

000 GRAPH COLORING FOR MULTI-TASK LEARNING

001
002
003 **Anonymous authors**

004 Paper under double-blind review

005 006 007 ABSTRACT

008
009 When different objectives conflict with each other in multi-task learning, gradients
010 begin to interfere and slow convergence, thereby potentially reducing the final
011 model’s performance. To address this, we introduce SON-GOKU, a scheduler that
012 computes gradient interference, constructs an interference graph, and then applies
013 greedy graph-coloring to partition tasks into groups that align well with each other.
014 At each training step, only one group (color class) of tasks are activated, and the
015 grouping partition is constantly recomputed as task relationships evolve throughout
016 training. By ensuring that each mini-batch contains only tasks that pull the model
017 in the same direction, our method improves the effectiveness of any underlying
018 multi-task learning optimizer without additional tuning. Since tasks within these
019 groups will update in compatible directions, multi-task learning will improve model
020 performance rather than impede it. Empirical results on six different datasets show
021 that this interference-aware graph-coloring approach consistently outperforms
022 baselines and state-of-the-art multi-task optimizers. We provide extensive theory
023 showing why grouping and sequential updates improve multi-task learning, with
024 guarantees on descent, convergence, and the ability to accurately identify what
025 tasks conflict or align.

026 027 1 INTRODUCTION

028 Multi-task learning (MTL) trains a single model to solve several tasks simultaneously, sharing
029 knowledge across them to learn more effectively (Caruana, 1997). This allows models to generalize
030 better and converge faster. However, a key issue known as negative transfer arises when tasks don’t
031 align very well with each other (Sener & Koltun, 2018; Shi et al., 2023). When two tasks push the
032 shared network in different directions their gradients clash, slowing or even reversing learning. Prior
033 work addresses this issue primarily via (1) gradient manipulation, which reshapes task gradients to
034 reduce conflicts, and (2) loss reweighting, which rescales task objectives to balance their influence.
035 While effective in some specific settings, these strategies typically treat conflict locally at the level
036 of shared-parameter updates and often overlook the evolving global structure of interactions among
037 tasks throughout training.

038 Some recent works focus on partitioning tasks into subsets (groups) and updating those groups
039 separately. These approaches have been found to improve accuracy and training stability by forming
040 groups with high measured affinity and then updating one group at a time (Fifty et al., 2021; Jeong
041 & Yoon, 2025). Grouping can outperform gradient manipulation and loss reweighting when tasks
042 form clusters with aligned gradients, because each update then reduces direct clashes in the shared
043 layers, lowers gradient variance within the step, and lets compatible tasks reinforce one another while
044 conflicting tasks wait for their turn.

045 However, grouping methods often face a few key limitations: (1) many rely on dense pairwise
046 affinities that grow noisy and costly as the number of tasks rises (Fifty et al., 2021; Standley et al.,
047 2020; Sherif et al., 2024); (2) others predetermine or rarely update groups, so they drift as task
048 relations change (Wang et al., 2024; Ruder, 2017); and (3) several use local heuristics that fail to
049 enforce global compatibility or to specify how groups should rotate over time (Zhang & Yang, 2018;
050 Malhotra et al., 2022).

051
052
053 **Anonymized code implementation is available at this URL:** <https://anonymous.4open.science/r/SON-GOKU-ICLR-95AB>

We present **SON-GOKU** (Scheduling via Optimal INterference-aware Graph-COloring for TasK Grouping in MULTitask Learning). We measure gradient interference, build a graph of tasks from those measurements, greedily color the graph to form non-conflicting compatible task groups, and update one color group per step during training. This design addresses the earlier issues. We estimate the interference graph from lightweight minibatch statistics and keep it sparse, which avoids noisy dense matrices and scales to many tasks. We recolor the graph at regular intervals so the groups track changing relations during training. Greedy graph coloring ensures we update only compatible tasks in each step, and the color order gives a simple way to cycle through the groups. Our proposed scheduler does not have to work in isolation, it can function on top of existing loss-reweighting and gradient-manipulation MTL approaches.

In our theoretical analysis (Section 5) we show that, under standard conditions, SON-GOKU tends to group tasks whose gradients are, on average, aligned within each group, with high probability. We further show that, over a refresh window, sequentially updating these low-conflict groups yields *at least* as much expected descent as a single mixed update, and *strictly more* when between-group interference is sufficiently negative. We also prove that SON-GOKU preserves descent and reaches the usual non-convex SGD rate under mild assumptions, with only a small factor that depends on the within-group conflict level. In Appendix D we discuss the scheduler’s amortized time complexity and the tradeoffs it offers between speed and performance. We discuss ways in which practitioners can reduce its time complexity under certain conditions.

Empirical results from experiments demonstrate that SON-GOKU consistently improves outcomes compared to other MTL approaches, especially when SON-GOKU is coupled with existing approaches. Our contributions are as follows:

- We propose SON-GOKU, an interference-aware scheduler that measures cross-task gradient conflict, builds a conflict graph, colors it to form compatible groups, and activates one group per step. It can be used on top of standard MTL optimizers.
- We provide theoretical analysis that offers guarantees on SON-GOKU’s grouping, convergence, scheduling behavior, and more.
- Across six datasets, SON-GOKU improves over strong baselines and pairs well with methods like PCGrad, AdaTask, and GradNorm, delivering consistent gains.
- We perform an ablation study showing that dynamic recoloring and history-averaged conflict estimates are key contributors to performance.

2 RELATED WORK

Prior work has identified the phenomenon of gradient interference in multi-task learning and explored several strategies to mitigate it. We group these such strategies into four families: (1) *Tuned Loss Weighting*, (2) *Adaptive Loss Weighting*, (3) *Gradient-Level Conflict Mitigation*, and (4) *Empirical Task Grouping*. SON-GOKU falls into family (4).

Many MTL methods (especially earlier ones) adjust task influence by learning or adapting loss weights. Examples include uncertainty-based scaling (Kendall et al., 2018), rate-based schemes such as DWA (Liu et al., 2019), and fast bilevel formulations like FAMO (Liu et al., 2023). FAMO in particular is notable for its $\mathcal{O}(1)$ per-step time complexity. These approaches keep all tasks active each step while modulating relative magnitudes. A completely different approach, which emerged in 2018 with MGDA (Sener & Koltun, 2018), focuses on updating shared-parameter *update directions* to mitigate interference. Methods like PCGrad (Yu et al., 2020), CAGrad (Liu et al., 2021), and MGDA (Sener & Koltun, 2018) modify the geometry of the shared update to reduce cross-task conflicts while still updating all tasks each step. A smaller body of work forms subsets of tasks to update together, using offline affinity estimation or training-dynamics signals (Fifty et al., 2021; Standley et al., 2020; Wang et al., 2024; Sherif et al., 2024). **See Appendix Q for additional analysis of non-conflict task grouping.** Most recently, Selective Task Group Updates proposes online grouping with sequential updates, reporting that update order can influence task-specific learning (Jeong & Yoon, 2025). **SON-GOKU differs in mechanism from existing approaches (Section 4). It complements loss reweighting and gradient surgery, and we provide explicit guarantees on descent, convergence, and graph partition recovery.** An expanded discussion and commentary of related work is provided in Appendix M.

108 **3 PROBLEM SETUP**
 109

110 We formalize multi-task learning (MTL) (Caruana, 1997) as optimizing a shared network while
 111 activating only a subset of tasks at each step. Each task contributes a loss whose gradients may
 112 align or conflict. We quantify conflict using (the negative of) cosine similarity, embed tasks in a
 113 conflict graph, and later use that graph to derive a schedule (see Appendix P for a unique, modular,
 114 formulation and results with alternative measures of affinity). This section fixes notation and states
 115 the optimization goal that the proposed approach addresses.

116 **3.1 DATA AND NOTATION**
 117

118 Let $\mathcal{T} = \{T_1, \dots, T_K\}$ be the set of tasks. The model has shared parameters $\theta \in \mathbb{R}^d$ and task-specific
 119 parameters $\phi_k \in \mathbb{R}^{d_k}$ for T_k . Each task draws examples (x, y_k) from a distribution \mathcal{D}_k and defines a
 120 per-example loss $\ell_k(\theta, \phi_k; x, y_k)$. Its population loss is
 121

$$L_k(\theta, \phi_k) := \mathbb{E}_{(x, y_k) \sim \mathcal{D}_k} [\ell_k(\theta, \phi_k; x, y_k)]. \quad (1)$$

122 We minimize the standard weighted MTL objective
 123

$$F(\theta, \phi_1, \dots, \phi_K) = \sum_{k=1}^K w_k L_k(\theta, \phi_k), \quad (2)$$

124 with nonnegative task weights w_k (default $w_k = 1$). Note that, for simplicity in later sections, we
 125 absorb w_k into the per-task gradient estimates. This is permissible since positive scalings do not
 126 change cosine signs or the induced conflict graph.

