
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GRAPH COLORING FOR MULTI-TASK LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

When different objectives conflict with each other in multi-task learning, gradients
begin to interfere and slow convergence, thereby potentially reducing the final
model’s performance. To address this, we introduce SON-GOKU, a scheduler that
computes gradient interference, constructs an interference graph, and then applies
greedy graph-coloring to partition tasks into groups that align well with each other.
At each training step, only one group (color class) of tasks are activated, and the
grouping partition is constantly recomputed as task relationships evolve throughout
training. By ensuring that each mini-batch contains only tasks that pull the model
in the same direction, our method improves the effectiveness of any underlying
multi-task learning optimizer without additional tuning. Since tasks within these
groups will update in compatible directions, multi-task learning will improve model
performance rather than impede it. Empirical results on six different datasets show
that this interference-aware graph-coloring approach consistently outperforms
baselines and state-of-the-art multi-task optimizers. We provide extensive theory
showing why grouping and sequential updates improve multi-task learning, with
guarantees on descent, convergence, and the ability to accurately identify what
tasks conflict or align.

1 INTRODUCTION

Multi-task learning (MTL) trains a single model to solve several tasks simultaneously, sharing
knowledge across them to learn more effectively (Caruana, 1997). This allows models to generalize
better and converge faster. However, a key issue known as negative transfer arises when tasks don’t
align very well with each other (Sener & Koltun, 2018; Shi et al., 2023). When two tasks push the
shared network in different directions their gradients clash, slowing or even reversing learning. Prior
work addresses this issue primarily via (1) gradient manipulation, which reshapes task gradients to
reduce conflicts, and (2) loss reweighting, which rescales task objectives to balance their influence.
While effective in some specific settings, these strategies typically treat conflict locally at the level
of shared-parameter updates and often overlook the evolving global structure of interactions among
tasks throughout training.

Some recent works focus on partitioning tasks into subsets (groups) and updating those groups
separately. These approaches have been found to improve accuracy and training stability by forming
groups with high measured affinity and then updating one group at a time (Fifty et al., 2021; Jeong
& Yoon, 2025). Grouping can outperform gradient manipulation and loss reweighting when tasks
form clusters with aligned gradients, because each update then reduces direct clashes in the shared
layers, lowers gradient variance within the step, and lets compatible tasks reinforce one another while
conflicting tasks wait for their turn.

However, grouping methods often face a few key limitations: (1) many rely on dense pairwise
affinities that grow noisy and costly as the number of tasks rises (Fifty et al., 2021; Standley et al.,
2020; Sherif et al., 2024), and (2) others predetermine or rarely update groups, so they drift as task
relations change (Wang et al., 2024; Ruder, 2017), and (3) several use local heuristics that fail to
enforce global compatibility or to specify how groups should rotate over time (Zhang & Yang, 2018;
Malhotra et al., 2022).

We present SON-GOKU (Scheduling via Optimal INterference-aware Graph-COloring for TasK
Grouping in MUltitask Learning). We measure gradient interference, build a graph of tasks from
those measurements, greedily color the graph to form non-conflicting compatible task groups, and

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

update one color group per step during training. This design addresses the earlier issues. We estimate
the interference graph from lightweight minibatch statistics and keep it sparse, which avoids noisy
dense matrices and scales to many tasks. We recolor the graph at regular intervals so the groups
track changing relations during training. Greedy graph coloring ensures we update only compatible
tasks in each step, and the color order gives a simple way to cycle through the groups. Our proposed
scheduler does not have to work in isolation, it can function on top of existing loss-reweighting and
gradient-manipulation MTL approaches.

In our theoretical analysis (Section 5) we show that, under standard conditions, SON-GOKU tends
to group tasks whose gradients are, on average, aligned within each group, with high probability.
We further show that, over a refresh window, sequentially updating these low-conflict groups yields
at least as much expected descent as a single mixed update, and strictly more when between-group
interference is sufficiently negative. We also prove that SON-GOKU preserves descent and reaches
the usual non-convex SGD rate under mild assumptions, with only a small factor that depends on the
within-group conflict level. In Appendix D we discuss the scheduler’s amortized time complexity
and the tradeoffs it offers between speed and performance. We discuss ways in which practitioners
can reduce its time complexity under certain conditions.

Empirical results from experiments demonstrate that SON-GOKU consistently improves outcomes
compared to other MTL approaches, especially when SON-GOKU is coupled with existing ap-
proaches. Our contributions are as follows:

• We propose SON-GOKU, an interference-aware scheduler that measures cross-task gradient
conflict, builds a conflict graph, colors it to form compatible groups, and activates one group
per step. It can be used on top of standard MTL optimizers.

• We provide theoretical analysis that offers guarantees on SON-GOKU’s grouping, conver-
gence, scheduling behavior, and more.

• Across six datasets, SON-GOKU improves over strong baselines and pairs well with methods
like PCGrad, AdaTask, and GradNorm, delivering consistent gains.

• We perform an ablation study showing that dynamic recoloring and history-averaged conflict
estimates are key contributors to performance.

2 RELATED WORK

Many MTL methods (especially earlier ones) adjust task influence by learning or adapting loss
weights. Examples include uncertainty-based scaling (Kendall et al., 2018), rate-based schemes such
as DWA (Liu et al., 2019), and fast bilevel formulations like FAMO (Liu et al., 2023). FAMO in
particular is notable for its O(1) per-step time complexity. These approaches keep all tasks active
each step while modulating relative magnitudes. A completely different approach, which emerged in
2018 with MGDA (Sener & Koltun, 2018), focuses on updating shared-parameter update directions to
mitigate interference. Methods like PCGrad (Yu et al., 2020), CAGrad (Liu et al., 2021), and MGDA
(Sener & Koltun, 2018) modify the geometry of the shared update to reduce cross-task conflicts while
still updating all tasks each step. A smaller body of work forms subsets of tasks to update together,
using offline affinity estimation or training-dynamics signals (Fifty et al., 2021; Standley et al., 2020;
Wang et al., 2024; Sherif et al., 2024). Most recently, Selective Task Group Updates proposes online
grouping with sequential updates, reporting that update order can influence task-specific learning
(Jeong & Yoon, 2025). SON-GOKU differs in mechanism from existing approaches (Section 4). It
complements loss reweighting and gradient surgery, and we provide explicit guarantees on descent,
convergence, and graph/partition recovery. An expanded discussion of more related work is provided
in Appendix M.

3 PROBLEM SETUP

We formalize multi-task learning (MTL) (Caruana, 1997) as optimizing a shared network while
activating only a subset of tasks at each step. Each task contributes a loss whose gradients may
align or conflict. We quantify conflict using (the negative of) cosine similarity, embed tasks in a
conflict graph, and later use that graph to derive a schedule. This section fixes notation and states the
optimization goal that the proposed approach addresses.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3.1 DATA AND NOTATION

Let T = {T1, . . . , TK} be the set of tasks. The model has shared parameters θ ∈ Rd and task-specific
parameters ϕk ∈ Rdk for Tk. Each task draws examples (x, yk) from a distribution Dk and defines a
per-example loss ℓk(θ, ϕk;x, yk). Its population loss is

Lk(θ, ϕk) := E(x,yk)∼Dk

[
ℓk(θ, ϕk;x, yk)

]
. (1)

We minimize the standard weighted MTL objective

F (θ, ϕ1, . . . , ϕK) =

K∑
k=1

wk Lk(θ, ϕk), (2)

with nonnegative task weights wk (default wk = 1). Note that, for simplicity in later sections, we
absorb wk into the per-task gradient estimates. This is permissible since positive scalings do not
change cosine signs or the induced conflict graph.

At step t, for any task k that is active we compute stochastic gradients on a mini-batch B(t)
k ⊂ Dk:

g
(t)
k := ∇θLk(θt, ϕk,t;B(t)k), h

(t)
k := ∇ϕk

Lk(θt, ϕk,t;B(t)k). (3)

In our proposed method, we form exponential moving averages (EMA) of per-task gradients within a
refresh window to stabilize cosine estimates so that they do not become stale (Sec. 4).

3.1.1 INTERFERENCE COEFFICIENT

We quantify pairwise interaction with the interference coefficient

ρij = − ⟨g̃i, g̃j⟩
∥g̃i∥ ∥g̃j∥

, (4)

where g̃i and g̃j are the EMA-smoothed gradients at refresh. Positive ρij indicates conflict (negative
cosine). ρij ≤ 0 indicates alignment or neutrality.

3.1.2 CONFLICT GRAPH

Fix a tolerance τ ∈ (0, 1). The conflict graph is

Gτ = (T , Eτ), Eτ =
{
(i, j) : ρij > τ

}
. (5)

Vertices are tasks. An edge between a pair means to not update that pair together. We will utilize Gτ

for coloring and scheduling in Section 4

3.2 GOAL

At training step t we choose an active set St ⊆ T and update only those tasks:

θt+1 = θt − ηt
∑
k∈St

g
(t)
k , ϕk,t+1 =

{
ϕk,t − ηth

(t)
k , k ∈ St,

ϕk,t, k /∈ St.
(6)

The problem the scheduler addresses is to design the sequence {St}Tt=1 so that: (1) every task is
visited regularly; and (2) conflicting tasks seldom appear together. We instantiate this via greedy
graph coloring in Section 4 and analyze the guarantees in Section 5.

4 PROPOSED APPROACH

We design an interference-aware scheduler that partitions tasks into low-conflict groups and activates
exactly one group per optimization step. The procedure consists of four stages: (1) estimating
pairwise interference, (2) building and coloring the conflict graph, (3) generating a periodic schedule,
and (4) updating that schedule as training evolves. An overview of the scheduler is provided as
Algorithm 1 in Appendix A. A visualization of SON-GOKU is provided in Figure 1 alongside a
simple summary in the Figure caption.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Interference-aware scheduling pipeline: (a) For each task Ti (circles T1 . . . T6), we smooth
recent per-step gradients with an Exponential Moving Average (EMA); (b) From these EMA vectors
we compute the pairwise cosine matrix. In the figure, cells outlined with red dashes mark pairs with
cosine < −τ . These are flagged as conflicts; (c) We build the conflict graph whose nodes are tasks Ti

and whose red dashed edges connect exactly those pairs identified in (b); (d) We apply greedy graph
coloring so that no conflict edge lies within a color, producing low-conflict groups. In the example
shown, we have two groups: A as blue and B as orange; (e) During training we activate one group per
step. After every R steps (here, R = 4) we ’refresh’ and run the pipeline again from step A, where
we update the EMAs with the latest gradients.

4.1 ESTIMATING GRADIENT INTERFERENCE

We absorb task weights into per-task losses, so g
(t)
k is the gradient of the weighted loss wkLk. Cosine

calculations and graph construction are not impacted by applying positive scaling.

At step t and for every task Tk appearing in the current mini-batch we compute a task-specific
stochastic gradient

g
(t)
k = ∇θLk

(
θt, ϕk,t;B(t)k

)
, (7)

using an independent sub-batch B(t)k ⊂ Dk. We then update an exponential moving average

g̃
(t)
k = β g̃

(t−1)
k + (1− β) g

(t)
k , β ∈ [0, 1), (8)

which stabilizes cosine estimates while requiring only two buffers per task (current and previous).
Whenever we refresh the schedule (every R steps) we form the pairwise interference matrix

ρ
(t)
ij = −

⟨g̃(t)i , g̃
(t)
j ⟩

∥g̃(t)i ∥ ∥g̃
(t)
j ∥

, i, j ∈ {1, . . . ,K}. (9)

Computing all K(K − 1)/2 cosines is O(K2d) with d representing the shared-parameter dimen-
sion. We also write h

(t)
k = ∇ϕk

Lk

(
θt, ϕk,t;B(t)k

)
for the gradient with respect to the task-specific

parameters ϕk.

4.2 CONFLICT GRAPH CONSTRUCTION

Given a tolerance τ ∈ (0, 1), the conflict graph at update round r is

G(r)
τ = (V,E(r)

τ), V = {1, . . . ,K}E(r)
τ =

{
(i, j) : ρ

(tr)
ij > τ

}
. (10)

To clarify, tasks are indexed by integers 1 . . .K in Equation 10. Edges connect tasks whose averaged
gradients have cosine similarity less than −τ . Intuitively, larger τ yields a sparser conflict graph,
typically fewer colors (larger per-step groups), and more frequent updates per task. Smaller τ results
in a denser graph, more colors (smaller per-step groups), and less frequent updates per task.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.3 PARTITIONING VIA GREEDY GRAPH COLORING

We apply the Welsh-Powell largest-first greedy heuristic (Welsh & Powell, 1967) to color G(r)
τ

and obtain color classes C(r)
1 , . . . , C

(r)
mr . Classical graph-theory results (West, 2000; Diestel, 2017)

guarantee the heuristic uses no more than ∆+ 1 colors, where ∆ is the maximum vertex degree. In
practice ∆ is small because many task pairs do not interfere, yielding concise schedules.

4.4 SCHEDULE GENERATION AND EXECUTION

We create a periodic schedule of length mr:

St = C
(r)(
t mod mr

)
+1

, tr ≤ t < tr+1 = tr +R. (11)

Each training step activates exactly one color class; over one period every task in that class receives a
gradient update, while conflicting tasks (edges in E

(r)
τ) are guaranteed not to co-occur.

4.4.1 MINIMUM UPDATE FREQUENCY

If the greedy coloring yields a singleton class for a rarely updated task, we increase its update
frequency by duplicating it only into steps whose active color has no conflict edge to that task.

4.4.2 WARM-UP AND ANNEALING

We start with τ = 1 (no edges, full simultaneous training) for the first Twarm steps, then logarithmi-
cally anneal τ to a target value τ∗. This mitigates noisy gradient signals early in training.

4.5 TIME COMPLEXITY

The proposed scheduler has a time complexity of Θ(K2d) per refresh. However, unlike many
MTL approaches, our scheduler concentrates its extra work in occasional refreshes. This time
complexity therefore becomes Θ

(
K2d/R

)
amortized per training step where R s the refresh period

(the number of training steps between conflict-graph rebuilds). It adds non-trivial overhead which
grows quadratically with K (number of tasks) but shrinks as R grows. We provide a full analysis
of the time complexity in Appendix D and discuss approaches to reducing time complexity under
certain conditions in Appendix D.5.

5 THEORETICAL ANALYSIS

We discuss some of the main guarantees behind SON-GOKU. For a very brief overview: (1) Updating
groups of tasks whose gradients are mostly low-conflict (no internal edges) reduces the objective on
average and still achieves the usual 1/

√
T convergence rate; (2) Over a refresh window, scheduling

several group updates can beat one mixed update that uses all tasks at once; and (3) With a small
number of recent gradient measurements per task (via EMA) and a margin separating conflicts, the
estimated conflict graph matches the ideal one, giving a short schedule where every task is updated
at least once every ∆+ 1 steps (∆ is the maximum number of conflicts for any task). We provide
expanded assumptions, definitions, proofs, reasoning, analysis, etc. in Appendix 5.4–I.

5.1 DESCENT PRESERVATION WITHIN A LOW-CONFLICT GROUP

If the active set St at step t is τ -compatible, then the combined update is a descent direction with a
quantitative lower bound:∥∥∥∑

k∈St

gk,t

∥∥∥2 ≥ (
1− τ (|St| − 1)

) ∑
k∈St

∥gk,t∥2 (12)

Thus the step cannot flip to ascent whenever τ(|St| − 1) < 1. This is proved by expanding the
polarization identity and controlling cross terms under the τ -compatibility condition (see Appendix

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

E). Essentially, this means that SON-GOKU’s per-step updates are safe when groups are low conflict.
The aggregate direction keeps pointing downhill and the cancellation is quantitatively limited by τ
and group size.

