koltun, 2018) modify the geometry of the shared update to reduce cross-task conflicts while
still updating all tasks each step. A smaller body of work forms subsets of tasks to update together,
using offline affinity estimation or training-dynamics signals (Fifty et al., 2021; Standley et al., 2020;
Wang et al., 2024; Sherif et al., 2024). See Appendix Q for additional analysis of non-conflict task
grouping. Most recently, Selective Task Group Updates proposes online grouping with sequential
updates, reporting that update order can influence task-specific learning (Jeong & Yoon, 2025). SON-
GOKU differs in mechanism from existing approaches (Section 4). It complements loss reweighting
and gradient surgery, and we provide explicit guarantees on descent, convergence, and graph partition
recovery. An expanded discussion and commentary of related work is provided in Appendix M.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 PROBLEM SETUP

We formalize multi-task learning (MTL) (Caruana, 1997) as optimizing a shared network while
activating only a subset of tasks at each step. Each task contributes a loss whose gradients may
align or conflict. We quantify conflict using (the negative of) cosine similarity, embed tasks in a
conflict graph, and later use that graph to derive a schedule (see Appendix P for a unique, modular,
formulation and results with alternative measures of affinity). This section fixes notation and states
the optimization goal that the proposed approach addresses.

3.1 DATA AND NOTATION

Let T = {T1, . . . , TK} be the set of tasks. The model has shared parameters θ ∈ Rd and task-specific
parameters ϕk ∈ Rdk for Tk. Each task draws examples (x, yk) from a distribution Dk and defines a
per-example loss ℓk(θ, ϕk;x, yk). Its population loss is

Lk(θ, ϕk) := E(x,yk)∼Dk

[
ℓk(θ, ϕk;x, yk)

]
. (1)

We minimize the standard weighted MTL objective

F (θ, ϕ1, . . . , ϕK) =

K∑
k=1

wk Lk(θ, ϕk), (2)

with nonnegative task weights wk (default wk = 1). Note that, for simplicity in later sections, we
absorb wk into the per-task gradient estimates. This is permissible since positive scalings do not
change cosine signs or the induced conflict graph.

At step t, for any task k that is active we compute stochastic gradients on a mini-batch B(t)
k ⊂ Dk:

g
(t)
k := ∇θLk(θt, ϕk,t;B(t)k), h

(t)
k := ∇ϕk

Lk(θt, ϕk,t;B(t)k). (3)

In our proposed method, we form exponential moving averages (EMA) of per-task gradients within a
refresh window to stabilize cosine estimates so that they do not become stale (Sec. 4).

3.1.1 INTERFERENCE COEFFICIENT

We quantify pairwise interaction with the interference coefficient

ρij = − ⟨g̃i, g̃j⟩
∥g̃i∥ ∥g̃j∥

, (4)

where g̃i and g̃j are the EMA-smoothed gradients at refresh. Positive ρij indicates conflict (negative
cosine). ρij ≤ 0 indicates alignment or neutrality.

3.1.2 CONFLICT GRAPH

Fix a tolerance τ ∈ (0, 1). The conflict graph is

Gτ = (T , Eτ), Eτ =
{
(i, j) : ρij > τ

}
. (5)

Vertices are tasks. An edge between a pair means to not update that pair together. We will utilize Gτ

for coloring and scheduling in Section 4

3.2 GOAL

At training step t we choose an active set St ⊆ T and update only those tasks:

θt+1 = θt − ηt
∑
k∈St

g
(t)
k , ϕk,t+1 =

{
ϕk,t − ηth

(t)
k , k ∈ St,

ϕk,t, k /∈ St.
(6)

The problem the scheduler addresses is to design the sequence {St}Tt=1 so that: (1) every task is
visited regularly; and (2) conflicting tasks seldom appear together. We instantiate this via greedy
graph coloring in Section 4 and analyze the guarantees in Section 5.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Interference-aware scheduling pipeline: (a) For each task Ti (circles T1 . . . T6), we smooth
recent per-step gradients with an Exponential Moving Average (EMA); (b) From these EMA vectors
we compute the pairwise cosine matrix. In the figure, cells outlined with red dashes mark pairs with
cosine < −τ . These are flagged as conflicts; (c) We build the conflict graph whose nodes are tasks Ti

and whose red dashed edges connect exactly those pairs identified in (b); (d) We apply greedy graph
coloring so that no conflict edge lies within a color, producing low-conflict groups. In the example
shown, we have two groups: A as blue and B as orange; (e) During training we activate one group per
step. After every R steps (here, R = 4) we ’refresh’ and run the pipeline again from step A, where
we update the EMAs with the latest gradients.

4 PROPOSED APPROACH

We design an interference-aware scheduler that partitions tasks into low-conflict groups and activates
exactly one group per optimization step. The procedure consists of four stages: (1) estimating
pairwise interference, (2) building and coloring the conflict graph, (3) generating a periodic schedule,
and (4) updating that schedule as training evolves. An overview of the scheduler is provided as
Algorithm 1 in Appendix A. A visualization of SON-GOKU is provided in Figure 1 alongside a
simple summary in the Figure caption.

4.1 ESTIMATING GRADIENT INTERFERENCE

We absorb task weights into per-task losses, so g
(t)
k is the gradient of the weighted loss wkLk. Cosine

calculations and graph construction are not impacted by applying positive scaling.

At step t and for every task Tk appearing in the current mini-batch we compute a task-specific
stochastic gradient

g
(t)
k = ∇θLk

(
θt, ϕk,t;B(t)k

)
, (7)

using an independent sub-batch B(t)k ⊂ Dk. We then update an exponential moving average

g̃
(t)
k = β g̃

(t−1)
k + (1− β) g

(t)
k , β ∈ [0, 1), (8)

which stabilizes cosine estimates while requiring only two buffers per task (current and previous). To
estimate such cosines in practice, we employ low dimensional sketches of the EMA for each task, so
the additional memory usage scales well (Ghashami et al., 2016a). Whenever we refresh the schedule
(every R steps) we form the pairwise interference matrix.

ρ
(t)
ij = −

⟨g̃(t)i , g̃
(t)
j ⟩

∥g̃(t)i ∥ ∥g̃
(t)
j ∥

, i, j ∈ {1, . . . ,K}. (9)

Computing all K(K − 1)/2 cosines via the Gram matrix in the r-dimensional sketch space costs
O(Kdr +K2r), namely O(Kdr) to form the sketch Mf and O(K2r) for the Gram product, where

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

r ≪ d is the sketch width (see Appendix D.5.1). We also write h
(t)
k = ∇ϕk

Lk

(
θt, ϕk,t;B(t)k

)
for the

gradient with respect to the task-specific parameters ϕk.

4.2 CONFLICT GRAPH CONSTRUCTION

Given a tolerance τ ∈ (0, 1), the conflict graph at update round r is

G(r)
τ = (V,E(r)

τ), V = {1, . . . ,K}E(r)
τ =

{
(i, j) : ρ

(tr)
ij > τ

}
. (10)

To clarify, tasks are indexed by integers 1 . . .K in Equation 10. Edges connect tasks whose averaged
gradients have cosine similarity less than −τ . Intuitively, larger τ yields a sparser conflict graph,
typically fewer colors (larger per-step groups), and more frequent updates per task. Smaller τ results
in a denser graph, more colors (smaller per-step groups), and less frequent updates per task. This
construction reflects optimization-time interference. G(r)

τ is symmetric and undirected, derived from
current gradient geometry to decide which tasks should not be updated together.

4.3 PARTITIONING VIA GREEDY GRAPH COLORING

We apply the Welsh-Powell largest-first greedy heuristic (Welsh & Powell, 1967) to color G(r)
τ

and obtain color classes C(r)
1 , . . . , C

(r)
mr . Classical graph-theory results (West, 2000; Diestel, 2017)

guarantee the heuristic uses no more than ∆+ 1 colors, where ∆ is the maximum vertex degree. In
practice ∆ is small because many task pairs do not interfere, yielding concise schedules.

4.4 SCHEDULE GENERATION AND EXECUTION

We create a periodic schedule of length mr:

St = C
(r)(
t mod mr

)
+1

, tr ≤ t < tr+1 = tr +R. (11)

Each training step activates exactly one color class; over one period every task in that class receives a
gradient update, while conflicting tasks (edges in E

(r)
τ) are guaranteed not to co-occur.

4.4.1 MINIMUM UPDATE FREQUENCY

If the greedy coloring yields a singleton class for a rarely updated task, we increase its update
frequency by duplicating it only into steps whose active color has no conflict edge to that task.

4.4.2 WARM-UP AND ANNEALING

We start with τ = 1 (no edges, full simultaneous training) for the first Twarm steps, then logarithmi-
cally anneal τ to a target value τ∗. This mitigates noisy gradient signals early in training. Similarly,
we can set the refresh period with a smaller R to adapt to changing gradients and increase it as
training stabilizes (Appendix O).

4.5 TIME COMPLEXITY AND SPACE COMPLEXITY

Using the sketched implementation described in Appendix D, a single refresh of the SON-GOKU
scheduler has time complexity O(Kdr +K2r), where r ≪ d is the sketch width. However, unlike
many MTL approaches, our scheduler concentrates its extra work in occasional refreshes. This
time complexity therefore becomes O

(
Kr(d+K)

R

)
amortized per training step where R is the refresh

period (the number of training steps between conflict-graph rebuilds).For the small, fixed r used in
our experiments, this overhead still grows roughly quadratically in K but is independent of d up to
the O(Kdr) sketching term and shrinks linearly with the refresh period R. Similarly, SON-GOKU’s
persistent space complexity of O(K2) scales with K but not d, the number of model parameter
dimensions, allowing it to maintain low memory usage even with large backbone models. We provide

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

a full analysis of the time complexity in Appendix D and discuss approaches to reducing time
complexity under certain conditions in Appendix D.5. See also Appendix R for scaling behavior with
larger backbones.

5 THEORETICAL ANALYSIS

We discuss some of the main guarantees behind SON-GOKU. For a very brief overview: (1) Updating
groups of tasks whose gradients are mostly low-conflict (no internal edges) reduces the objective on
average and still achieves the usual 1/

√
T convergence rate; (2) Over a refresh window, scheduling

several group updates can beat one mixed update that uses all tasks at once; and (3) With a small
number of recent gradient measurements per task (via EMA) and a margin separating conflicts, the
estimated conflict graph matches the ideal one, giving a short schedule where every task is updated
at least once every ∆+ 1 steps (∆ is the maximum number of conflicts for any task). We provide
expanded assumptions, definitions, proofs, reasoning, analysis, etc. in Appendix 5.4–I (see also
Appendix N, P–R).

5.1 DESCENT PRESERVATION WITHIN A LOW-CONFLICT GROUP

If the active set St at step t is τ -compatible, then the combined update is a descent direction with a
quantitative lower bound:∥∥∥∑

k∈St

gk,t

∥∥∥2 ≥ (
1− τ (|St| − 1)

) ∑
k∈St

∥gk,t∥2 (12)

Thus the step cannot flip to ascent whenever τ(|St| − 1) < 1. This is proved by expanding the
polarization identity and controlling cross terms under the τ -compatibility condition (see Appendix
E). Essentially, this means that SON-GOKU’s per-step updates are safe when groups are low conflict.
The aggregate direction keeps pointing downhill and the cancellation is quantitatively limited by τ
and group size.

5.2 NONCONVEX CONVERGENCE AT THE STANDARD RATE UP TO A SMALL FACTOR

Under standard smoothness and noise conditions (see Appendix I) and with steps η = c/
√
T , SON-

GOKU achieves the usual nonconvex SGD rate, with a mild (1 + τ) factor that reflects within-group
conflict:

min
t<T

E ∥∇F (θt)∥2 ≤
2(F0 − F ⋆)

c
√
T

(1 + τ) +
cLσ2

√
T

(13)

When τ = 0, the constant matches the classical bound (Bottou et al., 2018; Ghadimi & Lan, 2013);
as τ → 1, it at most doubles, matching the intuition that conflict can cancel up to half of the progress.
This demonstrates that scheduling does not degrade asymptotic progress. SON-GOKU preserves the
1/
√
T decay of the gradient norm while controlling the constant through the compatibility threshold τ .

In other words, we keep the standard rate of SGD and trade a small constant for reduced interference.

5.3 WHEN SCHEDULED GROUPS OUTPERFORM A SINGLE MIXED UPDATE

We compare two ways to use the same gradients gathered at a refresh: a scheduled sequence of
per-group steps (i.e., the scheduler used in SON-GOKU) versus a single aggregated step. Using
a telescoping L-smooth bound and evaluating both trajectories at a common linearization (i.e.,
expanding F at the refresh start θtr and applying the same first-order model with the same step size)
the scheduled bound is never worse and is strictly better when cross-group interaction terms are
sufficiently negative (so mixed updates would cancel progress).

Essentially, when different groups’ gradients pull in opposing directions (so adding them together
would cancel progress) the scheduler has an advantage. In that case, taking the updates one group
at a time is provably better. Our theory guarantees a larger drop in the objective during that refresh
than the one-shot step, even though both use the same step size and the same gradients. Under the PL
condition, the scheduled path maintains the usual contraction factor and gains a nonnegative extra
decrease term over the window.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5.4 EXACT RECOVERY OF THE POPULATION CONFLICT GRAPH AND TASK PARTITION

We show that, after observing gradients for only a modest number of steps, the scheduler can exactly
reconstruct the true conflict relations among tasks by averaging recent gradients (EMA), computing
pairwise cosines, thresholding at −τ , and coloring the resulting graph. Under a separation margin
γ around the threshold (tasks are meaningfully different), bounded noise, and bounded drift within
each refresh window, the conflict graph estimated from finite data agrees, with high probability, with
the ideal population conflict graph G⋆τ (defined from the pairwise cosines of the true mean gradients
{µi}Ki=1 at the start of the refresh window). Equivalently, when the uniform cosine estimation error is
below γ, we have Ĝτ = G⋆

τ and the resulting grouping recovers the ground-truth task partition. This
explains why the scheduler’s group structure is trustworthy and ties the required number of recent
gradient measurements per task to interpretable quantities such as noise level, margin, and the number
of tasks. For example, an effective sample size of neff ≳ σ2

m2
0 γ2 log

(
K/δ

)
suffices in our analysis.

5.5 SCHEDULING PROPERTIES WITH FEW GROUPS AND BOUNDED STALENESS

Welsh-Powell greedy coloring uses at most ∆+ 1 colors on a graph whose maximum degree is ∆
(Bonamy et al., 2018). Running the colors in a fixed cycle means each task is updated at least once
every m ≤ ∆+ 1 steps. Equivalently, no task waits more than ∆ steps between updates (bounded
staleness).

This means that the schedule length is controlled by the worst conflict degree ∆ rather than by the
total number of tasks K. This results in two important benefits: (1) a minimum update-frequency
guarantee, since every task receives an update at least once per cycle of length ≤ ∆ + 1; and (2)
compatibility with standard bounded-delay conditions used in analyses of asynchronous SGD (e.g.,
Niu et al. 2011; Lian et al. 2015), with delay parameter at most ∆. When ∆≪ K, we achieve both
low interference (few conflicts per step) and low staleness (short update gaps).

6 EXPERIMENTAL SETUP

6.1 DATASETS

We evaluate across six benchmarks spanning vision, multimodal, and time-series. For each dataset
we specify a small set of primary tasks and add positive and negative auxiliaries to stress interference.
Architectures are standard backbones (e.g., ResNet-18 for image tasks, CNN/BiLSTM for time-series)
with task-specific heads. Full dataset and task definitions, auxiliary construction, and architecture
details (including preprocessing and head designs) appear in Appendix J and Table 4. We provide
additional experiments with varying backbones in Appendix R.

6.2 BASELINE AND STATE-OF-THE-ART COMPARISONS

We compare against loss-weighting (Uniform, GradNorm, AdaTask), multi-objective (MGDA, Nash-
MTL, FairGrad), projection/surgery (PCGrad, CAGrad), and fast adaptive weighting (FAMO). We
provide short method notes in Appendix K and discuss these approaches in Section 2.

6.3 SCHEDULER EXTENSION MODELS

In addition to standalone models, we also evaluate combinations of the scheduler with existing
approaches.

1. SON-GOKU + AdaTask. Combines our interference-aware task selection with AdaTask’s
dynamic loss weighting, applying adaptive weights only to scheduler-selected tasks.

2. SON-GOKU + GradNorm Warm Start. Initializes training with GradNorm for stable
gradient magnitudes, then transitions to our scheduler after 3 epochs.

3. SON-GOKU + PCGrad. Applied PCGrad’s gradient projection specifically to tasks selected
by our scheduler, providing fine-grained conflict resolution within τ -compatible groups.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Performance of Evaluated Approaches Across Datasets. DM represents Density-Matched
ablation variants

Model Accuracy (%) ↑ F&B HEALTH NYUv2
CIFAR-10 AV-MNIST MM-IMDb Acc. (%) ↑ MAE ↓ Acc. (%) ↑ MAE ↓ Angle Error ↓ Seg. MIOU ↑ Depth RMSE ↓

Uniform 55 ±2.2 63 ±1.5 56 ±2.8 45 ±2.4 0.57 ±0.030 52 ±2.0 0.54 ±0.024 21.6 ±0.27 0.059 ±0.003 0.73 ±0.018
GradNorm 61 ±1.6 65 ±1.1 58 ±2.0 47 ±2.3 0.57 ±0.020 53 ±2.1 0.52 ±0.019 21.4 ±0.23 0.054 ±0.004 0.65 ±0.016
MGDA 59 ±2.9 62 ±1.7 56 ±3.3 44 ±3.0 0.57 ±0.036 53 ±2.5 0.53 ±0.030 21.8 ±0.33 0.063 ±0.005 0.75 ±0.024

PCGrad 61 ±1.9 65 ±1.3 58 ±2.3 50 ±2.1 0.55 ±0.024 58 ±2.0 0.48 ±0.021 20.9 ±0.24 0.070 ±0.004 0.69 ±0.013
CAGrad 59 ±2.0 62 ±1.1 57 ±2.5 46 ±2.5 0.58 ±0.031 53 ±1.9 0.52 ±0.024 21.9 ±0.29 0.065 ±0.004 0.73 ±0.018
AdaTask 63 ±1.5 67 ±0.9 59 ±1.9 47 ±1.9 0.59 ±0.026 55 ±2.2 0.52 ±0.024 20.3 ±0.23 0.069 ±0.004 0.65 ±0.015
FAMO 64 ±1.2 70 ±1.0 61 ±1.6 52 ±2.0 0.53 ±0.021 60 ±1.8 0.49 ±0.018 19.9 ±0.19 0.074 ±0.003 0.63 ±0.012
FairGrad 62 ±1.8 66 ±1.3 59 ±2.5 52 ±2.5 0.54 ±0.026 60 ±2.0 0.47 ±0.022 20.7 ±0.27 0.072 ±0.004 0.67 ±0.015
Nash-MTL 63 ±1.9 66 ±1.2 60 ±2.1 52 ±2.3 0.54 ±0.024 60 ±2.3 0.47 ±0.023 20.6 ±0.24 0.073 ±0.004 0.67 ±0.013
Static One-Shot 61 ±2.0 66 ±1.1 58 ±2.6 48 ±2.3 0.56 ±0.027 54 ±2.1 0.51 ±0.025 20.5 ±0.25 0.071 ±0.004 0.65 ±0.016
Single-Step 40 ±4.2 59 ±2.4 20 ±5.4 42 ±3.9 0.60 ±0.041 47 ±3.5 0.55 ±0.034 26.4 ±0.55 0.042 ±0.006 0.81 ±0.029
SON-GOKU (Threshold, DM) 63 68 59 49 0.55 56 0.51 20.6 0.071 0.61
SON-GOKU (kNN-Symm.) 60 65 55 46 0.57 52 0.53 22.1 0.066 0.70
SON-GOKU (kNN-Symm., DM) 61 66 57 47 0.56 54 0.52 21.4 0.068 0.66
SON-GOKU (Signed-only) 56 63 52 43 0.60 50 0.56 24.0 0.053 0.76
SON-GOKU (Signed-only, DM) 58 64 54 45 0.59 52 0.54 23.0 0.056 0.73
SON-GOKU (Quantile) 64 68 60 50 0.54 57 0.50 20.3 0.072 0.60
SON-GOKU (Quantile, DM) 65 69 61 51 0.53 58 0.50 20.0 0.072 0.59
SON-GOKU + GradNorm 62 ±1.4 69 ±1.0 59 ±1.7 51 ±1.8 0.53 ±0.022 59 ±1.7 0.49 ±0.018 19.6 ±0.19 0.073 ±0.003 0.64 ±0.011
SON-GOKU + AdaTask 67 ±1.2 71 ±0.9 63 ±1.6 52 ±1.7 0.53 ±0.021 59 ±1.8 0.48 ±0.017 20.1 ±0.20 0.068 ±0.004 0.67 ±0.013
SON-GOKU + PCGrad 65 ±1.3 70 ±0.9 60 ±1.8 54 ±2.0 0.52 ±0.024 62 ±1.6 0.45 ±0.020 19.7 ±0.18 0.076 ±0.003 0.62 ±0.010
SON-GOKU 65 ±1.5 69 ±1.0 61 ±1.8 51 ±1.9 0.53 ±0.023 58 ±1.7 0.50 ±0.018 19.8 ±0.20 0.073 ±0.004 0.59 ±0.012

6.3.1 SINGLE-STEP CONFLICT ESTIMATION

Here, we set the history length to H = 1, so every recoloring step relies on only the most recent
mini-batch gradients to estimate interference. Without aggregation over many past steps, the conflict
graph should become highly noisy, causing unstable task groupings from one update window to the
next. This variant tests the importance of historical conflict statistics in the scheduler.

7 RESULTS AND DISCUSSION

Results for all models across every experiment are depicted in Table 1. All metrics are held-out
test results under identical training setups and architectures. Across ten metrics on six datasets, our
conflict-aware schedulers consistently match or exceed all baseline methods.

7.1 OVERALL PERFORMANCE IMPROVEMENTS

Overall, the conflict-aware approaches improve over the uniform baseline by 10%-20% on CIFAR-10
and by 7% on MM-IMDb, indicating that grouping tasks according to measured interference is more
effective than treating all tasks equally at every update. On NYUv2, we see similar improvements
across all the metrics. These results suggest that the scheduler’s graph coloring cleanly separates
high-conflict tasks, preserving the projection or LR-balancing advantages (stemming from PCGrad’s
gradient projection and AdaTask’s learning-rate adaptation, respectively) while removing residual
interference (see App. S for grouping patterns at training time and more analyses). As we evaluated
across diverse tasks and datasets, our results also demonstrate clear improvements in generalization.

7.2 ABLATION STUDY ON SCHEDULER DESIGN

We evaluate nine controlled ablations of six types: (i) Static One-Shot Coloring, which runs greedy
graph coloring once at the start of training and then freezes the groups, testing dependence on dynamic
recoloring as gradients change; (ii) Single-Step Conflict Estimation, which sets the history length to
H = 1 so each recoloring uses only the most recent mini batch, testing the importance of averaging
conflict statistics over time; (iii) Threshold Graph (baseline), which connects tasks i and j when the
smoothed cosine ŝij(t) falls below a global threshold −τ(t); (iv) kNN-Symmetric Graph, which
connects each task to its m most conflicting neighbors and then symmetrizes the edges, enforcing
roughly fixed degree per task and comparing local degree control against the global threshold rule;
(v) Signed-Only Graph, which adds an edge only if ŝij(t) < 0, yielding a very sparse graph and
ignoring moderate (but potentially harmful) conflicts; and (vi) Quantile Threshold Graph, which at
each refresh sets τ(t) so that only the worst p% of cosine values are treated as conflicting, keeping
edge density approximately stable and testing an adaptive cutoff versus a fixed global threshold.
We evaluate each graph rule under two settings. In the fixed τ setting, all rules share the same τ(t)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

schedule used in the main experiments. In the density-matched setting, we adjust the hyperparameters
of each rule so that all graphs have approximately the same edge density at each refresh. This isolates
the effect of which pairs are marked as conflicting, rather than how many edges are present. We go
into much further detail regarding the ablation in Appendix K.3.