127 At step t , for any task k that is active we compute stochastic gradients on a mini-batch $\mathcal{B}_k^{(t)} \subset \mathcal{D}_k$:

$$g_k^{(t)} := \nabla_{\theta} L_k(\theta_t, \phi_{k,t}; \mathcal{B}_k^{(t)}), \quad h_k^{(t)} := \nabla_{\phi_k} L_k(\theta_t, \phi_{k,t}; \mathcal{B}_k^{(t)}). \quad (3)$$

128 In our proposed method, we form exponential moving averages (EMA) of per-task gradients within a
 129 refresh window to stabilize cosine estimates so that they do not become stale (Sec. 4).
 130

131 **3.1.1 INTERFERENCE COEFFICIENT**
 132

133 We quantify pairwise interaction **with the interference coefficient**
 134

$$\rho_{ij} = -\frac{\langle \tilde{g}_i, \tilde{g}_j \rangle}{\|\tilde{g}_i\| \|\tilde{g}_j\|}, \quad (4)$$

135 where \tilde{g}_i and \tilde{g}_j are the EMA-smoothed gradients at refresh. Positive ρ_{ij} indicates conflict (negative
 136 cosine). $\rho_{ij} \leq 0$ indicates alignment or neutrality.

137 **3.1.2 CONFLICT GRAPH**
 138

139 Fix a tolerance $\tau \in (0, 1)$. The conflict graph is
 140

$$G_{\tau} = (\mathcal{T}, E_{\tau}), \quad E_{\tau} = \{(i, j) : \rho_{ij} > \tau\}. \quad (5)$$

141 Vertices are tasks. An edge between a pair means to not update that pair together. We will utilize G_{τ}
 142 for coloring and scheduling in Section 4

143 **3.2 GOAL**
 144

145 At training step t we choose an active set $S_t \subseteq \mathcal{T}$ and update only those tasks:

$$\theta_{t+1} = \theta_t - \eta_t \sum_{k \in S_t} g_k^{(t)}, \quad \phi_{k,t+1} = \begin{cases} \phi_{k,t} - \eta_t h_k^{(t)}, & k \in S_t, \\ \phi_{k,t}, & k \notin S_t. \end{cases} \quad (6)$$

146 The problem the scheduler addresses is to design the sequence $\{S_t\}_{t=1}^T$ so that: (1) every task is
 147 visited regularly; and (2) conflicting tasks seldom appear together. We instantiate this via greedy
 148 graph coloring in Section 4 and analyze the guarantees in Section 5.

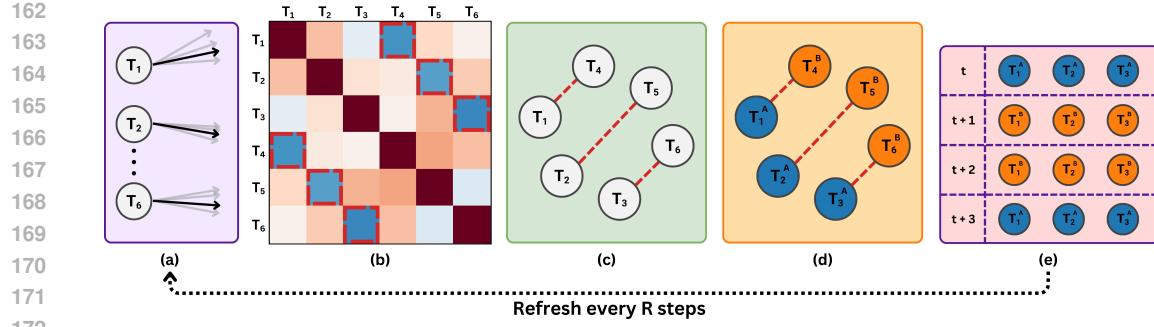


Figure 1: Interference-aware scheduling pipeline: (a) For each task T_i (circles $T_1 \dots T_6$), we smooth recent per-step gradients with an Exponential Moving Average (EMA); (b) From these EMA vectors we compute the pairwise cosine matrix. In the figure, cells outlined with red dashes mark pairs with cosine $< -\tau$. These are flagged as conflicts; (c) We build the conflict graph whose nodes are tasks T_i and whose red dashed edges connect exactly those pairs identified in (b); (d) We apply greedy graph coloring so that no conflict edge lies within a color, producing low-conflict groups. In the example shown, we have two groups: A as blue and B as orange; (e) During training we activate one group per step. After every R steps (here, $R = 4$) we 'refresh' and run the pipeline again from step A, where we update the EMAs with the latest gradients.

4 PROPOSED APPROACH

We design an interference-aware scheduler that partitions tasks into low-conflict groups and activates exactly one group per optimization step. The procedure consists of four stages: (1) estimating pairwise interference, (2) building and coloring the conflict graph, (3) generating a periodic schedule, and (4) updating that schedule as training evolves. An overview of the scheduler is provided as Algorithm 1 in Appendix A. A visualization of SON-GOKU is provided in Figure 1 alongside a simple summary in the Figure caption.

4.1 ESTIMATING GRADIENT INTERFERENCE

We absorb task weights into per-task losses, so $g_k^{(t)}$ is the gradient of the weighted loss $w_k L_k$. Cosine calculations and graph construction are not impacted by applying positive scaling.

At step t and for every task T_k appearing in the current mini-batch we compute a task-specific stochastic gradient

$$g_k^{(t)} = \nabla_{\theta} \mathcal{L}_k(\theta_t, \phi_{k,t}; \mathcal{B}_k^{(t)}), \quad (7)$$

using an independent sub-batch $\mathcal{B}_k^{(t)} \subset \mathcal{D}_k$. We then update an exponential moving average

$$\tilde{g}_k^{(t)} = \beta \tilde{g}_k^{(t-1)} + (1 - \beta) g_k^{(t)}, \quad \beta \in [0, 1], \quad (8)$$

which stabilizes cosine estimates while requiring only two buffers per task (current and previous). To estimate such cosines in practice, we employ low dimensional sketches of the EMA for each task, so the additional memory usage scales well (Ghashami et al., 2016a). Whenever we refresh the schedule (every R steps) we form the pairwise interference matrix.

$$\rho_{ij}^{(t)} = -\frac{\langle \tilde{g}_i^{(t)}, \tilde{g}_j^{(t)} \rangle}{\|\tilde{g}_i^{(t)}\| \|\tilde{g}_j^{(t)}\|}, \quad i, j \in \{1, \dots, K\}. \quad (9)$$

Computing all $K(K - 1)/2$ cosines via the Gram matrix in the r -dimensional sketch space costs $O(Kdr + K^2r)$, namely $O(Kdr)$ to form the sketch M_f and $O(K^2r)$ for the Gram product, where

216 $r \ll d$ is the sketch width (see Appendix D.5.1). We also write $h_k^{(t)} = \nabla_{\phi_k} \mathcal{L}_k(\theta_t, \phi_{k,t}; \mathcal{B}_k^{(t)})$ for the
 217 gradient with respect to the task-specific parameters ϕ_k .
 218

219 **4.2 CONFLICT GRAPH CONSTRUCTION**
 220

221 Given a tolerance $\tau \in (0, 1)$, the conflict graph at update round r is
 222

223
$$G_{\tau}^{(r)} = (V, E_{\tau}^{(r)}), \quad V = \{1, \dots, K\} E_{\tau}^{(r)} = \{(i, j) : \rho_{ij}^{(t_r)} > \tau\}. \quad (10)$$

 224

225 To clarify, tasks are indexed by integers $1 \dots K$ in Equation 10. Edges connect tasks whose averaged
 226 gradients have cosine similarity less than $-\tau$. Intuitively, larger τ yields a sparser conflict graph,
 227 typically fewer colors (larger per-step groups), and more frequent updates per task. Smaller τ results
 228 in a denser graph, more colors (smaller per-step groups), and less frequent updates per task. **This**
 229 **construction reflects optimization-time interference.** $G_{\tau}^{(r)}$ is symmetric and undirected, derived from
 230 current gradient geometry to decide which tasks should not be updated together.
 231

232 **4.3 PARTITIONING VIA GREEDY GRAPH COLORING**
 233

234 We apply the Welsh-Powell largest-first greedy heuristic (Welsh & Powell, 1967) to color $G_{\tau}^{(r)}$
 235 and obtain color classes $C_1^{(r)}, \dots, C_{m_r}^{(r)}$. Classical graph-theory results (West, 2000; Diestel, 2017)
 236 guarantee the heuristic uses no more than $\Delta + 1$ colors, where Δ is the maximum vertex degree. In
 237 practice Δ is small because many task pairs do not interfere, yielding concise schedules.
 238

239 **4.4 SCHEDULE GENERATION AND EXECUTION**
 240

241 We create a periodic schedule of length m_r :
 242

243
$$S_t = C_{(t \bmod m_r) + 1}^{(r)}, \quad t_r \leq t < t_{r+1} = t_r + R. \quad (11)$$

 244

245 Each training step activates exactly one color class; over one period every task in that class receives a
 246 gradient update, while conflicting tasks (edges in $E_{\tau}^{(r)}$) are guaranteed not to co-occur.
 247

248 **4.4.1 MINIMUM UPDATE FREQUENCY**
 249

250 If the greedy coloring yields a singleton class for a rarely updated task, we increase its update
 251 frequency by duplicating it only into steps whose active color has no conflict edge to that task.
 252

253 **4.4.2 WARM-UP AND ANNEALING**
 254

255 We start with $\tau = 1$ (no edges, full simultaneous training) for the first T_{warm} steps, then logarithmically
 256 anneal τ to a target value τ^* . This mitigates noisy gradient signals early in training. **Similarly,**
 257 **we can set the refresh period with a smaller R to adapt to changing gradients and increase it as**
 258 **training stabilizes (Appendix O).**
 259

260 **4.5 TIME COMPLEXITY AND SPACE COMPLEXITY**
 261

262 **Using the sketched implementation described in Appendix D, a single refresh of the SON-GOKU**
 263 **scheduler has time complexity $O(Kdr + K^2r)$, where $r \ll d$ is the sketch width.** However, unlike
 264 **many MTL approaches, our scheduler concentrates its extra work in occasional refreshes.** **This**
 265 **time complexity therefore becomes $O\left(\frac{Kr(d+K)}{R}\right)$ amortized per training step where R is the refresh**
 266 **period (the number of training steps between conflict-graph rebuilds).** **For the small, fixed r used in**
 267 **our experiments, this overhead still grows roughly quadratically in K but is independent of d up to**
 268 **the $O(Kdr)$ sketching term and shrinks linearly with the refresh period R .** Similarly, SON-GOKU's
 269 **persistent space complexity of $O(K^2)$ scales with K but not d , the number of model parameter**
dimensions, allowing it to maintain low memory usage even with large backbone models. We provide

270 a full analysis of the time complexity in Appendix D and discuss approaches to reducing time
 271 complexity under certain conditions in Appendix D.5. See also Appendix R for scaling behavior with
 272 larger backbones.