5.2 NONCONVEX CONVERGENCE AT THE STANDARD RATE UP TO A SMALL FACTOR

Under standard smoothness and noise conditions (see Appendix I) and with steps η = c/
√
T , SON-

GOKU achieves the usual nonconvex SGD rate, with a mild (1 + τ) factor that reflects within-group
conflict:

min
t<T

E ∥∇F (θt)∥2 ≤
2(F0 − F ⋆)

c
√
T

(1 + τ) +
cLσ2

√
T

(13)

When τ = 0, the constant matches the classical bound (Bottou et al., 2018; Ghadimi & Lan, 2013);
as τ → 1, it at most doubles, matching the intuition that conflict can cancel up to half of the progress.
This demonstrates that scheduling does not degrade asymptotic progress. SON-GOKU preserves the
1/
√
T decay of the gradient norm while controlling the constant through the compatibility threshold τ .

In other words, we keep the standard rate of SGD and trade a small constant for reduced interference.

5.3 WHEN SCHEDULED GROUPS OUTPERFORM A SINGLE MIXED UPDATE

We compare two ways to use the same gradients gathered at a refresh: a scheduled sequence of
per-group steps (i.e., the scheduler used in SON-GOKU) versus a single aggregated step. Using
a telescoping L-smooth bound and evaluating both trajectories at a common linearization—i.e.,
expanding F at the refresh start θtr and applying the same first-order model with the same step
size—the scheduled bound is never worse and is strictly better when cross-group interaction terms
are sufficiently negative (so mixed updates would cancel progress).

Essentially, when different groups’ gradients pull in opposing directions (so adding them together
would cancel progress) the scheduler has an advantage. In that case, taking the updates one group
at a time is provably better. Our theory guarantees a larger drop in the objective during that refresh
than the one-shot step, even though both use the same step size and the same gradients. Under the PL
condition, the scheduled path maintains the usual contraction factor and gains a nonnegative extra
decrease term over the window.

5.4 EXACT RECOVERY OF THE POPULATION CONFLICT GRAPH AND TASK PARTITION

We show that, after observing gradients for only a modest number of steps, the scheduler can exactly
reconstruct the true conflict relations among tasks by averaging recent gradients (EMA), computing
pairwise cosines, thresholding at −τ , and coloring the resulting graph. Under a separation margin
γ around the threshold (tasks are meaningfully different), bounded noise, and bounded drift within
each refresh window, the conflict graph estimated from finite data agrees, with high probability, with
the ideal population conflict graph G⋆τ (defined from the pairwise cosines of the true mean gradients
{µi}Ki=1 at the start of the refresh window). Equivalently, when the uniform cosine estimation error
is below γ, we have Ĝτ = G⋆τ and the resulting grouping recovers the ground-truth task partition.
This explains why the scheduler’s group structure is trustworthy and ties the required number of
recent gradient measurements per task to interpretable quantities such as noise level, margin, and the
number of tasks. For example, an effective sample size of neff ≳ σ2

m2
0 γ2 log

(
K/δ

)
suffices in our

analysis.

5.5 SCHEDULING PROPERTIES WITH FEW GROUPS AND BOUNDED STALENESS

Welsh-Powell greedy coloring uses at most ∆+ 1 colors on a graph whose maximum degree is ∆
(Bonamy et al., 2018). Running the colors in a fixed cycle means each task is updated at least once
every m ≤ ∆+ 1 steps. Equivalently, no task waits more than ∆ steps between updates (bounded
staleness).

This means that the schedule length is controlled by the worst conflict degree ∆ rather than by the
total number of tasks K. This results in two important benefits: (1) a minimum update-frequency
guarantee, since every task receives an update at least once per cycle of length ≤ ∆ + 1; and (2)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

compatibility with standard bounded-delay conditions used in analyses of asynchronous SGD (e.g.,
Niu et al. 2011; Lian et al. 2015), with delay parameter at most ∆. When ∆≪ K, we achieve both
low interference (few conflicts per step) and low staleness (short update gaps).

6 EXPERIMENTAL SETUP

6.1 DATASETS

We evaluate across six benchmarks spanning vision, multimodal, and time-series. For each dataset
we specify a small set of primary tasks and add positive and negative auxiliaries to stress interference.
Architectures are standard backbones (e.g., ResNet-18 for image tasks, CNN/BiLSTM for time-series)
with task-specific heads. Full dataset and task definitions, auxiliary construction, and architecture
details (including preprocessing and head designs) appear in Appendix J and Table 3.

6.2 BASELINE AND STATE-OF-THE-ART COMPARISONS

We compare against loss-weighting (Uniform, GradNorm, AdaTask), multi-objective (MGDA, Nash-
MTL, FairGrad), projection/surgery (PCGrad, CAGrad), and fast adaptive weighting (FAMO). We
provide short method notes in Appendix K and discuss these approaches in Section 2.

6.3 SCHEDULER EXTENSION MODELS

In addition to standalone models, we also evaluate combinations of the scheduler with existing
approaches.

1. SON-GOKU + AdaTask. Combines our interference-aware task selection with AdaTask’s
dynamic loss weighting, applying adaptive weights only to scheduler-selected tasks.

2. SON-GOKU + GradNorm Warm Start. Initializes training with GradNorm for stable
gradient magnitudes, then transitions to our scheduler after 3 epochs.

3. SON-GOKU + PCGrad. Applied PCGrad’s gradient projection specifically to tasks selected
by our scheduler, providing fine-grained conflict resolution within τ -compatible groups.

6.4 ABLATION STUDY

6.4.1 STATIC ONE-SHOT COLORING

We run the greedy graph coloring once at the start of training, freeze the resulting task groups, and
never recompute the conflict graph. All other hyperparameters (τ , history length H , and update
interval R) match the full scheduler. As training progresses we expect the fixed coloring to grow stale,
mixing tasks whose interference relationships have changed. This ablation isolates the benefit of
dynamic recoloring, showing how much performance depends on adapting the schedule to evolving
gradient conflicts.

6.4.2 SINGLE-STEP CONFLICT ESTIMATION

Here, we set the history length to H = 1, so every recoloring step relies on only the most recent
mini-batch gradients to estimate interference. Without aggregation over many past steps, the conflict
graph should become highly noisy, causing unstable task groupings from one update window to the
next. This variant tests the importance of historical conflict statistics in the scheduler.

7 RESULTS AND DISCUSSION

Results for all models across every experiment are depicted in Table 1. Across ten metrics on six
datasets, our conflict-aware schedulers consistently match or exceed all baseline methods.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Performance of Evaluated Approaches Across Datasets

Model Accuracy (%) ↑ F&B HEALTH NYUv2
CIFAR-10 AV-MNIST MM-IMDb Acc. (%) ↑ MAE ↓ Acc. (%) ↑ MAE ↓ Angle Error ↓ Seg. MIOU ↑ Depth RMSE ↓

Uniform 55 63 56 45 0.57 52 0.54 21.6 0.059 0.73
GradNorm 61 65 58 47 0.57 53 0.52 21.4 0.054 0.65
MGDA 59 62 56 44 0.57 53 0.53 21.8 0.63 0.75

PCGrad 61 65 58 50 0.55 58 0.48 20.9 0.07 0.69
CAGrad 59 62 57 46 0.58 53 0.52 21.9 0.65 0.73
AdaTask 63 67 59 47 0.59 55 0.52 20.3 0.69 0.65
FAMO 64 70 61 52 0.53 60 0.49 19.9 0.074 0.63
FairGrad 62 66 59 52 0.54 60 0.47 20.7 0.072 0.67
Nash-MTL 63 66 60 52 0.54 60 0.47 20.6 0.073 0.67
Static One-Shot 61 66 58 48 0.56 54 0.51 20.5 0.071 0.65
Single-Step 40 59 20 42 0.60 47 0.55 26.4 0.042 0.81
SON-GOKU + GradNorm 62 69 59 51 0.53 59 0.49 19.6 0.073 0.64
SON-GOKU + AdaTask 67 71 63 52 0.53 59 0.48 20.1 0.68 0.67
SON-GOKU + PCGrad 65 70 60 54 0.52 62 0.45 19.7 0.076 0.62
SON-GOKU 65 69 61 51 0.53 58 0.50 19.8 0.073 0.59

7.1 OVERALL PERFORMANCE IMPROVEMENTS

Overall, the conflict-aware approaches improve over the uniform baseline by 10%-20% on CIFAR-10
and by 7% on MM-IMDb. This reinforces the idea that grouping tasks according to measured
interference is more effective than treating all tasks equally at every update. On NYUv2, we
see similar improvements across all the metrics. These results suggest that the scheduler’s graph
coloring cleanly separates high-conflict tasks, preserving the projection or LR-balancing advantages
(stemming from PCGrad’s gradient projection and AdaTask’s learning-rate adaptation, respectively)
while removing residual interference.

7.2 ABLATION STUDY ON SCHEDULER DESIGN

Our ablation study (Section 6.4) further highlights the importance of how SON-GOKU is designed.
The results show that: (1) Dynamic recoloring matters. Static One-Shot underperforms the full
scheduler on most metrics, indicating that task relations change enough during training that frozen
groups become stale. This supports the need for periodic refresh; and (2) History smoothing is very
important. Single-Step is markedly worse across datasets, consistent with our claim that per-batch
cosines are too noisy to define stable groups. This aligns with our recovery analysis, which requires
concentration of EMA gradients within a refresh window.

7.2.1 INTERPRETATION OF ABLATION STUDY RESULTS

Dynamic recoloring lets the schedule track how task interactions change over time, so partitions do
not go stale. Averaging gradients over a short history makes the conflict signal less noisy, which
results in more stable groups and reliable progress (Section 5.1 and 5.4). Together, these choices
satisfy the conditions we use in our theory. They create low-conflict groups that ensure safe per-step
descent (Section 5.1–5.2) and provide enough concentration to recover the population conflict graph
within each refresh (Section 5.4).

7.3 ADDITIONAL ANALYSIS

7.3.1 OPTIMIZER-TASK ALIGNMENT

Interestingly, we observe that AdaTask-based approaches tend to be the best on classification tasks
(CIFAR-10, AV-MNIST, MM-IMDb) while PCGrad-based approaches tend to be the best on tasks
that model regression (NYUv2).

We believe that this stems from unique differences in the features of classification and regression-
based models. For example, cross-entropy gradients near decision boundaries tend to be bursty and
high in variance (Shrivastava et al., 2016; Lin et al., 2017; Hoffer et al., 2017). By scaling each task’s
step size according to its running gradient norm, AdaTask smooths out these spikes.

On the other hand, we believe that PCGrad under the scheduler performs particularly well on
regression and dense-prediction tasks as their tasks tend to generate smooth, large-magnitude gradients

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Wall-clock time (seconds ± standard deviation) vs. number of tasks K.

Method (R if applicable) K=3 K=6 K=16 K=40
Uniform 0.2656 ± 0.1201 0.3240 ± 0.0629 0.3798 ± 0.1050 0.4054 ± 0.1190
GradNorm 5.4714 ± 0.7137 5.1201 ± 0.6112 4.9042 ± 0.5869 4.7372 ± 0.9286
AdaTask 2.1816 ± 0.0934 2.1032 ± 0.1012 2.2853 ± 0.0718 2.2278 ± 0.1370
PCGrad 3.6212 ± 0.3517 23.1266 ± 0.8773 176.7566 ± 2.8171 1127.1337 ± 34.2603
MGDA 97.1081 ± 5.4645 121.4371 ± 9.0923 132.4913 ± 3.1752 134.0878 ± 2.2621
FAMO 2.0725 ± 0.2073 1.9980 ± 0.1998 2.1710 ± 0.2171 2.1164 ± 0.2116
FairGrad 3.8020 ± 0.5703 15.2079 ± 2.2812 108.1450 ± 16.2218 675.9065 ± 101.3860
Nash-MTL 5.7030 ± 1.1406 22.8118 ± 4.5624 162.2176 ± 32.4435 1013.8598 ± 202.7720

SON-GOKU (R = 32) 1.9896 ± 0.3651 3.3202 ± 0.5745 6.0897 ± 0.9425 12.1432 ± 1.2044
SON-GOKU + AdaTask (R = 32) 3.7718 ± 0.9654 5.0511 ± 0.6531 7.5903 ± 1.1920 14.5182 ± 2.0660
SON-GOKU + GradNorm (R = 32) 7.0202 ± 1.0711 8.1661 ± 0.9355 10.7227 ± 2.2088 16.5760 ± 1.8418
SON-GOKU + PCGrad (R = 32) 1.9834 ± 0.3586 3.4971 ± 0.3840 6.1395 ± 0.9425 10.9097 ± 1.5263

whose directions change gradually. PCGrad removes only the small component of the gradient that
conflicts across tasks, preserving the main descent direction while reducing interference.

7.3.2 SYNERGY BETWEEN SCHEDULING AND BASELINES

We believe that the superior results found in the combinations of the scheduler and baseline models
can be traced to the way scheduling and optimization reinforce one another.

First, greedy graph coloring partitions tasks into τ -compatible groups, segregating tasks with highly
divergent gradients. This yields a guaranteed lower bound on descent (Proposition 6), directly
improving optimization efficiency.

Within each low-conflict group, the optimizer can do its job under more ideal conditions. PCGrad can
remove the remaining minor conflicting components, preserving the majority of the descent direction.
AdaTask can adjust each task’s learning rate without being impacted by large adversarial gradients.

This ∆+ 1 color bound ensures that every task is scheduled at least once per period. This prevents
tasks from being essentially starved of updates.

Finally, by computing interference over a window, the scheduler smooths out gradient fluctuations.
This prevents the erratic schedule changes that projection-only grouping methods have been shown to
face (Yu et al., 2020; Shi et al., 2023; Zhang et al., 2024), thereby better stabilizing convergence.

7.4 SPEED AND TRADEOFFS

The proposed scheduler has a time complexity of Θ
(
K2d/R

)
amortized per training step (Section

4.5). Table 2 shows near-linear growth over this range of K at R=32, reflecting sparsity in the
graphs and batched cosine computation. SON-GOKU’s time rises from around 2 seconds (K = 3) to
12 seconds (K = 40), remaining far below methods that perform heavy per-step conflict handling.
For example, PCGrad, FairGrad, and Nash-MTL increase steeply with K. In contrast, FAMO and
AdaTask are among the fastest and largely flat with K, as expected from their constant overhead.

These contrasts demonstrate the tradeoffs between speed and fidelity to task interference. Faster meth-
ods like FAMO minimize overhead, while methods that model conflicts can improve accuracy. These
tradeoffs have to be assessed on a case-by-case basis, based on values that factor into each approach’s
time complexity and the importance of training speed versus performance on an application.

8 CONCLUSION

We introduced SON-GOKU, an interference-aware scheduler that estimates cross-task alignment,
builds a sparse conflict graph, and greedily colors it to activate one low-conflict group per step.
Formally, we provide rigorous theoretical guarantees that justify the design and effectiveness of the
scheduler. Empirically, across six benchmarks, SON-GOKU improves over strong baselines and
recent approaches. It complements optimizers like PCGrad and AdaTask, indicating that scheduling
and gradient shaping are synergistic. By modeling task interactions with a conflict graph and schedule,
SON-GOKU offers a simple, scalable, and theory-backed mechanism for robust multitask training.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Rie Kubota Ando and Tong Zhang. A framework for learning predictive structures from multiple tasks
and unlabeled data. In Proceedings of the 24th International Conference on Machine Learning
(ICML), pp. 3–10, 2005.

John Arevalo, Thamar Solorio, Manuel Montes y Gómez, and Fabio A. González. Gated multimodal
units for information fusion, 2017. URL https://arxiv.org/abs/1702.01992.

Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Multi-task feature learning. In
Advances in Neural Information Processing Systems, volume 19, pp. 41–48, 2007.

Afiya Ayman, Ayan Mukhopadhyay, and Aron Laszka. Task grouping for automated multi-task
machine learning via task affinity prediction, 2023. URL https://arxiv.org/abs/2310.
16241.