These ablations directly test the assumptions behind SON-GOKU. Static One-Shot, which freezes
groups, consistently underperforms the full scheduler on most metrics, indicating that task relations
change enough during training that dynamic recoloring is needed to maintain τ -compatibility as
gradients drift (Sections 5.1–5.2). Single-Step, which uses H = 1, is clearly worse across datasets,
matching our claim that batch cosines are too noisy. Instead, averaging conflict statistics over short
history windows provides the clean information needed for accurate graph recovery (Section 5.4).
Among graph constructions, simple threshold and quantile rules (and their density-matched variants)
perform similarly well, suggesting that any approach that reliably isolates the worst conflicting pairs
is sufficient. In contrast, Signed-Only and kNN-Symmetric, which ignore conflict magnitude or have
purely local degree control, degrade performance more noticeably, especially on NYUv2 and the
tabular benchmarks. Overall, the best performing configurations are precisely those that match the
descent and recovery conditions analyzed in Sections 5.1–5.2 and 5.4.

7.3 ADDITIONAL ANALYSIS

7.3.1 OPTIMIZER-TASK ALIGNMENT

Interestingly, we observe that AdaTask-based approaches tend to be the best on classification tasks
(CIFAR-10, AV-MNIST, MM-IMDb) while PCGrad-based approaches tend to be the best on tasks
that model regression (NYUv2).

We believe that this stems from unique differences in the features of classification and regression-
based models. For example, cross-entropy gradients near decision boundaries tend to be bursty and
high in variance (Shrivastava et al., 2016; Lin et al., 2017; Hoffer et al., 2017). By scaling each task’s
step size according to its running gradient norm, AdaTask smooths out these spikes.

On the other hand, we believe that PCGrad under the scheduler performs particularly well on
regression and dense-prediction tasks as their tasks tend to generate smooth, large-magnitude gradients
whose directions change gradually. PCGrad removes only the small component of the gradient that
conflicts across tasks, preserving the main descent direction while reducing interference.

7.3.2 SYNERGY BETWEEN SCHEDULING AND BASELINES

We believe that the superior results found in the combinations of the scheduler and baseline models
can be traced to the way scheduling and optimization reinforce one another.

First, greedy graph coloring partitions tasks into τ -compatible groups, segregating tasks with highly
divergent gradients. This yields a guaranteed lower bound on descent (Proposition 6), directly
improving optimization efficiency.

Within each low-conflict group, the optimizer can do its job under more ideal conditions. PCGrad can
remove the remaining minor conflicting components, preserving the majority of the descent direction.
AdaTask can adjust each task’s learning rate without being impacted by large adversarial gradients.

This ∆+ 1 color bound ensures that every task is scheduled at least once per period. This prevents
tasks from being essentially starved of updates.

Finally, by computing interference over a window, the scheduler smooths out gradient fluctuations.
This prevents the erratic schedule changes that projection-only grouping methods have been shown to
face (Yu et al., 2020; Shi et al., 2023; Zhang et al., 2024), thereby better stabilizing convergence.

7.3.3 SON-GOKU’S ABILITY TO CREATE GENERALIZABLE MODELS

While our guarantees in Section 5 and Appendices B–F are stated in optimization terms, they also
directly increase gradient coherence and limit destructive interference in ways that are known to favor
generalization to unseen data. Section 5.1 shows that the aggregated group gradient remains aligned
with descent and that intra-group gradient conflict is explicitly limited by τ and |St|. Section 5.3 then

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 2: Wall-clock time (seconds ± standard deviation) vs. number of tasks K.

Method (R if applicable) K=3 K=6 K=16 K=40
Uniform 0.2656 ± 0.1201 0.3240 ± 0.0629 0.3798 ± 0.1050 0.4054 ± 0.1190
GradNorm 5.4714 ± 0.7137 5.1201 ± 0.6112 4.9042 ± 0.5869 4.7372 ± 0.9286
AdaTask 2.1816 ± 0.0934 2.1032 ± 0.1012 2.2853 ± 0.0718 2.2278 ± 0.1370
PCGrad 3.6212 ± 0.3517 23.1266 ± 0.8773 176.7566 ± 2.8171 1127.1337 ± 34.2603
MGDA 97.1081 ± 5.4645 121.4371 ± 9.0923 132.4913 ± 3.1752 134.0878 ± 2.2621
FAMO 2.0725 ± 0.2073 1.9980 ± 0.1998 2.1710 ± 0.2171 2.1164 ± 0.2116
FairGrad 3.8020 ± 0.5703 15.2079 ± 2.2812 108.1450 ± 16.2218 675.9065 ± 101.3860
Nash-MTL 5.7030 ± 1.1406 22.8118 ± 4.5624 162.2176 ± 32.4435 1013.8598 ± 202.7720

SON-GOKU (R = 32) 1.9896 ± 0.3651 3.3202 ± 0.5745 6.0897 ± 0.9425 12.1432 ± 1.2044
SON-GOKU + AdaTask (R = 32) 3.7718 ± 0.9654 5.0511 ± 0.6531 7.5903 ± 1.1920 14.5182 ± 2.0660
SON-GOKU + GradNorm (R = 32) 7.0202 ± 1.0711 8.1661 ± 0.9355 10.7227 ± 2.2088 16.5760 ± 1.8418
SON-GOKU + PCGrad (R = 32) 1.9834 ± 0.3586 3.4971 ± 0.3840 6.1395 ± 0.9425 10.9097 ± 1.5263

compares two ways to apply the same gradients during a refresh, either a single mixed update or a
scheduled sequence of group updates. Together, these analyses imply that each step in SON-GOKU
provides more informative signals and less interference, or, equivalently, a higher gradient-to-noise
ratio (Sun et al., 2023; Fan et al., 2023; McCandlish et al., 2018). Building on this, Section 5.4 shows
that SON-GOKU’s estimated conflict graph recovers the population structure with high probability,
so the schedule repeatedly updates clusters of related tasks rather than conflicting tasks. By enforcing
positive affinity within groups, SON-GOKU is able to train related tasks together. This enables
effective sharing of model parameters across different tasks, reducing the complexity of the model
and increasing sample efficiency (Caruana, 1997; Argyriou et al., 2007; Vandenhende et al., 2022).
With this alongside a high gradient-to-noise signal ratio, SON-GOKU theoretically generalizes across
many different datasets, domains, and distributions and can perform well even under non-ideal
conditions (e.g., noisy labels, class or task imbalance, distribution shift, etc.) (Michalkiewicz et al.,
2023). Our ablation results (Table 1) demonstrate that variants without dynamic recoloring or history
averaging perform worse, indicating accurate and low-conflict grouping is essential.

7.4 SPEED AND TRADEOFFS

SON-GOKU has a time complexity of O
(
Kr(d+K)/R

)
(Section 4.5) amortized per training step

(Section 4.5). Table 2 shows near-linear growth over this range of K at R=32, reflecting sparsity
in the graphs and batched cosine computation. SON-GOKU’s time rises from around 2 seconds
(K = 3) to 12 seconds (K = 40), remaining far below methods that perform heavy conflict handling.
For example, PCGrad, FairGrad, and Nash-MTL increase steeply with K. In contrast, FAMO and
AdaTask are among the fastest and largely flat with K, as expected from their constant overhead.

SON-GOKU is also memory efficient, with an only incremental memory footprint that scales with the
number of tasks K, not the parameter dimension d. The scheduler’s peak memory during a refresh
step is O(K2+Kr) and the persistent state between refreshes is O(K2) (see Appendix N for further
theoretical and experimental analysis). By contrast, methods that retain K full gradients require
O(Kd) additional memory. This implies that, on larger backbones (high d), SON-GOKU’s memory
overhead is modest and grows mainly with the task count K, rather than with model size.

These contrasts demonstrate the tradeoffs between speed and fidelity to task interference. Faster
methods like FAMO minimize overhead, while methods that model conflicts can improve accuracy.
These tradeoffs have to be assessed on a case-by-case basis, based on values that factor into each
approach’s time complexity and the importance of training speed versus performance.

8 CONCLUSION

We introduced SON-GOKU, an interference-aware scheduler that estimates cross-task alignment,
builds a sparse conflict graph, and greedily colors it to activate one low-conflict group per step.
Formally, we provide rigorous theoretical guarantees that justify the design and effectiveness of the
scheduler. Empirically, across six benchmarks, SON-GOKU improves over strong baselines and
recent approaches. It complements optimizers like PCGrad and AdaTask, indicating that scheduling
and gradient shaping are synergistic. By modeling task interactions with a conflict graph and schedule,
SON-GOKU offers a simple, scalable, and theory-backed mechanism for robust multitask training.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

9 REPRODUCIBILITY STATEMENT

We provide a clean code repository for reproducibility in the supplementary materials, and this is also
provided in an online (de-identified) Git repository. The scripts in this repository contain functionality
for downloading, loading, and preprocessing all datasets used in training. The code also includes
implementations for SON-GOKU and all 10 of its ablations. We provide clear and easy-to-use
training scripts with pre-configured parameters, allowing for reproduction of the exact experiments
used across all datasets. We provide further details regarding empirical experiments and evaluation in
Appendices J–L. To make our theoretical analysis easier to follow and more transparent, we provide
highly detailed descriptions of assumptions, propositions, and proofs that could not fit in the main
text in Appendices B–I. Furthermore, to make effective real-world deployment easier, we provide
practical guidance regarding SON-GOKU in Appendices D, N, and O.

REFERENCES

Rie Kubota Ando and Tong Zhang. A framework for learning predictive structures from multiple tasks
and unlabeled data. In Proceedings of the 24th International Conference on Machine Learning
(ICML), pp. 3–10, 2005.

John Arevalo, Thamar Solorio, Manuel Montes y Gómez, and Fabio A. González. Gated multimodal
units for information fusion, 2017. URL https://arxiv.org/abs/1702.01992.

Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Multi-task feature learning. In
Advances in Neural Information Processing Systems, volume 19, pp. 41–48, 2007.

Afiya Ayman, Ayan Mukhopadhyay, and Aron Laszka. Task grouping for automated multi-task
machine learning via task affinity prediction, 2023. URL https://arxiv.org/abs/2310.
16241.

Hao Ban and Kaiyi Ji. Fair resource allocation in multi-task learning. In Proceedings of the 41st
International Conference on Machine Learning, ICML’24. JMLR.org, 2024.

Amir Beck. First-order methods in optimization. SIAM, 2017.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, New York, NY, 2006.
ISBN 978-0387310732.

Marthe Bonamy, Tom Kelly, Peter Nelson, and Luke Postle. Bounding χ by a fraction of δ for graphs
without large cliques, 2018. URL https://arxiv.org/abs/1803.01051.

Thomas Borsani, Andrea Rosani, Giuseppe Nicosia, and Giuseppe Di Fatta. Gradient similarity
surgery in multi-task deep learning. arXiv preprint arXiv:2506.06130, 2025.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM review, 60(2):223–311, 2018.

Said Yacine Boulahia, Abdenour Amamra, Mohamed Ridha Madi, and Said Daikh. Early, inter-
mediate and late fusion strategies for robust deep learning-based multimodal action recognition.
Machine Vision and Applications, 32(6):121, 2021.

Rich Caruana. Multitask learning. Machine Learning, 28(1):41–75, July 1997. doi: 10.1023/A:
1007379606734. URL https://doi.org/10.1023/A:1007379606734.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In International Conference
on Machine Learning, pp. 794–803, 2018. URL https://arxiv.org/abs/1711.02257.

Zhiyong Cui, Ruimin Ke, and Yinhai Wang. Deep bidirectional and unidirectional LSTM recurrent
neural network for network-wide traffic speed prediction. CoRR, abs/1801.02143, 2018. URL
http://arxiv.org/abs/1801.02143.

11

https://arxiv.org/abs/1702.01992
https://arxiv.org/abs/2310.16241
https://arxiv.org/abs/2310.16241
https://arxiv.org/abs/1803.01051
https://doi.org/10.1023/A:1007379606734
https://arxiv.org/abs/1711.02257
http://arxiv.org/abs/1801.02143

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of johnson and lindenstrauss.
In Randomization and Approximation Techniques in Computer Science, RANDOM 2003, pp.
53–62. Springer, 2003. doi: 10.1007/978-3-540-45198-3_4.

Victor H De la Pena, Tze Leung Lai, and Qi-Man Shao. Self-normalized processes: Limit theory and
Statistical Applications. Springer, 2009.

Reinhard Diestel. Graph Theory. Springer, 5th edition, 2017. ISBN 978-3-662-53622-3.

Paul Erdős and Alfréd Rényi. On the evolution of random graphs. Publications of the Mathematical
Institute of the Hungarian Academy of Sciences, 5:17–61, 1960.

Theodoros Evgeniou, Cinzia A. Micchelli, and Massimiliano Pontil. Learning multiple tasks with
kernels. Journal of Machine Learning Research, 6:615–637, 2005.

Caoyun Fan, Wenqing Chen, Jidong Tian, Yitian Li, Hao He, and Yaohui Jin. Maxgnr: A dynamic
weight strategy via maximizing gradient-to-noise ratio for multi-task learning. arXiv preprint
arXiv:2302.09352, 2023.

Christopher Fifty, Ehsan Amid, Zhe Zhao, Tianhe Yu, Rohan Anil, and Chelsea Finn. Efficiently
identifying task groupings for multi-task learning, 2021. URL https://arxiv.org/abs/
2109.04617.

Jorge Fliege and Benar F. Svaiter. Steepest descent methods for multicriteria optimization. Mathe-
matical Methods of Operations Research, 51(3):479–494, 2000. doi: 10.1007/s001860000043.

Saeed Ghadimi and Guanghui Lan. Stochastic first- and zeroth-order methods for nonconvex
stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013. doi: 10.1137/
120880811.

Mina Ghashami, Edo Liberty, Jeff M. Phillips, and David P. Woodruff. Frequent directions: Simple
and deterministic matrix sketching. SIAM Journal on Computing, 45(5):1762–1792, 2016a. doi:
10.1137/15M1009718.

Mina Ghashami, Edo Liberty, Jeff M Phillips, and David P Woodruff. Frequent directions: Simple
and deterministic matrix sketching. SIAM Journal on Computing, 45(5):1762–1792, 2016b.

Valerio Guarrasi, Fatih Aksu, Camillo Maria Caruso, Francesco Di Feola, Aurora Rofena, Filippo
Ruffini, and Paolo Soda. A systematic review of intermediate fusion in multimodal deep learning
for biomedical applications. Image and Vision Computing, pp. 105509, 2025.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corrup-
tions and perturbations. Proceedings of the International Conference on Learning Representations,
2019.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: Closing the generaliza-
tion gap in large batch training of neural networks. In Advances in Neural Information Processing
Systems, volume 30, pp. 1731–1741, 2017.

Laurent Jacob, Jean-philippe Vert, and Francis Bach. Clustered multi-task learning: A convex
formulation. Advances in neural information processing systems, 21, 2008.

Wooseong Jeong and Kuk-Jin Yoon. Selective task group updates for multi-task optimization, 2025.

Bo Kågström, Per Ling, and Charles Van Loan. Gemm-based level 3 blas: high-performance model
implementations and performance evaluation benchmark. ACM Transactions on Mathematical
Software (TOMS), 24(3):268–302, 1998.

Zhuoliang Kang, Kristen Grauman, and Fei Sha. Learning with whom to share in multi-task feature
learning. In Proceedings of the 28th International Conference on Machine Learning (ICML), pp.
521–528, 2011.

12

https://arxiv.org/abs/2109.04617
https://arxiv.org/abs/2109.04617
http://arxiv.org/abs/1512.03385

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-łojasiewicz condition. In Joint European conference on
machine learning and knowledge discovery in databases, pp. 795–811. Springer, 2016.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 7482–7491, 2018. doi: 10.1109/CVPR.2018.00781.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Vitaly Kurin, Alessandro De Palma, Ilya Kostrikov, Shimon Whiteson, and M. Pawan Kumar. In
defense of the unitary scalarization for deep multi-task learning. In Advances in Neural Information
Processing Systems, volume 35, 2022. URL https://arxiv.org/abs/2201.04122.

Harold J Kushner and G George Yin. Stochastic approximation and recursive algorithms and
applications. Springer, 2003.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

R Gary Leonard and George Doddington. Tidigits speech corpus. Texas Instruments, Inc, 1993.

Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel stochastic gradient for
nonconvex optimization. Advances in neural information processing systems, 28, 2015.

Paul Pu Liang, Yiwei Lyu, Xiang Fan, Zetian Wu, Yun Cheng, Jason Wu, Leslie Chen, Peter Wu,
Michelle A Lee, Yuke Zhu, et al. Multibench: Multiscale benchmarks for multimodal representation
learning. Advances in neural information processing systems, 2021(DB1):1, 2021.

Sicong Liang and Yu Zhang. A simple general approach to balance task difficulty in multi-task
learning, 2020. URL https://arxiv.org/abs/2002.04792.

Edo Liberty. Simple and deterministic matrix sketching. In Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD), pp. 581–588, 2013.
doi: 10.1145/2487575.2487623.

Baijiong Lin, Feiyang Ye, and Yu Zhang. A closer look at loss weighting in multi-task learning, 2022.
URL https://openreview.net/forum?id=OdnNBNIdFul.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
detection. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp.
2999–3007, 2017.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent
for multi-task learning. In Advances in Neural Information Processing Systems, volume 34, pp.
12345–12355, 2021.

Bo Liu, Yihao Feng, Peter Stone, and Qiang Liu. Famo: Fast adaptive multitask optimiza-
tion. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Ad-
vances in Neural Information Processing Systems, volume 36, pp. 57226–57243. Curran Asso-
ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/file/b2fe1ee8d936ac08dd26f2ff58986c8f-Paper-Conference.pdf.

Shikun Liu, Edward Johns, and Andrew J. Davison. End-to-end multi-task learning with attention.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
1871–1880, 2019.

Y. Liu. Theoretical analysis on how learning rate warmup accelerates gradient descent. arXiv preprint
arXiv:2509.07972, 2025. URL https://arxiv.org/abs/2509.07972.

Ben Lockwood. Pareto efficiency. In The new Palgrave dictionary of economics, pp. 1–5. Springer,
2008.

László Lovász. Graph minor theory. Bulletin of the American Mathematical Society, 43(1):75–86,
2006.

13

https://arxiv.org/abs/2201.04122
https://arxiv.org/abs/2002.04792
https://openreview.net/forum?id=OdnNBNIdFul
https://proceedings.neurips.cc/paper_files/paper/2023/file/b2fe1ee8d936ac08dd26f2ff58986c8f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/b2fe1ee8d936ac08dd26f2ff58986c8f-Paper-Conference.pdf
https://arxiv.org/abs/2509.07972

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Aakarsh Malhotra, Mayank Vatsa, and Richa Singh. Dropped scheduled task: Mitigating negative
transfer in multi-task learning using dynamic task dropping. Transactions on Machine Learning
Research, 2022.

Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model of
large-batch training. arXiv preprint arXiv:1812.06162, 2018.

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. The natural language
decathlon: Multitask learning as question answering. CoRR, abs/1806.08730, 2018. URL https:
//arxiv.org/abs/1806.08730.

Florence Merlevède, Magda Peligrad, and Emmanuel Rio. Bernstein inequality and moderate
deviations under strong mixing conditions. High Dimensional Probability VI, pp. 273–292, 2011.

Mateusz Michalkiewicz, Masoud Faraki, Xiang Yu, Manmohan Chandraker, and Mahsa Baktashmot-
lagh. Domain generalization guided by gradient signal to noise ratio of parameters. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 6177–6188, 2023.

Kaisa Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston, MA,
1999. ISBN 978-0792382781.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representa-
tions in vector space, 2013. URL https://arxiv.org/abs/1301.3781.

Salman Mohammadi, Anders Kirk Uhrenholt, and Bjørn Sand Jensen. Odd-one-out representation
learning. arXiv preprint arXiv:2012.07966, 2020. Shows that distinguishing an “odd” element
among “even” ones in auxiliary pretext tasks yields stronger embeddings.

MSCI Inc. and S&P Dow Jones Indices. Global Industry Classification Standard (GICS). MSCI Inc.,
New York, NY, august 2024 edition, 2024. First published January 7, 2020; updated August 2024.

David Mueller, Mark Dredze, and Nicholas Andrews. The importance of temperature in multi-task
optimization. In OPT 2022: Optimization for Machine Learning (NeurIPS 2022 Workshop), 2022.
URL https://openreview.net/forum?id=H9UOWMR_Ut.

Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron, Kenji Kawaguchi, Gal Chechik, and
Ethan Fetaya. Multi-task learning as a bargaining game. arXiv preprint arXiv:2202.01017, 2022.

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic
approximation approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574–
1609, 2009. doi: 10.1137/070704277.

Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Springer, 2004.
ISBN 978-1-4419-8853-9.

Feng Niu, Benjamin Recht, Christopher Ré, and Stephen J. Wright. Hogwild!: A lock-free approach
to parallelizing stochastic gradient descent. In Advances in Neural Information Processing Systems,
volume 24, pp. 693–701, 2011.

Vilfredo Pareto. Manual of political economy: a critical and variorum edition. OUP Oxford, 2014.

Lucas Pascal, Pietro Michiardi, Xavier Bost, Benoit Huet, and Maria A Zuluaga. Maximum roaming
multi-task learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 9331–9341, 2021.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pp. 400–407, 1951.

Sebastian Ruder. An overview of multi-task learning in deep neural networks. arXiv preprint
arXiv:1706.05098, 2017. URL https://arxiv.org/abs/1706.05098.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. In Advances in
Neural Information Processing Systems, volume 31, pp. 525–536, 2018.

14

https://arxiv.org/abs/1806.08730
https://arxiv.org/abs/1806.08730
https://arxiv.org/abs/1301.3781
https://openreview.net/forum?id=H9UOWMR_Ut
https://arxiv.org/abs/1706.05098

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Ammar Sherif, Abubakar Abid, Mustafa Elattar, and Mohamed ElHelw. Stg-mtl: scalable task
grouping for multi-task learning using data maps. Machine Learning: Science and Technology,
5(2):025068, June 2024. ISSN 2632-2153. doi: 10.1088/2632-2153/ad4e04. URL http:
//dx.doi.org/10.1088/2632-2153/ad4e04.

Guangyuan Shi, Qimai Li, Wenlong Zhang, Jiaxin Chen, and Xiao-Ming Wu. Recon: Reducing
conflicting gradients from the root for multi-task learning. In ICLR 2023 Workshop on Multi-Task
Learning, 2023.

Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. Training region-based object detectors
with online hard example mining. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 761–769, 2016.

Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and support
inference from rgb-d images. In European Conference on Computer Vision (ECCV), pp. 746–760.
Springer, 2012.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Trevor Standley, Amir R. Zamir, Dawn Chen, Leonidas Guibas, Jitendra Malik, and Silvio Savarese.
Which tasks should be learned together in multi-task learning? In Proceedings of the 37th
International Conference on Machine Learning (ICML), pp. 9120–9132, 2020.

J Michael Steele. The Cauchy-Schwarz master class: an introduction to the art of mathematical
inequalities. Cambridge University Press, 2004.

Zihao Sun, Yu Sun, Longxing Yang, Shun Lu, Jilin Mei, Wenxiao Zhao, and Yu Hu. Unleashing
the power of gradient signal-to-noise ratio for zero-shot nas. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 5763–5773, 2023.

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie, Yizhong Wang, Hannaneh Hajishirzi, Noah A.
Smith, and Yejin Choi. Dataset cartography: Mapping and diagnosing datasets with training
dynamics. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9275–
9293, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
emnlp-main.746. URL https://aclanthology.org/2020.emnlp-main.746/.

Andrea Tacchetti, Stephen Voinea, and Georgios Evangelopoulos. Trading robust representations for
sample complexity through self-supervised visual experience. In Advances in Neural Information
Processing Systems, volume 31, pp. 1686–1696, 2018. Section 4.2 demonstrates a “Transfer
learning: even/odd MNIST” auxiliary task that boosts few-shot performance.