274 5 THEORETICAL ANALYSIS

275 We discuss some of the main guarantees behind SON-GOKU. For a very brief overview: (1) Updating
 276 groups of tasks whose gradients are mostly low-conflict (no internal edges) reduces the objective on
 277 average and still achieves the usual $1/\sqrt{T}$ convergence rate; (2) Over a refresh window, scheduling
 278 several group updates can beat one mixed update that uses all tasks at once; and (3) With a small
 279 number of recent gradient measurements per task (via EMA) and a margin separating conflicts, the
 280 estimated conflict graph matches the ideal one, giving a short schedule where every task is updated
 281 at least once every $\Delta + 1$ steps (Δ is the maximum number of conflicts for any task). We provide
 282 expanded assumptions, definitions, proofs, reasoning, analysis, etc. in Appendix 5.4–I (see also
 283 [Appendix N, P–R](#)).

284 5.1 DESCENT PRESERVATION WITHIN A LOW-CONFLICT GROUP

285 If the active set S_t at step t is τ -compatible, then the combined update is a descent direction with a
 286 quantitative lower bound:

$$287 \left\| \sum_{k \in S_t} g_{k,t} \right\|^2 \geq (1 - \tau (|S_t| - 1)) \sum_{k \in S_t} \|g_{k,t}\|^2 \quad (12)$$

288 Thus the step cannot flip to ascent whenever $\tau (|S_t| - 1) < 1$. This is proved by expanding the
 289 polarization identity and controlling cross terms under the τ -compatibility condition (see Appendix
 290 E). Essentially, this means that SON-GOKU’s per-step updates are safe when groups are low conflict.
 291 The aggregate direction keeps pointing downhill and the cancellation is quantitatively limited by τ
 292 and group size.

293 5.2 NONCONVEX CONVERGENCE AT THE STANDARD RATE UP TO A SMALL FACTOR

294 Under standard smoothness and noise conditions (see Appendix I) and with steps $\eta = c/\sqrt{T}$, SON-
 295 GOKU achieves the usual nonconvex SGD rate, with a mild $(1 + \tau)$ factor that reflects within-group
 296 conflict:

$$297 \min_{t < T} \mathbb{E} \|\nabla F(\theta_t)\|^2 \leq \frac{2(F_0 - F^*)}{c\sqrt{T}} (1 + \tau) + \frac{cL\sigma^2}{\sqrt{T}} \quad (13)$$

298 When $\tau = 0$, the constant matches the classical bound (Bottou et al., 2018; Ghadimi & Lan, 2013);
 299 as $\tau \rightarrow 1$, it at most doubles, matching the intuition that conflict can cancel up to half of the progress.
 300 This demonstrates that scheduling does not degrade asymptotic progress. SON-GOKU preserves the
 301 $1/\sqrt{T}$ decay of the gradient norm while controlling the constant through the compatibility threshold τ .
 302 In other words, we keep the standard rate of SGD and trade a small constant for reduced interference.

311 5.3 WHEN SCHEDULED GROUPS OUTPERFORM A SINGLE MIXED UPDATE

312 We compare two ways to use the same gradients gathered at a refresh: a scheduled sequence of
 313 per-group steps (i.e., the scheduler used in SON-GOKU) versus a single aggregated step. Using
 314 a telescoping L -smooth bound and evaluating both trajectories at a common linearization (i.e.,
 315 expanding F at the refresh start θ_{t_r} and applying the same first-order model with the same step size)
 316 the scheduled bound is never worse and is strictly better when cross-group interaction terms are
 317 sufficiently negative (so mixed updates would cancel progress).

318 Essentially, when different groups’ gradients pull in opposing directions (so adding them together
 319 would cancel progress) the scheduler has an advantage. In that case, taking the updates one group
 320 at a time is provably better. Our theory guarantees a larger drop in the objective during that refresh
 321 than the one-shot step, even though both use the same step size and the same gradients. Under the PL
 322 condition, the scheduled path maintains the usual contraction factor and gains a nonnegative extra
 323 decrease term over the window.

324 5.4 EXACT RECOVERY OF THE POPULATION CONFLICT GRAPH AND TASK PARTITION
325

326 We show that, after observing gradients for only a modest number of steps, the scheduler can exactly
327 reconstruct the true conflict relations among tasks by averaging recent gradients (EMA), computing
328 pairwise cosines, thresholding at $-\tau$, and coloring the resulting graph. Under a separation margin
329 γ around the threshold (tasks are meaningfully different), bounded noise, and bounded drift within
330 each refresh window, the conflict graph estimated from finite data agrees, with high probability, with
331 the ideal population conflict graph $G^* \tau$ (defined from the pairwise cosines of the true mean gradients
332 $\{\mu_i\}_{i=1}^K$ at the start of the refresh window). Equivalently, when the uniform cosine estimation error is
333 below γ , we have $\hat{G}_\tau = G^* \tau$ and the resulting grouping recovers the ground-truth task partition. This
334 explains why the scheduler’s group structure is trustworthy and ties the required number of recent
335 gradient measurements per task to interpretable quantities such as noise level, margin, and the number
336 of tasks. For example, an effective sample size of $n_{\text{eff}} \gtrsim \frac{\sigma^2}{m_0^2 \gamma^2} \log(K/\delta)$ suffices in our analysis.
337

338 5.5 SCHEDULING PROPERTIES WITH FEW GROUPS AND BOUNDED STALENESS
339

340 Welsh-Powell greedy coloring uses at most $\Delta + 1$ colors on a graph whose maximum degree is Δ
341 (Bonamy et al., 2018). Running the colors in a fixed cycle means each task is updated at least once
342 every $m \leq \Delta + 1$ steps. Equivalently, no task waits more than Δ steps between updates (bounded
343 staleness).

344 This means that the schedule length is controlled by the worst conflict degree Δ rather than by the
345 total number of tasks K . This results in two important benefits: (1) a minimum update-frequency
346 guarantee, since every task receives an update at least once per cycle of length $\leq \Delta + 1$; and (2)
347 compatibility with standard bounded-delay conditions used in analyses of asynchronous SGD (e.g.,
348 Niu et al. 2011; Lian et al. 2015), with delay parameter at most Δ . When $\Delta \ll K$, we achieve both
349 low interference (few conflicts per step) and low staleness (short update gaps).
350

351 6 EXPERIMENTAL SETUP
352353 6.1 DATASETS
354

355 We evaluate across six benchmarks spanning vision, multimodal, and time-series. For each dataset
356 we specify a small set of primary tasks and add positive and negative auxiliaries to stress interference.
357 Architectures are standard backbones (e.g., ResNet-18 for image tasks, CNN/BiLSTM for time-series)
358 with task-specific heads. Full dataset and task definitions, auxiliary construction, and architecture
359 details (including preprocessing and head designs) appear in Appendix J and Table 4. We provide
360 additional experiments with varying backbones in Appendix R.
361

362 6.2 BASELINE AND STATE-OF-THE-ART COMPARISONS
363

364 We compare against loss-weighting (Uniform, GradNorm, AdaTask), multi-objective (MGDA, Nash-
365 MTL, FairGrad), projection/surgery (PCGrad, CAGrad), and fast adaptive weighting (FAMO). We
366 provide short method notes in Appendix K and discuss these approaches in Section 2.
367

368 6.3 SCHEDULER EXTENSION MODELS
369

370 In addition to standalone models, we also evaluate combinations of the scheduler with existing
371 approaches.
372

1. *SON-GOKU + AdaTask*. Combines our interference-aware task selection with AdaTask’s
373 dynamic loss weighting, applying adaptive weights only to scheduler-selected tasks.
2. *SON-GOKU + GradNorm Warm Start*. Initializes training with GradNorm for stable
375 gradient magnitudes, then transitions to our scheduler after 3 epochs.
3. *SON-GOKU + PCGrad*. Applied PCGrad’s gradient projection specifically to tasks selected
377 by our scheduler, providing fine-grained conflict resolution within τ -compatible groups.