Hao Ban and Kaiyi Ji. Fair resource allocation in multi-task learning. In Proceedings of the 41st
International Conference on Machine Learning, ICML’24. JMLR.org, 2024.

Amir Beck. First-order methods in optimization. SIAM, 2017.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, New York, NY, 2006.
ISBN 978-0387310732.

Marthe Bonamy, Tom Kelly, Peter Nelson, and Luke Postle. Bounding χ by a fraction of δ for graphs
without large cliques, 2018. URL https://arxiv.org/abs/1803.01051.

Thomas Borsani, Andrea Rosani, Giuseppe Nicosia, and Giuseppe Di Fatta. Gradient similarity
surgery in multi-task deep learning. arXiv preprint arXiv:2506.06130, 2025.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM review, 60(2):223–311, 2018.

Said Yacine Boulahia, Abdenour Amamra, Mohamed Ridha Madi, and Said Daikh. Early, inter-
mediate and late fusion strategies for robust deep learning-based multimodal action recognition.
Machine Vision and Applications, 32(6):121, 2021.

Rich Caruana. Multitask learning. Machine Learning, 28(1):41–75, July 1997. doi: 10.1023/A:
1007379606734. URL https://doi.org/10.1023/A:1007379606734.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In International Conference
on Machine Learning, pp. 794–803, 2018. URL https://arxiv.org/abs/1711.02257.

Zhiyong Cui, Ruimin Ke, and Yinhai Wang. Deep bidirectional and unidirectional LSTM recurrent
neural network for network-wide traffic speed prediction. CoRR, abs/1801.02143, 2018. URL
http://arxiv.org/abs/1801.02143.

Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of johnson and lindenstrauss.
In Randomization and Approximation Techniques in Computer Science, RANDOM 2003, pp.
53–62. Springer, 2003. doi: 10.1007/978-3-540-45198-3_4.

Victor H De la Pena, Tze Leung Lai, and Qi-Man Shao. Self-normalized processes: Limit theory and
Statistical Applications. Springer, 2009.

Reinhard Diestel. Graph Theory. Springer, 5th edition, 2017. ISBN 978-3-662-53622-3.

Paul Erdős and Alfréd Rényi. On the evolution of random graphs. Publications of the Mathematical
Institute of the Hungarian Academy of Sciences, 5:17–61, 1960.

Theodoros Evgeniou, Cinzia A. Micchelli, and Massimiliano Pontil. Learning multiple tasks with
kernels. Journal of Machine Learning Research, 6:615–637, 2005.

Caoyun Fan, Wenqing Chen, Jidong Tian, Yitian Li, Hao He, and Yaohui Jin. Maxgnr: A dynamic
weight strategy via maximizing gradient-to-noise ratio for multi-task learning. arXiv preprint
arXiv:2302.09352, 2023.

10

https://arxiv.org/abs/1702.01992
https://arxiv.org/abs/2310.16241
https://arxiv.org/abs/2310.16241
https://arxiv.org/abs/1803.01051
https://doi.org/10.1023/A:1007379606734
https://arxiv.org/abs/1711.02257
http://arxiv.org/abs/1801.02143

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Christopher Fifty, Ehsan Amid, Zhe Zhao, Tianhe Yu, Rohan Anil, and Chelsea Finn. Efficiently
identifying task groupings for multi-task learning, 2021. URL https://arxiv.org/abs/
2109.04617.

Jorge Fliege and Benar F. Svaiter. Steepest descent methods for multicriteria optimization. Mathe-
matical Methods of Operations Research, 51(3):479–494, 2000. doi: 10.1007/s001860000043.

Saeed Ghadimi and Guanghui Lan. Stochastic first- and zeroth-order methods for nonconvex
stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013. doi: 10.1137/
120880811.

Mina Ghashami, Edo Liberty, Jeff M. Phillips, and David P. Woodruff. Frequent directions: Simple
and deterministic matrix sketching. SIAM Journal on Computing, 45(5):1762–1792, 2016. doi:
10.1137/15M1009718.

Valerio Guarrasi, Fatih Aksu, Camillo Maria Caruso, Francesco Di Feola, Aurora Rofena, Filippo
Ruffini, and Paolo Soda. A systematic review of intermediate fusion in multimodal deep learning
for biomedical applications. Image and Vision Computing, pp. 105509, 2025.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corrup-
tions and perturbations. Proceedings of the International Conference on Learning Representations,
2019.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: Closing the generaliza-
tion gap in large batch training of neural networks. In Advances in Neural Information Processing
Systems, volume 30, pp. 1731–1741, 2017.

Wooseong Jeong and Kuk-Jin Yoon. Selective task group updates for multi-task optimization, 2025.

Bo Kågström, Per Ling, and Charles Van Loan. Gemm-based level 3 blas: high-performance model
implementations and performance evaluation benchmark. ACM Transactions on Mathematical
Software (TOMS), 24(3):268–302, 1998.

Zhuoliang Kang, Kristen Grauman, and Fei Sha. Learning with whom to share in multi-task feature
learning. In Proceedings of the 28th International Conference on Machine Learning (ICML), pp.
521–528, 2011.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-łojasiewicz condition. In Joint European conference on
machine learning and knowledge discovery in databases, pp. 795–811. Springer, 2016.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 7482–7491, 2018. doi: 10.1109/CVPR.2018.00781.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Vitaly Kurin, Alessandro De Palma, Ilya Kostrikov, Shimon Whiteson, and M. Pawan Kumar. In
defense of the unitary scalarization for deep multi-task learning. In Advances in Neural Information
Processing Systems, volume 35, 2022. URL https://arxiv.org/abs/2201.04122.

Harold J Kushner and G George Yin. Stochastic approximation and recursive algorithms and
applications. Springer, 2003.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

R Gary Leonard and George Doddington. Tidigits speech corpus. Texas Instruments, Inc, 1993.

Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel stochastic gradient for
nonconvex optimization. Advances in neural information processing systems, 28, 2015.

11

https://arxiv.org/abs/2109.04617
https://arxiv.org/abs/2109.04617
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/2201.04122

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Paul Pu Liang, Yiwei Lyu, Xiang Fan, Zetian Wu, Yun Cheng, Jason Wu, Leslie Chen, Peter Wu,
Michelle A Lee, Yuke Zhu, et al. Multibench: Multiscale benchmarks for multimodal representation
learning. Advances in neural information processing systems, 2021(DB1):1, 2021.

Sicong Liang and Yu Zhang. A simple general approach to balance task difficulty in multi-task
learning, 2020. URL https://arxiv.org/abs/2002.04792.

Edo Liberty. Simple and deterministic matrix sketching. In Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD), pp. 581–588, 2013.
doi: 10.1145/2487575.2487623.

Baijiong Lin, Feiyang Ye, and Yu Zhang. A closer look at loss weighting in multi-task learning, 2022.
URL https://openreview.net/forum?id=OdnNBNIdFul.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
detection. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp.
2999–3007, 2017.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent
for multi-task learning. In Advances in Neural Information Processing Systems, volume 34, pp.
12345–12355, 2021.

Bo Liu, Yihao Feng, Peter Stone, and Qiang Liu. Famo: Fast adaptive multitask optimiza-
tion. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Ad-
vances in Neural Information Processing Systems, volume 36, pp. 57226–57243. Curran Asso-
ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/file/b2fe1ee8d936ac08dd26f2ff58986c8f-Paper-Conference.pdf.

Shikun Liu, Edward Johns, and Andrew J. Davison. End-to-end multi-task learning with attention.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
1871–1880, 2019.

Y. Liu. Theoretical analysis on how learning rate warmup accelerates gradient descent. arXiv preprint
arXiv:2509.07972, 2025. URL https://arxiv.org/abs/2509.07972.

Ben Lockwood. Pareto efficiency. In The new Palgrave dictionary of economics, pp. 1–5. Springer,
2008.

László Lovász. Graph minor theory. Bulletin of the American Mathematical Society, 43(1):75–86,
2006.

Aakarsh Malhotra, Mayank Vatsa, and Richa Singh. Dropped scheduled task: Mitigating negative
transfer in multi-task learning using dynamic task dropping. Transactions on Machine Learning
Research, 2022.

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. The natural language
decathlon: Multitask learning as question answering. CoRR, abs/1806.08730, 2018. URL https:
//arxiv.org/abs/1806.08730.

Florence Merlevède, Magda Peligrad, and Emmanuel Rio. Bernstein inequality and moderate
deviations under strong mixing conditions. High Dimensional Probability VI, pp. 273–292, 2011.

Kaisa Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston, MA,
1999. ISBN 978-0792382781.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representa-
tions in vector space, 2013. URL https://arxiv.org/abs/1301.3781.

Salman Mohammadi, Anders Kirk Uhrenholt, and Bjørn Sand Jensen. Odd-one-out representation
learning. arXiv preprint arXiv:2012.07966, 2020. Shows that distinguishing an “odd” element
among “even” ones in auxiliary pretext tasks yields stronger embeddings.

MSCI Inc. and S&P Dow Jones Indices. Global Industry Classification Standard (GICS). MSCI Inc.,
New York, NY, august 2024 edition, 2024. First published January 7, 2020; updated August 2024.

12

https://arxiv.org/abs/2002.04792
https://openreview.net/forum?id=OdnNBNIdFul
https://proceedings.neurips.cc/paper_files/paper/2023/file/b2fe1ee8d936ac08dd26f2ff58986c8f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/b2fe1ee8d936ac08dd26f2ff58986c8f-Paper-Conference.pdf
https://arxiv.org/abs/2509.07972
https://arxiv.org/abs/1806.08730
https://arxiv.org/abs/1806.08730
https://arxiv.org/abs/1301.3781

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

David Mueller, Mark Dredze, and Nicholas Andrews. The importance of temperature in multi-task
optimization. In OPT 2022: Optimization for Machine Learning (NeurIPS 2022 Workshop), 2022.
URL https://openreview.net/forum?id=H9UOWMR_Ut.

Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron, Kenji Kawaguchi, Gal Chechik, and
Ethan Fetaya. Multi-task learning as a bargaining game. arXiv preprint arXiv:2202.01017, 2022.

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic
approximation approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574–
1609, 2009. doi: 10.1137/070704277.

Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Springer, 2004.
ISBN 978-1-4419-8853-9.

Feng Niu, Benjamin Recht, Christopher Ré, and Stephen J. Wright. Hogwild!: A lock-free approach
to parallelizing stochastic gradient descent. In Advances in Neural Information Processing Systems,
volume 24, pp. 693–701, 2011.

Vilfredo Pareto. Manual of political economy: a critical and variorum edition. OUP Oxford, 2014.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pp. 400–407, 1951.

Sebastian Ruder. An overview of multi-task learning in deep neural networks. arXiv preprint
arXiv:1706.05098, 2017. URL https://arxiv.org/abs/1706.05098.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. In Advances in
Neural Information Processing Systems, volume 31, pp. 525–536, 2018.

Ammar Sherif, Abubakar Abid, Mustafa Elattar, and Mohamed ElHelw. Stg-mtl: scalable task
grouping for multi-task learning using data maps. Machine Learning: Science and Technology,
5(2):025068, June 2024. ISSN 2632-2153. doi: 10.1088/2632-2153/ad4e04. URL http:
//dx.doi.org/10.1088/2632-2153/ad4e04.

Guangyuan Shi, Qimai Li, Wenlong Zhang, Jiaxin Chen, and Xiao-Ming Wu. Recon: Reducing
conflicting gradients from the root for multi-task learning. In ICLR 2023 Workshop on Multi-Task
Learning, 2023.

Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. Training region-based object detectors
with online hard example mining. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 761–769, 2016.

Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and support
inference from rgb-d images. In European Conference on Computer Vision (ECCV), pp. 746–760.
Springer, 2012.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Trevor Standley, Amir R. Zamir, Dawn Chen, Leonidas Guibas, Jitendra Malik, and Silvio Savarese.
Which tasks should be learned together in multi-task learning? In Proceedings of the 37th
International Conference on Machine Learning (ICML), pp. 9120–9132, 2020.

J Michael Steele. The Cauchy-Schwarz master class: an introduction to the art of mathematical
inequalities. Cambridge University Press, 2004.

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie, Yizhong Wang, Hannaneh Hajishirzi, Noah A.
Smith, and Yejin Choi. Dataset cartography: Mapping and diagnosing datasets with training
dynamics. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9275–
9293, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
emnlp-main.746. URL https://aclanthology.org/2020.emnlp-main.746/.

13

https://openreview.net/forum?id=H9UOWMR_Ut
https://arxiv.org/abs/1706.05098
http://dx.doi.org/10.1088/2632-2153/ad4e04
http://dx.doi.org/10.1088/2632-2153/ad4e04
https://aclanthology.org/2020.emnlp-main.746/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Andrea Tacchetti, Stephen Voinea, and Georgios Evangelopoulos. Trading robust representations for
sample complexity through self-supervised visual experience. In Advances in Neural Information
Processing Systems, volume 31, pp. 1686–1696, 2018. Section 4.2 demonstrates a “Transfer
learning: even/odd MNIST” auxiliary task that boosts few-shot performance.

Lovre Torbarina, Tin Ferkovic, Lukasz Roguski, Velimir Mihelcic, Bruno Sarlija, and Zeljko Kraljevic.
Challenges and opportunities of using transformer-based multi-task learning in nlp through ml
lifecycle: A survey, 2023. URL https://arxiv.org/abs/2308.08234.

Simon Vandenhende, Stamatios Georgoulis, Wouter Van Gansbeke, Marc Proesmans, Dengxin Dai,
and Luc Van Gool. Multi-task learning for dense prediction tasks: A survey. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44(7):3614–3633, 2022. doi: 10.1109/TPAMI.2021.
3054719.

Valentin Vielzeuf, Alexis Lechervy, Stéphane Pateux, and Frédéric Jurie. Centralnet: a multilayer
approach for multimodal fusion. CoRR, abs/1808.07275, 2018. URL http://arxiv.org/
abs/1808.07275.

Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cam-
bridge university press, 2019.

Chenguang Wang, Xuanhao Pan, and Tianshu Yu. Towards principled task grouping for multi-task
learning. arXiv preprint arXiv:2402.15328, 2024.

D. J. A. Welsh and M. B. Powell. An upper bound for the chromatic number of a graph and its
application to timetabling problems. The Computer Journal, 10(1):85–86, 01 1967. ISSN 0010-
4620. doi: 10.1093/comjnl/10.1.85. URL https://doi.org/10.1093/comjnl/10.1.
85.

Douglas B. West. Introduction to Graph Theory. Prentice Hall, 2nd edition, 2000. ISBN 978-
0130144003.

Enneng Yang, Junwei Pan, Ximei Wang, Haibin Yu, Li Shen, Xihua Chen, Lei Xiao, Jie Jiang, and
Guibing Guo. Adatask: A task-aware adaptive learning rate approach to multi-task learning. In
Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI), 2023. URL
https://arxiv.org/abs/2211.15055.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. In Advances in Neural Information Processing Systems,
volume 33, pp. 18524–18536, 2020.

Wenxin Yu, Xueling Shen, Jiajie Hu, and Dong Yin. Revisiting the loss weight adjustment in object
detection. arXiv preprint arXiv:2103.09488, 2021.

Amir R. Zamir, Alexander Sax, Teresa Yeo, Oguzhan Kar, Nikhil Cheerla, Rohan Suri, Zhangjie
Cao, Jitendra Malik, and Leonidas Guibas. Robust learning through cross-task consistency. CoRR,
abs/2006.04096, 2020. URL https://arxiv.org/abs/2006.04096.

Yu Zhang and Qiang Yang. An overview of multi-task learning. National Science Review, 5(1):
30–43, 2018.

Zhi Zhang, Jiayi Shen, Congfeng Cao, Gaole Dai, Shiji Zhou, Qizhe Zhang, Shanghang Zhang,
and Ekaterina Shutova. Proactive gradient conflict mitigation in multi-task learning: A sparse
training perspective. arXiv preprint arXiv:2411.18615, 2024. URL https://arxiv.org/
abs/2411.18615.