Lovre Torbarina, Tin Ferkovic, Lukasz Roguski, Velimir Mihelcic, Bruno Sarlija, and Zeljko Kraljevic.
Challenges and opportunities of using transformer-based multi-task learning in nlp through ml
lifecycle: A survey, 2023. URL https://arxiv.org/abs/2308.08234.

Simon Vandenhende, Stamatios Georgoulis, Wouter Van Gansbeke, Marc Proesmans, Dengxin Dai,
and Luc Van Gool. Multi-task learning for dense prediction tasks: A survey. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44(7):3614–3633, 2022. doi: 10.1109/TPAMI.2021.
3054719.

Valentin Vielzeuf, Alexis Lechervy, Stéphane Pateux, and Frédéric Jurie. Centralnet: a multilayer
approach for multimodal fusion. CoRR, abs/1808.07275, 2018. URL http://arxiv.org/
abs/1808.07275.

Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cam-
bridge university press, 2019.

Chenguang Wang, Xuanhao Pan, and Tianshu Yu. Towards principled task grouping for multi-task
learning. arXiv preprint arXiv:2402.15328, 2024.

15

http://dx.doi.org/10.1088/2632-2153/ad4e04
http://dx.doi.org/10.1088/2632-2153/ad4e04
https://aclanthology.org/2020.emnlp-main.746/
https://arxiv.org/abs/2308.08234
http://arxiv.org/abs/1808.07275
http://arxiv.org/abs/1808.07275

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D. J. A. Welsh and M. B. Powell. An upper bound for the chromatic number of a graph and its
application to timetabling problems. The Computer Journal, 10(1):85–86, 01 1967. ISSN 0010-
4620. doi: 10.1093/comjnl/10.1.85. URL https://doi.org/10.1093/comjnl/10.1.
85.

Douglas B. West. Introduction to Graph Theory. Prentice Hall, 2nd edition, 2000. ISBN 978-
0130144003.

Enneng Yang, Junwei Pan, Ximei Wang, Haibin Yu, Li Shen, Xihua Chen, Lei Xiao, Jie Jiang, and
Guibing Guo. Adatask: A task-aware adaptive learning rate approach to multi-task learning. In
Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI), 2023. URL
https://arxiv.org/abs/2211.15055.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. In Advances in Neural Information Processing Systems,
volume 33, pp. 18524–18536, 2020.

Wenxin Yu, Xueling Shen, Jiajie Hu, and Dong Yin. Revisiting the loss weight adjustment in object
detection. arXiv preprint arXiv:2103.09488, 2021.

Amir R. Zamir, Alexander Sax, Teresa Yeo, Oguzhan Kar, Nikhil Cheerla, Rohan Suri, Zhangjie
Cao, Jitendra Malik, and Leonidas Guibas. Robust learning through cross-task consistency. CoRR,
abs/2006.04096, 2020. URL https://arxiv.org/abs/2006.04096.

Yu Zhang and Qiang Yang. An overview of multi-task learning. National Science Review, 5(1):
30–43, 2018.

Zhi Zhang, Jiayi Shen, Congfeng Cao, Gaole Dai, Shiji Zhou, Qizhe Zhang, Shanghang Zhang,
and Ekaterina Shutova. Proactive gradient conflict mitigation in multi-task learning: A sparse
training perspective. arXiv preprint arXiv:2411.18615, 2024. URL https://arxiv.org/
abs/2411.18615.

Han Zhao, Yifan Guo, Aleksandar Risteski, et al. Robust multi-task learning with excess risks. In
Proceedings of the 41st International Conference on Machine Learning, volume 235 of Proceedings
of Machine Learning Research, 2024.

Mo Zhou, Rong Ge, and Chi Jin. A local convergence theory for mildly over-parameterized two-layer
neural network. In Conference on Learning Theory, pp. 4577–4632. PMLR, 2021.

16

https://doi.org/10.1093/comjnl/10.1.85
https://doi.org/10.1093/comjnl/10.1.85
https://arxiv.org/abs/2211.15055
https://arxiv.org/abs/2006.04096
https://arxiv.org/abs/2411.18615
https://arxiv.org/abs/2411.18615

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A FULL ALGORITHM BLOCK FOR PROPOSED APPROACH

Algorithm 1 SON-GOKU Scheduler

Require: Initial shared params θ0, heads {ϕk}Kk=1, EMA buffers g̃(0)k =0, total steps T , learning-rate
schedule {ηt}, refresh length R, warm-up Twarm, target threshold τ∗, minimum coverage fmin,
EMA parameter β

1: Gradients follow the weighted-loss convention (Sec. 4).
2: r ← 0, tr ← 0 ▷ current refresh round and start index
3: τ ← 1; m0 ← 1; C(0)

1 ← {1, . . . ,K} ▷ warm-start schedule
4: for t = 0, . . . , T − 1 do
5: Warm-up/Anneal: τ ← ANNEAL(t) ▷ approach in Sec. 4.4
6: Scheduling: St ← C

(r)
(t mod mr)+1

7: Forward/Backward:
8: for all k ∈ St do
9: compute per-task gradients g(t)k and h

(t)
k (defs: Sec. 4.1)

10: end for
11: Parameter update (shared): θt+1 ← θt − ηt

∑
k∈St

g
(t)
k

12: Parameter update (task-specific):
13: for all k ∈ St do
14: ϕk,t+1 ← ϕk,t − ηth

(t)
k

15: end for
16: EMA:
17: for all k ∈ St do
18: update g̃

(t+1)
k (Eq. 8)

19: end for
20: if (t+ 1) mod R = 0 then ▷ refresh
21: EMA refresh: update all g̃i using small mini-batches (Sec. 4.1)
22: Interference matrix: compute ρ

(t+1)
ij via Eq. 9

23: Conflict graph: build G
(r+1)
τ via Eq. 10

24: Greedy coloring: Welsh–Powell→ {C(r+1)
1 , . . . , C

(r+1)
mr+1 }

25: Minimum coverage: enforce fi≥fmin using compatible-slot duplication (Sec. 4.4.1)
26: r ← r + 1; tr ← t+ 1
27: end if
28: end for

Algorithm block 1 provides an overview of the SON-GOKU scheduler. At a high level, the procedure
consists of four stages: (1) estimating pairwise interference, (2) building and coloring the conflict
graph, (3) generating a periodic schedule, and (4) updating that schedule as training evolves.

B EXACT RECOVERY OF POPULATION CONFLICT GRAPH & TASK PARTITION

B.1 SETTING, DEFINITIONS, AND POPULATION OBJECTS

Let K ≥ 2 be the number of tasks and d ≥ 1 the parameter dimension. At designated refresh
iterations, the scheduler:

(i) computes a per-task exponential moving average (EMA) of stochastic gradients over a probe
window of R iterations,

(ii) forms a cosine-similarity matrix from the K EMA vectors,

(iii) builds a conflict graph by thresholding negative cosines at a fixed level −τ with τ ∈ (0, 1),

(iv) computes a proper coloring of the conflict graph, and

(v) schedules one color class per iteration until the next refresh

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Definition B.1. At the beginning of a refresh window (i.e., at a fixed iterate θ), let

µi ∈ Rd (i = 1, . . . ,K) (14)

denote the population task gradients (or the window-stationary means). Define the population cosine
matrix C⋆ ∈ [−1, 1]K×K by

C⋆
ij =

⟨µi, µj⟩
∥µi∥ ∥µj∥

, i ̸= j, C⋆
ii = 1. (15)

Definition B.2. Fix τ ∈ (0, 1). The population conflict graph G⋆ = (V,E⋆) on vertex set V =
{1, . . . ,K} has an edge {i, j} iff C⋆

ij < −τ . The true grouping P⋆ is one of:

(A) Component Model: the vertex partition given by the connected components of G⋆.

(B) Multipartite model: a partition V =
⊔m

r=1 Pr (with m ≥!) such that G⋆ is the complete
m-partite graph induced by {Pr}mr=1 (no edges within any Pr, all cross-part edges present)

When we later speak of group recovery, we mean equality of the empirical partition (defined from
data) with P⋆, up to label permutation in case (B).

B.2 ASSUMPTIONS

We adopt the following assumptions, which are standard in analyses of stochastic-gradient methods
and verifiable in practice (see, e.g., Robbins & Monro 1951; Kushner & Yin 2003; Nemirovski et al.
2009; Bottou et al. 2018; Wainwright 2019; for concentration of geometrically weighted and mixing
sequences, see Merlevède et al. 2011; De la Pena et al. 2009).

Assumption 1 (Separation margin around the threshold). There exists γ ∈ (0, 1− τ) such that for
all i ̸= j:

{
C⋆

ij ≤ −(τ + γ), if i and j lie in different groups of P⋆,

C⋆
ij ≥ −(τ − γ), if i and j lie in the same group of P⋆.

(16)

Assumption 2 (Probe noise model and EMA). In the refresh window of length R, the per-iteration
stochastic task gradients admit the decomposition

gi,t = µi + ξi,t, t = 1, . . . , R, (17)

where {ξi,t}Rt=1 are mean-zero, sub-Gaussian with parameter σ2, and satisfy a ϕ-mixing or
martingale-difference condition ensuring concentration with geometric weights. The EMA for
task i is

g̃i =

R∑
t=1

wt gi,t, wt =
(1− β)βR−t

1− βR
, β ∈ [0, 1). (18)

Define the effective sample size neff by

n−1
eff :=

R∑
t=1

w2
t =

(1− β)2(1− β2R)

(1− βR)2(1− β2)
. (19)

In particular, as R→∞ (with fixed β ∈ [0, 1)), we have neff → 1+β
1−β .

Assumption 3 (Slow drift within a refresh). Over the refresh window, the changes in µi are small
enough to be absorbed in the concentration bounds below (equivalently, one can regard µi as constant
within the window by working at the start-of-window iterate and moving any drift into the noise
process).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Assumption 4 (Minimum norm and task inclusion). There exists m0 > 0 such that ∥µi∥ ≥ m0 for
all tasks included in the graph. In our implementation, we make it so that tasks with ∥g̃i∥ < ν (for a
small ν ≪ m0) are temporarily excluded from graph construction until stabilized.

Assumption 5 (Threshold selection). The threshold τ is fixed across refreshes or selected using data
independent of the probe window used to form {g̃i} (e.g., via a separate pilot set). The analysis below
treats τ as deterministic with respect to the probe sample.

B.3 DETERMINISTIC GROUP RECOVERY FROM THE CONFLICT GRAPH

We begin with basic graph-theoretic facts that we will use once we have established that the empirical
conflict graph coincides with its population counterpart.
Proposition 1 (Chromatic number of a complete multipartite graph). If G⋆ is complete m-partite
with parts {Pr}mr=1, then χ(G⋆) = m.

Proof. Picking one vertex from each part yields a clique of size m, hence χ(G⋆) ≥ m. Coloring
each part with a distinct color is proper, hence χ(G⋆) ≤ m. Therefore χ(G⋆) = m.

Theorem 1 (Identifiability via optimal coloring under model (B)). Assume model (B), i.e., G⋆ is
complete m-partite with parts {Pr}mr=1. Let c : V → {1, . . . ,m} be a proper coloring of G⋆ that
uses exactly χ(G⋆) colors. Then each color class equals some part Pr (up to relabeling).

Proof. In a complete multipartite graph, any two vertices from different parts are adjacent. Thus, no
color class can contain vertices from two different parts, so each color class is contained in some Pr.
By Proposition 1, χ(G⋆) = m, so any optimal coloring uses exactly m colors. Since there are m
nonempty parts, none can be split across two colors. Hence, the color classes coincide with {Pr}mr=1
up to permutation.

Proposition 2 (Identifiability via components under model (A)). Under model (A), the grouping P⋆

equals the connected components of G⋆. Consequently, any procedure that returns the connected
components of the empirical graph recovers P⋆ whenever the empirical graph equals G⋆.

B.4 UNIFORM CONTROL OF EMPIRICAL COSINES FROM EMA GRADIENTS

We now quantify the deviation of the empirical cosine matrix Ĉ formed from {g̃i} relative to C⋆.
Lemma 1 (EMA vector concentration in directions of interest). Assume Assumption 2 and Assumption
3. There exists a constant c > 0 depending only on the mixing parameters such that for any fixed unit
vector u ∈ Sd−1 and any ε > 0.

Pr
(∣∣⟨g̃i − µi, u⟩

∣∣ > ε
)
≤ 2 exp

(
− c neff ε2/σ2

)
. (20)

In particular, for any finite set of unit vectors {uj}Mj=1, a union bound yields

Pr
(

max
1≤j≤M

∣∣⟨g̃i − µi, uj⟩
∣∣ > ε

)
≤ 2M exp

(
− c neff ε2/σ2

)
. (21)

Proof. The scalar process {⟨ξi,t, u⟩}Rt=1 is sub-Gaussian with variance proxy σ2 and satisfies the same
mixing condition. Exponential-weighted averages of such sequences obey Hoeffding-Azuma/Berstein-
type tail bounds with variance proxy σ2

∑
t w

2
t = σ2/neff . The stated inequality follows.

Lemma 2 (Cosine stability under perturbations). Assume Assumption 4 and let ϵ > 0. If for a pair
(i, j) we have

∣∣⟨g̃i−µi,
µj

∥µj∥ ⟩
∣∣ ≤ ϵ,

∣∣⟨g̃j−µj ,
µi

∥µi∥ ⟩
∣∣ ≤ ϵ,

∣∣⟨g̃i−µi,
µi

∥µi∥ ⟩
∣∣ ≤ ϵ,

∣∣⟨g̃j−µj ,
µj

∥µj∥ ⟩
∣∣ ≤ ϵ,

(22)

then

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

∣∣Ĉij − C⋆
ij

∣∣ ≤ 6 ϵ

m0
+

4 ϵ2

m2
0

. (23)

Proof. Write g̃i = µi + δi, g̃j = µj + δj . Decompose the numerator and denominator in the cosine:

⟨g̃i, g̃j⟩ − ⟨µi, µj⟩ = ⟨δi, µj⟩+ ⟨µi, δj⟩+ ⟨δi, δj⟩, (24)

and

∥g̃i∥ = ∥µi∥
√

1 + 2⟨δi, µi⟩/∥µi∥2 + ∥δi∥2/∥µi∥2 (25)

Using Assumption 4,

|⟨δi, µj/∥µj∥⟩| ≤ ϵ (26)

and

|⟨δi, µi/∥µi∥⟩| ≤ ϵ (27)

imply

|⟨δi, µj⟩| ≤ ϵ∥µj∥ (28)

and

|⟨δi, µi⟩| ≤ ϵ∥µi∥ (29)

A second-order expansion of the cosine in (δi, δj) with the above controls yields the bound. The
constants 6 and 4 arise from collecting the linear and quadratic contributions in ϵ/m0.

Combining Lemma 1 and Lemma 2 with a union bound over all unordered pairs (i, j) shows that the
empirical cosines are uniformly close to their population counterparts.

Proposition 3 (Uniform cosine accuracy with high probability). Assume Assumption 2, Assumption
3, and Assumption 4. For any ϵ > 0 there exist absolute constants c, C > 0 such that if

neff ≥ C
σ2

m2
0 ϵ

2
(30)

then, with probability 1− δ,

max
i<j

∣∣Ĉij − C⋆
ij

∣∣ ≤ ϵ (31)

Proof. For each unordered pair (i, j), apply Lemma 1 with the four unit vectors µj/∥µj∥, µi/∥µi∥,
and use Lemma 2 to convert these directional deviations into a cosine deviation bound. A union
bound over the O(K2) pairs yields the claimed logarithmic factor. The constants absorb the quadratic
term in ϵ by requiring ϵ ≤ m0.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

B.5 EXACT EDGE RECOVERY AND GROUP RECOVERY

We first show that a uniform cosine error smaller than the margin γ implies exact equality of empirical
and population conflict graphs.

Theorem 2 (Exact conflict-graph recovery under the margin). Assume Assumptions 1–5. If

max
i<j

∣∣Ĉij − C⋆
ij

∣∣ ≤ ϵ with ϵ < γ, (32)

then the empirical conflict graph equals the population graph:

Ĝ = G⋆. (33)

Equivalently, for every i ̸= j,

C⋆
ij ≤ −(τ + γ) ⇒ Ĉij < −τ and C⋆

ij ≥ −(τ − γ) ⇒ Ĉij > −τ. (34)

Proof. For any pair (i, j), if C⋆
ij ≤ −(τ + γ), then Ĉij ≤ −(τ + γ) + ϵ < −τ , hence {i, j} ∈ Ê. If

C⋆
ij ≥ −(τ − γ), then Ĉij ≥ −(τ − γ)− ϵ > −τ , hence {i, j} /∈ Ê.

Combining Proposition 3 and Theorem 2 yields a high-probability statement.

Corollary 1 (High-probability exact recovery of G⋆). Under Assumptions 1–5, there exists a universal
constant C > 0 such that if

neff ≥ C
σ2

m2
0 γ

2
log
(K2

δ

)
, (35)

then Pr(Ĝ = G⋆) ≥ 1− δ.

Theorem 3 (Group recovery under the component model). Under model (A) and the conditions of
Corollary 1, with probability at least 1− δ, the connected components of Ĝ equal P⋆.

Proof. Immediate from Ĝ = G⋆ and the definition of P⋆.

Theorem 4 (Group recovery under the multipartite model). Under model (B) and the conditions of
Corollary 1, with probability at least 1− δ, χ(Ĝ) = m and any optimal coloring of Ĝ yields color
classes equal to {Pr}mr=1 up to label permutation.

Proof. If Ĝ = G⋆, then Ĝ is complete m-partite. Proposition 1 gives χ(Ĝ) = m. Theorem 1 implies
identifiability up to permutation by any optimal coloring.

B.6 QUANTITATIVE PROBE-BUDGET REQUIREMENT

Combining the bounds above yields the following sample-complexity statement.

Corollary 2. Under assumptions 1–5, there exist absolute constants c, C > 0 such that the following
holds. If the EMA parameters (R, β) are chosen to ensure

neff ≥ C
σ2

m2
0 γ

2

(
equivalently,

R∑
t=1

w2
t ≤ c

m2
0 γ

2

σ2

1

log(K/δ)

)
(36)

then Pr(Ĝ = G⋆) ≥ 1 − δ, and consequently Theorems 3–4 apply. In particular, for fixed β and
large R, neff → 1+β

1−β (i.e., it saturates). Thus, to meet the required budget as K grows, one increases
neff by choosing β closer to 1 (e.g., 1 − β ≍ 1/ log(K2/δ)), or by switching to a unnormalized
averaging approach.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

B.7 SUMMARY OF THE RECOVERY ARGUMENT

We summarize the logical flow leading to consistency of the scheduler.

(i) Assumptions: Assumptions 1–5 define the conditions in which in which across-group
population cosines lie below −(τ + γ), within-group cosines lie above −(τ − γ), EMA
gradients concentrate with effective sample size neff , and all included tasks have non-
negligible gradient norm.

(ii) Uniform cosine accuracy: Lemmas 1–2 together with Proposition 3 yield a high-probability
uniform cosine approximation:

max
i<j

∣∣Ĉij − C⋆
ij

∣∣ ≤ ϵ, (37)

with probability at least 1− δ, where ϵ decreases as neff increases.

(iii) Exact recovery of edges: If the approximation tolerance satisfies ϵ < γ, Theorem 2 converts
the uniform bound into exact edge recovery of the conflict graph:

Ĝ = G⋆. (38)

(iv) Recovery of the grouping: Given Ĝ = G⋆, Theorem 3 implies group recovery under the
component model (groups are the connected components). Under the multipartite model,
Proposition 1 and Theorem 1 yield χ(Ĝ) = m and Theorem 4 shows that any optimal
coloring returns the true parts (up to label permutation).

Quantitative consequence. Assume Assumptions 1–5 and fix δ ∈ (0, 1). Let m0 = mini ∥µi∥
and let σ2 be the variance proxy from Assumption 2. If the EMA probe budget satisfies

neff ≥ C
σ2

m2
0 γ

2
log
(K2

δ

)
(39)

for a universal constant C > 0, then with probability at least 1− δ the empirical conflict graph equals
the population graph: Ĝ = G⋆. Consequently:

(i) under the component model (A), the connected components of Ĝ coincide with P⋆.

(ii) under the multipartite model (B), χ(Ĝ) = m and any optimal coloring of Ĝ recovers P⋆ up
to permutation of labels.

C DESCENT BOUNDS FOR SCHEDULED VERSUS AGGREGATED UPDATES

We compare two update procedures over a single refresh: a scheduled sequence of per-group steps
(i.e., the approach we propose in our paper) and a single aggregated step that combines all groups at
once. Both use the same step size η and the same gradient information measured at the start of the
refresh, and our analysis operates at the level of L-smooth (descent) upper bounds. We identify when
the scheduled bound is strictly tighter and summarize implications under PL / strong convexity.

Throughout, F : Rd → R is differentiable and L-smooth, i.e.

F (y) ≤ F (x) + ⟨∇F (x), y − x⟩+ L
2 |y − x|2, ∀x, y. (40)

We write ∇F (x) =
∑m

r=1 Gr(x), where each Gr(x) is the group gradient for color r (any fixed
linear aggregator of task gradients assigned to color r for the current refresh). We use a refresh step
size η ∈ (0, 1/L].

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

C.1 SINGLE REFRESH BASELINES AND NOTATION

C.1.1 SINGLE AGGREGATED STEP

Definition C.1 (Aggregated step). Starting from the same point x, with step size η ∈ (0, 1/L] and
group gradients G0

r := Gr(x) (with ∇F (x) =
∑m

r=1 G
0
r), define

xagg := x− η

m∑
r=1

G0
r. (41)

One-shot L-smoothness bound. Applying L-smoothness with y = xagg yields

F (xagg) ≤ F (x) − η
〈
∇F (x),

m∑
r=1

G0
r

〉
+ Lη2

2

∥∥∥ m∑
r=1

G0
r

∥∥∥2. (42)

C.1.2 SCHEDULED GROUP SEQUENCE OVER ONE REFRESH

Definition C.2 (Scheduled refresh). Starting from the same point x, define

x0 := x, xr := xr−1 − η Gr(xr−1) (r = 1, . . . ,m), xsch := xm. (43)

Order and notation. The within refresh order (1, . . . ,m) may be fixed or randomly permuted each
refresh. We write H(·) for the Hessian of F and take η ∈ (0, 1/L].

Our goal is to compare upper bounds derived from L-smoothness for F (xsch) and F (xagg).

C.2 TELESCOPING BOUND FOR SCHEDULED UPDATES

Lemma 3 (Smoothness Expansion for Two Scheduled Groups). Let m = 2 and G0
r := Gr(x). For

any η ∈ (0, 1/L],

F (xsch) ≤ F (x) − η ⟨∇F (x), G0
1⟩ + Lη2

2 ∥G
0
1∥2

− η ⟨∇F (x), G2(x1)⟩ + Lη2

2 ∥G2(x1)∥2 + η2
∫ 1

0

〈
H(x−tηG0

1)G
0
1, G2(x1)

〉
dt.

(44)

Proof sketch. Apply the L-smoothness inequality at the first step to bound F (x1). For the second
step, use L-smoothness at x1 and expand

∇F (x1) = ∇F (x)−
∫ 1

0

H(x−tηG0
1) ηG

0
1 dt (45)

by the fundamental theorem of calculus along the segment x→ x1.

C.2.1 START-OF-REFRESH REDUCTION UNDER PER-GROUP LIPSCHITZNESS

We adopt the following assumption whenever we compare bounds solely in terms of start-of-refresh
measurements. It will be used throughout Sections C.3–C.6

Assumption 6 (Per-group lipschitzness). Each group map Gr(·) is Lr-lipschitz:

∥Gr(u)−Gr(v)∥ ≤ Lr ∥u− v∥ for all u, v. (46)

Under this assumption, for m = 2 we have G2(x1) = G0
2 + δ2 with ∥δ2∥ ≤ L2η∥G0

1∥, hence

∥G2(x1)∥ ≤ ∥G0
2∥+ L2η∥G0

1∥ (47)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

For general m

∥Gr(xr−1)∥ ≤ ∥G0
r∥+ Lr η

∑
p<r

∥G0
p∥ (r = 2, . . . ,m) (48)

When these substitutions are made in scheduled bounds, the induced drift contributions are collected
into a nonnegative penalty Rm(x; η)

C.3 UPPER BOUNDS FOR SCHEDULED AND AGGREGATED UPDATES (GENERAL m)

Applying L-smoothness m times yields the scheduled upper bound

UBsch(x; η) := F (x) − η

m∑
r=1

〈
∇F (x), Gr(xr−1)

〉
+

Lη2

2

m∑
r=1

∥Gr(xr−1)∥2

+ η2
∑

1≤p<q≤m

∫ 1

0

〈
H
(
x− tηGp(xp−1)

)
Gp(xp−1), Gq(xq−1)

〉
dt.