378
379
Table 1: Performance of Evaluated Approaches Across Datasets. *DM* represents Density-Matched
ablation variants

380 Model	381 Accuracy (%) \uparrow			382 F&B		383 HEALTH		384 NYUv2		
	385 CIFAR-10	386 AV-MNIST	387 MM-IMDb	388 Acc. (%) \uparrow	389 MAE \downarrow	390 Acc. (%) \uparrow	391 MAE \downarrow	392 Angle Error \downarrow	393 Seg. MIOU \uparrow	394 Depth RMSE \downarrow
Uniform	55 \pm 2.2	63 \pm 1.5	56 \pm 2.8	45 \pm 2.4	0.57 \pm 0.030	52 \pm 2.0	0.54 \pm 0.024	21.6 \pm 0.27	0.059 \pm 0.003	0.73 \pm 0.018
GradNorm	61 \pm 1.6	65 \pm 1.1	58 \pm 2.0	47 \pm 2.3	0.57 \pm 0.020	53 \pm 2.1	0.52 \pm 0.019	21.4 \pm 0.23	0.054 \pm 0.004	0.65 \pm 0.016
MGDA	59 \pm 2.9	62 \pm 1.7	56 \pm 3.3	44 \pm 3.0	0.57 \pm 0.036	53 \pm 2.5	0.53 \pm 0.030	21.8 \pm 0.33	0.063 \pm 0.005	0.75 \pm 0.024
PCGrad	61 \pm 1.9	65 \pm 1.3	58 \pm 2.3	50 \pm 2.1	0.55 \pm 0.024	58 \pm 2.0	0.48 \pm 0.021	20.9 \pm 0.24	0.070 \pm 0.004	0.69 \pm 0.013
CAGrad	59 \pm 2.0	62 \pm 1.1	57 \pm 2.5	46 \pm 2.5	0.58 \pm 0.031	53 \pm 1.9	0.52 \pm 0.024	21.9 \pm 0.29	0.065 \pm 0.004	0.73 \pm 0.018
AdaTask	63 \pm 1.5	67 \pm 0.9	59 \pm 1.9	47 \pm 1.9	0.59 \pm 0.026	55 \pm 2.2	0.52 \pm 0.024	20.3 \pm 0.23	0.069 \pm 0.004	0.65 \pm 0.015
FAMO	64 \pm 1.2	70 \pm 1.0	61 \pm 1.6	52 \pm 2.0	0.53 \pm 0.021	60 \pm 1.8	0.49 \pm 0.018	19.9 \pm 0.19	0.074 \pm 0.003	0.63 \pm 0.012
FairGrad	62 \pm 1.8	66 \pm 1.3	59 \pm 2.5	52 \pm 2.5	0.54 \pm 0.026	60 \pm 2.0	0.47 \pm 0.022	20.7 \pm 0.27	0.072 \pm 0.004	0.67 \pm 0.015
Nash-MTL	63 \pm 1.9	66 \pm 1.2	60 \pm 2.1	52 \pm 2.3	0.54 \pm 0.024	60 \pm 2.3	0.47 \pm 0.023	20.6 \pm 0.24	0.073 \pm 0.004	0.67 \pm 0.013
Static One-Shot	61 \pm 2.0	66 \pm 1.1	58 \pm 2.6	48 \pm 2.3	0.56 \pm 0.027	54 \pm 2.1	0.51 \pm 0.025	20.5 \pm 0.25	0.071 \pm 0.004	0.65 \pm 0.016
Single-Step	40 \pm 4.2	59 \pm 2.4	20 \pm 5.4	42 \pm 3.9	0.60 \pm 0.041	47 \pm 3.5	0.55 \pm 0.034	26.4 \pm 0.55	0.042 \pm 0.006	0.81 \pm 0.029
SON-GOKU (Threshold, DM)	63	68	59	49	0.55	56	0.51	20.6	0.071	0.61
SON-GOKU (kNN-Symm.)	60	65	55	46	0.57	52	0.53	22.1	0.066	0.70
SON-GOKU (kNN-Symm., DM)	61	66	57	47	0.56	54	0.52	21.4	0.068	0.66
SON-GOKU (Signed-only)	56	63	52	43	0.60	50	0.56	24.0	0.053	0.76
SON-GOKU (Signed-only, DM)	58	64	54	45	0.59	52	0.54	23.0	0.056	0.73
SON-GOKU (Quantile)	64	68	60	50	0.54	57	0.50	20.3	0.072	0.60
SON-GOKU (Quantile, DM)	65	69	61	51	0.53	58	0.50	20.0	0.072	0.59
SON-GOKU + GradNorm	62 \pm 1.4	69 \pm 1.0	59 \pm 1.7	51 \pm 1.8	0.53 \pm 0.022	59 \pm 1.7	0.49 \pm 0.018	19.6 \pm 0.19	0.073 \pm 0.003	0.64 \pm 0.011
SON-GOKU + AdaTask	67 \pm 1.2	71 \pm 0.9	63 \pm 1.6	52 \pm 1.7	0.53 \pm 0.021	59 \pm 1.8	0.48 \pm 0.017	20.1 \pm 0.20	0.068 \pm 0.004	0.67 \pm 0.013
SON-GOKU + PCGrad	65 \pm 1.3	70 \pm 0.9	60 \pm 1.8	54 \pm 2.0	0.52 \pm 0.024	62 \pm 1.6	0.45 \pm 0.020	19.7 \pm 0.18	0.076 \pm 0.003	0.62 \pm 0.010
SON-GOKU	65 \pm 1.5	69 \pm 1.0	61 \pm 1.8	51 \pm 1.9	0.53 \pm 0.023	58 \pm 1.7	0.50 \pm 0.018	19.8 \pm 0.20	0.073 \pm 0.004	0.59 \pm 0.012

394
395
6.3.1 SINGLE-STEP CONFLICT ESTIMATION
396397
Here, we set the history length to $H = 1$, so every recoloring step relies on only the most recent
398
mini-batch gradients to estimate interference. Without aggregation over many past steps, the conflict
399
graph should become highly noisy, causing unstable task groupings from one update window to the
400
next. This variant tests the importance of historical conflict statistics in the scheduler.401
402
7 RESULTS AND DISCUSSION
403404
Results for all models across every experiment are depicted in Table 1. **All metrics are held-out**
405
test results under identical training setups and architectures. Across ten metrics on six datasets, our
406
conflict-aware schedulers consistently match or exceed all baseline methods.
407408
409
7.1 OVERALL PERFORMANCE IMPROVEMENTS410
Overall, the conflict-aware approaches improve over the uniform baseline by 10%-20% on CIFAR-10
411
and by 7% on MM-IMDb, indicating that grouping tasks according to measured interference is more
412
effective than treating all tasks equally at every update. On NYUv2, we see similar improvements
413
across all the metrics. These results suggest that the scheduler’s graph coloring cleanly separates
414
high-conflict tasks, preserving the projection or LR-balancing advantages (stemming from PCGrad’s
415
gradient projection and AdaTask’s learning-rate adaptation, respectively) while removing residual
416
interference (see App. S for grouping patterns at training time and more analyses). As we evaluated
417
across diverse tasks and datasets, our results also demonstrate clear improvements in generalization.
418419
7.2 ABLATION STUDY ON SCHEDULER DESIGN
420421
We evaluate nine controlled ablations of six types: (i) **Static One-Shot Coloring**, which runs greedy
422
graph coloring once at the start of training and then freezes the groups, testing dependence on *dynamic*
423
recoloring as gradients change; (ii) **Single-Step Conflict Estimation**, which sets the history length to
424
 $H = 1$ so each recoloring uses only the most recent mini batch, testing the importance of averaging
425
conflict statistics over time; (iii) **Threshold Graph (baseline)**, which connects tasks i and j when the
426
smoothed cosine $\hat{s}_{ij}(t)$ falls below a global threshold $-\tau(t)$; (iv) **kNN-Symmetric Graph**, which
427
connects each task to its m most conflicting neighbors and then symmetrizes the edges, enforcing
428
roughly fixed degree per task and comparing local degree control against the global threshold rule;
429
(v) **Signed-Only Graph**, which adds an edge only if $\hat{s}_{ij}(t) < 0$, yielding a very sparse graph and
430
ignoring moderate (but potentially harmful) conflicts; and (vi) **Quantile Threshold Graph**, which at
431
each refresh sets $\tau(t)$ so that only the worst $p\%$ of cosine values are treated as conflicting, keeping
edge density approximately stable and testing an adaptive cutoff versus a fixed global threshold.
We evaluate each graph rule under two settings. In the *fixed* τ setting, all rules share the same $\tau(t)$

432 schedule used in the main experiments. In the *density-matched* setting, we adjust the hyperparameters
 433 of each rule so that all graphs have approximately the same edge density at each refresh. This isolates
 434 the effect of which pairs are marked as conflicting, rather than how many edges are present. We go
 435 into much further detail regarding the ablation in Appendix K.3.

436 These ablations directly test the assumptions behind SON-GOKU. Static One-Shot, which freezes
 437 groups, consistently underperforms the full scheduler on most metrics, indicating that task relations
 438 change enough during training that dynamic recoloring is needed to maintain τ -compatibility as
 439 gradients drift (Sections 5.1–5.2). Single-Step, which uses $H = 1$, is clearly worse across datasets,
 440 matching our claim that batch cosines are too noisy. Instead, averaging conflict statistics over short
 441 history windows provides the clean information needed for accurate graph recovery (Section 5.4).
 442 Among graph constructions, simple threshold and quantile rules (and their density-matched variants)
 443 perform similarly well, suggesting that any approach that reliably isolates the worst conflicting pairs
 444 is sufficient. In contrast, Signed-Only and kNN-Symmetric, which ignore conflict magnitude or have
 445 purely local degree control, degrade performance more noticeably, especially on NYUv2 and the
 446 tabular benchmarks. Overall, the best performing configurations are precisely those that match the
 447 descent and recovery conditions analyzed in Sections 5.1–5.2 and 5.4.