Han Zhao, Yifan Guo, Aleksandar Risteski, et al. Robust multi-task learning with excess risks. In
Proceedings of the 41st International Conference on Machine Learning, volume 235 of Proceedings
of Machine Learning Research, 2024.

Mo Zhou, Rong Ge, and Chi Jin. A local convergence theory for mildly over-parameterized two-layer
neural network. In Conference on Learning Theory, pp. 4577–4632. PMLR, 2021.

14

https://arxiv.org/abs/2308.08234
http://arxiv.org/abs/1808.07275
http://arxiv.org/abs/1808.07275
https://doi.org/10.1093/comjnl/10.1.85
https://doi.org/10.1093/comjnl/10.1.85
https://arxiv.org/abs/2211.15055
https://arxiv.org/abs/2006.04096
https://arxiv.org/abs/2411.18615
https://arxiv.org/abs/2411.18615

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A FULL ALGORITHM BLOCK FOR PROPOSED APPROACH

Algorithm 1 SON-GOKU Scheduler

Require: Initial shared params θ0, heads {ϕk}Kk=1, EMA buffers g̃(0)k =0, total steps T , learning-rate
schedule {ηt}, refresh length R, warm-up Twarm, target threshold τ∗, minimum coverage fmin,
EMA parameter β

1: Gradients follow the weighted-loss convention (Sec. 4).
2: r ← 0, tr ← 0 ▷ current refresh round and start index
3: τ ← 1; m0 ← 1; C(0)

1 ← {1, . . . ,K} ▷ warm-start schedule
4: for t = 0, . . . , T − 1 do
5: Warm-up/Anneal: τ ← ANNEAL(t) ▷ approach in Sec. 4.4
6: Scheduling: St ← C

(r)
(t mod mr)+1

7: Forward/Backward:
8: for all k ∈ St do
9: compute per-task gradients g(t)k and h

(t)
k (defs: Sec. 4.1)

10: end for
11: Parameter update (shared): θt+1 ← θt − ηt

∑
k∈St

g
(t)
k

12: Parameter update (task-specific):
13: for all k ∈ St do
14: ϕk,t+1 ← ϕk,t − ηth

(t)
k

15: end for
16: EMA:
17: for all k ∈ St do
18: update g̃

(t+1)
k (Eq. 8)

19: end for
20: if (t+ 1) mod R = 0 then ▷ refresh
21: EMA refresh: update all g̃i using small mini-batches (Sec. 4.1)
22: Interference matrix: compute ρ

(t+1)
ij via Eq. 9

23: Conflict graph: build G
(r+1)
τ via Eq. 10

24: Greedy coloring: Welsh–Powell→ {C(r+1)
1 , . . . , C

(r+1)
mr+1 }

25: Minimum coverage: enforce fi≥fmin using compatible-slot duplication (Sec. 4.4.1)
26: r ← r + 1; tr ← t+ 1
27: end if
28: end for

Algorithm block 1 provides an overview of the SON-GOKU scheduler. At a high level, the procedure
consists of four stages: (1) estimating pairwise interference, (2) building and coloring the conflict
graph, (3) generating a periodic schedule, and (4) updating that schedule as training evolves.

B EXACT RECOVERY OF POPULATION CONFLICT GRAPH & TASK PARTITION

B.1 SETTING, DEFINITIONS, AND POPULATION OBJECTS

Let K ≥ 2 be the number of tasks and d ≥ 1 the parameter dimension. At designated refresh
iterations, the scheduler:

(i) computes a per-task exponential moving average (EMA) of stochastic gradients over a probe
window of R iterations,

(ii) forms a cosine-similarity matrix from the K EMA vectors,

(iii) builds a conflict graph by thresholding negative cosines at a fixed level −τ with τ ∈ (0, 1),

(iv) computes a proper coloring of the conflict graph, and

(v) schedules one color class per iteration until the next refresh

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Definition B.1. At the beginning of a refresh window (i.e., at a fixed iterate θ), let

µi ∈ Rd (i = 1, . . . ,K) (14)

denote the population task gradients (or the window-stationary means). Define the population cosine
matrix C⋆ ∈ [−1, 1]K×K by

C⋆
ij =

⟨µi, µj⟩
∥µi∥ ∥µj∥

, i ̸= j, C⋆
ii = 1. (15)

Definition B.2. Fix τ ∈ (0, 1). The population conflict graph G⋆ = (V,E⋆) on vertex set V =
{1, . . . ,K} has an edge {i, j} iff C⋆

ij < −τ . The true grouping P⋆ is one of:

(A) Component Model: the vertex partition given by the connected components of G⋆.

(B) Multipartite model: a partition V =
⊔m

r=1 Pr (with m ≥!) such that G⋆ is the complete
m-partite graph induced by {Pr}mr=1 (no edges within any Pr, all cross-part edges present)

When we later speak of group recovery, we mean equality of the empirical partition (defined from
data) with P⋆, up to label permutation in case (B).

B.2 ASSUMPTIONS

We adopt the following assumptions, which are standard in analyses of stochastic-gradient methods
and verifiable in practice (see, e.g., Robbins & Monro 1951; Kushner & Yin 2003; Nemirovski et al.
2009; Bottou et al. 2018; Wainwright 2019; for concentration of geometrically weighted and mixing
sequences, see Merlevède et al. 2011; De la Pena et al. 2009).

Assumption 1 (Separation margin around the threshold). There exists γ ∈ (0, 1− τ) such that for
all i ̸= j:

{
C⋆

ij ≤ −(τ + γ), if i and j lie in different groups of P⋆,

C⋆
ij ≥ −(τ − γ), if i and j lie in the same group of P⋆.

(16)

Assumption 2 (Probe noise model and EMA). In the refresh window of length R, the per-iteration
stochastic task gradients admit the decomposition

gi,t = µi + ξi,t, t = 1, . . . , R, (17)

where {ξi,t}Rt=1 are mean-zero, sub-Gaussian with parameter σ2, and satisfy a ϕ-mixing or
martingale-difference condition ensuring concentration with geometric weights. The EMA for
task i is

g̃i =

R∑
t=1

wt gi,t, wt =
(1− β)βR−t

1− βR
, β ∈ [0, 1). (18)

Define the effective sample size neff by

n−1
eff :=

R∑
t=1

w2
t =

(1− β)2(1− β2R)

(1− βR)2(1− β2)
. (19)

In particular, as R→∞ (with fixed β ∈ [0, 1)), we have neff → 1+β
1−β .

Assumption 3 (Slow drift within a refresh). Over the refresh window, the changes in µi are small
enough to be absorbed in the concentration bounds below (equivalently, one can regard µi as constant
within the window by working at the start-of-window iterate and moving any drift into the noise
process).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Assumption 4 (Minimum norm and task inclusion). There exists m0 > 0 such that ∥µi∥ ≥ m0 for
all tasks included in the graph. In our implementation, we make it so that tasks with ∥g̃i∥ < ν (for a
small ν ≪ m0) are temporarily excluded from graph construction until stabilized.

Assumption 5 (Threshold selection). The threshold τ is fixed across refreshes or selected using data
independent of the probe window used to form {g̃i} (e.g., via a separate pilot set). The analysis below
treats τ as deterministic with respect to the probe sample.

B.3 DETERMINISTIC GROUP RECOVERY FROM THE CONFLICT GRAPH

We begin with basic graph-theoretic facts that we will use once we have established that the empirical
conflict graph coincides with its population counterpart.
Proposition 1 (Chromatic number of a complete multipartite graph). If G⋆ is complete m-partite
with parts {Pr}mr=1, then χ(G⋆) = m.

Proof. Picking one vertex from each part yields a clique of size m, hence χ(G⋆) ≥ m. Coloring
each part with a distinct color is proper, hence χ(G⋆) ≤ m. Therefore χ(G⋆) = m.

Theorem 1 (Identifiability via optimal coloring under model (B)). Assume model (B), i.e., G⋆ is
complete m-partite with parts {Pr}mr=1. Let c : V → {1, . . . ,m} be a proper coloring of G⋆ that
uses exactly χ(G⋆) colors. Then each color class equals some part Pr (up to relabeling).

Proof. In a complete multipartite graph, any two vertices from different parts are adjacent. Thus, no
color class can contain vertices from two different parts, so each color class is contained in some Pr.
By Proposition 1, χ(G⋆) = m, so any optimal coloring uses exactly m colors. Since there are m
nonempty parts, none can be split across two colors. Hence, the color classes coincide with {Pr}mr=1
up to permutation.

Proposition 2 (Identifiability via components under model (A)). Under model (A), the grouping P⋆

equals the connected components of G⋆. Consequently, any procedure that returns the connected
components of the empirical graph recovers P⋆ whenever the empirical graph equals G⋆.

B.4 UNIFORM CONTROL OF EMPIRICAL COSINES FROM EMA GRADIENTS

We now quantify the deviation of the empirical cosine matrix Ĉ formed from {g̃i} relative to C⋆.
Lemma 1 (EMA vector concentration in directions of interest). Assume Assumption 2 and Assumption
3. There exists a constant c > 0 depending only on the mixing parameters such that for any fixed unit
vector u ∈ Sd−1 and any ε > 0.

Pr
(∣∣⟨g̃i − µi, u⟩

∣∣ > ε
)
≤ 2 exp

(
− c neff ε2/σ2

)
. (20)

In particular, for any finite set of unit vectors {uj}Mj=1, a union bound yields

Pr
(

max
1≤j≤M

∣∣⟨g̃i − µi, uj⟩
∣∣ > ε

)
≤ 2M exp

(
− c neff ε2/σ2

)
. (21)

Proof. The scalar process {⟨ξi,t, u⟩}Rt=1 is sub-Gaussian with variance proxy σ2 and satisfies the same
mixing condition. Exponential-weighted averages of such sequences obey Hoeffding-Azuma/Berstein-
type tail bounds with variance proxy σ2

∑
t w

2
t = σ2/neff . The stated inequality follows.

Lemma 2 (Cosine stability under perturbations). Assume Assumption 4 and let ϵ > 0. If for a pair
(i, j) we have

∣∣⟨g̃i−µi,
µj

∥µj∥ ⟩
∣∣ ≤ ϵ,

∣∣⟨g̃j−µj ,
µi

∥µi∥ ⟩
∣∣ ≤ ϵ,

∣∣⟨g̃i−µi,
µi

∥µi∥ ⟩
∣∣ ≤ ϵ,

∣∣⟨g̃j−µj ,
µj

∥µj∥ ⟩
∣∣ ≤ ϵ,

(22)

then

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

∣∣Ĉij − C⋆
ij

∣∣ ≤ 6 ϵ

m0
+

4 ϵ2

m2
0

. (23)

Proof. Write g̃i = µi + δi, g̃j = µj + δj . Decompose the numerator and denominator in the cosine:

⟨g̃i, g̃j⟩ − ⟨µi, µj⟩ = ⟨δi, µj⟩+ ⟨µi, δj⟩+ ⟨δi, δj⟩, (24)

and

∥g̃i∥ = ∥µi∥
√

1 + 2⟨δi, µi⟩/∥µi∥2 + ∥δi∥2/∥µi∥2 (25)

Using Assumption 4,

|⟨δi, µj/∥µj∥⟩| ≤ ϵ (26)

and

|⟨δi, µi/∥µi∥⟩| ≤ ϵ (27)

imply

|⟨δi, µj⟩| ≤ ϵ∥µj∥ (28)

and

|⟨δi, µi⟩| ≤ ϵ∥µi∥ (29)

A second-order expansion of the cosine in (δi, δj) with the above controls yields the bound. The
constants 6 and 4 arise from collecting the linear and quadratic contributions in ϵ/m0.

Combining Lemma 1 and Lemma 2 with a union bound over all unordered pairs (i, j) shows that the
empirical cosines are uniformly close to their population counterparts.

Proposition 3 (Uniform cosine accuracy with high probability). Assume Assumption 2, Assumption
3, and Assumption 4. For any ϵ > 0 there exist absolute constants c, C > 0 such that if

neff ≥ C
σ2

m2
0 ϵ

2
(30)

then, with probability 1− δ,

max
i<j

∣∣Ĉij − C⋆
ij

∣∣ ≤ ϵ (31)

Proof. For each unordered pair (i, j), apply Lemma 1 with the four unit vectors µj/∥µj∥, µi/∥µi∥,
and use Lemma 2 to convert these directional deviations into a cosine deviation bound. A union
bound over the O(K2) pairs yields the claimed logarithmic factor. The constants absorb the quadratic
term in ϵ by requiring ϵ ≤ m0.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.5 EXACT EDGE RECOVERY AND GROUP RECOVERY

We first show that a uniform cosine error smaller than the margin γ implies exact equality of empirical
and population conflict graphs.

Theorem 2 (Exact conflict-graph recovery under the margin). Assume Assumptions 1–5. If

max
i<j

∣∣Ĉij − C⋆
ij

∣∣ ≤ ϵ with ϵ < γ, (32)

then the empirical conflict graph equals the population graph:

Ĝ = G⋆. (33)

Equivalently, for every i ̸= j,

C⋆
ij ≤ −(τ + γ) ⇒ Ĉij < −τ and C⋆

ij ≥ −(τ − γ) ⇒ Ĉij > −τ. (34)

Proof. For any pair (i, j), if C⋆
ij ≤ −(τ + γ), then Ĉij ≤ −(τ + γ) + ϵ < −τ , hence {i, j} ∈ Ê. If

C⋆
ij ≥ −(τ − γ), then Ĉij ≥ −(τ − γ)− ϵ > −τ , hence {i, j} /∈ Ê.

Combining Proposition 3 and Theorem 2 yields a high-probability statement.

Corollary 1 (High-probability exact recovery of G⋆). Under Assumptions 1–5, there exists a universal
constant C > 0 such that if

neff ≥ C
σ2

m2
0 γ

2
log
(K2

δ

)
, (35)

then Pr(Ĝ = G⋆) ≥ 1− δ.

Theorem 3 (Group recovery under the component model). Under model (A) and the conditions of
Corollary 1, with probability at least 1− δ, the connected components of Ĝ equal P⋆.

Proof. Immediate from Ĝ = G⋆ and the definition of P⋆.

Theorem 4 (Group recovery under the multipartite model). Under model (B) and the conditions of
Corollary 1, with probability at least 1− δ, χ(Ĝ) = m and any optimal coloring of Ĝ yields color
classes equal to {Pr}mr=1 up to label permutation.

Proof. If Ĝ = G⋆, then Ĝ is complete m-partite. Proposition 1 gives χ(Ĝ) = m. Theorem 1 implies
identifiability up to permutation by any optimal coloring.

B.6 QUANTITATIVE PROBE-BUDGET REQUIREMENT

Combining the bounds above yields the following sample-complexity statement.

Corollary 2. Under assumptions 1–5, there exist absolute constants c, C > 0 such that the following
holds. If the EMA parameters (R, β) are chosen to ensure

neff ≥ C
σ2

m2
0 γ

2

(
equivalently,

R∑
t=1

w2
t ≤ c

m2
0 γ

2

σ2

1

log(K/δ)

)
(36)

then Pr(Ĝ = G⋆) ≥ 1 − δ, and consequently Theorems 3–4 apply. In particular, for fixed β and
large R, neff → 1+β

1−β (i.e., it saturates). Thus, to meet the required budget as K grows, one increases
neff by choosing β closer to 1 (e.g., 1 − β ≍ 1/ log(K2/δ)), or by switching to a unnormalized
averaging approach.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B.7 SUMMARY OF THE RECOVERY ARGUMENT

We summarize the logical flow leading to consistency of the scheduler.

(i) Assumptions: Assumptions 1–5 define the conditions in which in which across-group
population cosines lie below −(τ + γ), within-group cosines lie above −(τ − γ), EMA
gradients concentrate with effective sample size neff , and all included tasks have non-
negligible gradient norm.