(49)

The aggregated upper bound is the one-shot bound from Equation 42, restated as

UBagg(x; η) := F (x) − η
〈
∇F (x),

m∑
r=1

G0
r

〉
+

Lη2

2

∥∥∥ m∑
r=1

G0
r

∥∥∥2 (50)

The integrals in Equation 49 are over ordered pairs p < q along the specific sequence x0 → x1 →
· · · → xm; the bound therefore depends on the within-refresh order. Randomizing the order yields an
expected version.

In Sections C.4–C.6 we express the scheduled bound in terms of {G0
r} under the per-group lipschitz-

ness assumption. The associated drift terms are aggregated into Rm(x; η).

C.4 SCHEDULED AND AGGREGATED GAP AT A COMMON LINEARIZATION

Define the shorthand

Ipq(x; η) :=

∫ 1

0

〈
H(x−tηG0

p)G
0
p, G

0
q

〉
dt (51)

By expanding UBsch around {G0
r} and collecting the lipschitz drift penalties into Rm(x; η) ≥ 0, we

obtain:

Theorem 5 (Upper-bound gap under per-group lipschitzness). Assuming per-group lipschitzness, for
any partition {Gr} and η ∈ (0, 1/L],

UBsch(x; η)−UBagg(x; η) ≤ η2
∑

1≤p<q≤m

(
− L ⟨G0

p, G
0
q⟩ + Ipq(x; η)

)
+ Rm(x; η). (52)

Using ∥H(·)∥op ≤ L and Cauchy-Schwarz (Steele, 2004)

Ipq(x; η) ≤ L ∥G0
p∥ ∥G0

q∥ (53)

which gives the envelope

UBsch(x; η)−UBagg(x; η) ≤ Lη2
∑
p<q

(
∥G0

p∥ ∥G0
q∥ − ⟨G0

p, G
0
q⟩
)
+ Rm(x; η) ≥ 0 (54)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Interpretation This shows that without additional structure, the scheduled smoothness bound can
be looser than the aggregated bound. The gap is governed by Hessian-weighted cross terms Ipq
Proposition 4 (Drift penalty bound under per-group lipschitzness). Assume each group map Gr is
Lr-lipschitz. Then for r ≥ 2,

∥Gr(xr−1)∥ ≤ ∥G0
r∥+ Lrη

∑
p<r

∥G0
p∥ := ∥G0

r∥+ Lrη Sr−1, (55)

and the scheduled start substitution error satisfies

Rm(x; η) ≤ η2
(m∑

p=1

∥G0
p∥
) m∑

r=2

Lr Sr−1

+
Lη2

2

m∑
r=2

(
2 ∥G0

r∥LrηSr−1 + (LrηSr−1)
2
)
,

(56)

so Rm(x; η) = O(η2) with constants controlled by {Lr} and {∥G0
r∥}.

C.5 SUFFICIENT CONDITIONS FOR A TIGHTER SCHEDULED BOUND

The terms Ipq(x; η) encode Hessian-weighted interactions between groups and determine when
scheduling is advantageous at the bound level.
Assumption 7 (Hessian-weighted negative cross-terms). There exist nonnegative margins {Γpq}p<q

such that

Ipq(x; η) =

∫ 1

0

〈
H(x−tηG0

p)G
0
p, G

0
q

〉
dt ≤ −Γpq ∥G0

p∥ ∥G0
q∥ for all p < q (57)

Theorem 6 (Strict upper-bound improvement under per-group lipschitzness and negative Hes-
sian-weighted cross-terms). Assuming per-group lipschitzness and 57, for any η ∈ (0, 1/L],

UBsch(x; η)−UBagg(x; η) ≤ η2
∑
p<q

(
− L ⟨G0

p, G
0
q⟩ − Γpq ∥G0

p∥ ∥G0
q∥
)

+ Rm(x; η) (58)

In particular, if

∑
p<q

(
Γpq ∥G0

p∥ ∥G0
q∥+ L ⟨G0

p, G
0
q⟩
)

>
Rm(x; η)

η2
(59)

then UBsch(x; η) < UBagg(x; η)

C.6 PL OR STRONG CONVEXITY: STANDARD RATE AND UPPER-BOUND GAINS FOR
SCHEDULING

Assume F satisfies the Polyak–Łojasiewicz (PL) inequality with parameter µ > 0:

1
2 |∇F (x)|2 ≥ µ (F (x)− F ⋆), ∀x (60)

For any η ∈ (0, 1/L], the single aggregated update satisfies the standard GD bound

F (xagg) ≤ F (x) − η
(
1− Lη

2

)
|∇F (x)|2 ≤

(
1− 2µη

(
1− Lη

2

)) (
F (x)− F ⋆

)
(61)

Define the upper-bound gain (under per-group lipschitzness, so both bounds are expressed at start-of-
refresh):

∆UB(x; η) := UBagg(x; η)−UBsch(x; η) ≥ 0 (62)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

whenever 59 holds. Since F (xsch) ≤ UBsch(x; η) and UBagg(x; η) upper-bounds the one-shot
decrease term in 61, we obtain the bound-level contraction

F (xsch)− F ⋆ ≤
(
1− 2µη

(
1− Lη

2

)) (
F (x)− F ⋆

)
− ∆UB(x; η). (63)

Consequently, under per-group lipschitzness and 59, the scheduled refresh satisfies the standard
gradient-descent contraction and, in addition, achieves an extra nonnegative decrement ∆UB(x; η) in
the upper bound.

C.7 WHY THE ASSUMPTIONS ARE MILD

The assumptions we use are mild. They are standard and naturally align with our training pipeline.

C.7.1 L-SMOOTHNESS

This is the same regularity used throughout the main paper and in our baselines. Each task loss we
optimize is Li-smooth, so the overall objective is L-smooth. We only use this to apply the standard
smoothness (descent) inequality (Nesterov, 2004; Beck, 2017).

C.7.2 PER-GROUP LIPSCHITZNESS OF Gr

Each Gr is a fixed linear combination of the task gradients assigned to group r. If each task gradient
is Li-lipschitz, then Gr is lipschitz with constant Lr ≤

∑
i ∈ rLi. In other words, this property falls

out of task-level smoothness. The same smoothness estimates we already use for step-size selection
upper-bound the Lr.

C.7.3 NEGATIVE HESSIAN-WEIGHTED CROSS-TERMS

The condition we use asks that, over the short moves we actually take (η ≤ 1/L), groups that are
separated by the scheduler continue to exhibit negative interaction under the local Hessian (i.e.,
the Hessian-weighted cross-terms remain negative). This aligns with how the scheduler is built. It
separates tasks that exhibit sustained negative interactions and it periodically refreshes assignments
so the local geometry does not drift far. Thus the assumption matches the mechanism we deploy.

C.7.4 PL AND STRONG CONVEXITY

We invoke PL only to convert a per-refresh decrease into a standard contraction factor. We do
not require global strong convexity. A local PL inequality around the iterates is enough, which is
commonly observed after warm-up and annealing we already use (Karimi et al., 2016; Zhou et al.,
2021; Liu, 2025).

C.8 CONCLUDING REMARKS

This appendix formalizes a bound-level comparison between scheduled and aggregated updates.
Without additional structure the scheduled bound need not be tighter, but under per-group lipschitzness
and negative Hessian-weighted cross-terms it becomes strictly tighter, and under PL the scheduled
refresh inherits the standard GD contraction with an additional nonnegative decrement. In practice,
these conditions arise naturally once the task-group assignments stabilize, so the scheduler will
typically achieve tighter descent bounds without changing step sizes or gradient information.

D COMPUTATIONAL COMPLEXITY OF ONE REFRESH (AND AMORTIZED
OVER TRAINING)

We analyze the computational and memory complexity of the proposed interference-aware scheduler
per refresh and its amortized cost over training. The former accounts for the cost of a single
refresh operation while the latter represents the average cost distributed across all training steps. We
distinguish the work required by the underlying multi-task training objective (e.g., backpropagation

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

to obtain gradients) from the scheduler overhead (EMA maintenance, cosine computation, conflict
graph construction, and color).

D.1 NOTATION

• K ∈ N – number of tasks

• d ∈ N – dimension of the gradient EMA vector per task

• R ∈ N – refresh period (number of training steps between graph rebuilds)

• β ∈ [0, 1) – exponential moving average (EMA) parameter

• T ∈ N – total number of training steps

• G > 0 – time to compute one backward pass to obtain a task gradient at a refresh

• τ ∈ (0, 1) – conflict threshold; an undirected edge {i, j} is present iff Ĉij < −τ
• Trefresh > 0 – time cost of a single scheduler refresh

• Srefresh > 0 – peak additional memory used during a refresh

• Nrefresh ∈ N – number of refreshes over T steps with period R (satisfies Nrefresh ∈
{⌊T/R⌋, ⌈T/R⌉} and Nrefresh ≤ T/R+ 1)

• r ∈ N – dimension of the sketch space used for cosine computation (number of columns of
the random projection matrix)

D.2 PER-REFRESH COMPLEXITY

At a refresh, the scheduler performs a finite sequence of deterministic operations on the current
collection of task-wise exponential moving averages (EMAs) of gradients. Let

M ∈ RK×d (64)

denote the matrix whose i-th row m⊤
i is the EMA for task i. We fix a random matrix R ∈ Rd×r with

r ≪ d and form a lower dimensional sketch

Mf := MR ∈ RK×r. (65)

A refresh first updates these rows through a scalar EMA rule

mi ← βmi + (1− β)gi (66)

using the most recent probe (or reused) gradient gi. It then constructs the cosine-similarity matrix in
the sketch space

Ĉ = M̃fM̃
⊤
f (67)

where M̃f is the row-normalized version of Mf . It thresholds Ĉ at−τ to obtain the conflict adjacency.
Finally, it applies a graph-coloring routine to the resulting simple graph (Welsh & Powell, 1967).

EMA maintenance uses a constant number of vector operations per task: one multiply-add on each of
the d coordinates of mi. Aggregating over all K tasks gives a time proportional to Kd. The storage
required to hold all EMAs is the K × d array M , so the working set devoted to EMAs is Θ(Kd)
numbers.

The construction of Ĉ in the sketched space proceeds in three stages: (i) forming the sketch Mf =

MR, (ii) normalizing each row of Mf , and (iii) multiplying M̃f by its transpose. The sketching
multiply touches every entry of M and R and therefore costs O(Kdr) time. Row normalization
touches each entry of Mf exactly once and therefore costs Θ(Kr) time. The Gram product M̃fM̃

⊤
f

consists of K2 dot products of length r, which is O(K2r) time (Kågström et al., 1998). The cosine
matrix itself occupies K2 entries. If it is retained after thresholding, it uses Θ(K2) space. If dropped
right after graph construction, that Θ(K2) storage is only temporary.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Thresholding linearly scans the off-diagonal of Ĉ, adding an undirected edge when Ĉij < −τ ; this
costs Θ(K2) time. The result is either a dense K ×K boolean array requiring Θ(K2) space, or a
sparse adjacency whose size depends on the number of conflicts (e.g., Θ(kK) when retaining the k
most negative entries per row).

Putting these pieces together yields the following statement.
Proposition 5 (Per-refresh scheduler overhead with random projections). Under the standard RAM
model with dense matrix multiplication in the sketch space costed as O(K2r), the time required by a
single scheduler refresh is

Trefresh = Θ(Kd) + O(Kdr) + O(K2r) + O(K2) = O(Kdr +K2r), (68)
and the additional space required by the scheduler during the refresh is

Srefresh = Θ(Kd) + Θ(Kr) + Θ(K2), (69)

where the Θ(K2) term is transient if C is not retained after coloring and the Θ(Kr) term is transient
if the sketch Mf is discarded between refreshes and recomputed from M .

Proof. The EMA update costs Θ(Kd) by a direct count of coordinate-wise multiplication and
addition. Forming the random projection sketch Mf = MR touches each entry of M and R, and
therefore costs O(Kdr). Row-normalizing Mf then costs Θ(Kr), since it processes all Kr entries
once.

In the sketched space, the Gram matrix Ĉ = M̃fM̃
⊤
f requires K2 inner products of length r, which

is O(K2r) time. Thresholding scans O(K2) entries and is therefore Θ(K2). The greedy coloring
performs a sort of K keys and then assigns at most one color per edge incident on the current vertex,
which is O(K2) in the worst case. These Θ(K2) terms are dominated by the O(Kdr) and O(K2r)
contributions once r ≥ 1 and K is nontrivial.

Summing these contributions and absorbing lower-order terms yields Trefresh = Θ(Kd)+O(Kdr)+
O(K2r) +O(K2) = O(Kdr +K2r).

D.3 AMORTIZED COST OVER TRAINING

Let R ∈ N denote the refresh period as the scheduler executes a refresh once every R training
steps. Consider a training run of length T steps. The number of refreshes executed is ⌊T/R⌋ or
⌈T/R⌉ depending on whether one refresh occurs at step 0. In either case it is bounded by T/R+ 1.
Multiplying the per-refresh time Trefresh by the number of refreshes and dividing by T shows that the
amortized scheduler time per training step satisfies

1

T
Nrefresh Trefresh ≤

1

T

(T
R

+ 1
)
Trefresh =

1

R
Trefresh +

1

T
Trefresh (70)

Letting T → ∞ (or simply taking T large compared to one refresh) eliminates the T−1Trefresh
boundary term, yielding the asymptotic amortized bound

1

R
Trefresh =

1

R
O(Kdr +K2r) = O

(
Kdr +K2r

R

)
. (71)

If probe gradients are computed only at refreshes, their contribution KG per refresh adds 1
RΘ(KG)

to the amortized time per step. If, instead, the training loop already computes task-wise gradients
each step and these are reused to update the EMAs, then the probe term is absent and the amortized
scheduler overhead remains O

(
(Kdr +K2r)/R

)
.

The amortized space usage is simpler. The EMA matrix M must be retained throughout training and
therefore contributes Θ(Kd) at all times. The cosine matrix Ĉ and the adjacency are constructed only
during the refresh. They’re released after coloring, so the Θ(K2) space does not persist. Consequently,
the persistent memory overhead attributable to the scheduler is Θ(Kd), while the peak overhead
during a refresh is Θ(Kd) + Θ(K2).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

D.4 CONDITIONS FOR NEGLIGIBLE OVERHEAD

Let the amortized per-step costs be

Csched =
a

R
(Kdr +K2r), Cprobe =

b

R
KG, (72)

where a, b > 0 are platform-dependent constants and G denotes the per-task backpropagation cost of
the optional probe at a refresh. For fixed R,

Csched

Cprobe
=

a

b

Kdr +K2r

KG
=

ar

b

d+K

G
. (73)

Hence Csched is negligible relative to Cprobe whenever

Csched

Cprobe
≤ ε ⇐⇒ r (d+K) ≤ b

a
εG. (74)

D.5 REDUCING TIME COMPLEXITY

In this section, we detail approaches that can be taken under certain circumstances to optimize time
complexity.

D.5.1 RANDOM PROJECTIONS

We replace the EMA matrix M ∈ RK×d by a lower-dimensional sketch M̃ = MR with R ∈ Rd×r

and r ≪ d (Dasgupta & Gupta, 2003). The sketching multiply costs O(Kdr) and the cosine Gram
becomes O(K2r) instead of Θ(K2d). Storage for the sketched EMAs is O(Kr). By the Johnson-
Lindenstrauss (JL) random projection guarantee, if we map the K task-EMA vectors from Rd to Rr

using a suitable random matrix with r = Θ(ϵ−2 logK), then after row normalization all pairwise
inner products (hence cosines) are preserved within ±ϵ with high probability. We assume a uniform
row-norm floor mini ∥mi∥ ≥ m0 > 0 (which can be enforced in practice by skipping tasks with
∥mi∥ < ν ≪ m0) so cosine errors remain controlled. Choosing ϵ < γ, where γ is the cosine margin
from the recovery analysis, ensures that every pair remains on the same side of the threshold −τ .
Therefore the set {(i, j) : Ĉij < −τ} and the resulting coloring are unchanged with high probability.

In short, dimensionality drops from d to r, the refresh cost drops from Θ(K2d) to O(Kdr +K2r),
and decisions are preserved as long as the chosen r makes the embedding error smaller than the
margin.

D.5.2 DETERMINISTIC COVARIANCE SKETCHING VIA FREQUENT DIRECTIONS

We maintain a deterministic sketch B ∈ Rℓ×d of the row space of M using Frequent Directions
and either project rows onto span(B) or form an approximate Gram from the sketch (Liberty, 2013;
Ghashami et al., 2016a). Maintaining the sketch costs O(Kdℓ), the cosine Gram in the sketch space
costs O(K2ℓ), and storage for the sketch is O(ℓd). Frequent Directions gives a spectral-norm bound

|MM⊤ − M̂M⊤|2 ≤ ϵ|M |2F (75)

when ℓ = Θ(ϵ−2), which yields a uniform bound on inner-product and squared-norm errors. Assum-
ing a row-norm floor mini ∥mi∥ ≥ m0 > 0 and applying a standard cosine perturbation bound after
row normalization, one obtains

∣∣ cos(mi,mj)− ĉos(mi,mj)
∣∣ ≤ 2 ϵ ∥M∥2F

m2
0

+ O

(
ϵ2 ∥M∥4F

m4
0

)
(76)

Taking ϵ small enough so that the right-hand side is < γ ensures that all threshold decisions and the
resulting coloring are preserved deterministically. Thus the effective dimension drops from d to ℓ in
the worst case, and the refresh cost becomes O(Kdℓ+K2ℓ).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 3: Runtime and Taskonomy Tiny validation metrics for SON-GOKU scheduling variants.

Family Variant Runtime Taskonomy Tiny
Elapsed (s) ↓ Imgs/s ↑ Refresh (ms) ↓ Depth Eucl. RMSE ↓ Depth Eucl. MAE ↓ Normal mean (deg) ↓ Reshading MAE ↓

Baseline FD (conservative) 76.37±1.84 50.28± 1.21 488.94±27.35 25.58 ±0.92 7.98 ±0.41 56.63 ±1.87 0.238 ±0.018
Random proj. 128 random dim. 72.32±2.76 53.10±1.95 366.70±34.12 26.19±1.37 9.05±0.63 70.37±3.91 0.334±0.039

Freq. Directions 128 FD width r 73.85±1.57 52.00±1.33 391.15±29.44 27.49±1.68 9.82±0.71 70.97±4.22 0.490±0.065
256 FD width r 75.11±1.23 51.13±1.09 440.05±23.08 26.34±1.05 8.72±0.52 62.37±2.98 0.339±0.033

Edge sampling 25% sampling rate 72.38±3.41 53.05±2.37 342.26±48.73 126.01±18.92 49.50±7.31 77.48±6.85 5.959±0.821
Incremental Gram 1e-3 threshold ϵ 70.07±2.04 54.80±2.11 293.36±31.29 34.41±4.67 15.36±1.88 93.86±9.73 0.621±0.079

D.5.3 EDGE SAMPLING FOR CONFLICT GRAPHS WITH ADAPTIVE REFINEMENT

We reduce the number of cosine evaluations by computing Ĉij for only Õ(K logK) randomly chosen
task pairs to build a provisional conflict graph and then refining by evaluating additional pairs that
are near the threshold or needed to certify connectivity and chromatic structure. We still compute
all K row norms once in O(Kd) time for normalization, and the first pass costs O(Kd logK) for
the sampled dot products. The total cost adds only the refinement work, which remains small when
only few pairs are ambiguous. Under a planted separation model with margin γ and reasonably dense
cross-group conflicts, one can show with high probability that the sampled graph already captures
the correct inter-group connectivity, so the coloring or component structure is recovered after the
first pass and only boundary pairs need refinement. This reduces the pairwise work from K2 to near
K logK while preserving the final decisions under stated assumptions (Erdős & Rényi, 1960).

D.5.4 INCREMENTAL GRAM UPDATES

We avoid rebuilding the full cosine matrix when only a small subset of tasks has meaningfully
changed since the last refresh. If s rows of M cross a chosen change threshold, we first renormalize
these rows and then recompute both the corresponding s rows and s columns of the Gram by taking
dot products against all K rows, which costs O(sKd), with an additional O(sd) to update norms,
instead of Θ(K2d), and we leave all unchanged entries as they are. This update is exact for the
affected entries, so conflict edges and coloring decisions are preserved by construction, and the
reduction is deterministic whenever s≪ K. To prevent slow drift in the unchanged entries, we can
periodically force a full rebuild and reset the change counters.

D.5.5 EXPERIMENTAL ANALYSIS

We evaluated each optimizations’ speed and relative impact on performance on the Taskonomy Tiny
subset. We use the Tiny subset here as this experiment does not require large-scale training for valid
results.

Results are presented in Table 3. We can see that, in practice, every approach actually does improve
speed over the SON-GOKU baseline (Frequent Directions with high r, note that we use r in the
same way that Ghashami et al. 2016b use ℓ). However, every approach also degrades performance
(by performance we are referring the main objective metric, like loss or accuracy, not speed) to
varying extents1. Edge sampling and incremental gram updates have an extremely negative impact on
performance. Such approaches may need additional fine-tuning or may only be practical in specific
settings. Interestingly, we observe a slight decrease in performance when using lower width for
Frequent Directions, demonstrating the tradeoffs between speed and performance that come with
such an approach.

Overall, every approach achieves the desired effect of increasing speed, but does so at varying costs
in performance. Each approach will require careful fine tuning and usage in real-world deployment
to properly weigh this tradeoff. Based on our experimentation, it appears that Frequent Directions
offers the most consistent and reasonable tradeoff that clearly scales with the FD width.

1Please note that varying performance for the SON-GOKU baseline across experiments is due to changes in
the backbone model architecture and the Taskonomy subset.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

E DESCENT PRESERVATION UNDER τ -COMPATIBILITY

E.1 PROOF OF PROPOSITION 6

Proposition 6. Let S ⊆ {1, . . . ,K} be a τ -compatible task set. That is, every pair of gradients
satisfies 〈

gi, gj
〉
≥ −τ ∥gi∥ ∥gj∥, ∀ i ̸= j ∈ S, 0 ≤ τ < 1 (77)

Then ∥∥∥∑
k∈S

gk

∥∥∥2 ≥ (
1− τ(|S| − 1)

)∑
k∈S

∥gk∥2. (78)

Proof. We begin with the polarization identity for any finite set of vectors:∥∥∥∑
k∈S

gk

∥∥∥2 =
∑
k∈S

∥gk∥2 + 2
∑
i,j∈S
i<j

〈
gi, gj

〉
.