448 449 7.3 ADDITIONAL ANALYSIS

450 451 7.3.1 OPTIMIZER-TASK ALIGNMENT

452 Interestingly, we observe that AdaTask-based approaches tend to be the best on classification tasks
 453 (CIFAR-10, AV-MNIST, MM-IMDb) while PCGrad-based approaches tend to be the best on tasks
 454 that model regression (NYUv2).

455 We believe that this stems from unique differences in the features of classification and regression-
 456 based models. For example, cross-entropy gradients near decision boundaries tend to be bursty and
 457 high in variance (Shrivastava et al., 2016; Lin et al., 2017; Hoffer et al., 2017). By scaling each task’s
 458 step size according to its running gradient norm, AdaTask smooths out these spikes.

459 On the other hand, we believe that PCGrad under the scheduler performs particularly well on
 460 regression and dense-prediction tasks as their tasks tend to generate smooth, large-magnitude gradients
 461 whose directions change gradually. PCGrad removes only the small component of the gradient that
 462 conflicts across tasks, preserving the main descent direction while reducing interference.

464 465 7.3.2 SYNERGY BETWEEN SCHEDULING AND BASELINES

466 We believe that the superior results found in the combinations of the scheduler and baseline models
 467 can be traced to the way scheduling and optimization reinforce one another.

468 First, greedy graph coloring partitions tasks into τ -compatible groups, segregating tasks with highly
 469 divergent gradients. This yields a guaranteed lower bound on descent (Proposition 6), directly
 470 improving optimization efficiency.

472 Within each low-conflict group, the optimizer can do its job under more ideal conditions. PCGrad can
 473 remove the remaining minor conflicting components, preserving the majority of the descent direction.
 474 AdaTask can adjust each task’s learning rate without being impacted by large adversarial gradients.

475 This $\Delta + 1$ color bound ensures that every task is scheduled at least once per period. This prevents
 476 tasks from being essentially starved of updates.

477 Finally, by computing interference over a window, the scheduler smooths out gradient fluctuations.
 478 This prevents the erratic schedule changes that projection-only grouping methods have been shown to
 479 face (Yu et al., 2020; Shi et al., 2023; Zhang et al., 2024), thereby better stabilizing convergence.

481 482 7.3.3 SON-GOKU’S ABILITY TO CREATE GENERALIZABLE MODELS

483 While our guarantees in Section 5 and Appendices B–F are stated in optimization terms, they also
 484 directly increase gradient coherence and limit destructive interference in ways that are known to favor
 485 generalization to unseen data. Section 5.1 shows that the aggregated group gradient remains aligned
 with descent and that intra-group gradient conflict is explicitly limited by τ and $|S_t|$. Section 5.3 then

486 Table 2: Wall-clock time (seconds \pm standard deviation) vs. number of tasks K .
487

Method (R if applicable)	K=3	K=6	K=16	K=40
Uniform	0.2656 \pm 0.1201	0.3240 \pm 0.0629	0.3798 \pm 0.1050	0.4054 \pm 0.1190
GradNorm	5.4714 \pm 0.7137	5.1201 \pm 0.6112	4.9042 \pm 0.5869	4.7372 \pm 0.9286
AdaTask	2.1816 \pm 0.0934	2.1032 \pm 0.1012	2.2853 \pm 0.0718	2.2278 \pm 0.1370
PCGrad	3.6212 \pm 0.3517	23.1266 \pm 0.8773	176.7566 \pm 2.8171	1127.1337 \pm 34.2603
MGDA	97.1081 \pm 5.4645	121.4371 \pm 9.0923	132.4913 \pm 3.1752	134.0878 \pm 2.2621
FAMO	2.0725 \pm 0.2073	1.9980 \pm 0.1998	2.1710 \pm 0.2171	2.1164 \pm 0.2116
FairGrad	3.8020 \pm 0.5703	15.2079 \pm 2.2812	108.1450 \pm 16.2218	675.9065 \pm 101.3860
Nash-MTL	5.7030 \pm 1.1406	22.8118 \pm 4.5624	162.2176 \pm 32.4435	1013.8598 \pm 202.7720
SON-GOKU ($R = 32$)	1.9896 \pm 0.3651	3.3202 \pm 0.5745	6.0897 \pm 0.9425	12.1432 \pm 1.2044
SON-GOKU + AdaTask ($R = 32$)	3.7718 \pm 0.9654	5.0511 \pm 0.6531	7.5903 \pm 1.1920	14.5182 \pm 2.0660
SON-GOKU + GradNorm ($R = 32$)	7.0202 \pm 1.0711	8.1661 \pm 0.9355	10.7227 \pm 2.2088	16.5760 \pm 1.8418
SON-GOKU + PCGrad ($R = 32$)	1.9834 \pm 0.3586	3.4971 \pm 0.3840	6.1395 \pm 0.9425	10.9097 \pm 1.5263

498
499 compares two ways to apply the same gradients during a refresh, either a single mixed update or a
500 scheduled sequence of group updates. Together, these analyses imply that each step in SON-GOKU
501 provides more informative signals and less interference, or, equivalently, a higher gradient-to-noise
502 ratio (Sun et al., 2023; Fan et al., 2023; McCandlish et al., 2018). Building on this, Section 5.4 shows
503 that SON-GOKU’s estimated conflict graph recovers the population structure with high probability,
504 so the schedule repeatedly updates clusters of related tasks rather than conflicting tasks. By enforcing
505 positive affinity within groups, SON-GOKU is able to train related tasks together. This enables
506 effective sharing of model parameters across different tasks, reducing the complexity of the model
507 and increasing sample efficiency (Caruana, 1997; Argyriou et al., 2007; Vandenbende et al., 2022).
508 With this alongside a high gradient-to-noise signal ratio, SON-GOKU theoretically generalizes across
509 many different datasets, domains, and distributions and can perform well even under non-ideal
510 conditions (e.g., noisy labels, class or task imbalance, distribution shift, etc.) (Michalkiewicz et al.,
511 2023). Our ablation results (Table 1) demonstrate that variants without dynamic recoloring or history
512 averaging perform worse, indicating accurate and low-conflict grouping is essential.
513

514 7.4 SPEED AND TRADEOFFS

515 SON-GOKU has a time complexity of $O(Kr(d + K)/R)$ (Section 4.5) amortized per training step
516 (Section 4.5). Table 2 shows near-linear growth over this range of K at $R=32$, reflecting sparsity
517 in the graphs and batched cosine computation. SON-GOKU’s time rises from around 2 seconds
518 ($K = 3$) to 12 seconds ($K = 40$), remaining far below methods that perform heavy conflict handling.
519 For example, PCGrad, FairGrad, and Nash-MTL increase steeply with K . In contrast, FAMO and
520 AdaTask are among the fastest and largely flat with K , as expected from their constant overhead.
521

522 **SON-GOKU is also memory efficient, with an only incremental memory footprint that scales with the**
523 **number of tasks K , not the parameter dimension d .** The scheduler’s peak memory during a refresh
524 **step is $O(K^2 + Kr)$ and the persistent state between refreshes is $O(K^2)$ (see Appendix N for further**
525 **theoretical and experimental analysis).** By contrast, methods that retain K full gradients require
526 $O(Kd)$ additional memory. This implies that, on larger backbones (high d), SON-GOKU’s memory
527 **overhead is modest and grows mainly with the task count K , rather than with model size.**

528 These contrasts demonstrate the tradeoffs between speed and fidelity to task interference. Faster
529 methods like FAMO minimize overhead, while methods that model conflicts can improve accuracy.
530 These tradeoffs have to be assessed on a case-by-case basis, based on values that factor into each
531 approach’s time complexity and the importance of training speed versus performance.
532

8 CONCLUSION

533 We introduced SON-GOKU, an interference-aware scheduler that estimates cross-task alignment,
534 builds a sparse conflict graph, and greedily colors it to activate one low-conflict group per step.
535 Formally, we provide rigorous theoretical guarantees that justify the design and effectiveness of the
536 scheduler. Empirically, across six benchmarks, SON-GOKU improves over strong baselines and
537 recent approaches. It complements optimizers like PCGrad and AdaTask, indicating that scheduling
538 and gradient shaping are synergistic. By modeling task interactions with a conflict graph and schedule,
539 SON-GOKU offers a simple, scalable, and theory-backed mechanism for robust multitask training.

540 **9 REPRODUCIBILITY STATEMENT**
 541

542 We provide a clean code repository for reproducibility in the supplementary materials, and this is also
 543 provided in an online (de-identified) Git repository. The scripts in this repository contain functionality
 544 for downloading, loading, and preprocessing all datasets used in training. The code also includes
 545 implementations for SON-GOKU and all 10 of its ablations. We provide clear and easy-to-use
 546 training scripts with pre-configured parameters, allowing for reproduction of the exact experiments
 547 used across all datasets. We provide further details regarding empirical experiments and evaluation in
 548 Appendices J–L. To make our theoretical analysis easier to follow and more transparent, we provide
 549 highly detailed descriptions of assumptions, propositions, and proofs that could not fit in the main
 550 text in Appendices B–I. Furthermore, to make effective real-world deployment easier, we provide
 551 practical guidance regarding SON-GOKU in Appendices D, N, and O.