(ii) Uniform cosine accuracy: Lemmas 1–2 together with Proposition 3 yield a high-probability
uniform cosine approximation:

max
i<j

∣∣Ĉij − C⋆
ij

∣∣ ≤ ϵ, (37)

with probability at least 1− δ, where ϵ decreases as neff increases.

(iii) Exact recovery of edges: If the approximation tolerance satisfies ϵ < γ, Theorem 2 converts
the uniform bound into exact edge recovery of the conflict graph:

Ĝ = G⋆. (38)

(iv) Recovery of the grouping: Given Ĝ = G⋆, Theorem 3 implies group recovery under the
component model (groups are the connected components). Under the multipartite model,
Proposition 1 and Theorem 1 yield χ(Ĝ) = m and Theorem 4 shows that any optimal
coloring returns the true parts (up to label permutation).

Quantitative consequence. Assume Assumptions 1–5 and fix δ ∈ (0, 1). Let m0 = mini ∥µi∥
and let σ2 be the variance proxy from Assumption 2. If the EMA probe budget satisfies

neff ≥ C
σ2

m2
0 γ

2
log
(K2

δ

)
(39)

for a universal constant C > 0, then with probability at least 1− δ the empirical conflict graph equals
the population graph: Ĝ = G⋆. Consequently:

(i) under the component model (A), the connected components of Ĝ coincide with P⋆.

(ii) under the multipartite model (B), χ(Ĝ) = m and any optimal coloring of Ĝ recovers P⋆ up
to permutation of labels.

C DESCENT BOUNDS FOR SCHEDULED VERSUS AGGREGATED UPDATES

We compare two update procedures over a single refresh: a scheduled sequence of per-group steps
(i.e., the approach we propose in our paper) and a single aggregated step that combines all groups at
once. Both use the same step size η and the same gradient information measured at the start of the
refresh, and our analysis operates at the level of L-smooth (descent) upper bounds. We identify when
the scheduled bound is strictly tighter and summarize implications under PL / strong convexity.

Throughout, F : Rd → R is differentiable and L-smooth, i.e.

F (y) ≤ F (x) + ⟨∇F (x), y − x⟩+ L
2 |y − x|2, ∀x, y. (40)

We write ∇F (x) =
∑m

r=1 Gr(x), where each Gr(x) is the group gradient for color r (any fixed
linear aggregator of task gradients assigned to color r for the current refresh). We use a refresh step
size η ∈ (0, 1/L].

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C.1 SINGLE REFRESH BASELINES AND NOTATION

C.1.1 SINGLE AGGREGATED STEP

Definition C.1 (Aggregated step). Starting from the same point x, with step size η ∈ (0, 1/L] and
group gradients G0

r := Gr(x) (with ∇F (x) =
∑m

r=1 G
0
r), define

xagg := x− η

m∑
r=1

G0
r. (41)

One-shot L-smoothness bound. Applying L-smoothness with y = xagg yields

F (xagg) ≤ F (x) − η
〈
∇F (x),

m∑
r=1

G0
r

〉
+ Lη2

2

∥∥∥ m∑
r=1

G0
r

∥∥∥2. (42)

C.1.2 SCHEDULED GROUP SEQUENCE OVER ONE REFRESH

Definition C.2 (Scheduled refresh). Starting from the same point x, define

x0 := x, xr := xr−1 − η Gr(xr−1) (r = 1, . . . ,m), xsch := xm. (43)

Order and notation. The within refresh order (1, . . . ,m) may be fixed or randomly permuted each
refresh. We write H(·) for the Hessian of F and take η ∈ (0, 1/L].

Our goal is to compare upper bounds derived from L-smoothness for F (xsch) and F (xagg).

C.2 TELESCOPING BOUND FOR SCHEDULED UPDATES

Lemma 3 (Smoothness Expansion for Two Scheduled Groups). Let m = 2 and G0
r := Gr(x). For

any η ∈ (0, 1/L],

F (xsch) ≤ F (x) − η ⟨∇F (x), G0
1⟩ + Lη2

2 ∥G
0
1∥2

− η ⟨∇F (x), G2(x1)⟩ + Lη2

2 ∥G2(x1)∥2 + η2
∫ 1

0

〈
H(x−tηG0

1)G
0
1, G2(x1)

〉
dt.

(44)

Proof sketch. Apply the L-smoothness inequality at the first step to bound F (x1). For the second
step, use L-smoothness at x1 and expand

∇F (x1) = ∇F (x)−
∫ 1

0

H(x−tηG0
1) ηG

0
1 dt (45)

by the fundamental theorem of calculus along the segment x→ x1.

C.2.1 START-OF-REFRESH REDUCTION UNDER PER-GROUP LIPSCHITZNESS

We adopt the following assumption whenever we compare bounds solely in terms of start-of-refresh
measurements. It will be used throughout Sections C.3–C.6

Assumption 6 (Per-group lipschitzness). Each group map Gr(·) is Lr-lipschitz:

∥Gr(u)−Gr(v)∥ ≤ Lr ∥u− v∥ for all u, v. (46)

Under this assumption, for m = 2 we have G2(x1) = G0
2 + δ2 with ∥δ2∥ ≤ L2η∥G0

1∥, hence

∥G2(x1)∥ ≤ ∥G0
2∥+ L2η∥G0

1∥ (47)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

For general m

∥Gr(xr−1)∥ ≤ ∥G0
r∥+ Lr η

∑
p<r

∥G0
p∥ (r = 2, . . . ,m) (48)

When these substitutions are made in scheduled bounds, the induced drift contributions are collected
into a nonnegative penalty Rm(x; η)

C.3 UPPER BOUNDS FOR SCHEDULED AND AGGREGATED UPDATES (GENERAL m)

Applying L-smoothness m times yields the scheduled upper bound

UBsch(x; η) := F (x) − η

m∑
r=1

〈
∇F (x), Gr(xr−1)

〉
+

Lη2

2

m∑
r=1

∥Gr(xr−1)∥2

+ η2
∑

1≤p<q≤m

∫ 1

0

〈
H
(
x− tηGp(xp−1)

)
Gp(xp−1), Gq(xq−1)

〉
dt.

(49)

The aggregated upper bound is the one-shot bound from Equation 42, restated as

UBagg(x; η) := F (x) − η
〈
∇F (x),

m∑
r=1

G0
r

〉
+

Lη2

2

∥∥∥ m∑
r=1

G0
r

∥∥∥2 (50)

The integrals in Equation 49 are over ordered pairs p < q along the specific sequence x0 → x1 →
· · · → xm; the bound therefore depends on the within-refresh order. Randomizing the order yields an
expected version.

In Sections C.4–C.6 we express the scheduled bound in terms of {G0
r} under the per-group lipschitz-

ness assumption. The associated drift terms are aggregated into Rm(x; η).

C.4 SCHEDULED AND AGGREGATED GAP AT A COMMON LINEARIZATION

Define the shorthand

Ipq(x; η) :=

∫ 1

0

〈
H(x−tηG0

p)G
0
p, G

0
q

〉
dt (51)

By expanding UBsch around {G0
r} and collecting the lipschitz drift penalties into Rm(x; η) ≥ 0, we

obtain:

Theorem 5 (Upper-bound gap under per-group lipschitzness). Assuming per-group lipschitzness, for
any partition {Gr} and η ∈ (0, 1/L],

UBsch(x; η)−UBagg(x; η) ≤ η2
∑

1≤p<q≤m

(
− L ⟨G0

p, G
0
q⟩ + Ipq(x; η)

)
+ Rm(x; η). (52)

Using ∥H(·)∥op ≤ L and Cauchy-Schwarz (Steele, 2004)

Ipq(x; η) ≤ L ∥G0
p∥ ∥G0

q∥ (53)

which gives the envelope

UBsch(x; η)−UBagg(x; η) ≤ Lη2
∑
p<q

(
∥G0

p∥ ∥G0
q∥ − ⟨G0

p, G
0
q⟩
)
+ Rm(x; η) ≥ 0 (54)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Interpretation This shows that without additional structure, the scheduled smoothness bound can
be looser than the aggregated bound. The gap is governed by Hessian-weighted cross terms Ipq
Proposition 4 (Drift penalty bound under per-group lipschitzness). Assume each group map Gr is
Lr-lipschitz. Then for r ≥ 2,

∥Gr(xr−1)∥ ≤ ∥G0
r∥+ Lrη

∑
p<r

∥G0
p∥ := ∥G0

r∥+ Lrη Sr−1, (55)

and the scheduled start substitution error satisfies

Rm(x; η) ≤ η2
(m∑

p=1

∥G0
p∥
) m∑

r=2

Lr Sr−1

+
Lη2

2

m∑
r=2

(
2 ∥G0

r∥LrηSr−1 + (LrηSr−1)
2
)
,

(56)

so Rm(x; η) = O(η2) with constants controlled by {Lr} and {∥G0
r∥}.

C.5 SUFFICIENT CONDITIONS FOR A TIGHTER SCHEDULED BOUND

The terms Ipq(x; η) encode Hessian-weighted interactions between groups and determine when
scheduling is advantageous at the bound level.
Assumption 7 (Hessian-weighted negative cross-terms). There exist nonnegative margins {Γpq}p<q

such that

Ipq(x; η) =

∫ 1

0

〈
H(x−tηG0

p)G
0
p, G

0
q

〉
dt ≤ −Γpq ∥G0

p∥ ∥G0
q∥ for all p < q (57)

Theorem 6 (Strict upper-bound improvement under per-group lipschitzness and negative Hes-
sian-weighted cross-terms). Assuming per-group lipschitzness and 57, for any η ∈ (0, 1/L],

UBsch(x; η)−UBagg(x; η) ≤ η2
∑
p<q

(
− L ⟨G0

p, G
0
q⟩ − Γpq ∥G0

p∥ ∥G0
q∥
)

+ Rm(x; η) (58)

In particular, if

∑
p<q

(
Γpq ∥G0

p∥ ∥G0
q∥+ L ⟨G0

p, G
0
q⟩
)

>
Rm(x; η)

η2
(59)

then UBsch(x; η) < UBagg(x; η)

C.6 PL OR STRONG CONVEXITY: STANDARD RATE AND UPPER-BOUND GAINS FOR
SCHEDULING

Assume F satisfies the Polyak–Łojasiewicz (PL) inequality with parameter µ > 0:

1
2 |∇F (x)|2 ≥ µ (F (x)− F ⋆), ∀x (60)

For any η ∈ (0, 1/L], the single aggregated update satisfies the standard GD bound

F (xagg) ≤ F (x) − η
(
1− Lη

2

)
|∇F (x)|2 ≤

(
1− 2µη

(
1− Lη

2

)) (
F (x)− F ⋆

)
(61)

Define the upper-bound gain (under per-group lipschitzness, so both bounds are expressed at start-of-
refresh):

∆UB(x; η) := UBagg(x; η)−UBsch(x; η) ≥ 0 (62)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

whenever 59 holds. Since F (xsch) ≤ UBsch(x; η) and UBagg(x; η) upper-bounds the one-shot
decrease term in 61, we obtain the bound-level contraction

F (xsch)− F ⋆ ≤
(
1− 2µη

(
1− Lη

2

)) (
F (x)− F ⋆

)
− ∆UB(x; η). (63)

Consequently, under per-group lipschitzness and 59, the scheduled refresh satisfies the standard
gradient-descent contraction and, in addition, achieves an extra nonnegative decrement ∆UB(x; η) in
the upper bound.

C.7 WHY THE ASSUMPTIONS ARE MILD

The assumptions we use are mild. They are standard and naturally align with our training pipeline.

C.7.1 L-SMOOTHNESS

This is the same regularity used throughout the main paper and in our baselines. Each task loss we
optimize is Li-smooth, so the overall objective is L-smooth. We only use this to apply the standard
smoothness (descent) inequality (Nesterov, 2004; Beck, 2017).

C.7.2 PER-GROUP LIPSCHITZNESS OF Gr

Each Gr is a fixed linear combination of the task gradients assigned to group r. If each task gradient
is Li-lipschitz, then Gr is lipschitz with constant Lr ≤

∑
i ∈ rLi. In other words, this property falls

out of task-level smoothness. The same smoothness estimates we already use for step-size selection
upper-bound the Lr.

C.7.3 NEGATIVE HESSIAN-WEIGHTED CROSS-TERMS

The condition we use asks that, over the short moves we actually take (η ≤ 1/L), groups that are
separated by the scheduler continue to exhibit negative interaction under the local Hessian (i.e.,
the Hessian-weighted cross-terms remain negative). This aligns with how the scheduler is built. It
separates tasks that exhibit sustained negative interactions and it periodically refreshes assignments
so the local geometry does not drift far. Thus the assumption matches the mechanism we deploy.

C.7.4 PL AND STRONG CONVEXITY

We invoke PL only to convert a per-refresh decrease into a standard contraction factor. We do
not require global strong convexity. A local PL inequality around the iterates is enough, which is
commonly observed after warm-up and annealing we already use (Karimi et al., 2016; Zhou et al.,
2021; Liu, 2025).

C.8 CONCLUDING REMARKS

This appendix formalizes a bound-level comparison between scheduled and aggregated updates.
Without additional structure the scheduled bound need not be tighter, but under per-group lipschitzness
and negative Hessian-weighted cross-terms it becomes strictly tighter, and under PL the scheduled
refresh inherits the standard GD contraction with an additional nonnegative decrement. In practice,
these conditions arise naturally once the task-group assignments stabilize, so the scheduler will
typically achieve tighter descent bounds without changing step sizes or gradient information.

D COMPUTATIONAL COMPLEXITY OF ONE REFRESH (AND AMORTIZED
OVER TRAINING)

We analyze the computational and memory complexity of the proposed interference-aware scheduler
per refresh and its amortized cost over training. The former accounts for the cost of a single
refresh operation while the latter represents the average cost distributed across all training steps. We
distinguish the work required by the underlying multi-task training objective (e.g., backpropagation

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

to obtain gradients) from the scheduler overhead (EMA maintenance, cosine computation, conflict
graph construction, and color).

D.1 NOTATION

• K ∈ N – number of tasks

• d ∈ N – dimension of the gradient EMA vector per task

• R ∈ N – refresh period (number of training steps between graph rebuilds)

• β ∈ [0, 1) – exponential moving average (EMA) parameter

• T ∈ N – total number of training steps

• G > 0 – time to compute one backward pass to obtain a task gradient at a refresh

• τ ∈ (0, 1) – conflict threshold; an undirected edge {i, j} is present iff Ĉij < −τ
• Trefresh > 0 – time cost of a single scheduler refresh

• Srefresh > 0 – peak additional memory used during a refresh

• Nrefresh ∈ N – number of refreshes over T steps with period R (satisfies Nrefresh ∈
{⌊T/R⌋, ⌈T/R⌉} and Nrefresh ≤ T/R+ 1)

D.2 PER-REFRESH COMPLEXITY (TIME AND SPACE)

At a refresh, the scheduler performs a finite sequence of deterministic operations on the current
collection of task-wise exponential moving averages (EMAs) of gradients. Let

M ∈ RK×d (64)

denote the matrix whose i-th row m⊤
i is the EMA for task i. A refresh first updates these rows

through a scalar EMA rule
mi ← βmi + (1− β)gi (65)

using the most recent probe (or reused) gradient gi. It then constructs the cosine-similarity matrix

Ĉ = M̃M̃⊤ (66)

where M̃ is the row-normalized version of M . It thresholds Ĉ at −τ to obtain the conflict adjacency.
Finally, it applies a graph-coloring routine to the resulting simple graph (Welsh & Powell, 1967).

EMA maintenance uses a constant number of vector operations per task: one multiply-add on each of
the d coordinates of mi. Aggregating over all K tasks gives a time proportional to Kd. The storage
required to hold all EMAs is the K × d array M , so the working set devoted to EMAs is Θ(Kd)
numbers.