(79)

E.1.1 LOWER-BOUNDING THE CROSS TERMS

Because S is τ -compatible, inequality (77) gives〈
gi, gj

〉
≥ −τ ∥gi∥ ∥gj∥. (80)

Insert this bound into (79) to obtain∥∥∥∑k gk

∥∥∥2 ≥ ∑
k∥gk∥2 − 2τ

∑
i<j∥gi∥ ∥gj∥. (81)

E.1.2 SYMMETRIZING THE MIXED SUM

Observe that ∑
i<j

∥gi∥ ∥gj∥ =
1

2

∑
i,j
i̸=j

∥gi∥ ∥gj∥. (82)

Substituting (82) into (81) yields∥∥∥∑
k

gk

∥∥∥2 ≥ ∑
k

∥gk∥2 − τ
∑
i,j
i̸=j

∥gi∥ ∥gj∥. (83)

E.1.3 BOUNDING THE MIXED SUM VIA CAUCHY-SCHWARZ

Apply the Cauchy-Schwarz inequality in R|S| to the vectors a = (∥g1∥, . . . , ∥g|S|∥) and 1 =
(1, . . . , 1): ∑

k

∥gk∥ = ⟨a,1⟩ ≤ ∥a∥ ∥1∥ =
(∑

k

∥gk∥2
)1/2√

|S|. (84)

Using (
∑

k ak)
2 ≤ |S|

∑
k a

2
k and (85),∑

i̸=j

∥gi∥ ∥gj∥ =
(∑

k

∥gk∥
)2
−
∑
k

∥gk∥2, (85)

we obtain the standard estimate∑
i̸=j

∥gi∥ ∥gj∥ ≤ (|S| − 1)
∑
k

∥gk∥2. (86)

Hence,
τ
∑
i̸=j

∥gi∥ ∥gj∥ ≤ τ
(
|S| − 1

)∑
k

∥gk∥2. (87)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

E.1.4 COMBINING BOUNDS

Insert (87) into (83):∥∥∥∑
k

gk

∥∥∥2 ≥ ∑
k

∥gk∥2 − τ
(
|S| − 1

)∑
k

∥gk∥2 =
(
1− τ(|S| − 1)

)∑
k

∥gk∥2, (88)

which is (78).

E.2 INTERPRETATION AND PRACTICAL IMPLICATIONS

Equation (78) guarantees that whenever we restrict an SGD step to a τ -compatible group (i.e., a
set of tasks whose gradients are not too conflicting) the resulting joint update preserves at least a(
1− τ(|S| − 1)

)
fraction of the summed squared step lengths.

Below, we provide a strictly stronger version that is assumption free.
Proposition 7 (Data-Dependent Lower Bound via the Aggregate Conflict Ratio). Define the aggregate
conflict ratio

τeff(S) :=

∑
i̸=j

(
−⟨gi, gj⟩

)
+∑

k

∥gk∥2
, (x)+ := max{x, 0}. (89)

Then, without additional assumptions,∥∥∥∑
k∈S

gk

∥∥∥2 ≥ (
1− τeff(S)

)∑
k∈S

∥gk∥2, (90)

and under τ -compatibility we always have τeff(S) ≤ τ(|S| − 1), so (90) is never weaker than (78).

Our takeaways from this are as follows:

(i) Descent direction safety. The aggregated step is guaranteed to be a descent direction
whenever τeff(S) < 1 (data-dependent) and, in particular, whenever τ(|S| − 1) < 1 (worst-
case).

(ii) Convergence-rate constant. In analyses for smooth SGD, one may replace ∥gt∥2 by the
right-hand side of either (90) (which is tighter) or (78) (worst-case), leading respectively to
constants involving τeff(St) or τ(|St| − 1).

F CONVERGENCE RATE WITH τ -DEPENDENT CONSTANT

Theorem 7 (Baseline O(1/
√
T) convergence of the full gradient). Let F (θ) =

∑K
k=1 Lk(θ, ϕk)

be L–smooth in the shared parameters θ. Assume the stochastic gradient gt obtained at step t
satisfies E[gt | θt] = ∇F (θt) and E[∥gt −∇F (θt)∥2 | θt] ≤ σ2. Let the step size be η = c√

T
with

0 < c ≤ 1
L , and suppose the scheduler selects a τ -compatible task set St at each step (this will be

used below for a refinement). Then

min
1≤t≤T

E
[
∥∇F (θt)∥2

]
≤

2
(
F0 − F ⋆

)
c
√
T

+
cLσ2

√
T

. (91)

Proof. Because F is L–smooth, for any η ≤ 1
L the standard non-convex SGD inequality (Ghadimi &

Lan 2013, Lemma 3.2) gives

E
[
F (θt+1)

]
≤ E

[
F (θt)

]
− η

2
E
[
∥∇F (θt)∥2

]
+

η2Lσ2

2
. (92)

Summing equation 92 over t = 0, . . . , T − 1 and using E[F (θT)] ≥ F ⋆ yields

η

2

T−1∑
t=0

E
[
∥∇F (θt)∥2

]
≤ F0 − F ⋆ +

η2Lσ2T

2
. (93)

Dividing by T , using mint xt ≤ 1
T

∑
t xt, and substituting η = c√

T
gives equation 91.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Data-dependent τ -refinement for the scheduled gradient energy. For a finite set S, define the
aggregate conflict ratio

τeff(S) :=

∑
i̸=j∈S

(
−⟨gi, gj⟩

)
+∑

k∈S ∥gk∥2
∈ [0,∞), (x)+ = max{x, 0}. (94)

Then for every step t, ∥∥∥∑k∈St
gk,t

∥∥∥2 ≥ (
1− τeff(St)

)∑
k∈St

∥gk,t∥2. (95)

Consequently,

1

T

T−1∑
t=0

E
[∑
k∈St

∥gk,t∥2
]
≤ 1

T

T−1∑
t=0

E
[1

1− τeff(St)

]
︸ ︷︷ ︸

=: ΓT

· 1
T

T−1∑
t=0

E
[
∥gt∥2

]
. (96)

Using E∥gt∥2 = E∥∇F (θt)∥2 + E∥gt −∇F (θt)∥2 ≤ E∥∇F (θt)∥2 + σ2 and the average version
of equation 92,

1

T

T−1∑
t=0

E
[
∥∇F (θt)∥2

]
≤ 2(F0 − F ⋆)

ηT
+ Lησ2, (97)

we obtain the τ -dependent, data-driven control

1

T

T−1∑
t=0

E
[∑
k∈St

∥gk,t∥2
]
≤ ΓT

(
2(F0 − F ⋆)

ηT
+ Lησ2 + σ2

)
. (98)

If, in addition, each St is pairwise τ -compatible with |St| = st and τ (st − 1) ≤ ρ < 1 uniformly in
t, then τeff(St) ≤ τ(st − 1) ≤ ρ and hence ΓT ≤ 1

1−ρ . With η = c√
T

, equation 98 becomes

1

T

T−1∑
t=0

E
[∑
k∈St

∥gk,t∥2
]
≤ 1

1− ρ

(
2(F0 − F ⋆)

c
√
T

+
cLσ2

√
T

+ σ2

)
. (99)

F.1 DISCUSSION AND INTUITION

Equation equation 91 is the classical O(1/
√
T) rate for non-convex SGD with unbiased and bounded

variance gradients and constant-over-time step size η = c/
√
T . Under these conditions, the con-

vergence rate in terms of the full gradient norm ∥∇F (θt)∥2 does not depend on τ . However, the
scheduler’s τ structure does control the per step energy of the scheduled gradient through equation 96–
equation 99. Less cross-task conflict (smaller ΓT) results in a tighter bound on 1

T

∑
t

∑
k∈St

∥gk,t∥2,
which is the quantity governed by the descent preservation inequalities used throughout the analysis.

G BOUNDED STALENESS VIA GREEDY GRAPH COLORING

Proposition 8 (Staleness Bound). Let G = (T , E) be the task–conflict graph whose vertices are
tasks and whose edges connect pairs with interference coefficient exceeding the threshold τ . Denote
by ∆ its maximum degree. Greedy graph coloring produces a proper coloring C1, . . . , Cm with

m ≤ ∆+ 1. (100)

If the scheduler activates the color classes in the cyclic order C1→C2→ . . .→Cm→C1→ . . . ,
then every task is updated at least once every

smax = m− 1 ≤ ∆ (101)

iterations. In particular, the schedule enforces a bounded inter-update delay of at most ∆ iterations
per task, consistent with the bounded-delay assumption of Recht et al. (Niu et al., 2011).

Proof. We proceed in two parts.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Part A: Color count bound. A greedy algorithm scans vertices in some order and assigns to each
vertex the smallest available color not used by its already colored neighbors. When the i-th vertex v is
reached, at most deg(v) ≤ ∆ of its neighbors are already colored, so at most ∆ colors are unavailable.
Therefore one of the first ∆+ 1 colors is always free, implying m ≤ ∆+ 1 (Lovász, 2006).

Part B: Staleness of cyclic execution. Fix any task T ∈ T and let it belong to color Cj for some
1 ≤ j ≤ m. Under cyclic scheduling, Cj is executed at steps t = j, j + m, j + 2m, The
number of intervening steps between two consecutive executions of Cj is exactly m− 1. Hence task
T never waits more than smax = m− 1 iterations for an update. Combining with Equation 8 yields
smax ≤ ∆.

G.1 INTERPRETATION

The bound (Equation 101) guarantees that the shared parameters used by any task are refreshed
at least once every ∆ iterations in the worst case (e.g., when the conflict graph is a clique of size
∆+ 1). This aligns with the bounded-delay assumption common in analyses of asynchronous SGD
and lock-free training, so convergence proofs built under that assumption apply to our cyclic schedule
with delay parameter at most ∆ when iterations are used as the unit of delay (Niu et al., 2011; Lian
et al., 2015). In practice ∆ is often much smaller than the total number of tasks, so the scheduler
achieves low interference and low parameter staleness simultaneously.

H GREEDY GRAPH-COLORING USES AT MOST ∆+1 COLORS

H.1 PROOF OF PROPOSITION 9

Proposition 9 (Coloring Period Bound). Let G = (V,E) be a finite, simple, undirected graph with
maximum degree ∆ :=maxv∈V deg(v). The greedy (first-fit) coloring algorithm (e.g., Welsh–Powell
order)2 produces a proper vertex coloring with no more than

χgreedy(G) ≤ ∆+ 1 (102)

distinct colors. Consequently, when the scheduler activates the color classes in a cyclic order, the
cycle length is bounded by ∆+ 1. This is a quantity depending only on the structure of the conflict
graph.

Proof. Let the vertices be processed in the chosen order v1, v2, . . . , v|V | (e.g., Welsh-Powell).
Assume inductively that after coloring the first k − 1 vertices the algorithm has used at most ∆+ 1
colors. Consider vertex vk. Since deg(vk) ≤ ∆, at most ∆ neighbors of vk can appear before vk in
the ordering. Hence, at the moment of coloring vk, at most ∆ colors are forbidden (one for each
previously colored neighbor). Among the palette {1, 2, . . . ,∆+ 1} there is therefore at least one
color still available. Assigning the smallest such color to vk maintains a proper coloring and never
introduces a new color beyond ∆+ 1.

Proceeding vertex-by-vertex, no step ever requires more than ∆+1 colors, establishing equation 102.

H.2 IMPLICATIONS FOR THE SCHEDULER

A coloring with at most ∆+ 1 classes means the scheduler’s cycle period (the number of batches
needed before every task reappears) is bounded by a graph invariant independent of the number
of tasks. Even if thousands of tasks exist, as long as each one conflicts with at most ∆ others, the
memory footprint (one shared backbone plus ∆ + 1 sets of head activations) and the maximum
waiting time between successive updates for any task (bounded by ∆, see Proposition 8) remain
predictable and small. This guarantee is essential for scaling the scheduler to large, heterogeneous
tasks.

2Order the vertices in non–increasing degree and assign to each the smallest positive integer (color) not used
by its previously colored neighbors.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

I BASELINE NON-CONVEX SGD CONVERGENCE RATE

I.1 PROOF OF THEOREM 8

Theorem 8 (Classical O(1/
√
T) bound). Let F : Rd→R be an L-smooth, possibly non-convex

objective and suppose the stochastic gradient gt computed at iteration t satisfies

E[gt | θt] = ∇F (θt), E[∥gt −∇F (θt)∥2 | θt] ≤ σ2. (103)

Run SGD with the constant step size η = c√
T
, 0 < c ≤ 1

L , for T iterations starting from θ0. Then

min
0≤t<T

E
[
∥∇F (θt)∥2

]
≤

2
(
F0 − F ∗)
c
√
T

+
cLσ2

√
T

, (104)

where F ∗ = infθ F (θ).

Proof. The proof is a streamlined restatement of ((Ghadimi & Lan, 2013; Nemirovski et al., 2009)).
By L-smoothness,

F (θt+1) ≤ F (θt) + ⟨∇F (θt), θt+1 − θt⟩+
L

2
∥θt+1 − θt∥2. (105)

With θt+1 = θt − η gt and taking conditional expectation,

E
[
F (θt+1)

]
≤ E
[
F (θt)

]
− η E

[
∥∇F (θt)∥2

]
+

η2L

2
E
[
∥gt∥2

]
. (106)

Decompose the squared stochastic gradient:

E[∥gt∥2] = E[∥∇F (θt)∥2] + E[∥gt −∇F (θt)∥2] ≤ E[∥∇F (θt)∥2] + σ2 (107)

Thus, and using η ≤ 1/L so that η − Lη2

2 ≥
η
2 ,

E[F (θt+1)] ≤ E[F (θt)]−
η

2
E[∥∇F (θt)∥2] +

η2Lσ2

2
. (108)

Summing from t = 0 to T − 1 and telescoping gives

η

2

T−1∑
t=0

E[∥∇F (θt)∥2] ≤ F0 − F ∗ +
η2Lσ2T

2
. (109)

Dividing by ηT and inserting η = c/
√
T yields equation 104.

I.2 CONNECTION TO THE SCHEDULER

At τ = 0, pairs with negative inner product are incompatible, so the conflict graph on tasks can be
colored into m classes {C1, . . . , Cm}, and a simple policy activates one color class per step. Under a
deterministic (cyclic) activation order, the update gt =

∑
k∈St

gk,t generally satisfies

E
[
gt | θt

]
=
∑
k∈St

∇Lk(θt, ϕk,t) ̸=
K∑

k=1

∇Lk(θt, ϕk,t), (110)

so it is biased for the full gradient.

I.2.1 CONSISTENCY WITH THE UNBIASED SGD ASSUMPTION

The analysis in Theorem 8 assumes an unbiased stochastic gradient, E[gt | θt] = ∇F (θt). This
assumption is met under either of the following implementations.

(i) Randomized class sampling with scaling. Draw Jt ∼ Unif{1, . . . ,m} independently each step
and set

g̃t = m
∑

k∈CJt

gk,t. (111)

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Table 4: Information on the datasets utilized in experimentation. (*Some samples were removed
during preprocessing)

Dataset Main Tasks (+) Aux. Tasks (-) Aux Tasks Modalities Samples

NYUv2

Semantic Segmentation
Depth Estimation
Surface Normal Prediction – Color Temp. Estimation Image 250*

CIFAR-10 Image Classification
Quadrant Localization
Texture Classification

Corruption-Type Prediction
Rotation Angle Prediction Image 2,500*

AV-MNIST Digit Classification Digit Parity Audio, Image 56.0k

MM-IMDb Genre Classification Release Decade Title-Iniial Classification Image, Text 25.9k

STOCKS-F&B 4× Stock Return Prediction
Five-Day Rolling Volatility
Sector-Average Next-Day Return

Day of the Week Prediction
Lag-0 Reconstruction of Today’s Open-Price Timeseries ×18 75.5k

STOCKS-HEALTH 7× Stock Return Prediction
Five-Day Rolling Volatility
Sector-Average Next-Day Return

Day of the Week Prediction
Lag-0 Reconstruction of Today’s Open-Price Timeseries ×63 75.5k

Then E[g̃t | θt] =
∑K

k=1∇Lk(θt, ϕk,t) = ∇F (θt), so Theorem 8 applies (with the variance bound
adjusted for the scaled estimator). Equivalently, one may keep gt =

∑
k∈CJt

gk,t and use an effective
step size mη.

(ii) Deterministic cyclic schedule. If the classes are visited in a fixed periodic order, then generally
E[gt | θt] ̸= ∇F (θt) at the per-step level. Nonetheless, standard analyses of nonconvex smooth
cyclic block updates yield an O(1/

√
T) decay of the average gradient norm under usual step-size

conditions, with constants depending on the number of blocks.

Either implementation delivers an O(1/
√
T) convergence guarantee.

J EXPERIMENTAL SETUP FOR DATASETS

We evaluate the proposed scheduler alongside numerous baselines and state-of-the-art models across
multiple datasets to reliably assess its general performance relative to other approaches. In total, it is
evaluated across 6 datasets.

Across all datasets, we incorporate positive and/or negative auxiliary tasks into training. Positive
auxiliary tasks share structure or predictive signals with the main tasks (e.g., common features or
correlated outputs) and so can improve the learned representations by providing relevant supervision.
In contrast, negative auxiliary tasks are uncorrelated or directly conflicting with the main objectives,
inducing gradient interference that can slow or degrade primary performance. Including both creates
controlled variation in task alignment, letting us test whether SON-GOKU (1) groups compatible
tasks, (2) separates conflicting tasks, and (3) maintains main-task performance under interference
created by auxiliary tasks.

J.1 NYUV2

The NYU Depth Dataset v2 (NYUv2) (Silberman et al., 2012) consists of RGB-D indoor scenes
with 1,449 densely labeled pairs of RGB and depth images. To demonstrate auxiliary task value
in data-scarce conditions, we employ a subset of 250 training samples randomly selected from the
original training set.

We formulate a multi-main-task setup with three primary objectives: (1) semantic segmentation (14
classes), (2) depth estimation where the model predicts per-pixel depth values from RGB images, and
(3) surface normal prediction where 3-channel surface normals are estimated from RGB input. The
negative auxiliary task is color temperature estimation, a synthetically generated task that predicts
global color temperature properties designed to interfere with the main tasks by emphasizing global
color distribution rather than local semantic and geometric features.

All tasks utilize RGB images as the sole input modality, with depth maps and surface normals serving
as prediction targets rather than input features. A ResNet-18 (He et al., 2015) backbone trained
from scratch processes the RGB input, with task-specific decoder heads for segmentation (with 32 ×
upsampling), depth regression, surface normal regression, and color temperature estimation.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

J.2 CIFAR-10

The CIFAR-10 (Krizhevsky et al., 2009) dataset contains 60,000 32 × 32 color images across 10
generic classes. To evaluate our interference-aware scheduler in a data-scarce environment where
auxiliary tasks provide maximum benefit, we employ a subset of 2,500 training samples (250 per
class) from the original 50,000 training images.

For the multi-task learning setup, we set image classification as the main task and construct three
auxiliary tasks synthetically from the RGB images. The positive auxiliary tasks include: (1) quadrant
localization, where the model predicts which quadrant contains the primary object, and (2) texture
classification using Gabor filter responses clustered into 8 texture categories via k-means clustering.
The negative auxiliary tasks consist of: (3) corruption-type prediction, where images are artificially
corrupted using 15 different corruption types from the ImageNet-C corruption suite (Hendrycks &
Dietterich, 2019), and (4) rotation angle prediction, where images are rotated by 0°, 90°, 180°, or
270° and the model predicts the rotation angle.

All tasks share a ResNet-18 (He et al., 2015) backbone trained from scratch without pretraining, with
task-specific heads for each auxiliary task.

J.3 AV-MNIST

The AV-MNIST benchmark (Vielzeuf et al., 2018) pairs MNIST images (Lecun et al., 1998) with
a log-mel spectrogram of the corresponding spoken digit from TIDIGITS (Leonard & Doddington,
1993). It is a synthetic benchmark that has significant noise applied to audio and feature reduction
applied to images, making it far more difficult than the original MNIST.

We use all paired samples in our experiments. Our primary task is 10-way digit classification.
Following (Vielzeuf et al., 2018), we encode images with a small 4-layer convolutional network
and spectrograms with a 2-layer CNN, both built and trained from scratch. These embeddings are
projected and fused for processing by a simple MLP in intermediate fusion (Boulahia et al., 2021;
Guarrasi et al., 2025), as are the models trained on MM-IMDb and STOCKS. We include only one
positive auxiliary class, Digital Parity. This task aims to identify the digits as either even or odd,
which has been shown to be a positive auxiliary task for improving representations on MNIST-like
datasets (Tacchetti et al., 2018; Mohammadi et al., 2020).

J.4 MM-IMDB

The MM-IMDb dataset (Arevalo et al., 2017) contains 25,959 movies with genre annotations over 23
categories. We extract poster images and plot summaries for every movie in the dataset.

The images and summaries are encoded by a frozen VGG16 (Simonyan & Zisserman, 2014) and
Google word2vec (Mikolov et al., 2013) model, respectively. Our main task is movie genre prediction.
We add one positive auxiliary task, Release Decade, and one negative auxiliary task, the classification
of the title’s first word as either a vowel or consonant.

J.5 STOCKS

The STOCKS datasets we use, introduced in (Liang et al., 2021), contain stock market timeseries
data across two categories. Specifically: (1) STOCKS-F&B, which has 14 input and 4 output stocks
in the GICS Restaurants or Packaged Food & Meats category (MSCI Inc. & S&P Dow Jones Indices,
2024), and (2) STOCKS-HEALTH, which contains 56 input and 7 output stocks in the Health Care
category.

Every input stock consists of 500 trading days, with the goal of predicting returns over the next
day. We discretize the continuous return variable R into three non-overlapping categories: (1)
Low, where 0 ≤ R < 0.1, (2) Medium, where 0.1 ≤ R < 0.5, and (3) High, where R ≥ 0.5.
Mean Absolute Error (MAE) is calculated by mapping the three classes to numbers (Low → 0,
Medium → 1, High → 2) and then deriving MAE as usual. Each input series is encoded by the
same CNN-BiLSTM network. This consists of 3 CNNs and 1 BiLSTM (Cui et al., 2018).

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

We augment the main prediction task with two positive auxiliaries and two negative auxiliaries. The
first positive task, Five-Day Rolling Volatility, is calculated as the standard deviation of daily loga-
rithmic returns over a sliding five-trading-day window. This feature captures short-term fluctuations
in a stock’s price. In Sector-Average Next-Day Return, for each date we compute the mean of the
actual next-day returns of all stocks within the same GICS sector, providing a simple measure of
sector-level momentum and drift

The negative tasks focus on useless information that is meant to distract the model. Namely, day of
the week prediction (in the range of Monday to Friday) and Lag-0 Open-Price Reconstruction, which
requires the model to reproduce the same day’s opening price verbatim. The first is information that
contains little to no signals that would contribute to overall performance, and the second is a trivial
identity mapping that contributes no real predictive challenge.

K MODELS USED FOR COMPARISON

K.1 BASELINE MODELS

1. Uniform. This baseline assigns equal weights to all tasks throughout training, representing
the simplest approach where all task losses are weighted equally.

2. Gradnorm (Chen et al., 2018). Balances task learning rates by normalizing gradient mag-
nitudes relative to target loss ratios. This maintains consistent training dynamics across
tasks.

3. MGDA (Sener & Koltun, 2018). Formulates multi-task learning as a multi-objective opti-
mization problem, finding Pareto-optimal solutions (Lockwood, 2008; Pareto, 2014) through
gradient descent in the convex hull of gradients (Fliege & Svaiter, 2000; Miettinen, 1999).

K.2 STATE-OF-THE-ART MODELS

1. PCGrad (Yu et al., 2020). Projects conflicting gradients onto orthogonal subspaces when
negative cosine similarity is detected, eliminating destructive interference between task
gradients.

2. CAGrad (Liu et al., 2021). Extends PCGrad by adaptively adjusting gradient magnitudes
based on conflict severity. This proves more nuanced modifications to gradients than binary
projection.

3. Adatask (Yang et al., 2023). Dynamically reweighs task losses using relative loss changes,
adapting to varying task learning rates during training.

4. FAMO (Liu et al., 2023). Fast Adaptive Multitask Optimization dynamically adjusts task
weights to equalize each task’s rate of loss improvement. It uses an online, per-step rule
(no pairwise gradient ops), adding negligible overhead while remaining robust to loss-scale
differences.

5. Fair Resource Allocation in MTL (FairGrad) (Ban & Ji, 2024). Views the shared update as
a limited resource and chooses it to maximize an α-fair utility of per-task improvements.
The parameter α controls the trade-off between average performance and fairness.

6. Nash-MTL (Navon et al., 2022). Frames multitask training as a bargaining game and
computes a scale-invariant weighted combination of task gradients given by the Nash
bargaining solution. Weights are obtained by solving a small inner problem (e.g., via CCP)
using the gradient Gram matrix. Updates are balanced across tasks.