552 **REFERENCES**
 553

554 Rie Kubota Ando and Tong Zhang. A framework for learning predictive structures from multiple tasks
 555 and unlabeled data. In *Proceedings of the 24th International Conference on Machine Learning (ICML)*, pp. 3–10, 2005.

556 John Arevalo, Thamar Solorio, Manuel Montes y Gómez, and Fabio A. González. Gated multimodal
 557 units for information fusion, 2017. URL <https://arxiv.org/abs/1702.01992>.

558 Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Multi-task feature learning. In
 559 *Advances in Neural Information Processing Systems*, volume 19, pp. 41–48, 2007.

560 Afiya Ayman, Ayan Mukhopadhyay, and Aron Laszka. Task grouping for automated multi-task
 561 machine learning via task affinity prediction, 2023. URL <https://arxiv.org/abs/2310.16241>.

562 Hao Ban and Kaiyi Ji. Fair resource allocation in multi-task learning. In *Proceedings of the 41st
 563 International Conference on Machine Learning*, ICML’24. JMLR.org, 2024.

564 Amir Beck. *First-order methods in optimization*. SIAM, 2017.

565 Christopher M. Bishop. *Pattern Recognition and Machine Learning*. Springer, New York, NY, 2006.
 566 ISBN 978-0387310732.

567 Marthe Bonamy, Tom Kelly, Peter Nelson, and Luke Postle. Bounding χ by a fraction of δ for graphs
 568 without large cliques, 2018. URL <https://arxiv.org/abs/1803.01051>.

569 Thomas Borsani, Andrea Rosani, Giuseppe Nicosia, and Giuseppe Di Fatta. Gradient similarity
 570 surgery in multi-task deep learning. *arXiv preprint arXiv:2506.06130*, 2025.

571 Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
 572 learning. *SIAM review*, 60(2):223–311, 2018.

573 Said Yacine Boulahtia, Abdenour Amamra, Mohamed Ridha Madi, and Said Daikh. Early, inter-
 574 intermediate and late fusion strategies for robust deep learning-based multimodal action recognition.
 575 *Machine Vision and Applications*, 32(6):121, 2021.

576 Rich Caruana. Multitask learning. *Machine Learning*, 28(1):41–75, July 1997. doi: 10.1023/A:
 577 1007379606734. URL <https://doi.org/10.1023/A:1007379606734>.

578 Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
 579 normalization for adaptive loss balancing in deep multitask networks. In *International Conference
 580 on Machine Learning*, pp. 794–803, 2018. URL <https://arxiv.org/abs/1711.02257>.

581 Zhiyong Cui, Ruimin Ke, and Yinhai Wang. Deep bidirectional and unidirectional LSTM recurrent
 582 neural network for network-wide traffic speed prediction. *CoRR*, abs/1801.02143, 2018. URL
 583 <http://arxiv.org/abs/1801.02143>.

594 Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of johnson and lindenstrauss.
 595 In *Randomization and Approximation Techniques in Computer Science*, RANDOM 2003, pp.
 596 53–62. Springer, 2003. doi: 10.1007/978-3-540-45198-3_4.

597

598 Victor H De la Pena, Tze Leung Lai, and Qi-Man Shao. *Self-normalized processes: Limit theory and*
 599 *Statistical Applications*. Springer, 2009.

600 Reinhard Diestel. *Graph Theory*. Springer, 5th edition, 2017. ISBN 978-3-662-53622-3.

601

602 Paul Erdős and Alfréd Rényi. On the evolution of random graphs. *Publications of the Mathematical*
 603 *Institute of the Hungarian Academy of Sciences*, 5:17–61, 1960.

604

605 Theodoros Evgeniou, Cinzia A. Micchelli, and Massimiliano Pontil. Learning multiple tasks with
 606 kernels. *Journal of Machine Learning Research*, 6:615–637, 2005.

607

608 Caoyun Fan, Wenqing Chen, Jidong Tian, Yitian Li, Hao He, and Yaohui Jin. Maxgnr: A dynamic
 609 weight strategy via maximizing gradient-to-noise ratio for multi-task learning. *arXiv preprint*
arXiv:2302.09352, 2023.

610

611 Christopher Fifty, Ehsan Amid, Zhe Zhao, Tianhe Yu, Rohan Anil, and Chelsea Finn. Efficiently
 612 identifying task groupings for multi-task learning, 2021. URL <https://arxiv.org/abs/2109.04617>.

613

614 Jorge Fliege and Benar F. Svaiter. Steepest descent methods for multicriteria optimization. *Mathematical Methods of Operations Research*, 51(3):479–494, 2000. doi: 10.1007/s001860000043.

615

616 Saeed Ghadimi and Guanghui Lan. Stochastic first- and zeroth-order methods for nonconvex
 617 stochastic programming. *SIAM Journal on Optimization*, 23(4):2341–2368, 2013. doi: 10.1137/120880811.

618

619 Mina Ghashami, Edo Liberty, Jeff M. Phillips, and David P. Woodruff. Frequent directions: Simple
 620 and deterministic matrix sketching. *SIAM Journal on Computing*, 45(5):1762–1792, 2016a. doi:
 10.1137/15M1009718.

621

622 Mina Ghashami, Edo Liberty, Jeff M Phillips, and David P Woodruff. Frequent directions: Simple
 623 and deterministic matrix sketching. *SIAM Journal on Computing*, 45(5):1762–1792, 2016b.

624

625 Valerio Guarraisi, Fatih Aksu, Camillo Maria Caruso, Francesco Di Feola, Aurora Rofena, Filippo
 626 Ruffini, and Paolo Soda. A systematic review of intermediate fusion in multimodal deep learning
 627 for biomedical applications. *Image and Vision Computing*, pp. 105509, 2025.

628

629 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 630 recognition. *CoRR*, abs/1512.03385, 2015. URL <http://arxiv.org/abs/1512.03385>.

631

632 Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corrup-
 633 tions and perturbations. *Proceedings of the International Conference on Learning Representations*,
 2019.

634

635 Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: Closing the generaliza-
 636 tion gap in large batch training of neural networks. In *Advances in Neural Information Processing
 637 Systems*, volume 30, pp. 1731–1741, 2017.

638

639 Laurent Jacob, Jean-philippe Vert, and Francis Bach. Clustered multi-task learning: A convex
 640 formulation. *Advances in neural information processing systems*, 21, 2008.

641

642 Wooseong Jeong and Kuk-Jin Yoon. Selective task group updates for multi-task optimization, 2025.

643

644 Bo Kågström, Per Ling, and Charles Van Loan. Gemm-based level 3 blas: high-performance model
 645 implementations and performance evaluation benchmark. *ACM Transactions on Mathematical
 Software (TOMS)*, 24(3):268–302, 1998.

646

647 Zhiqiang Kang, Kristen Grauman, and Fei Sha. Learning with whom to share in multi-task feature
 648 learning. In *Proceedings of the 28th International Conference on Machine Learning (ICML)*, pp.
 521–528, 2011.

648 Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
 649 gradient methods under the polyak-Łojasiewicz condition. In *Joint European conference on*
 650 *machine learning and knowledge discovery in databases*, pp. 795–811. Springer, 2016.

651

652 Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
 653 for scene geometry and semantics. In *2018 IEEE/CVF Conference on Computer Vision and Pattern*
 654 *Recognition (CVPR)*, pp. 7482–7491, 2018. doi: 10.1109/CVPR.2018.00781.

655 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

656

657 Vitaly Kurin, Alessandro De Palma, Ilya Kostrikov, Shimon Whiteson, and M. Pawan Kumar. In
 658 defense of the unitary scalarization for deep multi-task learning. In *Advances in Neural Information*
 659 *Processing Systems*, volume 35, 2022. URL <https://arxiv.org/abs/2201.04122>.

660 Harold J Kushner and G George Yin. *Stochastic approximation and recursive algorithms and*
 661 *applications*. Springer, 2003.

662 Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
 663 recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

664

665 R Gary Leonard and George Doddington. Tidigits speech corpus. *Texas Instruments, Inc*, 1993.

666

667 Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel stochastic gradient for
 668 nonconvex optimization. *Advances in neural information processing systems*, 28, 2015.

669

670 Paul Pu Liang, Yiwei Lyu, Xiang Fan, Zetian Wu, Yun Cheng, Jason Wu, Leslie Chen, Peter Wu,
 671 Michelle A Lee, Yuke Zhu, et al. Multibench: Multiscale benchmarks for multimodal representation
 672 learning. *Advances in neural information processing systems*, 2021(DB1):1, 2021.

673

674 Sicong Liang and Yu Zhang. A simple general approach to balance task difficulty in multi-task
 675 learning, 2020. URL <https://arxiv.org/abs/2002.04792>.

676

677 Edo Liberty. Simple and deterministic matrix sketching. In *Proceedings of the 19th ACM SIGKDD*
 678 *International Conference on Knowledge Discovery and Data Mining (KDD)*, pp. 581–588, 2013.
 679 doi: 10.1145/2487575.2487623.

680

681 Baijiong Lin, Feiyang Ye, and Yu Zhang. A closer look at loss weighting in multi-task learning, 2022.
 682 URL <https://openreview.net/forum?id=OdnNBNIIdFul>.

683

684 Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
 685 detection. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, pp.
 686 2999–3007, 2017.