The construction of Ĉ proceeds by normalizing each row of M and then multiplying M̃ by its
transpose. Row normalization touches each entry exactly once and therefore costs Θ(Kd) time. The
Gram product M̃M̃⊤ consists of K2 dot products of length d, which is Θ(K2d) time (Kågström
et al., 1998). The cosine matrix itself occupies K2 entries. If it is retained after thresholding, it uses
Θ(K2) space. If dropped right after graph construction, that Θ(K2) storage is only temporary.

Thresholding linearly scans the off-diagonal of Ĉ, adding an undirected edge when Ĉij < −τ ; this
costs Θ(K2) time. The result is either a dense K ×K boolean array requiring Θ(K2) space, or a
sparse adjacency whose size depends on the number of conflicts (e.g., Θ(kK) when retaining the k
most negative entries per row).

Putting these pieces together yields the following statement.

Proposition 5 (Per-refresh scheduler overhead). Under the standard RAM model with dense matrix
multiplication costed as Θ(K2d), the time required by a single scheduler refresh is

Trefresh = Θ(Kd) + Θ(K2d) + Θ(K2) + O(K2) = Θ(K2d), (67)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

and the additional space required by the scheduler during the refresh is

Srefresh = Θ(Kd) + Θ(K2), (68)

where the Θ(K2) term is transient if Ĉ is not retained after coloring.

Proof. The EMA update costs Θ(Kd) by a direct count of coordinate-wise multiply-adds. Row
normalization also costs Θ(Kd). The Gram matrix requires K2 inner products of length d, which is
Θ(K2d). This term dominates Θ(Kd). Thresholding scans O(K2) entries and is therefore Θ(K2).
The greedy coloring performs a sort of K keys and then assigns at most one color per edge incident on
the current vertex, which is O(K2) in the worst case. This is dominated by Θ(K2d) whenever d ≥ 1.
Summing these contributions and absorbing lower-order terms yields Trefresh = Θ(K2d). The EMA
matrix occupies Θ(Kd) memory, and storing Ĉ uses Θ(K2). But if Ĉ is discarded immediately after
thresholding, only Θ(Kd) remains.

D.3 AMORTIZED COST OVER TRAINING

Let R ∈ N denote the refresh period as the scheduler executes a refresh once every R training
steps. Consider a training run of length T steps. The number of refreshes executed is ⌊T/R⌋ or
⌈T/R⌉ depending on whether one refresh occurs at step 0. In either case it is bounded by T/R+ 1.
Multiplying the per-refresh time Trefresh by the number of refreshes and dividing by T shows that the
amortized scheduler time per training step satisfies

1

T
Nrefresh Trefresh ≤

1

T

(T
R

+ 1
)
Trefresh =

1

R
Trefresh +

1

T
Trefresh (69)

Letting T → ∞ (or simply taking T large compared to one refresh) eliminates the T−1Trefresh
boundary term, yielding the asymptotic amortized bound

1

R
Trefresh =

1

R
Θ(K2d) (70)

If probe gradients are computed only at refreshes, their contribution KG per refresh adds 1
RΘ(KG)

to the amortized time per step. If, instead, the training loop already computes task-wise gradients
each step and these are reused to update the EMAs, then the probe term is absent and the amortized
scheduler overhead remains 1

RΘ(K2d).

The amortized space usage is simpler. The EMA matrix M must be retained throughout training and
therefore contributes Θ(Kd) at all times. The cosine matrix Ĉ and the adjacency are constructed only
during the refresh. They’re released after coloring, so the Θ(K2) space does not persist. Consequently,
the persistent memory overhead attributable to the scheduler is Θ(Kd), while the peak overhead
during a refresh is Θ(Kd) + Θ(K2).

D.4 CONDITIONS FOR NEGLIGIBLE OVERHEAD

Let the amortized per-step costs be

Csched =
a

R
K2d and Cprobe =

b

R
K G, (71)

where a, b > 0 are platform-dependent constants and G denotes the per-task backpropagation cost of
the optional probe at a refresh. For fixed R,

Csched

Cprobe
=

a

b

K2d

K G
=

a

b

Kd

G
. (72)

Hence Csched is negligible relative to Cprobe whenever

Csched

Cprobe
≤ ε for some 0 < ε≪ 1 ⇐⇒ Kd ≤ b

a
εG. (73)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

D.5 REDUCING TIME COMPLEXITY

In this section, we detail approaches that can be taken under certain circumstances to optimize time
complexity.

D.5.1 RANDOM PROJECTIONS

We replace the EMA matrix M ∈ RK×d by a lower-dimensional sketch M̃ = MR with R ∈ Rd×r

and r ≪ d (Dasgupta & Gupta, 2003). The sketching multiply costs O(Kdr) and the cosine Gram
becomes O(K2r) instead of Θ(K2d). Storage for the sketched EMAs is O(Kr). By the Johnson-
Lindenstrauss (JL) random projection guarantee, if we map the K task-EMA vectors from Rd to Rr

using a suitable random matrix with r = Θ(ϵ−2 logK), then after row normalization all pairwise
inner products (hence cosines) are preserved within ±ϵ with high probability. We assume a uniform
row-norm floor mini ∥mi∥ ≥ m0 > 0 (which can be enforced in practice by skipping tasks with
∥mi∥ < ν ≪ m0) so cosine errors remain controlled. Choosing ϵ < γ, where γ is the cosine margin
from the recovery analysis, ensures that every pair remains on the same side of the threshold −τ .
Therefore the set {(i, j) : Ĉij < −τ} and the resulting coloring are unchanged with high probability.

In short, dimensionality drops from d to r, the refresh cost drops from Θ(K2d) to O(Kdr +K2r),
and decisions are preserved as long as the chosen r makes the embedding error smaller than the
margin.

D.5.2 DETERMINISTIC COVARIANCE SKETCHING VIA FREQUENT DIRECTIONS

We maintain a deterministic sketch B ∈ Rℓ×d of the row space of M using Frequent Directions
and either project rows onto span(B) or form an approximate Gram from the sketch (Liberty, 2013;
Ghashami et al., 2016). Maintaining the sketch costs O(Kdℓ), the cosine Gram in the sketch space
costs O(K2ℓ), and storage for the sketch is O(ℓd). Frequent Directions gives a spectral-norm bound

|MM⊤ − M̂M⊤|2 ≤ ϵ|M |2F (74)

when ℓ = Θ(ϵ−2), which yields a uniform bound on inner-product and squared-norm errors. Assum-
ing a row-norm floor mini ∥mi∥ ≥ m0 > 0 and applying a standard cosine perturbation bound after
row normalization, one obtains

∣∣ cos(mi,mj)− ĉos(mi,mj)
∣∣ ≤ 2 ϵ ∥M∥2F

m2
0

+ O

(
ϵ2 ∥M∥4F

m4
0

)
(75)

Taking ϵ small enough so that the right-hand side is < γ ensures that all threshold decisions and the
resulting coloring are preserved deterministically. Thus the effective dimension drops from d to ℓ in
the worst case, and the refresh cost becomes O(Kdℓ+K2ℓ).

D.5.3 EDGE SAMPLING FOR CONFLICT GRAPHS WITH ADAPTIVE REFINEMENT

We reduce the number of cosine evaluations by computing Ĉij for only Õ(K logK) randomly chosen
task pairs to build a provisional conflict graph and then refining by evaluating additional pairs that
are near the threshold or needed to certify connectivity and chromatic structure. We still compute
all K row norms once in O(Kd) time for normalization, and the first pass costs O(Kd logK) for
the sampled dot products. The total cost adds only the refinement work, which remains small when
only few pairs are ambiguous. Under a planted separation model with margin γ and reasonably dense
cross-group conflicts, one can show with high probability that the sampled graph already captures
the correct inter-group connectivity, so the coloring or component structure is recovered after the
first pass and only boundary pairs need refinement. This reduces the pairwise work from K2 to near
K logK while preserving the final decisions under stated assumptions (Erdős & Rényi, 1960).

D.5.4 INCREMENTAL GRAM UPDATES

We avoid rebuilding the full cosine matrix when only a small subset of tasks has meaningfully
changed since the last refresh. If s rows of M cross a chosen change threshold, we first renormalize
these rows and then recompute both the corresponding s rows and s columns of the Gram by taking

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

dot products against all K rows, which costs O(sKd), with an additional O(sd) to update norms,
instead of Θ(K2d), and we leave all unchanged entries as they are. This update is exact for the
affected entries, so conflict edges and coloring decisions are preserved by construction, and the
reduction is deterministic whenever s≪ K. To prevent slow drift in the unchanged entries, we can
periodically force a full rebuild and reset the change counters.

E DESCENT PRESERVATION UNDER τ -COMPATIBILITY

E.1 PROOF OF PROPOSITION 6

Proposition 6. Let S ⊆ {1, . . . ,K} be a τ -compatible task set. That is, every pair of gradients
satisfies 〈

gi, gj
〉
≥ −τ ∥gi∥ ∥gj∥, ∀ i ̸= j ∈ S, 0 ≤ τ < 1 (76)

Then ∥∥∥∑
k∈S

gk

∥∥∥2 ≥ (
1− τ(|S| − 1)

)∑
k∈S

∥gk∥2. (77)

Proof. We begin with the polarization identity for any finite set of vectors:∥∥∥∑
k∈S

gk

∥∥∥2 =
∑
k∈S

∥gk∥2 + 2
∑
i,j∈S
i<j

〈
gi, gj

〉
.

(78)

E.1.1 LOWER-BOUNDING THE CROSS TERMS

Because S is τ -compatible, inequality (76) gives〈
gi, gj

〉
≥ −τ ∥gi∥ ∥gj∥. (79)

Insert this bound into (78) to obtain∥∥∥∑k gk

∥∥∥2 ≥ ∑
k∥gk∥2 − 2τ

∑
i<j∥gi∥ ∥gj∥. (80)

E.1.2 SYMMETRIZING THE MIXED SUM

Observe that ∑
i<j

∥gi∥ ∥gj∥ =
1

2

∑
i,j
i̸=j

∥gi∥ ∥gj∥. (81)

Substituting (81) into (80) yields∥∥∥∑
k

gk

∥∥∥2 ≥ ∑
k

∥gk∥2 − τ
∑
i,j
i̸=j

∥gi∥ ∥gj∥. (82)

E.1.3 BOUNDING THE MIXED SUM VIA CAUCHY-SCHWARZ

Apply the Cauchy-Schwarz inequality in R|S| to the vectors a = (∥g1∥, . . . , ∥g|S|∥) and 1 =
(1, . . . , 1): ∑

k

∥gk∥ = ⟨a,1⟩ ≤ ∥a∥ ∥1∥ =
(∑

k

∥gk∥2
)1/2√

|S|. (83)

Using (
∑

k ak)
2 ≤ |S|

∑
k a

2
k and (84),∑

i̸=j

∥gi∥ ∥gj∥ =
(∑

k

∥gk∥
)2
−
∑
k

∥gk∥2, (84)

we obtain the standard estimate∑
i̸=j

∥gi∥ ∥gj∥ ≤ (|S| − 1)
∑
k

∥gk∥2. (85)

Hence,
τ
∑
i̸=j

∥gi∥ ∥gj∥ ≤ τ
(
|S| − 1

)∑
k

∥gk∥2. (86)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

E.1.4 COMBINING BOUNDS

Insert (86) into (82):∥∥∥∑
k

gk

∥∥∥2 ≥ ∑
k

∥gk∥2 − τ
(
|S| − 1

)∑
k

∥gk∥2 =
(
1− τ(|S| − 1)

)∑
k

∥gk∥2, (87)

which is (77).

E.2 INTERPRETATION AND PRACTICAL IMPLICATIONS

Equation (77) guarantees that whenever we restrict an SGD step to a τ -compatible group (i.e., a
set of tasks whose gradients are not too conflicting) the resulting joint update preserves at least a(
1− τ(|S| − 1)

)
fraction of the summed squared step lengths.

Below, we provide a strictly stronger version that is assumption free.
Proposition 7 (Data-Dependent Lower Bound via the Aggregate Conflict Ratio). Define the aggregate
conflict ratio

τeff(S) :=

∑
i̸=j

(
−⟨gi, gj⟩

)
+∑

k

∥gk∥2
, (x)+ := max{x, 0}. (88)

Then, without additional assumptions,∥∥∥∑
k∈S

gk

∥∥∥2 ≥ (
1− τeff(S)

)∑
k∈S

∥gk∥2, (89)

and under τ -compatibility we always have τeff(S) ≤ τ(|S| − 1), so (89) is never weaker than (77).

Our takeaways from this are as follows:

(i) Descent direction safety. The aggregated step is guaranteed to be a descent direction
whenever τeff(S) < 1 (data-dependent) and, in particular, whenever τ(|S| − 1) < 1 (worst-
case).

(ii) Convergence-rate constant. In analyses for smooth SGD, one may replace ∥gt∥2 by the
right-hand side of either (89) (which is tighter) or (77) (worst-case), leading respectively to
constants involving τeff(St) or τ(|St| − 1).

F CONVERGENCE RATE WITH τ -DEPENDENT CONSTANT

Theorem 7 (Baseline O(1/
√
T) convergence of the full gradient). Let F (θ) =

∑K
k=1 Lk(θ, ϕk)

be L–smooth in the shared parameters θ. Assume the stochastic gradient gt obtained at step t
satisfies E[gt | θt] = ∇F (θt) and E[∥gt −∇F (θt)∥2 | θt] ≤ σ2. Let the step size be η = c√

T
with

0 < c ≤ 1
L , and suppose the scheduler selects a τ -compatible task set St at each step (this will be

used below for a refinement). Then

min
1≤t≤T

E
[
∥∇F (θt)∥2

]
≤

2
(
F0 − F ⋆

)
c
√
T

+
cLσ2

√
T

. (90)

Proof. Because F is L–smooth, for any η ≤ 1
L the standard non-convex SGD inequality (Ghadimi &

Lan 2013, Lemma 3.2) gives

E
[
F (θt+1)

]
≤ E

[
F (θt)

]
− η

2
E
[
∥∇F (θt)∥2

]
+

η2Lσ2

2
. (91)

Summing equation 91 over t = 0, . . . , T − 1 and using E[F (θT)] ≥ F ⋆ yields

η

2

T−1∑
t=0

E
[
∥∇F (θt)∥2

]
≤ F0 − F ⋆ +

η2Lσ2T

2
. (92)

Dividing by T , using mint xt ≤ 1
T

∑
t xt, and substituting η = c√

T
gives equation 90.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Data-dependent τ -refinement for the scheduled gradient energy. For a finite set S, define the
aggregate conflict ratio

τeff(S) :=

∑
i̸=j∈S

(
−⟨gi, gj⟩

)
+∑

k∈S ∥gk∥2
∈ [0,∞), (x)+ = max{x, 0}. (93)

Then for every step t, ∥∥∥∑k∈St
gk,t

∥∥∥2 ≥ (
1− τeff(St)

)∑
k∈St

∥gk,t∥2. (94)

Consequently,

1

T

T−1∑
t=0

E
[∑
k∈St

∥gk,t∥2
]
≤ 1

T

T−1∑
t=0

E
[1

1− τeff(St)

]
︸ ︷︷ ︸

=: ΓT

· 1
T

T−1∑
t=0

E
[
∥gt∥2

]
. (95)

Using E∥gt∥2 = E∥∇F (θt)∥2 + E∥gt −∇F (θt)∥2 ≤ E∥∇F (θt)∥2 + σ2 and the average version
of equation 91,

1

T

T−1∑
t=0

E
[
∥∇F (θt)∥2

]
≤ 2(F0 − F ⋆)

ηT
+ Lησ2, (96)

we obtain the τ -dependent, data-driven control

1

T

T−1∑
t=0

E
[∑
k∈St

∥gk,t∥2
]
≤ ΓT

(
2(F0 − F ⋆)

ηT
+ Lησ2 + σ2

)
. (97)

If, in addition, each St is pairwise τ -compatible with |St| = st and τ (st − 1) ≤ ρ < 1 uniformly in
t, then τeff(St) ≤ τ(st − 1) ≤ ρ and hence ΓT ≤ 1

1−ρ . With η = c√
T

, equation 97 becomes

1

T

T−1∑
t=0

E
[∑
k∈St

∥gk,t∥2
]
≤ 1

1− ρ

(
2(F0 − F ⋆)

c
√
T

+
cLσ2

√
T

+ σ2

)
. (98)

F.1 DISCUSSION AND INTUITION

Equation equation 90 is the classical O(1/
√
T) rate for non-convex SGD with unbiased and bounded

variance gradients and constant-over-time step size η = c/
√
T . Under these conditions, the con-

vergence rate in terms of the full gradient norm ∥∇F (θt)∥2 does not depend on τ . However, the
scheduler’s τ structure does control the per step energy of the scheduled gradient through equation 95–
equation 98. Less cross-task conflict (smaller ΓT) results in a tighter bound on 1

T

∑
t

∑
k∈St

∥gk,t∥2,
which is the quantity governed by the descent preservation inequalities used throughout the analysis.