K.3 ABLATION STUDY MODELS

1. Static One-Shot Coloring. We run the greedy graph coloring once at the start of training,
freeze the resulting task groups, and never recompute the conflict graph. All other hyperpa-
rameters (τ , history length H , and update interval R) match the full scheduler. As training
progresses we expect the fixed coloring to grow stale, mixing tasks whose interference rela-
tionships have changed. This ablation isolates the benefit of dynamic recoloring, showing
how much performance depends on adapting the schedule to evolving gradient conflicts.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

2. Single-Step Conflict Estimation. Here, we set the history length to H = 1, so every
recoloring step relies on only the most recent mini-batch gradients to estimate interference.
Without aggregation over many past steps, the conflict graph should become highly noisy,
causing unstable task groupings from one update window to the next. This variant tests the
importance of historical conflict statistics in the scheduler. Threshold Graph (baseline).
We connect tasks i and j whenever the smoothed cosine ŝij(t) falls below a global threshold
−τ(t). This is the rule used in the main method and analyzed in our recovery and scheduling
theory. It prioritizes the most strongly conflicting pairs globally and serves as the reference
against which the other graph rules are compared.

3. kNN-Symmetric Graph. For each task we identify its m most conflicting neighbors (those
with the smallest smoothed cosine values) and add edges to those neighbors. We then
symmetrize the graph by including an undirected edge if either endpoint selects the other.
This construction roughly fixes the degree of each node and spreads edges more evenly
across tasks. It tests whether enforcing local degree control can outperform or match the
global threshold rule when conflict is heterogeneous across tasks.

4. Signed-Only Graph. Here we connect two tasks only if their smoothed cosine is strictly
negative, ŝij(t) < 0, ignoring the magnitude of the conflict. This yields a much sparser
graph that only records clearly antagonistic pairs. This ablation explores an extreme notion
of conflict and allows us to test whether discarding moderately conflicting (but still harmful)
interactions degrades performance.

5. Quantile Threshold Graph. Instead of fixing τ by hand, we set τ(t) at each refresh so
that only the worst p% of smoothed cosine values are treated as conflicting. This behaves
like an adaptive threshold that tracks how the similarity distribution drifts over training,
keeping the graph density approximately stable over time. This variant tests whether such
an automatically tuned cutoff provides an advantage over the fixed global threshold.

We evaluate each graph rule under two settings. In the fixed τ setting, all rules share the same τ(t)
schedule used in the main experiments, and we simply observe the induced edge density, number of
colors, and validation performance. In the density-matched setting, we adjust the hyperparameters of
each rule (e.g., m for kNN, percentile p for quantile) so that all graphs have approximately the same
edge density at each refresh. This isolates the effect of which pairs are marked as conflicting, rather
than how many edges are present.

L EXPANDED WALL-CLOCK TIME STUDY

We provide more results from our wall-clock time study. The expanded table includes results from
testing refresh rates R ∈ {4, 32, 256} for scheduler-based methods.

L.1 EXPERIMENTAL SETUP FOR WALL-CLOCK TIME STUDY

We benchmark wall-clock time with a controlled synthetic workload to remove the effects of data
loading and I/O. For each configuration (number of tasks K and scheduler refresh rates R), we
pre-generate a fixed sequence of per-task gradient vectors and loss values directly on the target device,
and then feed the same exact tensors, in the same exact order, to every method. We set the gradient
dimensionality to 1024. Timing uses a high-resolution clock with a device synchronize before starting
and after finishing to capture only on-device compute. We also accumulate the norm of the combined
gradient into a scalar accumulator (also known as a scalar sink) so the backend must realize the
computation, avoiding lazy evaluation. Each MTL approach is run for 900 steps and repeated 10
times.

M EXTENDED RELATED WORK

Multi-task learning (MTL) methods have evolved from simple loss-weighting approaches to larger
and more sophisticated optimization techniques that manage task conflict and cooperation (Yang et al.,
2023). Early adaptive-weighting approaches sought to balance losses automatically (Vandenhende
et al., 2022; Fan et al., 2023), while more recent work modifies gradients directly (Yu et al., 2020).

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Table 5: We present wall-clock time (seconds ± standard deviation) across all K and scheduler
refresh rates R ∈ {4, 32, 256}. We split results into sub-tables by R for readability. Non-scheduler
methods do not depend on R, so they are shown in the R = 4 sub-table and omitted in the R=32, 256
subtables to avoid redundancy.

(a) R=4 (all methods)

Method K=3 K=6 K=16 K=40
Uniform 0.2656 ± 0.1201 0.3240 ± 0.0629 0.3798 ± 0.1050 0.4054 ± 0.1190
GradNorm 5.4714 ± 0.7137 5.1201 ± 0.6112 4.9042 ± 0.5869 4.7372 ± 0.9286
MGDA 97.1081 ± 5.4645 121.4371 ± 9.0923 132.4913 ± 3.1752 134.0878 ± 2.2621
PCGrad 3.6212 ± 0.3517 23.1266 ± 0.8773 176.7566 ± 2.8171 1127.1337 ± 34.2603
CAGrad 102.8651 ± 18.3422 136.1034 ± 2.4218 134.3585 ± 4.0791 132.7034 ± 1.2412
AdaTask 2.1816 ± 0.0934 2.1032 ± 0.1012 2.2853 ± 0.0718 2.2278 ± 0.1370
FAMO 2.0725 ± 0.2073 1.9980 ± 0.1998 2.1710 ± 0.2171 2.1164 ± 0.2116
FairGrad 3.8020 ± 0.5703 15.2079 ± 2.2812 108.1450 ± 16.2218 675.9065 ± 101.3860
Nash-MTL 5.7030 ± 1.1406 22.8118 ± 4.5624 162.2176 ± 32.4435 1013.8598 ± 202.7720

SON-GOKU 2.0904 ± 0.3506 3.6770 ± 0.4974 6.3225 ± 0.7895 14.3280 ± 1.4073
SON-GOKU + AdaTask 4.1011 ± 0.4174 5.2126 ± 0.6066 7.6798 ± 0.7107 14.7528 ± 1.8671
SON-GOKU + GradNorm 7.3223 ± 0.4994 8.5898 ± 0.8203 12.1065 ± 2.5850 16.8329 ± 1.9803
SON-GOKU + PCGrad 2.3489 ± 0.3258 3.5925 ± 0.4100 6.1549 ± 0.8461 12.5729 ± 1.2657

(b) R=32 (scheduler-based approaches)

Method K=3 K=6 K=16 K=40
SON-GOKU 1.9896 ± 0.3651 3.3202 ± 0.5745 6.0897 ± 0.9425 12.1432 ± 1.2044
SON-GOKU + AdaTask 3.7718 ± 0.9654 5.0511 ± 0.6531 7.5903 ± 1.1920 14.5182 ± 2.0660
SON-GOKU + GradNorm 7.0202 ± 1.0711 8.1661 ± 0.9355 10.7227 ± 2.2088 16.5760 ± 1.8418
SON-GOKU + PCGrad 1.9834 ± 0.3586 3.4971 ± 0.3840 6.1395 ± 0.9425 10.9097 ± 1.5263

(c) R=256 (scheduler-based approaches)

Method K=3 K=6 K=16 K=40
SON-GOKU 1.7593 ± 0.2280 3.0024 ± 0.3942 4.8411 ± 0.7302 11.4162 ± 1.6076
SON-GOKU + AdaTask 3.7224 ± 0.2696 4.4548 ± 0.5837 7.5276 ± 0.6230 13.0608 ± 3.2925
SON-GOKU + GradNorm 6.0221 ± 1.0418 7.8659 ± 0.7917 9.5029 ± 1.2168 15.6860 ± 2.3680
SON-GOKU + PCGrad 1.6776 ± 0.4104 3.0189 ± 0.7854 5.9893 ± 1.3797 7.1915 ± 0.2021

Task scheduling and grouping methods, though far less popular than adaptive weighting techniques
(Torbarina et al., 2023), have contributed to the field by controlling the timing of updates.

M.1 TUNED LOSS WEIGHTING

From early MTL work it became clear that simply summing task losses often favors one objective at
the expense of others (Kurin et al., 2022; Zhao et al., 2024; Mueller et al., 2022), especially when
losses have different scales or noise levels. To address this, practitioners manually tuned per-task
weight coefficients (λ-values) to rebalance learning (Argyriou et al., 2007; Ando & Zhang, 2005;
Evgeniou et al., 2005; Kang et al., 2011; Liang & Zhang, 2020; Lin et al., 2022; Yu et al., 2021),
but this process was laborious and dataset-specific. Thus, researchers began to develop automated
methods.

M.2 ADAPTIVE LOSS WEIGHTING

(Kendall et al., 2018) introduced uncertainty weighting, learning each task’s homoscedastic
(constant-variance) (Bishop, 2006) noise to scale losses automatically and improve depth and seman-
tics on NYUv2 (Silberman et al., 2012).

GradNorm automatically balances multiple loss functions by tuning each task’s gradient magnitude
so that all tasks train at comparable speeds (Chen et al., 2018). It does this by introducing a single
asymmetry hyperparameter α that governs how much each task’s loss is scaled. This eliminates the
need for expensive grid searches over manual weights. GradNorm was also a major leap empirically
as it surpassed exhaustive search baselines on both regression and classification tasks. Dynamic

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Weight Averaging (DWA) extended this idea by adjusting weights based on loss rate of change,
reducing oscillations between tasks (Liu et al., 2019).

More recently AdaTask applies task-specific learning rates that adapt to each head’s gradient norm,
yielding significant gains on multi-label classification benchmarks (Yang et al., 2023).

M.3 GRADIENT-LEVEL CONFLICT MITIGATION

Rather than rescaling losses, gradient surgery methods alter update directions. PCGrad projects
gradients that conflict (negative cosine) onto each other’s normal plane, significantly boosting
efficiency on supervised vision and RL problems (Yu et al., 2020). CAGrad frames task balance
as a min-max optimization, finding updates that maximize the worst-case task improvement (Liu
et al., 2021). The Multiple Gradient Descent Algorithm (MGDA) computes a Pareto-optimal convex
combination of task gradients, ensuring no task is harmed (Sener & Koltun, 2018). More recent
variants such as SAM-GS incorporate momentum into conflict detection, smoothing gradient estimates
while preserving the benefits of surgery (Borsani et al., 2025).

M.4 EMPIRICAL TASK GROUPING

Task grouping aims to decide which tasks should train together so that helpful transfer is amplified
and harmful interference is limited. It typically groups tasks into subsets that update jointly, rather
than updating all tasks at once. This is different from approaches that keep all tasks active or reweight
the joint gradient (adaptive loss weighting, gradient surgery).

Early approaches under this category used round-robin and random sampling-based approaches that
ignored any task relationships (McCann et al., 2018; Zamir et al., 2020). Standley et al. (2020)
exhaustively searches over small subsets to identify beneficial groupings, demonstrating the potential
of selective updates but failing to scale beyond eight tasks due to computational complexity.

Task Affinity Groupings (TAG) (Fifty et al., 2021) performs one joint training run to measure inter-
task ’affinity’. It quantifies how an update for task i (its gradient) would change task j’s loss, and it
uses these cross-effects to select partitions of tasks that should share updates. The key idea is to treat
grouping as an outcome of measured gradient interactions.

Ayman et al. (Ayman et al., 2023) train a predictor that maps single-task statistics and dataset features
to an estimate of whether two or more tasks should be grouped. They then use that predictor to guide
a randomized search over groups, which dramatically reduces the number of multi-task trainings (or
’MTL trials’) needed to find a good partition.

Using a completely different approach, Towards Principled Task Grouping (PTG) (Wang et al., 2024)
formulates grouping as a mathematical program with a theoretically motivated objective capturing
beneficial transfer while respecting resource constraints (e.g., compute budgets). It builds a principled
optimization over candidate groups that is meant to generalize across application domains.

Scalable Task Grouping via Training Dynamics (STG-MLT) (Sherif et al., 2024) avoids expensive
affinity estimation by extracting Data Maps (Swayamdipta et al., 2020) (simple summaries of training
dynamics per task) and then clustering tasks using those features. The clusters are intended to push
for positive transfer at larger scale. This approach essentially replaces gradient cross-effects with
more compact trajectory features that are cheap to compute and easy to cluster.

N SPACE COMPLEXITY AND MEMORY USAGE

We analyze the space complexity (and in relation, memory usage) of SON-GOKU during both refresh
and non-refresh steps. In our analysis, we distinguish memory usage from other components of
training (e.g., parameters, optimizer state, activations) from the memory of the multi-task algorithm.
The memory usage of the backbone model is irrelevant in assessing SON-GOKU’s space complexity,
so our following analysis focuses only on the incremental cost added by the scheduler or MTL
optimizer.

SON-GOKU maintains Exponential Moving Averages (EMAs) of gradients within a refresh window
for each task. It periodically recomputes pairwise interactions before recoloring and scheduling

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Method Incremental Space Complexity

Uniform (equal weights) O(1)
GradNorm O(K)
AdaTask O(Kd)
FAMO O(1)
PCGrad O(Kd) +O(K2)
MGDA O(Kd) +O(K2)
CAGrad O(Kd) +O(K2)
FairGrad O(Kd) +O(K2)
Nash-MTL O(Kd) +O(K2)

Table 6: Incremental space complexity (i.e., focused only on method itself) of baseline and state-of-
the-art multi-task learning methods. SON-GOKU scales better than the majority of existing methods
in terms of space complexity while still faithfully modeling task interference. K represents the
number of tasks, d represents the number of shared parameters. "Peak" refers to space complexity at
a refresh step, while "persistent" is the space complexity between refreshes.

(Section 4). We refresh the schedule every R steps, update EMAs continously, and then rebuild the
interference structure at each refresh and proceed with the new groups.

N.1 SPACE USAGE ACROSS A REFRESH CYCLE

Between refreshes (persistent memory). The scheduler keeps (i) an EMA-based similarity struc-
ture and (ii) the current conflict graph and color assignments. With sketched EMAs, based on
Ghashami et al. (2016a) of width r ≪ d, the persistent memory footprint is:

persistent memory = O(K2)

dominated by the smoothed similarity matrix and graph coloring metadata.

At refresh (peak). Every R steps we form the dense matrix of task–task interactions and recolor.
With sketched EMAs, the peak incremental memory during each refresh is

peak (refresh) memory = O(K2 +Kr)

for the K ×K interference matrix plus K sketch vectors of width r. These are released immediately
after recoloring. We do not retain K full gradients persistently.

After refresh. Only the updated smoothed similarities K ×K and graph coloring metadata remain,
returning to the persistent O(K2) footprint until the next refresh.

N.2 BASELINES FOR COMPARISON

Below, we summarize the incremental space complexity of common MTL optimizers:

• Loss reweighting (e.g., GradNorm, AdaTask): Maintain a few scalars, so O(K)

• Gradient-level Conflict Mitigation and Multi-Objective Solvers (e.g., PCGrad, CAGrad,
MGDA, Nash-MTL): Usually retain K task gradients in the shared parameter space during
update calculation, so they usually have a space complexity of O(Kd)

We describe the space complexity of SON-GOKU alongside several other baselines and state-of-the-
art methods in Table 6.

We can see that many state-of-the-art methods’ space complexity scales with d. Gradient manipulation
and multi-objective methods often incur O(Kd) extra memory because they retain K gradients per
each task. As the backbone size d grows, their memory footprint scales linearly with d, making them

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

more computationally expensive to use with larger models. This contrasts SON-GOKU, which has a
space complexity that grows mainly with the task count K rather than the model size.

Methods like FAMO, which have lower space complexity than SON-GOKU, keep their memory
overhead low by adjusting a single set of task weights rather than modeling which tasks should
(or should not) be updated together. They do not build a conflict graph or schedule incompatible
tasks apart, so strongly interfering tasks are still co-updated and can only be down-weighted. This
makes methods like FAMO fast and light on memory, but it provides less structure for avoiding
negative transfer, among a plethora of other issues. In settings with strong (and potentially changing)
interference, this can yield weaker accuracy than approaches like SON-GOKU that explicitly detect
conflicts and adapt over time.

N.3 EXAMPLE

To illustrate the importance of utilizing projections (among other optimizations) and scaling space
complexity without d, we describe an example.

N.3.1 SETUP

Consider fine-tuning a large shared backbone with d parameters (e.g., a billion parameter encoder) on
K downstream tasks. Methods such as PCGrad, MGDA, CAGrad, FairGrad, or Nash-MTL typically
form and retain K full task gradients in the shared parameter space at each update. Their incremental
memory cost therefore scales as O(Kd), on top of the memory already required by the backbone
parameters, optimizer states, and activations.

N.3.2 MEMORY USAGE

As d grows, this O(Kd) term rapidly dominates the memory budget. For instance, with a backbone of
d ≈ 109 parameters and K = 20 tasks, storing K full-precision gradients requires tens of gigabytes
of additional memory. In practice, this can make gradient-based conflict mitigation or multi objective
solvers difficult to deploy. Practitioners would either shrink the model, reduce K, or aggressively
trade off batch size and activation memory to stay within device limits.

In contrast, SON-GOKU maintains only (i) EMA-based sketches of each task gradient of width
r ≪ d and (ii) a K ×K conflict structure and its graph coloring. Between refreshes, the incremental
memory is therefore O(K2) (for smoothed similarities and coloring metadata). At a refresh step,
SON-GOKU briefly incurs a peak space complexity of O(K2 + Kr) to rebuild the interference
structure from the sketches, and then immediately releases the data. Importantly, all of these terms
depend on K and r, but not directly on d.

N.3.3 TAKEAWAY

In setups with large backbones and many tasks, the extra O(Kd) memory required by some other
methods can easily exceed available device memory. This would force practitioners to either simplify
the model or abandon conflict-aware MTL altogether. SON-GOKU’s space complexity instead
grows mainly with the number of tasks and the sketch dimension, allowing it to scale to much larger
backbones under the same hardware budget while still modeling task interference and adapting the
schedule over time.

N.4 EXPERIMENTAL VALIDATION

We evaluated throughput and memory usage on an isolated environment with the Taskonomy Tiny
subset using a U-Net backbone. Our testing included SON-GOKU against other baselines and
state-of-the-art methods.

SON-GOKU is clearly the most resource-efficient option in this comparison. It achieves the highest
throughput (processing around 68 images per second on the dataset) while also using the lowes tpeak
GPU memory, several gigabytes less than other methods. The only methods that slightly outperforms
it in reserved memory is CAGrad, but that comes at a substantial cost in speed, demonstrating that
SON-GOKU’s graph based scheduling adds far less overhead than other methods. As we’ve stated

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Table 7: Throughput and memory usage per training step for SON-GOKU versus other baselines and
state-of-the-art methods. Throughput is measured in images per second and memory statistics are in
MB. Results and standard deviation presented from five complete trials

Method Throughput (imgs/s) ↑ Peak mem. (MB) ↓ Reserved mem. (MB) ↓
SON-GOKU 68.5 ± 1.1 1959 ± 47 2332 ± 62
FAMO 47.6 ± 2.6 4740 ± 188 5152 ± 143
CAGrad 42.1 ± 1.9 2008 ± 33 2284 ± 97
AdaTask 41.6 ± 3.4 5108 ± 121 5544 ± 214
PCGrad 40.0 ± 1.5 5108 ± 173 5614 ± 129
MGDA 36.4 ± 4.2 5065 ± 142 5308 ± 201
GradNorm 25.5 ± 2.1 5034 ± 77 5542 ± 178

previously, methods that repeatedly solve multi-objective or projection subproblems face huge caveats
in terms of time and space complexity. SON-GOKU’s advantages over other methods will scale with
larger datasets and backbone models.

O ON THE CHOICE OF REFRESH RATE

Let R ∈ N denote the refresh period (we refresh once every R steps), so the refresh rate is 1/R. A
full refresh costs Θ(K2d) time to (re)build the cosine Gram from K EMA vectors in Rd. The EMA
matrix uses Θ(Kd) memory persistently (between refreshes). Peak memory usage during a refresh is
Θ(Kd) + Θ(K2). From this, it is clear that increasing R reduces overhead (in terms of both speed
and memory usage) linearly.

The conflict graph is built from EMAs accumulated over the refresh window. Longer windows (larger
R) average out gradient noise and stabilize ρ̂, reducing spurious edges. Shorter windows (smaller
R) can adapt to changing patterns faster but use fewer effective samples, so ρ̂ can be noisier and the
schedule can fluctuate. In our analysis (see Appendix F), global O(1/

√
T) nonconvex convergence

does not depend on τ , while the gradient energy for each step is controlled by the effective conflict
level τeff of the active set. Reducing conflict between tasks (a byproduct of a well-constructed graph)
helps to tighten the bounds of our earlier theoretical analysis. This means that we should pick a value
of R large enough for stable estimation but not so large that the graph becomes obsolete.

O.1 TRAINING DYNAMICS

Early in training, both model parameters and task relations typically evolve very rapidly. A faster
refresh rate (small R) lets SON-GOKU quickly track and exploit the evolving structure of tasks.
This means that SON-GOKU’s constructed conflict graphs will lag less behind the true nature of
task relationships. Later in training, however, the dynamics slow down and a slower refresh rate
will allow EMAs to more effectively average out over time. A slower refresh rate essentially makes
SON-GOKU more robust to noisy gradients later in training.

O.2 STRATEGIES FOR ADJUSTING THE REFRESH RATE

To put it simply, three factors matter most when selecting a refresh rate:

1. Rate of change in task relations. If edges in the conflict grpah change often, using a higher
refresh rate can help to reduce staleness of the conflict graph and color groups. If relations
are stable, a lower refresh rate can suffice.

2. Noise in EMA estimates. If gradients are noisy at each step, a larger R value is preferred to
stabilize the cosine estimates by calculating EMA over a longer range. If there is little noise
(or if there is an excess of available compute), a smaller R value can help to more accurately
track the structure of task conflicts.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

3. Overhead budget. If the scheduler’s cost needs to be negligible relative to each task’s
backpropagation, it is best to select an R to satisfy Csched/Cprobe ≤ ε, where Csched =
a
RK2d and Cprobe = b

RKG. Equivalently Kd ≤ b
a εG.

We discuss two simple strategies that can be used to select an appropriate R value.

O.2.1 ANNEAL THE REFRESH RATE

Start with a relatively high rate (small R) and increase R over time. This prevents SON-GOKU’s
graphs from lagging behind the conflict structure early on in training (as task relationships and
parameters are changing rapidly). Later on, larger values of R average out noise in ρ̂ and stabilizes
the schedule.

O.2.2 ADAPT THE REFRESH RATE BASED ON TASK CONFLICT VARIABILITY

Use the observable variability in task conflicts to adjust the refresh rate accordingly. Increase the
refresh rate (shrink R) if a large fraction of edges in Gτ flip between consecutive refreshes. Decrease
the refresh rate (grow R) when edge flips in the graph are rare and EMA rows are stable.

A less computationally expensive alternative is to partially updated only the affected rows and
columns of the Gram matrix when a small number of EMA rows cross a certain thresholds. This
would have a time complexity of O(sKd) for s ≪ K. Incorporating such an approach with the
existing scheduler could help preserve edges and coloring decisions while reducing refresh costs.

P INCORPORATING SON-GOKU WITH OTHER TASK AFFINITY MEASURES

P.1 THEORETICAL ANALYSIS AND DISCUSSION

We instantiate SON-GOKU’s conflict score using EMA smoothed gradient cosines. We define an
interference coefficient ρij = − ⟨g̃i,g̃j⟩

|g̃i|,|g̃j| and build a conflict graph Gτ by thresholding at a tolerance τ .
We then color this graph and schedule one color class at a time. This particular choice is appealing
because it is cheap to maintain online and aligns directly with cosine based gradient surgery methods
such as PCGrad. At the same time, the SON-GOKU pipeline itself is more general. It only requires
some symmetric pairwise “conflict score” that can be thresholded to form a graph. In this section we
formalize this modular perspective and explain how richer task affinity measures such as TAG’s (Fifty
et al., 2021) lookahead loss can be used in place of gradient cosine, without changing the scheduling
or convergence guarantees that are important to our theoretical analysis.