687

688 Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent
 689 for multi-task learning. In *Advances in Neural Information Processing Systems*, volume 34, pp.
 690 12345–12355, 2021.

691

692 Bo Liu, Yihao Feng, Peter Stone, and Qiang Liu. Famo: Fast adaptive multitask optimization.
 693 In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Ad-*
 694 *vances in Neural Information Processing Systems*, volume 36, pp. 57226–57243. Curran Asso-
 695 *ciates, Inc.*, 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/b2fe1ee8d936ac08dd26f2ff58986c8f-Paper-Conference.pdf.

696

697 Shikun Liu, Edward Johns, and Andrew J. Davison. End-to-end multi-task learning with attention.
 698 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 699 1871–1880, 2019.

700

701 Y. Liu. Theoretical analysis on how learning rate warmup accelerates gradient descent. *arXiv preprint*
 702 *arXiv:2509.07972*, 2025. URL <https://arxiv.org/abs/2509.07972>.

703

704 Ben Lockwood. Pareto efficiency. In *The new Palgrave dictionary of economics*, pp. 1–5. Springer,
 705 2008.

706

707 László Lovász. Graph minor theory. *Bulletin of the American Mathematical Society*, 43(1):75–86,
 708 2006.

702 Aakarsh Malhotra, Mayank Vatsa, and Richa Singh. Dropped scheduled task: Mitigating negative
 703 transfer in multi-task learning using dynamic task dropping. *Transactions on Machine Learning*
 704 *Research*, 2022.

705 Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model of
 706 large-batch training. *arXiv preprint arXiv:1812.06162*, 2018.

708 Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. The natural language
 709 decathlon: Multitask learning as question answering. *CoRR*, abs/1806.08730, 2018. URL <https://arxiv.org/abs/1806.08730>.

711 Florence Merlevède, Magda Peligrad, and Emmanuel Rio. Bernstein inequality and moderate
 712 deviations under strong mixing conditions. *High Dimensional Probability VI*, pp. 273–292, 2011.

714 Mateusz Michalkiewicz, Masoud Faraki, Xiang Yu, Manmohan Chandraker, and Mahsa Baktashmot-
 715 lagh. Domain generalization guided by gradient signal to noise ratio of parameters. In *Proceedings*
 716 *of the IEEE/CVF International Conference on Computer Vision*, pp. 6177–6188, 2023.

718 Kaisa Miettinen. *Nonlinear Multiobjective Optimization*. Kluwer Academic Publishers, Boston, MA,
 719 1999. ISBN 978-0792382781.

720 Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representa-
 721 tions in vector space, 2013. URL <https://arxiv.org/abs/1301.3781>.

723 Salman Mohammadi, Anders Kirk Uhrenholt, and Bjørn Sand Jensen. Odd-one-out representation
 724 learning. *arXiv preprint arXiv:2012.07966*, 2020. Shows that distinguishing an “odd” element
 725 among “even” ones in auxiliary pretext tasks yields stronger embeddings.

726 MSCI Inc. and S&P Dow Jones Indices. *Global Industry Classification Standard (GICS)*. MSCI Inc.,
 727 New York, NY, august 2024 edition, 2024. First published January 7, 2020; updated August 2024.

729 David Mueller, Mark Dredze, and Nicholas Andrews. The importance of temperature in multi-task
 730 optimization. In *OPT 2022: Optimization for Machine Learning (NeurIPS 2022 Workshop)*, 2022.
 731 URL https://openreview.net/forum?id=H9UOWMR_Ut.

732 Aviv Navon, Aviv Shamsian, Idan Achituv, Haggai Maron, Kenji Kawaguchi, Gal Chechik, and
 733 Ethan Fetaya. Multi-task learning as a bargaining game. *arXiv preprint arXiv:2202.01017*, 2022.

735 Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic
 736 approximation approach to stochastic programming. *SIAM Journal on Optimization*, 19(4):1574–
 737 1609, 2009. doi: 10.1137/070704277.

738 Yurii Nesterov. *Introductory Lectures on Convex Optimization: A Basic Course*. Springer, 2004.
 739 ISBN 978-1-4419-8853-9.

741 Feng Niu, Benjamin Recht, Christopher Ré, and Stephen J. Wright. Hogwild!: A lock-free approach
 742 to parallelizing stochastic gradient descent. In *Advances in Neural Information Processing Systems*,
 743 volume 24, pp. 693–701, 2011.

744 Vilfredo Pareto. *Manual of political economy: a critical and variorum edition*. OUP Oxford, 2014.

746 Lucas Pascal, Pietro Michiardi, Xavier Bost, Benoit Huet, and Maria A Zuluaga. Maximum roaming
 747 multi-task learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35,
 748 pp. 9331–9341, 2021.

749 Herbert Robbins and Sutton Monro. A stochastic approximation method. *The annals of mathematical*
 750 *statistics*, pp. 400–407, 1951.

752 Sebastian Ruder. An overview of multi-task learning in deep neural networks. *arXiv preprint*
 753 *arXiv:1706.05098*, 2017. URL <https://arxiv.org/abs/1706.05098>.

755 Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. In *Advances in*
 756 *Neural Information Processing Systems*, volume 31, pp. 525–536, 2018.

756 Ammar Sherif, Abubakar Abid, Mustafa Elattar, and Mohamed ElHelw. Stg-mtl: scalable task
 757 grouping for multi-task learning using data maps. *Machine Learning: Science and Technology*,
 758 5(2):025068, June 2024. ISSN 2632-2153. doi: 10.1088/2632-2153/ad4e04. URL <http://dx.doi.org/10.1088/2632-2153/ad4e04>.

760

761 Guangyuan Shi, Qimai Li, Wenlong Zhang, Jiaxin Chen, and Xiao-Ming Wu. Recon: Reducing
 762 conflicting gradients from the root for multi-task learning. In *ICLR 2023 Workshop on Multi-Task*
 763 *Learning*, 2023.

764 Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. Training region-based object detectors
 765 with online hard example mining. In *Proceedings of the IEEE Conference on Computer Vision and*
 766 *Pattern Recognition (CVPR)*, pp. 761–769, 2016.

767

768 Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and support
 769 inference from rgb-d images. In *European Conference on Computer Vision (ECCV)*, pp. 746–760.
 770 Springer, 2012.

771

772 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 773 recognition. *arXiv preprint arXiv:1409.1556*, 2014.

774

775 Trevor Standley, Amir R. Zamir, Dawn Chen, Leonidas Guibas, Jitendra Malik, and Silvio Savarese.
 776 Which tasks should be learned together in multi-task learning? In *Proceedings of the 37th*
 777 *International Conference on Machine Learning (ICML)*, pp. 9120–9132, 2020.

778

779 J Michael Steele. *The Cauchy-Schwarz master class: an introduction to the art of mathematical*
 780 *inequalities*. Cambridge University Press, 2004.

781

782 Zihao Sun, Yu Sun, Longxing Yang, Shun Lu, Jilin Mei, Wenxiao Zhao, and Yu Hu. Unleashing
 783 the power of gradient signal-to-noise ratio for zero-shot nas. In *Proceedings of the IEEE/CVF*
 784 *international conference on computer vision*, pp. 5763–5773, 2023.

785

786 Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie, Yizhong Wang, Hannaneh Hajishirzi, Noah A.
 787 Smith, and Yejin Choi. Dataset cartography: Mapping and diagnosing datasets with training
 788 dynamics. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), *Proceedings of the*
 789 *2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 9275–
 790 9293, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
 791 emnlp-main.746. URL [https://aclanthology.org/2020.emnlp-main.746/](https://aclanthology.org/2020.emnlp-main.746).

792

793 Andrea Tacchetti, Stephen Voinea, and Georgios Evangelopoulos. Trading robust representations for
 794 sample complexity through self-supervised visual experience. In *Advances in Neural Information*
 795 *Processing Systems*, volume 31, pp. 1686–1696, 2018. Section 4.2 demonstrates a “Transfer
 796 learning: even/odd MNIST” auxiliary task that boosts few-shot performance.

797

798 Lovre Torbarina, Tin Ferkovic, Lukasz Roguski, Velimir Mihelcic, Bruno Sarlija, and Zeljko Kraljevic.
 799 Challenges and opportunities of using transformer-based multi-task learning in nlp through ml
 800 lifecycle: A survey, 2023. URL <https://arxiv.org/abs/2308.08234>.

801

802 Simon Vandenhende, Stamatios Georgoulis, Wouter Van Gansbeke, Marc Proesmans, Dengxin Dai,
 803 and Luc Van Gool. Multi-task learning for dense prediction tasks: A survey. *IEEE Transactions*
 804 *on Pattern Analysis and Machine Intelligence*, 44(7):3614–3633, 2022. doi: 10.1109/TPAMI.2021.
 805 3054719.

806

807 Valentin Vielzeuf, Alexis Lechervy, Stéphane Pateux, and Frédéric Jurie. Centralnet: a multilayer
 808 approach for multimodal fusion. *CoRR*, abs/1808.07275, 2018. URL <http://arxiv.org/abs/1808.07275>.

809

810 Martin J Wainwright. *High-dimensional statistics: A non-asymptotic viewpoint*, volume 48. Cam-
 811 bridge university press, 2019.

812

813 Chenguang Wang, Xuanhao Pan, and Tianshu Yu. Towards principled task grouping for multi-task
 814 learning. *arXiv preprint arXiv:2402.15328*, 2024.