G BOUNDED STALENESS VIA GREEDY GRAPH COLORING

Proposition 8 (Staleness Bound). Let G = (T , E) be the task–conflict graph whose vertices are
tasks and whose edges connect pairs with interference coefficient exceeding the threshold τ . Denote
by ∆ its maximum degree. Greedy graph coloring produces a proper coloring C1, . . . , Cm with

m ≤ ∆+ 1. (99)

If the scheduler activates the color classes in the cyclic order C1→C2→ . . .→Cm→C1→ . . . ,
then every task is updated at least once every

smax = m− 1 ≤ ∆ (100)

iterations. In particular, the schedule enforces a bounded inter-update delay of at most ∆ iterations
per task, consistent with the bounded-delay assumption of Recht et al. (Niu et al., 2011).

Proof. We proceed in two parts.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Part A: Color count bound. A greedy algorithm scans vertices in some order and assigns to each
vertex the smallest available color not used by its already colored neighbors. When the i-th vertex v is
reached, at most deg(v) ≤ ∆ of its neighbors are already colored, so at most ∆ colors are unavailable.
Therefore one of the first ∆+ 1 colors is always free, implying m ≤ ∆+ 1 (Lovász, 2006).

Part B: Staleness of cyclic execution. Fix any task T ∈ T and let it belong to color Cj for some
1 ≤ j ≤ m. Under cyclic scheduling, Cj is executed at steps t = j, j + m, j + 2m, The
number of intervening steps between two consecutive executions of Cj is exactly m− 1. Hence task
T never waits more than smax = m− 1 iterations for an update. Combining with Equation 8 yields
smax ≤ ∆.

G.1 INTERPRETATION

The bound (Equation 100) guarantees that the shared parameters used by any task are refreshed
at least once every ∆ iterations in the worst case (e.g., when the conflict graph is a clique of size
∆+ 1). This aligns with the bounded-delay assumption common in analyses of asynchronous SGD
and lock-free training, so convergence proofs built under that assumption apply to our cyclic schedule
with delay parameter at most ∆ when iterations are used as the unit of delay (Niu et al., 2011; Lian
et al., 2015). In practice ∆ is often much smaller than the total number of tasks, so the scheduler
achieves low interference and low parameter staleness simultaneously.

H GREEDY GRAPH-COLORING USES AT MOST ∆+1 COLORS

H.1 PROOF OF PROPOSITION 9

Proposition 9 (Coloring Period Bound). Let G = (V,E) be a finite, simple, undirected graph with
maximum degree ∆ :=maxv∈V deg(v). The greedy (first-fit) coloring algorithm (e.g., Welsh–Powell
order)1 produces a proper vertex coloring with no more than

χgreedy(G) ≤ ∆+ 1 (101)

distinct colors. Consequently, when the scheduler activates the color classes in a cyclic order, the
cycle length is bounded by ∆+ 1. This is a quantity depending only on the structure of the conflict
graph.

Proof. Let the vertices be processed in the chosen order v1, v2, . . . , v|V | (e.g., Welsh-Powell).
Assume inductively that after coloring the first k − 1 vertices the algorithm has used at most ∆+ 1
colors. Consider vertex vk. Since deg(vk) ≤ ∆, at most ∆ neighbors of vk can appear before vk in
the ordering. Hence, at the moment of coloring vk, at most ∆ colors are forbidden (one for each
previously colored neighbor). Among the palette {1, 2, . . . ,∆+ 1} there is therefore at least one
color still available. Assigning the smallest such color to vk maintains a proper coloring and never
introduces a new color beyond ∆+ 1.

Proceeding vertex-by-vertex, no step ever requires more than ∆+1 colors, establishing equation 101.

H.2 IMPLICATIONS FOR THE SCHEDULER

A coloring with at most ∆+ 1 classes means the scheduler’s cycle period (the number of batches
needed before every task reappears) is bounded by a graph invariant independent of the number
of tasks. Even if thousands of tasks exist, as long as each one conflicts with at most ∆ others, the
memory footprint (one shared backbone plus ∆ + 1 sets of head activations) and the maximum
waiting time between successive updates for any task (bounded by ∆, see Proposition 8) remain
predictable and small. This guarantee is essential for scaling the scheduler to large, heterogeneous
tasks.

1Order the vertices in non–increasing degree and assign to each the smallest positive integer (color) not used
by its previously colored neighbors.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

I BASELINE NON-CONVEX SGD CONVERGENCE RATE

I.1 PROOF OF THEOREM 8

Theorem 8 (Classical O(1/
√
T) bound). Let F : Rd→R be an L-smooth, possibly non-convex

objective and suppose the stochastic gradient gt computed at iteration t satisfies

E[gt | θt] = ∇F (θt), E[∥gt −∇F (θt)∥2 | θt] ≤ σ2. (102)

Run SGD with the constant step size η = c√
T
, 0 < c ≤ 1

L , for T iterations starting from θ0. Then

min
0≤t<T

E
[
∥∇F (θt)∥2

]
≤

2
(
F0 − F ∗)
c
√
T

+
cLσ2

√
T

, (103)

where F ∗ = infθ F (θ).

Proof. The proof is a streamlined restatement of ((Ghadimi & Lan, 2013; Nemirovski et al., 2009)).
By L-smoothness,

F (θt+1) ≤ F (θt) + ⟨∇F (θt), θt+1 − θt⟩+
L

2
∥θt+1 − θt∥2. (104)

With θt+1 = θt − η gt and taking conditional expectation,

E
[
F (θt+1)

]
≤ E
[
F (θt)

]
− η E

[
∥∇F (θt)∥2

]
+

η2L

2
E
[
∥gt∥2

]
. (105)

Decompose the squared stochastic gradient:

E[∥gt∥2] = E[∥∇F (θt)∥2] + E[∥gt −∇F (θt)∥2] ≤ E[∥∇F (θt)∥2] + σ2 (106)

Thus, and using η ≤ 1/L so that η − Lη2

2 ≥
η
2 ,

E[F (θt+1)] ≤ E[F (θt)]−
η

2
E[∥∇F (θt)∥2] +

η2Lσ2

2
. (107)

Summing from t = 0 to T − 1 and telescoping gives

η

2

T−1∑
t=0

E[∥∇F (θt)∥2] ≤ F0 − F ∗ +
η2Lσ2T

2
. (108)

Dividing by ηT and inserting η = c/
√
T yields equation 103.

I.2 CONNECTION TO THE SCHEDULER

At τ = 0, pairs with negative inner product are incompatible, so the conflict graph on tasks can be
colored into m classes {C1, . . . , Cm}, and a simple policy activates one color class per step. Under a
deterministic (cyclic) activation order, the update gt =

∑
k∈St

gk,t generally satisfies

E
[
gt | θt

]
=
∑
k∈St

∇Lk(θt, ϕk,t) ̸=
K∑

k=1

∇Lk(θt, ϕk,t), (109)

so it is biased for the full gradient.

I.2.1 CONSISTENCY WITH THE UNBIASED SGD ASSUMPTION

The analysis in Theorem 8 assumes an unbiased stochastic gradient, E[gt | θt] = ∇F (θt). This
assumption is met under either of the following implementations.

(i) Randomized class sampling with scaling. Draw Jt ∼ Unif{1, . . . ,m} independently each step
and set

g̃t = m
∑

k∈CJt

gk,t. (110)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 3: Information on the datasets utilized in experimentation. (*Some samples were removed
during preprocessing)

Dataset Main Tasks (+) Aux. Tasks (-) Aux Tasks Modalities Samples

NYUv2

Semantic Segmentation
Depth Estimation
Surface Normal Prediction – Color Temp. Estimation Image 250*

CIFAR-10 Image Classification
Quadrant Localization
Texture Classification

Corruption-Type Prediction
Rotation Angle Prediction Image 2,500*

AV-MNIST Digit Classification Digit Parity Audio, Image 56.0k

MM-IMDb Genre Classification Release Decade Title-Iniial Classification Image, Text 25.9k

STOCKS-F&B 4× Stock Return Prediction
Five-Day Rolling Volatility
Sector-Average Next-Day Return

Day of the Week Prediction
Lag-0 Reconstruction of Today’s Open-Price Timeseries ×18 75.5k

STOCKS-HEALTH 7× Stock Return Prediction
Five-Day Rolling Volatility
Sector-Average Next-Day Return

Day of the Week Prediction
Lag-0 Reconstruction of Today’s Open-Price Timeseries ×63 75.5k

Then E[g̃t | θt] =
∑K

k=1∇Lk(θt, ϕk,t) = ∇F (θt), so Theorem 8 applies (with the variance bound
adjusted for the scaled estimator). Equivalently, one may keep gt =

∑
k∈CJt

gk,t and use an effective
step size mη.

(ii) Deterministic cyclic schedule. If the classes are visited in a fixed periodic order, then generally
E[gt | θt] ̸= ∇F (θt) at the per-step level. Nonetheless, standard analyses of nonconvex smooth
cyclic block updates yield an O(1/

√
T) decay of the average gradient norm under usual step-size

conditions, with constants depending on the number of blocks.

Either implementation delivers an O(1/
√
T) convergence guarantee.

J EXPERIMENTAL SETUP FOR DATASETS

We evaluate the proposed scheduler alongside numerous baselines and state-of-the-art models across
multiple datasets to reliably assess its general performance relative to other approaches. In total, it is
evaluated across 6 datasets.

Across all datasets, we incorporate positive and/or negative auxiliary tasks into training. Positive
auxiliary tasks share structure or predictive signals with the main tasks (e.g., common features or
correlated outputs) and so can improve the learned representations by providing relevant supervision.
In contrast, negative auxiliary tasks are uncorrelated or directly conflicting with the main objectives,
inducing gradient interference that can slow or degrade primary performance. Including both creates
controlled variation in task alignment, letting us test whether SON-GOKU (1) groups compatible
tasks, (2) separates conflicting tasks, and (3) maintains main-task performance under interference
created by auxiliary tasks.

J.1 NYUV2

The NYU Depth Dataset v2 (NYUv2) (Silberman et al., 2012) consists of RGB-D indoor scenes
with 1,449 densely labeled pairs of RGB and depth images. To demonstrate auxiliary task value
in data-scarce conditions, we employ a subset of 250 training samples randomly selected from the
original training set.

We formulate a multi-main-task setup with three primary objectives: (1) semantic segmentation (14
classes), (2) depth estimation where the model predicts per-pixel depth values from RGB images, and
(3) surface normal prediction where 3-channel surface normals are estimated from RGB input. The
negative auxiliary task is color temperature estimation, a synthetically generated task that predicts
global color temperature properties designed to interfere with the main tasks by emphasizing global
color distribution rather than local semantic and geometric features.

All tasks utilize RGB images as the sole input modality, with depth maps and surface normals serving
as prediction targets rather than input features. A ResNet-18 (He et al., 2015) backbone trained
from scratch processes the RGB input, with task-specific decoder heads for segmentation (with 32 ×
upsampling), depth regression, surface normal regression, and color temperature estimation.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

J.2 CIFAR-10

The CIFAR-10 (Krizhevsky et al., 2009) dataset contains 60,000 32 × 32 color images across 10
generic classes. To evaluate our interference-aware scheduler in a data-scarce environment where
auxiliary tasks provide maximum benefit, we employ a subset of 2,500 training samples (250 per
class) from the original 50,000 training images.

For the multi-task learning setup, we set image classification as the main task and construct three
auxiliary tasks synthetically from the RGB images. The positive auxiliary tasks include: (1) quadrant
localization, where the model predicts which quadrant contains the primary object, and (2) texture
classification using Gabor filter responses clustered into 8 texture categories via k-means clustering.
The negative auxiliary tasks consist of: (3) corruption-type prediction, where images are artificially
corrupted using 15 different corruption types from the ImageNet-C corruption suite (Hendrycks &
Dietterich, 2019), and (4) rotation angle prediction, where images are rotated by 0°, 90°, 180°, or
270° and the model predicts the rotation angle.

All tasks share a ResNet-18 (He et al., 2015) backbone trained from scratch without pretraining, with
task-specific heads for each auxiliary task.

J.3 AV-MNIST

The AV-MNIST benchmark (Vielzeuf et al., 2018) pairs MNIST images (Lecun et al., 1998) with
a log-mel spectrogram of the corresponding spoken digit from TIDIGITS (Leonard & Doddington,
1993). It is a synthetic benchmark that has significant noise applied to audio and feature reduction
applied to images, making it far more difficult than the original MNIST.

We use all paired samples in our experiments. Our primary task is 10-way digit classification.
Following (Vielzeuf et al., 2018), we encode images with a small 4-layer convolutional network
and spectrograms with a 2-layer CNN, both built and trained from scratch. These embeddings are
projected and fused for processing by a simple MLP in intermediate fusion (Boulahia et al., 2021;
Guarrasi et al., 2025), as are the models trained on MM-IMDb and STOCKS. We include only one
positive auxiliary class, Digital Parity. This task aims to identify the digits as either even or odd,
which has been shown to be a positive auxiliary task for improving representations on MNIST-like
datasets (Tacchetti et al., 2018; Mohammadi et al., 2020).

J.4 MM-IMDB

The MM-IMDb dataset (Arevalo et al., 2017) contains 25,959 movies with genre annotations over 23
categories. We extract poster images and plot summaries for every movie in the dataset.

The images and summaries are encoded by a frozen VGG16 (Simonyan & Zisserman, 2014) and
Google word2vec (Mikolov et al., 2013) model, respectively. Our main task is movie genre prediction.
We add one positive auxiliary task, Release Decade, and one negative auxiliary task, the classification
of the title’s first word as either a vowel or consonant.

J.5 STOCKS

The STOCKS datasets we use, introduced in (Liang et al., 2021), contain stock market timeseries
data across two categories. Specifically: (1) STOCKS-F&B, which has 14 input and 4 output stocks
in the GICS Restaurants or Packaged Food & Meats category (MSCI Inc. & S&P Dow Jones Indices,
2024), and (2) STOCKS-HEALTH, which contains 56 input and 7 output stocks in the Health Care
category.

Every input stock consists of 500 trading days, with the goal of predicting returns over the next
day. We discretize the continuous return variable R into three non-overlapping categories: (1)
Low, where 0 ≤ R < 0.1, (2) Medium, where 0.1 ≤ R < 0.5, and (3) High, where R ≥ 0.5.
Mean Absolute Error (MAE) is calculated by mapping the three classes to numbers (Low → 0,
Medium → 1, High → 2) and then deriving MAE as usual. Each input series is encoded by the
same CNN-BiLSTM network. This consists of 3 CNNs and 1 BiLSTM (Cui et al., 2018).