P.1.1 SON-GOKU AS A MODULAR CONFLICT GRAPH BASED SCHEDULER

Recall that SON-GOKU operates in four stages:

1. Estimate pairwise interference. For each pair of tasks (i, j), compute a symmetric score ρij
that is large when i and j are "in conflict" and small (or negative) when they are aligned or
neutral. ρij is the negative cosine of EMA smoothed gradients.

2. Build a conflict graph. For a threshold τ ∈ (0, 1), define an undirected graph

Gτ = (V,Eτ), V = 1, . . . ,K, Eτ = (i, j) : ρij > τ, (112)

so that edges mark pairs we do not want to update together.

3. Color the graph. Apply Welsh-Powell greedy coloring to obtain color classes C1, . . . , Cm,
each of which contains no edge. I.e., no pair with ρij > τ .

4. Schedule color classes. Cycle through color classes over a refresh window, activating exactly
one color class per step.

Crucially, all of the scheduling and convergence results (in Section 5) depend only on the active sets
St that SON-GOKU chooses at each step, and the actual gradients of tasks within those sets, not on
the particular formula used to compute ρij . Below, we provide a few examples.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

Descent within low conflict groups (Section 5.1). The key inequality∣∣∣∑
k∈St

gk,t

∣∣∣2 ≥ (
1− τ(|St| − 1)

) ∑
k∈St

|gk,t|2. (113)

only assumes that gradients inside St are pairwise "τ compatible" in cosine space. It does not require
that St came from EMA cosine in any specific way.

Nonconvex convergence (Section 5.2). The rate

min
t<T

E
[
∥∇F (θt)∥2

]
≲

1 + τ√
T

(114)

uses the same compatibility assumption and is agnostic to how the groups were found.

Scheduling properties (Section 5.5). The bound that SON-GOKU uses at most ∆+ 1 colors and
thus updates each task at least once every ∆+ 1 steps depends only on the graph degree ∆, not on
the origin of the edges.

From this viewpoint, SON-GOKU is a modular scheduler that takes any symmetric conflict matrix
(ρij) as input and returns (i) a conflict-based partition of tasks, and (ii) a schedule with bounded
staleness. Our cosine based construction is just one concrete approach for this interface.

P.1.2 TAG AND OTHER TASK AFFINITY MEASURES AS CONFLICT SCORES

TAG (Fifty et al., 2021) defines an affinity at each step between tasks i and j by measuring how an
update for task i affects task j’s loss. Formally, TAG trains all tasks together once, and during this
time it repeatedly: (i) takes a gradient step on task i with θ′ = θ − ηgi, (ii) evaluates task j’s loss at
θ′, and (iii) uses the change in loss

∆L
(i)
j ≈ Lj(θ

′)− Lj(θ) (115)

as a measure of how much i helps or hurts j.

Averaging this quantity over training results in an affinity matrix Aij , with positive values meaning
that updates on i tend to improve j, and negative values indicating harmful transfer between tasks.
TAG then clusters tasks based on this matrix to decide which tasks should share a network.

Other recent grouping methods construct alternative affinity matrices from training. For example,
STG-MTL uses data maps that summarize each task’s example-wise training trajectory and then
clusters tasks based on these representations, yielding a similarity or affinity between tasks that can
be used for grouping (Sherif et al., 2024).

All of these approaches (TAG, STG-MTL, meta grouping, and others) produce symmetric pairwise
scores that can be interpreted as how much task i helps task j. SON-GOKU can treat any such affinity
as a replacement for the cosine-based interference score.

Now, we will provide a more formal analysis. Suppose we have a symmetric affinity matrix Aij
where larger values represent more beneficial relationships and smaller values mean more harmful
relationships. We can define a conflict score ρij = f(Aij) for any monotone decreasing function f
(so that more harmful pairs get larger ρij). The conflict graph is then

Gτ =
{
(i, j) : ρij > τ

}
=
{
(i, j) : Aij < f−1(τ)

}
. (116)

All subsequent SON-GOKU steps (graph coloring, cyclic scheduling, and the use of ∆ in the bounded
staleness theory) operate purely on Gτ and are therefore unchanged.

P.1.3 TAG AS A LOSS LEVEL PROXY FOR GRADIENT CONFLICT

TAG’s lookahead loss has a natural connection to SON-GOKU’s cosine base dinterference. Consider
a small gradient step on task i with θ′ = θ − ηgi(θ) and examine task j’s loss

∆L
(i)
j := Lj(θ

′)− Lj(θ) (117)

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

A first order Taylor expansion gives

∆L
(i)
j ≈ −η ⟨gi(θ), gj(θ)⟩+O(η2). (118)

Thus, up to higher order terms, TAG’s affinity at each step is proportional to the negative inner
product between gradients.

If ⟨gi, gj⟩ > 0 (aligned gradients), then a step on i decreases Lj , so ∆L
(i)
j < 0. This means TAG

observes positive affinity. On the other hand, if ⟨gi, gj⟩ < 0 (conflicting gradients), then a step on i

increases Lj , so ∆L
(i)
j > 0. So, TAG observes negative affinity.

In contrast, SON-GOKU’s default interference coefficient

ρcos
ij = −⟨g̃i, g̃j⟩

|g̃i||g̃j |
(119)

is a normalized version of this inner product, averaged via EMA over recent steps. To compare the
two, TAG’s score is a loss-level, unnormalized directional derivative. Meanwhile, SON-GOKU’s ρcos

ij
is a gradient-level, normalized first order approximation.

For small η and when we average over enough steps to approximate population quantities, both
measure are monotone transforms of the same underlying signal. That is, the sign and magnitude of
⟨gi, gj⟩. Using TAG’s affinity as ρij therefore replaces SOn-GOKU’s simple cosine with a richer but
more expensive signal that directly reflects loss changes.

This interpretation also clarifies why TAG and SON-GOKU are compatible. TAG’s lookahead loss is
simply a more expressive extimator of the same quantitty that gradient cosine is trying to capture
(i.e., how much does i help or hurt j).

P.1.4 CHANGES TO SON-GOKU’S GUARANTEES BY DIFFERENT AFFINITY MEASURES

We have discussed which arguments presented in our theoretical analysis (particularly, Sections 5.1,
5.2, 5.4) are unaffected by the use of different affinity measures like TAG. However, the one part of
the theory that does depend on the specific cosine-based construction is the graph recovery analysis,
where we prove that EMA cosines concentrate around population cosines and that thresholding them
recovers the "true" conflict graph with high probability.

If we replace cosine with TAG’s affinity (or with other training dynamics-based approaches such as
STG-MTL) the structure of our proof would remain similar but the technical details change. For
one, instead of bounding the deviation of empirical cosines from population cosines, we would need
concentration bounds for the chosen affinity measure. We would again assume a margin around the
threshold (e.g., conflicting pairs have Aij ≤ c⋆ − γ, aligned pairs have Aij ≥ c⋆ + γ). Finally, we
would show that, with enough effective samples per pair we can ensure the uniform estimation error
is below γ, so that the estimated graph matches the population one.

TAG already averages loss changes for each step across changes, and Fifty et al. 2021’s own analysis
shows that this averaged affinity is stable enough to create grouping decisions in practice. Deriving a
formal concentration result for TAG’s affinity would be an interesting extension for future works. But
it is of course orthogonal to the core contribution of SON-GOKU. Once any affinity measure yields a
reliable conflict graph, our earlier graph coloring and scheduling theory applies without any changes.

P.1.5 COMPUTATIONAL CONSIDERATIONS AND REFRESH WINDOWS

Using TAG style scores as ρij changes the cost profile of the scheduler but not its structure. TAG
requires extra forward and backward passes to evaluate lookahead losses, or a preliminary joint
training run whose logs are replayed to compute affinities (Fifty et al., 2021). Our cosine-based
approach, by contraist, is fully online. It maintains EMA gradients and sketches and refreshes the
conflict graph periodically with amortized overhead O

(
Kr(d+K)

R

)
per step. However, SON-GOKU

already separates measurement from scheduling via the refresh window R. We only rebuild the
conflict graph every R steps and reuse the coloring in between. This design is naturally compatible
with more expensive.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Table 8: Validation performance on Taskonomy for SON-GOKU with cosine-based affinities versus
SON-GOKU with TAG-based affinities using a U-Net backbone.

Metric SON-GOKU (cosine) SON-GOKU + TAG
Depth (Euclidean)
AbsRel ↓ 0.5432± 0.0068 0.5351± 0.0115
MAE ↓ 4.0787± 0.071 4.0052± 0.110
RMSE ↓ 18.6199± 0.29 18.3034± 0.38

Depth (Z-buffer)
AbsRel ↓ 0.5731± 0.0074 0.5622± 0.0129
MAE ↓ 4.0494± 0.069 3.9685± 0.115
RMSE ↓ 18.5378± 0.27 18.1485± 0.41

Edge Occlusion
BCE ↓ 0.0995± 0.0032 0.0990± 0.0071
F1 ↑ 0.1466± 0.010 0.1532± 0.019
Precision ↑ 0.5399± 0.021 0.5324± 0.038
Recall ↑ 0.0870± 0.0065 0.0957± 0.0127

Edge Texture
BCE ↓ 0.0779± 0.0010 0.0781± 0.0018
F1 ↑ 0.9734± 0.0007 0.9729± 0.0015
Precision ↑ 0.9772± 0.0008 0.9766± 0.0016
Recall ↑ 0.9768± 0.0007 0.9762± 0.0014

Keypoints2D
MSE ↓ 0.0039± 0.0002 0.0038± 0.0000

Surface Normals
11.25◦ within ↑ 0.4262± 0.0079 0.4364± 0.0135
22.5◦ within ↑ 0.6432± 0.0068 0.6535± 0.0111
30◦ within ↑ 0.7340± 0.0059 0.7428± 0.0094
Mean angle (deg) ↓ 22.9079± 0.31 22.3352± 0.48
Median angle (deg) ↓ 14.5397± 0.27 14.1300± 0.44

Principal Curvature
L1 ↓ 0.0691± 0.0014 0.0672± 0.0026

Reshading
MAE ↓ 0.1352± 0.0023 0.1330± 0.0039

One can run a TAG-like procedure periodically (or once at a few milestones), obtain Aij, map it
to ρij , and then reuse the resulting graph and coloring for many steps. As long as the underlying
task relationships do not drift too quickly between these TAG refreshes, the assumptions used in
our analysis (bounded drift, concentration within a refresh window) remain reasonable. We provide
further justification for the assumptions in their respective appendices.

In this sense SON-GOKU can be viewed as a scheduler that amortizes the cost of any affinity
estimator (TAG, STG-MTL, meta grouping, etc.) over many optimization steps, while preserving its
descent, convergence, and bounded staleness guarantees.

P.2 EXPERIMENTAL ANALYSIS

We benchmark SON-GOKU with TAG-style affinities on the Taskonomy dataset (focusing on NN
tasks). For TAG lookahead loss, we apply a 0.1 step size when probing inter-task effects. Training
and test was repeated across two random seeds, and results are compared against a baseline of
SON-GOKU with its default cosine-based approach. Results are presented in Table 8

Across almost all metrics, SON-GOKU with TAG matches or slightly improves on the cosine-based
version. The gains are greatest for depth and surface normal prediction, where using TAG-based
affinities leads to consistently lower errors and higher within angle scores, while performance on the

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

Table 9: Base SON-GOKU versus SON-GOKU + TAG in terms of speed. Amortized runtime per
training step (ms) averaged across 10 trials.

Method Amortized ms / step ↓
No Refresh (Baseline) 149.28± 1.63
SON-GOKU (cosine) 193.41± 6.27
SON-GOKU + TAG 255.29± 17.84

remaining tasks is either similar or shows small improvements. There are a few cases (such as edge
texture) where the cosine version does very slightly better, but the differences are extremely small.
Overall, this shows that using TAG’s more in-depth lookahead loss into SON-GOKU preserves the
benefits of the scheduler and can provide small improvements in performance across many tasks.
This is due to TAG providing a more detailed estimate of how tasks help or hurt eachother, which lets
SON-GOKU separate conflicting pairs more accurately, as discussed in Section P.1.3.

We also measured the amortized speed of training with TAG loss. As seen in Table 9, it is significantly
slower than training using our standard cosine-based approach. This supports the theoretical analysis
we presented previously. This gap in speed comes from the extra forward and backward passes
needed to measure TAG’s lookahead loss, while cosine-based SON-GOKU only reuses gradients
it has already computed. This means that using TAG (and similar affinities) might provide a bit
more performance at a very big cost in speed, while the cosine version keeps most of the benefit of
scheduling with much lower runtime overhead.

Q ADDITIONAL ANALYSIS OF BENEFITS FROM NON-CONFLICT GROUPING

Q.1 RELATED WORK

A consistent theme in the multi-task learning (MTL) literature is that not all task should be trained
together in a single shared model, and that grouping compatible tasks while separating incompatible
ones tends to improve performance. This directly supports the idea that non-conflict groups (sets of
tasks whose gradients or transfer effects are mutually aligned) are beneficial.

Standley et al. 2020 systematically study which tasks should be learned together by exhaustively
evaluating subsets of vision tasks and measuring cross-task transfer. They show that some task pairs
consistently help each other, while others consistently harm each other when trained jointly, even
with strong backbones. Their proposed framework assigns tasks to a small number of networks so
that cooperating tasks share a network and competing tasks are separated, achieving better accuracy
versus a single model that uses all tasks and versus purely single-task baselines. This is a direct
empirical demonstration that forming groups of mutually beneficial tasks, rather than mixing all tasks,
leads to better generalization.

Fifty et al. 2021 (TAG) push this further by defining a gradient-based task affinity. They measure
how a small gradient step for task i changes task j’s loss, and average these “look ahead” effects
over training. Tasks with positive mutual influence (updates on i tend to reduce j’s loss) are grouped
together, while tasks with negative or weak influence are separated. TAG shows that such affinity
based groupings yield lower test loss than joint training and random groupings, while being far
cheaper than brute-force search over subsets. Conceptually, TAG’s groups are exactly non-conflict
groups at the loss level. Inside a group, most cross-task updates help or at least do not hurt eachother.

Earlier theoretical work on clustered MTL also supports our work. Jacob et al. 2008 assume that tasks
are partitioned into latent clusters with similar linear predictors, and they design a convex penalty
that encourages such clustering. Tasks within a cluster are forced to share parameters, while different
clusters are only weakly coupled. They show that, when the clustering assumption is approximately
correct, this clustered sharing outperforms both fully shared and fully independent models. Although
this is formulated at the level of parameters rather than gradients, it encodes the same idea. Tasks that
point in similar directions should be grouped, and others should not (Jacob et al., 2008). Results from
multi-task feature learning architectures (e.g., Argyriou et al. 2007) provide related generalization
bounds that improve when tasks share a low-dimensional subspace, again matching the intuition that
aligned tasks should be grouped in a shared representation.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

More recently, work on inter-task gradient noise provides an optimziaiton-based justification for
separating conflicting tasks. Fan et al. 2023 identifies inter-task gradient noise (ITGN) as a key factor
behind insufficient training in MTL. Gradients from other tasks can behave like noise for a given task,
degrading its effective signal. By defining a gradient-to-noise ratio (GNR) and maximizing it per
task, MaxGNR shows that reducing ITGN improves test performance on standard MTL benchmarks.
While MaxGNR does not explicitly form task groups, its analysis supports the same idea. Mixing
strongly conflicting gradients is harmful, and methods that avoid such mixtures (either by reweighting
or by grouping) should see optimization and generalization benefits.

Overall, these works collectively support the central premise of Appendix Q and the focus of SON-
GOKU as a whole. Identifying and grouping tasks that do not conflict (and separating those that
do) is a key factor of both optimization stability and generalization performance. SON-GOKU’s
non-conflict groups can be seen as an explicit, gradient level realization of the kind of beneficial
groupings that these prior methods either search for or implicitly encode.

Q.2 THEORETICAL ANALYSIS

We briefly summarize the aspects of SON-GOKU’s theory that are most relevant to non-conflict
grouping, and then add a simple calculation that makes the benefit of grouping more explicit.

Q.2.1 EXISTING GUARANTEES FOR NON-CONFLICT GROUPS

Let gk, t = ∇θℓk(θt) denote the gradient of task k at step t. SON-GOKU defines a conflict graph
by thresholding an interference coefficient (based on EMA cosine similarity) and schedules one
tau-compatible group St at a time, where τ -compabability means that pairwise cosines within St are
bounded by below−τ . Under this condition, we prove the following important inequality (Section 5.1,
Appendix E). If τ(|St| − 1) < 1, then

∣∣∣∣∑
k∈St

gk,t

∣∣∣∣2 ≥ (
1− τ

(
|St| − 1

)) ∑
k∈St

|gk,t|2. (120)

This shows that within a non-conflict group, destructive cancellation is quantitatively bounded. The
aggregate gradient cannot flip to ascent, and its norm remains comparable to the total gradient energy
of the group.

Using this property, SON-GOKU’s convergence analysis establishes that (i) the algorithm preserves
the standard O(1/

√
T) non-convex rate of SGD (up to a constant depending on τ), and (ii) a scheduled

sequence of group updates over a refresh window achieves a descent bound that is never worse than
a single mixed update using all tasks at once, and strictly better when cross-group interactions are
sufficiently negative. Appendix F further connects the structure of conflicts to the average gradient
energy

1

T

T∑
t=1

∑
k∈St

|gk,t|2, (121)

showing that lower cumulative interference yields tighter bounds on this quantity and thus moves us
toward updates with higher effective signal-to-noise ratio.

The recovery analysis in Appendix B then guarantees that, under mild assumptions on drift and
margin around the threshold, SON-GOKU’s EMA-based conflict estimates recover the underlying
low-conflict structure with high probability. This means that the non-conflict groups SON-GOKU
uses in practice are a statistically grounded approximation to the true alignment structure of tasks,
rather than arbitrary partitions.

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

Q.2.2 SIGNAL-TO-NOISE GUARANTEES FOR NON-CONFLICT GROUPS

To complement these results, consider a simple toy model for two tasks that mirrors the gradient
noise perspective in MaxGNR (Fan et al., 2023). Suppose

g1 = µ1 + ξ1, g2 = µ2 + ξ2, (122)

where µk = E[gk] is the mean descent direction for task k, and ξk is zero mean isotropic noise with
covariance σ2I , independent across tasks. Define the signal-to-noise ratio (SNR) at each step of a
gradient g as

SNR(g) :=
|E[g]|2

E
[
|g − E[g]|2

] . (123)

We consider the following approaches:

1. Single mixed update (all tasks at once). Let gmix = g1 + g2. Then

E[gmix] = µ1 + µ2, E|gmix− E[gmix]|2 = 2σ2d, (124)

where d is the dimension. The SNR of the mixed update is proportional to

|µ1 + µ2|2 = |µ1|2 + |µ2|2 + 2|µ1|, |µ2| cos θ (125)

2. Sequential non-conflict updates (update one group at a time). If we perform two sequential
updates, first with g1 and then with g2, the average per-step SNR is proportional to |µ1|2 +
|µ2|2, since each step sees noise of variance σ2d.

Comparing the two,

SNRmix ≤ SNRseq ⇐⇒ |µ1|2 + |µ2|2 + 2|µ1| |µ2| cos θ ≤ |µ1|2 + |µ2|2. (126)

Thus, whenever the mean descent directions of two tasks are non-positively aligned (cos θ ≤ 0), a
single mixed update has no better signal-to-noise ratio than sequential updates, and in the genuinely
conflicting case (cos θ < 0) it is strictly worse.

SON-GOKU’s non-conflict groups are precisely designed so that within each group, pairwise cosines
are bounded away from strongly negative values. This ensures that inside a group, the aggregate
gradient faces limited cancellation (by the group-level inequality above), and across groups, strongly
negative interactions are never mixed in the same update, so we avoid exactly the SNR degradation
shown by this toy model.

This simple argument is fully consistent with the empirical and theoretical trends in the literature.
Standley et al. 2020 and TAG show that grouping compatible tasks and separating incompatible
ones improves test performance while Fan et al. 2023 connects inter-task gradient noise to under-
optimization in MTL. SON-GOKU’s non-conflict groups give a principled way to implement this
insight

R SCALING OF SON-GOKU TO LARGER BACKBONES

R.1 THEORETICAL ANALYSIS AND REASONING

In this subsection we study how SON-GOKU behaves when we increase the capacity of the shared
backbone (e.g., by widening or deepening the network). Intuitively, a larger backbone gives the
model more representational degrees of freedom, which can make it easier for different tasks to
carve out partially separate feature subspaces. This has two important consequences. For one, task
interference can genuinely shrink as capacity grows, so the absolute room for improvement of any
multi-task learning (MTL) method, including SON-GOKU, may decrease. At the same time, task
gradients are still coupled through shared optimization, data, and regularization, so interference does
not necessarily vanish, especially with many tasks or mismatched objectives.

Below we formalize this picture and explain why SON-GOKU is designed to (i) reduce to joint
training when interference is negligible and (ii) remain robust and useful when conflicts persist, even
on large backbones.

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

R.1.1 EFFECT OF MODEL CAPACITY ON TASK INTERFERENCE

Consider K tasks trained on a shared backbone, with (stochastic) per-task gradients gi,t ∈ Rd at step
t. SON-GOKU summarizes interference via cosine-based interference coefficients

ρij,t := −
⟨g̃i,t, g̃j,t⟩
∥g̃i,t∥ ∥g̃j,t∥

(127)

Increasing the backbone size changes the geometry of these gradients. A wider or deeper network
can essentially allocate separate channels or subspaces to different tasks, so that conflicting updates
get placed into distinct parts of the representation. In this overparameterized setting, the model may
approximate each task extremely well, allowing gradients for different tasks to decouple and align
more often. Empirically and theoretically, interference is very well known to depend strongly on the
match between tasks and the shared representation. Some tasks cooperate, others compete, and this
structure does not disappear just because we add parameters (Standley et al., 2020).

Even with a large backbone, there are several reasons why negative interactions can persist. One big
issue comes down to shared optimziation and finite resources. The backbone is still trained with a
single optimizer on a finite dataset with finite training steps and explicit or implicit regularization. The
optimization path couples tasks through shared layers, so gradients remain misaligned for objectives
with different inductive biases (e.g., geometric versus semantic, short-term versus long-term goals).
Additionally, when the number of tasks K is large, increasing capacity is not enough to give each
task a completely separate "subnetwork." Some features must be reused, so there is competition
over shared directions, and conflicts can reappear as tasks compete for the same representational
dimensions (Pascal et al., 2021). Furthermore, if some tasks are over-represented in the data or have
larger losses, their gradients dominate updates and push shared features toward their own optima,
potentially harming less frequent or harder tasks, regardless of the backbone’s absolute size.

Looking at this from the lens of gradient geometry, larger backbones often shift the cosine distribution
between tasks toward zero and reduce variance, but they do not guarantee that all cosines become
small and nonnegative. SON-GOKU is designed to exploit whatever conflict structure remains while
not overreacting when conflicts are rarer.

R.1.2 SON-GOKU UNDER SCENARIOS WITH LOW INTERFERENCE

Suppose we are in a scenario with almost no interference where, for most pairs (i, j),

E
[
cos(gi,t, gj,t)

]
≥ −ε, (128)

with ε small and cosines concentrated near zero or positive values. For a reasonable threshold τ > 0,
the probability that the EMA-based ρij,t exceeds τ becomes very small. In this limit, (i) the conflict
graph Gτ would become very sparse or even empty; (ii) Welsh-Powell coloring produces one or
very few color classes. In the extreme case of no edges, all tasks share a single color; and (iii)
SON-GOKU’s scheduler then activates all tasks together at each step, so the update coincides with
standard joint training.

If Eτ = ∅, the active set at every step is

St = 1, . . . ,K (129)

and the update rule is identical to vanilla MTL with a shared backbone and summed (or weighted
summed) loss. The only remaining overhead is maintaining EMA statistics and coloring a graph with
no edges.

This clearly shows that SON-GOKU will do no harm at larger backbones, given that τ is properly
configured. If the gradient geometry exhibits no strongly negative cosines (for the chosen τ), SON-
GOKU reduces to joint training and does not introduce artificial conflicts or distortions. As previously
mentioned, the only configurable parameter in this setting is the threshold τ . As capacity grows and
cosines shift closer to zero, it can be sensible to use a slightly more conservative threshold (e.g.,
larger τ) so that we still isolate genuinely harmful pairs without splitting tasks unnecessarily. As long

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

as there is a margin separating truly conflicting pairs from near-conflicting paris, such a choice of τ
exists.