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

We augment the main prediction task with two positive auxiliaries and two negative auxiliaries. The
first positive task, Five-Day Rolling Volatility, is calculated as the standard deviation of daily loga-
rithmic returns over a sliding five-trading-day window. This feature captures short-term fluctuations
in a stock’s price. In Sector-Average Next-Day Return, for each date we compute the mean of the
actual next-day returns of all stocks within the same GICS sector, providing a simple measure of
sector-level momentum and drift

The negative tasks focus on useless information that is meant to distract the model. Namely, day of
the week prediction (in the range of Monday to Friday) and Lag-0 Open-Price Reconstruction, which
requires the model to reproduce the same day’s opening price verbatim. The first is information that
contains little to no signals that would contribute to overall performance, and the second is a trivial
identity mapping that contributes no real predictive challenge.

K MODELS USED FOR COMPARISON

K.1 BASELINE MODELS

1. Uniform. This baseline assigns equal weights to all tasks throughout training, representing
the simplest approach where all task losses are weighted equally.

2. Gradnorm (Chen et al., 2018). Balances task learning rates by normalizing gradient mag-
nitudes relative to target loss ratios. This maintains consistent training dynamics across
tasks.

3. MGDA (Sener & Koltun, 2018). Formulates multi-task learning as a multi-objective opti-
mization problem, finding Pareto-optimal solutions (Lockwood, 2008; Pareto, 2014) through
gradient descent in the convex hull of gradients (Fliege & Svaiter, 2000; Miettinen, 1999).

K.2 STATE-OF-THE-ART MODELS

1. PCGrad (Yu et al., 2020). Projects conflicting gradients onto orthogonal subspaces when
negative cosine similarity is detected, eliminating destructive interference between task
gradients.

2. CAGrad (Liu et al., 2021). Extends PCGrad by adaptively adjusting gradient magnitudes
based on conflict severity. This proves more nuanced modifications to gradients than binary
projection.

3. Adatask (Yang et al., 2023). Dynamically reweighs task losses using relative loss changes,
adapting to varying task learning rates during training.

4. FAMO (Liu et al., 2023). Fast Adaptive Multitask Optimization dynamically adjusts task
weights to equalize each task’s rate of loss improvement. It uses an online, per-step rule
(no pairwise gradient ops), adding negligible overhead while remaining robust to loss-scale
differences.

5. Fair Resource Allocation in MTL (FairGrad) (Ban & Ji, 2024). Views the shared update as
a limited resource and chooses it to maximize an α-fair utility of per-task improvements.
The parameter α controls the trade-off between average performance and fairness.

6. Nash-MTL (Navon et al., 2022). Frames multitask training as a bargaining game and
computes a scale-invariant weighted combination of task gradients given by the Nash
bargaining solution. Weights are obtained by solving a small inner problem (e.g., via CCP)
using the gradient Gram matrix. Updates are balanced across tasks.

L EXPANDED WALL-CLOCK TIME STUDY

We provide more results from our wall-clock time study. The expanded table includes results from
testing refresh rates R ∈ {4, 32, 256} for scheduler-based methods.

L.1 EXPERIMENTAL SETUP FOR WALL-CLOCK TIME STUDY

We benchmark wall-clock time with a controlled synthetic workload to remove the effects of data
loading and I/O. For each configuration (number of tasks K and scheduler refresh rates R), we

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Table 4: We present wall-clock time (seconds ± standard deviation) across all K and scheduler
refresh rates R ∈ {4, 32, 256}. We split results into sub-tables by R for readability. Non-scheduler
methods do not depend on R, so they are shown in the R = 4 sub-table and omitted in the R=32, 256
subtables to avoid redundancy.

(a) R=4 (all methods)

Method K=3 K=6 K=16 K=40
Uniform 0.2656 ± 0.1201 0.3240 ± 0.0629 0.3798 ± 0.1050 0.4054 ± 0.1190
GradNorm 5.4714 ± 0.7137 5.1201 ± 0.6112 4.9042 ± 0.5869 4.7372 ± 0.9286
MGDA 97.1081 ± 5.4645 121.4371 ± 9.0923 132.4913 ± 3.1752 134.0878 ± 2.2621
PCGrad 3.6212 ± 0.3517 23.1266 ± 0.8773 176.7566 ± 2.8171 1127.1337 ± 34.2603
CAGrad 102.8651 ± 18.3422 136.1034 ± 2.4218 134.3585 ± 4.0791 132.7034 ± 1.2412
AdaTask 2.1816 ± 0.0934 2.1032 ± 0.1012 2.2853 ± 0.0718 2.2278 ± 0.1370
FAMO 2.0725 ± 0.2073 1.9980 ± 0.1998 2.1710 ± 0.2171 2.1164 ± 0.2116
FairGrad 3.8020 ± 0.5703 15.2079 ± 2.2812 108.1450 ± 16.2218 675.9065 ± 101.3860
Nash-MTL 5.7030 ± 1.1406 22.8118 ± 4.5624 162.2176 ± 32.4435 1013.8598 ± 202.7720

SON-GOKU 2.0904 ± 0.3506 3.6770 ± 0.4974 6.3225 ± 0.7895 14.3280 ± 1.4073
SON-GOKU + AdaTask 4.1011 ± 0.4174 5.2126 ± 0.6066 7.6798 ± 0.7107 14.7528 ± 1.8671
SON-GOKU + GradNorm 7.3223 ± 0.4994 8.5898 ± 0.8203 12.1065 ± 2.5850 16.8329 ± 1.9803
SON-GOKU + PCGrad 2.3489 ± 0.3258 3.5925 ± 0.4100 6.1549 ± 0.8461 12.5729 ± 1.2657

(b) R=32 (scheduler-based approaches)

Method K=3 K=6 K=16 K=40
SON-GOKU 1.9896 ± 0.3651 3.3202 ± 0.5745 6.0897 ± 0.9425 12.1432 ± 1.2044
SON-GOKU + AdaTask 3.7718 ± 0.9654 5.0511 ± 0.6531 7.5903 ± 1.1920 14.5182 ± 2.0660
SON-GOKU + GradNorm 7.0202 ± 1.0711 8.1661 ± 0.9355 10.7227 ± 2.2088 16.5760 ± 1.8418
SON-GOKU + PCGrad 1.9834 ± 0.3586 3.4971 ± 0.3840 6.1395 ± 0.9425 10.9097 ± 1.5263

(c) R=256 (scheduler-based approaches)

Method K=3 K=6 K=16 K=40
SON-GOKU 1.7593 ± 0.2280 3.0024 ± 0.3942 4.8411 ± 0.7302 11.4162 ± 1.6076
SON-GOKU + AdaTask 3.7224 ± 0.2696 4.4548 ± 0.5837 7.5276 ± 0.6230 13.0608 ± 3.2925
SON-GOKU + GradNorm 6.0221 ± 1.0418 7.8659 ± 0.7917 9.5029 ± 1.2168 15.6860 ± 2.3680
SON-GOKU + PCGrad 1.6776 ± 0.4104 3.0189 ± 0.7854 5.9893 ± 1.3797 7.1915 ± 0.2021

pre-generate a fixed sequence of per-task gradient vectors and loss values directly on the target device,
and then feed the same exact tensors, in the same exact order, to every method. We set the gradient
dimensionality to 1024. Timing uses a high-resolution clock with a device synchronize before starting
and after finishing to capture only on-device compute. We also accumulate the norm of the combined
gradient into a scalar accumulator (also known as a scalar sink) so the backend must realize the
computation, avoiding lazy evaluation. Each MTL approach is run for 900 steps and repeated 10
times.

M EXTENDED RELATED WORK

Multi-task learning (MTL) methods have evolved from simple loss-weighting approaches to larger
and more sophisticated optimization techniques that manage task conflict and cooperation (Yang et al.,
2023). Early adaptive-weighting approaches sought to balance losses automatically (Vandenhende
et al., 2022; Fan et al., 2023), while more recent work modifies gradients directly (Yu et al., 2020).
Task scheduling and grouping methods, though far less popular than adaptive weighting techniques
(Torbarina et al., 2023), have contributed to the field by controlling the timing of updates.

M.1 TUNED LOSS WEIGHTING

From early MTL work it became clear that simply summing task losses often favors one objective at
the expense of others (Kurin et al., 2022; Zhao et al., 2024; Mueller et al., 2022), especially when
losses have different scales or noise levels. To address this, practitioners manually tuned per-task
weight coefficients (λ-values) to rebalance learning (Argyriou et al., 2007; Ando & Zhang, 2005;

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Evgeniou et al., 2005; Kang et al., 2011; Liang & Zhang, 2020; Lin et al., 2022; Yu et al., 2021),
but this process was laborious and dataset-specific. Thus, researchers began to develop automated
methods.

M.2 ADAPTIVE LOSS WEIGHTING

(Kendall et al., 2018) introduced uncertainty weighting, learning each task’s homoscedastic
(constant-variance) (Bishop, 2006) noise to scale losses automatically and improve depth and seman-
tics on NYUv2 (Silberman et al., 2012).

GradNorm automatically balances multiple loss functions by tuning each task’s gradient magnitude
so that all tasks train at comparable speeds (Chen et al., 2018). It does this by introducing a single
asymmetry hyperparameter α that governs how much each task’s loss is scaled. This eliminates the
need for expensive grid searches over manual weights. GradNorm was also a major leap empirically
as it surpassed exhaustive search baselines on both regression and classification tasks. Dynamic
Weight Averaging (DWA) extended this idea by adjusting weights based on loss rate of change,
reducing oscillations between tasks (Liu et al., 2019).

More recently AdaTask applies task-specific learning rates that adapt to each head’s gradient norm,
yielding significant gains on multi-label classification benchmarks (Yang et al., 2023).

M.3 GRADIENT-LEVEL CONFLICT MITIGATION

Rather than rescaling losses, gradient surgery methods alter update directions. PCGrad projects
gradients that conflict (negative cosine) onto each other’s normal plane, significantly boosting
efficiency on supervised vision and RL problems (Yu et al., 2020). CAGrad frames task balance
as a min-max optimization, finding updates that maximize the worst-case task improvement (Liu
et al., 2021). The Multiple Gradient Descent Algorithm (MGDA) computes a Pareto-optimal convex
combination of task gradients, ensuring no task is harmed (Sener & Koltun, 2018). More recent
variants such as SAM-GS incorporate momentum into conflict detection, smoothing gradient estimates
while preserving the benefits of surgery (Borsani et al., 2025).

M.4 EMPIRICAL TASK GROUPING

Task grouping aims to decide which tasks should train together so that helpful transfer is amplified
and harmful interference is limited. It typically groups tasks into subsets that update jointly, rather
than updating all tasks at once. This is different from approaches that keep all tasks active or reweight
the joint gradient (adaptive loss weighting, gradient surgery).

Early approaches under this category used round-robin and random sampling-based approaches that
ignored any task relationships (McCann et al., 2018; Zamir et al., 2020). Standley et al. (2020)
exhaustively searches over small subsets to identify beneficial groupings, demonstrating the potential
of selective updates but failing to scale beyond eight tasks due to computational complexity.

Task Affinity Groupings (TAG) (Fifty et al., 2021) performs one joint training run to measure inter-
task ’affinity’. It quantifies how an update for task i (its gradient) would change task j’s loss, and it
uses these cross-effects to select partitions of tasks that should share updates. The key idea is to treat
grouping as an outcome of measured gradient interactions.

Ayman et al. (Ayman et al., 2023) train a predictor that maps single-task statistics and dataset features
to an estimate of whether two or more tasks should be grouped. They then use that predictor to guide
a randomized search over groups, which dramatically reduces the number of multi-task trainings (or
’MTL trials’) needed to find a good partition.

Using a completely different approach, Towards Principled Task Grouping (PTG) (Wang et al., 2024)
formulates grouping as a mathematical program with a theoretically motivated objective capturing
beneficial transfer while respecting resource constraints (e.g., compute budgets). It builds a principled
optimization over candidate groups that is meant to generalize across application domains.

Scalable Task Grouping via Training Dynamics (STG-MLT) (Sherif et al., 2024) avoids expensive
affinity estimation by extracting Data Maps (Swayamdipta et al., 2020) (simple summaries of training
dynamics per task) and then clustering tasks using those features. The clusters are intended to push

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

for positive transfer at larger scale. This approach essentially replaces gradient cross-effects with
more compact trajectory features that are cheap to compute and easy to cluster.

38

	Introduction
	Related Work
	Problem Setup
	Data and Notation
	Interference Coefficient
	Conflict Graph

	Goal

	Proposed Approach
	Estimating Gradient Interference
	Conflict Graph Construction
	Partitioning via Greedy Graph Coloring
	Schedule Generation and Execution
	Minimum update frequency
	Warm-up and Annealing

	Time Complexity

	Theoretical Analysis
	Descent Preservation Within a Low-conflict Group
	Nonconvex Convergence at the Standard Rate up to a Small Factor
	When Scheduled Groups Outperform a Single Mixed Update
	Exact Recovery of the Population Conflict Graph and Task Partition
	Scheduling Properties with Few Groups and Bounded Staleness

	Experimental Setup
	Datasets
	Baseline and State-of-the-Art Comparisons
	Scheduler Extension Models
	Ablation Study
	Static One-Shot Coloring
	Single-Step Conflict Estimation

	Results and Discussion
	Overall Performance Improvements
	Ablation Study on Scheduler Design
	Interpretation of Ablation Study Results

	Additional Analysis
	Optimizer-Task Alignment
	Synergy Between Scheduling and Baselines

	Speed and Tradeoffs

	Conclusion
	Full Algorithm Block for Proposed Approach
	Exact Recovery of Population Conflict Graph & Task Partition
	Setting, definitions, and population objects
	Assumptions
	Deterministic group recovery from the conflict graph
	Uniform control of empirical cosines from EMA gradients
	Exact edge recovery and group recovery
	Quantitative probe-budget requirement
	Summary of the recovery argument

	Descent Bounds for Scheduled versus Aggregated Updates
	Single refresh baselines and notation
	Single aggregated step
	Scheduled group sequence over one refresh

	Telescoping bound for scheduled updates
	Start-of-refresh reduction under per-group lipschitzness

	Upper bounds for scheduled and aggregated updates (general m)
	Scheduled and aggregated gap at a common linearization
	Sufficient conditions for a tighter scheduled bound
	PL or strong convexity: standard rate and upper-bound gains for scheduling
	Why the assumptions are mild
	L-smoothness
	Per-group lipschitzness of Gr
	Negative Hessian-weighted cross-terms
	PL and strong convexity

	Concluding remarks

	Computational Complexity of One Refresh (and Amortized Over Training)
	Notation
	Per-refresh complexity (time and space)
	Amortized cost over training
	Conditions for negligible overhead
	Reducing time complexity
	Random projections
	Deterministic covariance sketching via frequent directions
	Edge sampling for conflict graphs with adaptive refinement
	Incremental gram updates

	Descent Preservation Under -Compatibility
	Proof of Proposition 6
	Lower-bounding the cross terms
	Symmetrizing the mixed sum
	Bounding the mixed sum via Cauchy-Schwarz
	Combining bounds

	Interpretation and practical implications

	Convergence rate with tau-dependent constant
	Discussion and intuition

	Bounded Staleness via Greedy Graph Coloring
	Interpretation

	Greedy Graph-Coloring Uses at Most Delta+1 Colors
	Proof of Proposition 9
	Implications for the scheduler

	Baseline Non-Convex SGD Convergence Rate
	Proof of Theorem 8
	Connection to the scheduler
	Consistency with the unbiased SGD assumption

	Experimental Setup for Datasets
	NYUv2
	CIFAR-10
	AV-MNIST
	MM-IMDb
	STOCKS

	Models Used for Comparison
	Baseline models
	State-of-the-art models

	Expanded Wall-Clock Time Study
	Experimental Setup for Wall-Clock Time Study

	Extended Related Work
	Tuned Loss Weighting
	Adaptive Loss Weighting
	Gradient-Level Conflict Mitigation
	Empirical Task Grouping