R.1.3 COMPARISON TO METHODS THAT ALWAYS MODIFY GRADIENTS

Many existing MTL methods always modify gradients, regardless of whether conflicts are present.
Gradient surgery and multi-objective methods such as PCGrad and CAGrad change the direction of
the update by projecting or optimizing over gradients at every step, to avoid negative inner products or
approximate optimal directions (Sener & Koltun, 2018; Yu et al., 2020; Liu et al., 2021; Navon et al.,
2022; Ban & Ji, 2024; Shi et al., 2023; Borsani et al., 2025). Methods like GradNorm automatically
rescale task losses or gradients (Chen et al., 2018; Kendall et al., 2018; Liu et al., 2019; Yang et al.,
2023; Liu et al., 2023; Fan et al., 2023; Liang & Zhang, 2020; Lin et al., 2022). There exist a plethora
of other methods that similarly modify gradients or other parameters at all times (Caruana, 1997;
Ando & Zhang, 2005; Evgeniou et al., 2005; Argyriou et al., 2007; Kang et al., 2011; Ruder, 2017;
Pascal et al., 2021).

These approaches can be very effective when conflicts and imbalances are strong, but in settings
with low interference and high capacity they can become unstable. For example, when cosines
are small and positive, the true conflict is near zero. However, stochastic noise can make some
cosines appear slightly negative. A surgery method like PCGrad sees these as "conflicts" and projects
away components that were actually harmless, adding noise to the optimization path. Methods that
explicitly solve a multi-objective problem at each step optimize a combination of gradients whose
directions become almost collinear when interference is low. In that case the optimization can become
counterproductive. Basically, tiny numerical differences in gradients can lead to large changes in the
chosen combination, creating unstable trajectories that are not justified by any genuine underlying
conflict (Sener & Koltun, 2018; Yu et al., 2020; Liu et al., 2021; Navon et al., 2022; Shi et al., 2023;
Ban & Ji, 2024; Borsani et al., 2025). Finally, as backbones get larger, gradient norms often shrink
and their distribution shifts. Methods that rely heavily on relative magnitudes must then be retuned or
recalibrated, and may continue to reweight tasks even when they would naturally co-exist without
interference (Chen et al., 2018)

By contrast, SON-GOKU’s design is deliberately based on events. It monitors normalized cosines
which are invariant to global rescaling of gradients and less sensitive to noise at each step. It only
introduces edges in the conflict graph once cosines cross a threshold and stay there consistently
enough to not be erased by smoothing. And in the case when cosines are all near zero or positive, the
conflict graph simply goes away, and scheduling essentially becomes joint training.

In other words, as we scale up the backbone and genuine conflicts no longer exist, SON-GOKU turns
itself off, while many other methods continue to adjust gradients based on weak and noisy signals.

R.1.4 LARGER BACKBONES AND CONFLICT GRAPH ESTIMATION

The graph theory part of SON-GOKU (graph construction, coloring, and scheduling) depends on
the actual interference structure, not on the specific estimator used. In Appendix B.4 of the main
paper we show that, under mild assumptions, EMA cosines naturally concentrate around the true
(or "population") cosines and that thresholding them recovers the true conflict graph with high
probability.

Increasing model capacity typically helps this estimation step, for two reasons. Firstly, it enables
higher signal-to-noise ratio in cosines. As the backbone gets larger and representations become more
structured, gradients for each task often become more stable across steps. This reduces the variance
of cosine estimates and makes it easier to distinguish pairs that are persistently conflicting (true
gradient cosine is strongly negative) from pairs that are truly neutral or cooperative (true gradient
cosine is near zero or positive). Under the same number of samples per pair, the probability that
an EMA cosine is misclassified relative to the threshold τ decreases. This effectively improves the
sample complexity of graph recovery. The second reason that increasing model capacity actually
helps SON-GOKU is that it enables sparser conflict graphs and better scheduling guarantees. When
capacity pushes more task pairs into the non-conflicting regime, the conflict graph becomes sparser
and its maximum degree ∆ decreases. By standard graph-coloring results, any proper coloring uses
at most ∆+ 1 colors. A smaller ∆ thus implies there are fewer groups, so each group is larger and

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

Table 10: Validation loss averaged across tasks on Taskonomy Tiny for different encoder widths
(UNet-style encoder).

Encoder width Joint SON-GOKU
64 5.232 ±0.020 5.203 ±0.018
128 5.050 ±0.018 4.940 ±0.017
256 4.900 ±0.015 4.830 ±0.015

more similar to joint training. It also implies each task is updated at least once every ∆+ 1 steps, so
smaller ∆ directly improves guarantees about how fresh the graph is.

From the standpoint of our theoretical analysis (Section 5), this means that larger backbones either
make the conflict graph easier to estimate for the same number of refreshes, or make the graph
itself simpler (low degree), which directly improves scheduling properties. In the settomg where
conflicts still exist but are less noisy, SON-GOKU benefits greatly. We get cleaner separation between
conflicting and non-conflicting pairs, and we need fewer colors to isolate those conflicts.

R.1.5 PERSISTENT INTERFERENCE FOR HIGH CAPACITY MODELS WITH MANY TASKS

While the extreme case of no interference is conceptually simple, many realistic scenarios with
large backbones still exhibit substantial negative transfer. When K is large and tasks optimize for
different invariances or focus on different aspects of the input, some gradients remain fundamentally
incompatible, no matter how wide the backbone is. This is reflected in persistent clusters of negative
cosines and in empirical studies showing that some tasks should not be learned together even when
using fairly powerful models (Standley et al., 2020). With a single optimizer and a finite number
of steps, training is a multi-objective problem in the sense of Sener and Koltun. There is a Pareto
front of trade-offs that cannot be simultaneously optimized, independent of capacity (Sener & Koltun,
2018). In such cases, conflicts will persist despite over parameterization. Finally, when some tasks
see more data or larger losses, their gradients dominate shared layers. This can lead to a behavior
where dominant tasks dictate the representation, harming others even in high-capacity networks.

In these settings, our earlier theoretical results continue to apply. The point is, nothing in our analysis
assumes a small backbone. What matters is the geometry of gradients, not the absolute size of the
parameter space. As we discuss in Appendices R.1.2 and R.1.4, SON-GOKU will either do no harm
or continue to provide the same theoretical benefits we discussed previously.

R.2 EXPERIMENTAL ANALYSIS

For the experimental analysis we evaluate SON-GOKU against a joint training baseline on the
Taskonomy dataset. Specifically, we test each approach on a UNet-style encoder across three different
settings, where each setting sets a different backbone size for the encoder (64 vs 128 vs 256 neurons).
We also evaluate the speed of SON-GOKU across R values of 8, 16, 32, and 64 with these different
backbone sizes.

Table 10 contains the results (in terms of loss) for SON-GOKU against joint training averaged across
five trials. We observe that, as we widen the encoder from 64 to 128 and 256 channels, both joint
training and SON-GOKU improve, but SON-GOKU consistently does better, and the size of the gap
follows the qualitative behavior predicted in our earlier analysis. At 64 channels, the backbone is
clearly limited in its capacity, so even though there is interference, the model cannot fully exploit
cleaner updates. At 128 channels, the backbone is expressive enough that separating conflicting tasks
in time and space actually pays off. This is where we see the largest improvement over joint training.
At 256 channels, performance improves again for both methods, but the gap shrinks. As model
capacity grows, many conflicts are resolved by the large available representation, and SON-GOKU
approaches behavior like joint training while still having a small benefit when there are remaining
conflicts (Appendix R.1.2). The training setup employed here only used 4 tasks. In setups with
tens (or even hundreds) of tasks, it would of course take a much larger backbone for conflicts to be
resolved by the larger parameter space alone.

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

10 20 30 40 50 60

150

200

250

300

350

Refresh period R

m
s

pe
rs

te
p

Figure 2: Evaluation of SON-GOKU’s speed with varying R (8, 16, 32, 64) on different backbone
widths. Plotted against the joint training baseline (R =∞). Highlighted regions represent standard
deviation from 15 separate trials. This data was collected during training on Taskonomy Tiny subset.

0 10k 20k 30k 40k 50k 60k 70k 80k
0.00

0.25

0.50

0.75

1.00

Refresh step

Sh
ar

e
of

ta
sk

s

∥G∥ = 8 ∥G∥ = 7 ∥G∥ = 6 ∥G∥ = 5 ∥G∥ = 4 ∥G∥ = 3 ∥G∥ = 2 ∥G∥ = 1

Figure 3: How the fraction of tasks assigned to each group size evolves over the refresh steps in
training. This is a stacked area plot showing how the proportion of tasks in each group size ∥G∥
evolves during training.

For R = 32 or 64, the time for each step is close to the joint training baseline (where R is essentially
∞) for all backbone widths, matching our analysis that the extra work scales like O(Kr(d+K)/R)
and shrinks as R grows. This demonstrates that SON-GOKU can effectively track interference while
adding negligible runtime cost, even for larger backbones.

S TRENDS OF SON-GOKU THROUGHOUT TRAINING

In this section we provide detailed visualizations of how SON-GOKU and its components evolve
throughout the training process. We train a U-Net model with SON-GOKU on the Taskonomy dataset
to gain deeper insight into its behavior, especially in many-task settings. We train for three epochs
with a batch size of 64.

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

S.1 TASK GROUPING AND CONFLICT TRENDS

0 20k 40k 60k 80k 100k
0

2

4

6

Global step (refresh points)

D
en

si
ty

(a) Average density

0 20k 40k 60k 80k 100k
0.0

0.5

1.0

Global step (refresh points)

D
en

si
ty

(b) Median density

Figure 4: Conflict sparsity during training. Subfigure (a) plots the median average node degree
(magenta line) with its 10th–90th percentile band (magenta). Subfigure (b) shows the median edge
density of the task conflict graph at each refresh step (blue line) with the 10th–90th percentile range
across runs (blue band)..

0 1000 2000 3000 4000 5000
0
2
4
6
8

Global Step

N
um

.o
fG

ro
up

s

(a) Up to step 5k

0 10k 20k 30k 40k 50k 60k 70k 80k
0
2
4
6
8

Global Step

N
um

.o
fG

ro
up

s

(b) Up to step 80k

Figure 5: Grouping behavior throughout training. The blue line represents the number of active
color groups at each training step. The orange line represents the median number of groups observed
during each refresh period, with the shading showing the full range for that period. Subfigure (a)
shows more details from step 0 to step 5,000 in the training process, and Subfigure (b) shows the data
from step 0 to step 80,000. Both plots have been lightly smoothed based on moving medians to make
them easier to interpret.

S.1.1 EVOLUTION OF TASK GROUP SIZES

Figure 3 shows that SON-GOKU quickly moves away from the trivial approach of training all
tasks in one group (∥G∥ = 8) and instead allocates most stakes to small- and medium-sized groups
(∥G∥ ∈ {3, 4, 5}), with only a small fraction ever isolated on their own. The smooth but continually
shifting bands indicate that the scheduler keeps adjusting the granularity of groups over training. It
continues to refine task partitions as patterns in task interference change, rather than committing to a
fixed grouping of tasks.

S.1.2 CONFLICT SPARSITY IN THE TASK GRAPH

Both plots in Figure 4 show that, after an initial phase of dense conflict, SON-GOKU’s conflict
graph rapidly becomes more and more sparse. Both the node degree and overall edge density drop
significantly and then fluctuate around a low level. This indicates that the scheduler quickly resolves
most cross-task conflicts and then maintains a partition of tasks into predominantly non-conflicting
groups for the rest of training. This idea is supported by our graph visualizations in Appendix S.3.

S.1.3 GROUP COUNT AND SCHEDULE STABILITY

Figure 5 shows that SON-GOKU starts with many groups but soon settles to consistently using three
to four groups for most of training. The blue and orange lines across both plots stay close together,
meaning the number of groups at each step stays relatively consistent (with slight oscillations, as we
see in our graph visualizations in Appendix S.3) with what we see across refresh periods. So the
grouping behavior is not fully stable, but converges within a range over time in which it is able to
adapt to evolving task relationships. Tuning the SON-GOKU hyperparameters to achieve more stable

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

Table 11: Validation performance on Taskonomy for SON-GOKU using a U-Net backbone.

Metric SON-GOKU
Depth (Euclidean)
AbsRel ↓ 0.5432± 0.0068
MAE ↓ 4.0787± 0.071
RMSE ↓ 18.6199± 0.29

Depth (Z-buffer)
AbsRel ↓ 0.5731± 0.0074
MAE ↓ 4.0494± 0.069
RMSE ↓ 18.5378± 0.27

Edge Occlusion
BCE ↓ 0.0995± 0.0032
F1 ↑ 0.1466± 0.010
Precision ↑ 0.5399± 0.021
Recall ↑ 0.0870± 0.0065

Edge Texture
BCE ↓ 0.0779± 0.0010
F1 ↑ 0.9734± 0.0007
Precision ↑ 0.9772± 0.0008
Recall ↑ 0.9768± 0.0007

Keypoints2D
MSE ↓ 0.0039± 0.0002

Surface Normals
11.25◦ within ↑ 0.4262± 0.0079
22.5◦ within ↑ 0.6432± 0.0068
30◦ within ↑ 0.7340± 0.0059
Mean angle (deg) ↓ 22.9079± 0.31
Median angle (deg) ↓ 14.5397± 0.27

Principal Curvature
L1 ↓ 0.0691± 0.0014

Reshading
MAE ↓ 0.1352± 0.0023

grouping is possible, but in theory may lead to worse responsiveness to evolving task relationships
(see Appendix O and Section 5).

S.2 CONVERGENCE AND LOSS

To enhance the transparency of our work, we plot the convergence of the SON-GOKU based model
across various tasks from the Taskonomy dataset. We plot each metric’s changing value against
the step number. Across most metrics, we can see a clear pattern of improvement early in training
followed by a slower and more stable plateau. However, there are some other metrics where the graph
oscillates throughout the training process, demonstrating the difficulty (or perhaps impossibility) of
finding a global minima that satisfies all tasks and metrics. This is consistent with a clear pattern
established by the literature around the Taskonomy dataset.

To further improve transparency and clarity, we plot the exact final performance values of SON-GOKU
on Taskonomy in Table 11 (identical to data and results of cosine-based SON-GOKU presented in
Table 8).

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

(a) Absolute Relative Depth Error for Depth (Euclidean)

(b) MAE for Depth (Euclidean)

(c) RMSE for Depth (Euclidean)

Figure 6: Convergence curves across all the used Taskonomy tasks and metrics.

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

(d) Absolute Relative Depth Error for Depth (Z-buffer)

(e) MAE for Depth (Z-buffer)

(f) RMSE for Depth (Z-buffer)

Figure 6: Convergence curves across all the used Taskonomy tasks and metrics (continued).

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

(g) Binary Cross-Entropy for Edge Occlusion

(h) F1 Score for Edge Occlusion

(i) Precision for Edge Occlusion

Figure 6: Convergence curves across all the used Taskonomy tasks and metrics (continued).

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2026

(j) Recall for Edge Occlusion

(k) Binary Cross-Entropy for Edge Texture

(l) F1 Score for Edge Texture

Figure 6: Convergence curves across all the used Taskonomy tasks and metrics (continued).

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2026

(m) Precision for Edge Texture

(n) Recall for Edge Texture

(o) MSE for Keypoints2D

Figure 6: Convergence curves across all the used Taskonomy tasks and metrics (continued).

62

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2026

(p) 11.25◦ Within for Surface Normals

(q) 22.5◦ Within for Surface Normals

(r) 30◦ Within for Surface Normals

Figure 6: Convergence curves across all the used Taskonomy tasks and metrics (continued).

63

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2026

(s) Mean Angle (deg) for Surface Normals

(t) Median Angle (deg) for Surface Normals

(u) L1 Loss for Principal Curvature

Figure 6: Convergence curves across all the used Taskonomy tasks and metrics (continued).

64

3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

Under review as a conference paper at ICLR 2026

S.3 GRAPH EVOLUTION

SON-GOKU captures relationships between tasks and groups them accordingly throughout training.
It does so online, meaning that it is able to adapt to the constantly changing relationships between
tasks. In this instance, SON-GOKU is able to capture a clear consistent relationship between separate
tasks, but it still constantly regroups tasks throughout the training process to adapt at different points
(Figure 7). Overall, this constantly changing grouping, despite SON-GOKU having identified a
somewhat consistent underlying task structure, indicates that SON-GOKU is highly adaptive to
evolving cross-task relationships. For more consistent grouping that still optimizes performance, one
would need to adjust the scheduler hyperparameters that control the refresh period and EMA history
length. Essentially, one would trade off stability against responsiveness.

65

3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

Under review as a conference paper at ICLR 2026

(v) MAE for Reshading

Figure 6: Convergence curves across all the used Taskonomy tasks and metrics (continued).

66

3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617

Under review as a conference paper at ICLR 2026

Step 1 Step 1,920 Step 3,872 Step 5,824

Step 7,776 Step 9,728 Step 11,680 Step 13,632

Step 15,584 Step 17,536 Step 19,488 Step 21,440

Step 23,392 Step 25,344 Step 27,296 Step 29,248

Figure 7: Task-graph evolution during training. Starting with the top node and rotating clockwise,
the tasks represented are: Edge Occlusion, Depth Z-Buffer, Depth Euclidean, Reshading, Principal
Curvature, Normal, Keypoints 2D, and Edge Texture.

67

3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671

Under review as a conference paper at ICLR 2026

Step 31,200 Step 33,152 Step 35,104 Step 37,056

Step 39,008 Step 40,960 Step 42,912 Step 44,864

Step 46,816 Step 48,736 Step 50,688 Step 52,640

Step 54,592 Step 56,544 Step 58,496 Step 60,448

Figure 7: Task-graph evolution during training (continued). Starting with the top node and rotating
clockwise, the tasks represented are: Edge Occlusion, Depth Z-Buffer, Depth Euclidean, Reshading,
Principal Curvature, Normal, Keypoints 2D, and Edge Texture.

68

3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725

Under review as a conference paper at ICLR 2026

Step 62,400 Step 64,352 Step 66,304 Step 68,256

Step 70,208 Step 72,160 Step 74,112 Step 76,064

Step 78,016 Step 79,968 Step 81,920 Step 83,872

Step 85,824 Step 87,776 Step 89,728 Step 91,680

Step 93,632 Step 95,584

Figure 7: Task-graph evolution during training (continued). Starting with the top node and rotating
clockwise, the tasks represented are: Edge Occlusion, Depth Z-Buffer, Depth Euclidean, Reshading,
Principal Curvature, Normal, Keypoints 2D, and Edge Texture.

69

	Introduction
	Related Work
	Problem Setup
	Data and Notation
	Interference Coefficient
	Conflict Graph

	Goal

	Proposed Approach
	Estimating Gradient Interference
	Conflict Graph Construction
	Partitioning via Greedy Graph Coloring
	Schedule Generation and Execution
	Minimum update frequency
	Warm-up and Annealing

	Time Complexity redand Space Complexity

	Theoretical Analysis
	Descent Preservation Within a Low-conflict Group
	Nonconvex Convergence at the Standard Rate up to a Small Factor
	When Scheduled Groups Outperform a Single Mixed Update
	Exact Recovery of the Population Conflict Graph and Task Partition
	Scheduling Properties with Few Groups and Bounded Staleness

	Experimental Setup
	Datasets
	Baseline and State-of-the-Art Comparisons
	Scheduler Extension Models
	Single-Step Conflict Estimation

	Results and Discussion
	Overall Performance Improvements
	Ablation Study on Scheduler Design
	Additional Analysis
	Optimizer-Task Alignment
	Synergy Between Scheduling and Baselines
	SON-GOKU's Ability to Create Generalizable Models

	Speed and Tradeoffs

	Conclusion
	Reproducibility Statement
	Full Algorithm Block for Proposed Approach
	Exact Recovery of Population Conflict Graph & Task Partition
	Setting, definitions, and population objects
	Assumptions
	Deterministic group recovery from the conflict graph
	Uniform control of empirical cosines from EMA gradients
	Exact edge recovery and group recovery
	Quantitative probe-budget requirement
	Summary of the recovery argument

	Descent Bounds for Scheduled versus Aggregated Updates
	Single refresh baselines and notation
	Single aggregated step
	Scheduled group sequence over one refresh

	Telescoping bound for scheduled updates
	Start-of-refresh reduction under per-group lipschitzness

	Upper bounds for scheduled and aggregated updates (general m)
	Scheduled and aggregated gap at a common linearization
	Sufficient conditions for a tighter scheduled bound
	PL or strong convexity: standard rate and upper-bound gains for scheduling
	Why the assumptions are mild
	L-smoothness
	Per-group lipschitzness of Gr
	Negative Hessian-weighted cross-terms
	PL and strong convexity

	Concluding remarks

	Computational Complexity of One Refresh (and Amortized Over Training)
	Notation
	Per-refresh complexity
	Amortized cost over training
	Conditions for negligible overhead
	Reducing Time Complexity
	Random projections
	Deterministic covariance sketching via frequent directions
	Edge sampling for conflict graphs with adaptive refinement
	Incremental gram updates
	Experimental Analysis

	Descent Preservation Under -Compatibility
	Proof of Proposition 6
	Lower-bounding the cross terms
	Symmetrizing the mixed sum
	Bounding the mixed sum via Cauchy-Schwarz
	Combining bounds

	Interpretation and practical implications

	Convergence rate with tau-dependent constant
	Discussion and intuition

	Bounded Staleness via Greedy Graph Coloring
	Interpretation

	Greedy Graph-Coloring Uses at Most Delta+1 Colors
	Proof of Proposition 9
	Implications for the scheduler

	Baseline Non-Convex SGD Convergence Rate
	Proof of Theorem 8
	Connection to the scheduler
	Consistency with the unbiased SGD assumption

	Experimental Setup for Datasets
	NYUv2
	CIFAR-10
	AV-MNIST
	MM-IMDb
	STOCKS

	Models Used for Comparison
	Baseline models
	State-of-the-art models
	Ablation Study Models

	Expanded Wall-Clock Time Study
	Experimental Setup for Wall-Clock Time Study

	Extended Related Work
	Tuned Loss Weighting
	Adaptive Loss Weighting
	Gradient-Level Conflict Mitigation
	Empirical Task Grouping

	Space Complexity and Memory Usage
	Space Usage Across a Refresh Cycle
	Baselines for Comparison
	Example
	Setup
	Memory Usage
	Takeaway

	Experimental Validation

	On The Choice of Refresh Rate
	Training Dynamics
	Strategies for Adjusting the Refresh Rate
	Anneal the Refresh Rate
	Adapt the Refresh Rate Based on Task Conflict Variability

	Incorporating SON-GOKU with Other Task Affinity Measures
	Theoretical Analysis and Discussion
	SON-GOKU as a Modular Conflict Graph Based Scheduler
	TAG and Other Task Affinity Measures as Conflict Scores
	TAG as a Loss Level Proxy for Gradient Conflict
	Changes to SON-GOKU’s Guarantees by Different Affinity Measures
	Computational Considerations and Refresh Windows

	Experimental Analysis

	Additional Analysis of Benefits from Non-Conflict Grouping
	Related Work
	Theoretical Analysis
	Existing Guarantees for Non-Conflict Groups
	Signal-to-Noise Guarantees for Non-Conflict Groups

	Scaling of SON-GOKU to Larger Backbones
	Theoretical Analysis and Reasoning
	Effect of Model Capacity on Task Interference
	SON-GOKU Under Scenarios with Low Interference
	Comparison to Methods That Always Modify Gradients
	Larger Backbones and Conflict Graph Estimation
	Persistent Interference for High Capacity Models with Many Tasks

	Experimental Analysis

	Trends of SON-GOKU Throughout Training
	Task Grouping and Conflict Trends
	Evolution of Task Group Sizes
	Conflict Sparsity in the Task Graph
	Group Count and Schedule Stability

	Convergence and Loss
	Graph Evolution