810 D. J. A. Welsh and M. B. Powell. An upper bound for the chromatic number of a graph and its
 811 application to timetabling problems. *The Computer Journal*, 10(1):85–86, 01 1967. ISSN 0010-
 812 4620. doi: 10.1093/comjnl/10.1.85. URL <https://doi.org/10.1093/comjnl/10.1.85>.

813

814 Douglas B. West. *Introduction to Graph Theory*. Prentice Hall, 2nd edition, 2000. ISBN 978-
 815 0130144003.

816

817 Enneng Yang, Junwei Pan, Ximei Wang, Haibin Yu, Li Shen, Xihua Chen, Lei Xiao, Jie Jiang, and
 818 Guibing Guo. Adatask: A task-aware adaptive learning rate approach to multi-task learning. In
 819 *Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI)*, 2023. URL
 820 <https://arxiv.org/abs/2211.15055>.

821

822 Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
 823 Gradient surgery for multi-task learning. In *Advances in Neural Information Processing Systems*,
 824 volume 33, pp. 18524–18536, 2020.

825

826 Wenxin Yu, Xueling Shen, Jiajie Hu, and Dong Yin. Revisiting the loss weight adjustment in object
 827 detection. *arXiv preprint arXiv:2103.09488*, 2021.

828

829 Amir R. Zamir, Alexander Sax, Teresa Yeo, Oguzhan Kar, Nikhil Cheerla, Rohan Suri, Zhangjie
 830 Cao, Jitendra Malik, and Leonidas Guibas. Robust learning through cross-task consistency. *CoRR*,
 831 abs/2006.04096, 2020. URL <https://arxiv.org/abs/2006.04096>.

832

833 Yu Zhang and Qiang Yang. An overview of multi-task learning. *National Science Review*, 5(1):
 834 30–43, 2018.

835

836 Zhi Zhang, Jiayi Shen, Congfeng Cao, Gaole Dai, Shiji Zhou, Qizhe Zhang, Shanghang Zhang,
 837 and Ekaterina Shutova. Proactive gradient conflict mitigation in multi-task learning: A sparse
 838 training perspective. *arXiv preprint arXiv:2411.18615*, 2024. URL <https://arxiv.org/abs/2411.18615>.

839

840 Han Zhao, Yifan Guo, Aleksandar Risteski, et al. Robust multi-task learning with excess risks. In
 841 *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of *Proceedings
 842 of Machine Learning Research*, 2024.

843

844 Mo Zhou, Rong Ge, and Chi Jin. A local convergence theory for mildly over-parameterized two-layer
 845 neural network. In *Conference on Learning Theory*, pp. 4577–4632. PMLR, 2021.

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 A FULL ALGORITHM BLOCK FOR PROPOSED APPROACH
865
866867 **Algorithm 1** SON-GOKU Scheduler

868 **Require:** Initial shared params θ_0 , heads $\{\phi_k\}_{k=1}^K$, EMA buffers $\tilde{g}_k^{(0)} = 0$, total steps T , learning-rate
869 schedule $\{\eta_t\}$, refresh length R , warm-up T_{warm} , target threshold τ^* , minimum coverage f_{\min} ,
870 EMA parameter β
871 1: *Gradients follow the weighted-loss convention (Sec. 4).*
872 2: $r \leftarrow 0, t_r \leftarrow 0$ ▷ current refresh round and start index
873 3: $\tau \leftarrow 1; m_0 \leftarrow 1; C_1^{(0)} \leftarrow \{1, \dots, K\}$ ▷ warm-start schedule
874 4: **for** $t = 0, \dots, T - 1$ **do**
875 5: **Warm-up/Anneal:** $\tau \leftarrow \text{ANNEAL}(t)$ ▷ approach in Sec. 4.4
876 6: **Scheduling:** $S_t \leftarrow C_{(t \bmod m_r) + 1}^{(r)}$
877 7: **Forward/Backward:**
878 8: **for all** $k \in S_t$ **do**
879 9: compute per-task gradients $g_k^{(t)}$ and $h_k^{(t)}$ (defs: Sec. 4.1)
880 10: **end for**
881 11: **Parameter update (shared):** $\theta_{t+1} \leftarrow \theta_t - \eta_t \sum_{k \in S_t} g_k^{(t)}$
882 12: **Parameter update (task-specific):**
883 13: **for all** $k \in S_t$ **do**
884 14: $\phi_{k,t+1} \leftarrow \phi_{k,t} - \eta_t h_k^{(t)}$
885 15: **end for**
886 16: **EMA:**
887 17: **for all** $k \in S_t$ **do**
888 18: update $\tilde{g}_k^{(t+1)}$ (Eq. 8)
889 19: **end for**
890 20: **if** $(t + 1) \bmod R = 0$ **then** ▷ refresh
891 21: **EMA refresh:** update all \tilde{g}_i using small mini-batches (Sec. 4.1)
892 22: **Interference matrix:** compute $\rho_{ij}^{(t+1)}$ via Eq. 9
893 23: **Conflict graph:** build $G_{\tau}^{(r+1)}$ via Eq. 10
894 24: **Greedy coloring:** Welsh-Powell $\rightarrow \{C_1^{(r+1)}, \dots, C_{m_{r+1}}^{(r+1)}\}$
895 25: **Minimum coverage:** enforce $f_i \geq f_{\min}$ using compatible-slot duplication (Sec. 4.4.1)
896 26: $r \leftarrow r + 1; t_r \leftarrow t + 1$
897 27: **end if**
898 28: **end for**

900 Algorithm block 1 provides an overview of the SON-GOKU scheduler. At a high level, the procedure
901 consists of four stages: (1) estimating pairwise interference, (2) building and coloring the conflict
902 graph, (3) generating a periodic schedule, and (4) updating that schedule as training evolves.
903

904 B EXACT RECOVERY OF POPULATION CONFLICT GRAPH & TASK PARTITION
905

906 B.1 SETTING, DEFINITIONS, AND POPULATION OBJECTS

908 Let $K \geq 2$ be the number of tasks and $d \geq 1$ the parameter dimension. At designated refresh
909 iterations, the scheduler:

911 (i) computes a per-task exponential moving average (EMA) of stochastic gradients over a probe
912 window of R iterations,
913 (ii) forms a cosine-similarity matrix from the K EMA vectors,
914 (iii) builds a conflict graph by thresholding negative cosines at a fixed level $-\tau$ with $\tau \in (0, 1)$,
915 (iv) computes a proper coloring of the conflict graph, and
916 (v) schedules one color class per iteration until the next refresh

918 **Definition B.1.** At the beginning of a refresh window (i.e., at a fixed iterate θ), let
 919

$$920 \quad 921 \quad \mu_i \in \mathbb{R}^d \quad (i = 1, \dots, K) \quad (14)$$

922 denote the population task gradients (or the window-stationary means). Define the population cosine
 923 matrix $C^* \in [-1, 1]^{K \times K}$ by
 924

$$925 \quad 926 \quad C_{ij}^* = \frac{\langle \mu_i, \mu_j \rangle}{\|\mu_i\| \|\mu_j\|}, \quad i \neq j, \quad C_{ii}^* = 1. \quad (15)$$

927 **Definition B.2.** Fix $\tau \in (0, 1)$. The population conflict graph $G^* = (V, E^*)$ on vertex set $V =$
 928 $\{1, \dots, K\}$ has an edge $\{i, j\}$ iff $C_{ij}^* < -\tau$. The true grouping \mathcal{P}^* is one of:
 929

930 (A) Component Model: the vertex partition given by the connected components of G^* .
 931

932 (B) Multipartite model: a partition $V = \bigsqcup_{r=1}^m P_r$ (with $m \geq 1$) such that G^* is the complete
 933 m -partite graph induced by $\{P_r\}_{r=1}^m$ (no edges within any P_r , all cross-part edges present)
 934

935 When we later speak of group recovery, we mean equality of the empirical partition (defined from
 936 data) with \mathcal{P}^* , up to label permutation in case (B).
 937

938 B.2 ASSUMPTIONS

939 We adopt the following assumptions, which are standard in analyses of stochastic-gradient methods
 940 and verifiable in practice (see, e.g., Robbins & Monro 1951; Kushner & Yin 2003; Nemirovski et al.
 941 2009; Bottou et al. 2018; Wainwright 2019; for concentration of geometrically weighted and mixing
 942 sequences, see Merlevède et al. 2011; De la Pena et al. 2009).

943 **Assumption 1** (Separation margin around the threshold). There exists $\gamma \in (0, 1 - \tau)$ such that for
 944 all $i \neq j$:

$$945 \quad 946 \quad \begin{cases} C_{ij}^* \leq -(\tau + \gamma), & \text{if } i \text{ and } j \text{ lie in different groups of } \mathcal{P}^*, \\ C_{ij}^* \geq -(\tau - \gamma), & \text{if } i \text{ and } j \text{ lie in the same group of } \mathcal{P}^*. \end{cases} \quad (16)$$

947 **Assumption 2** (Probe noise model and EMA). In the refresh window of length R , the per-iteration
 948 stochastic task gradients admit the decomposition
 949

$$950 \quad 951 \quad g_{i,t} = \mu_i + \xi_{i,t}, \quad t = 1, \dots, R, \quad (17)$$

952 where $\{\xi_{i,t}\}_{t=1}^R$ are mean-zero, sub-Gaussian with parameter σ^2 , and satisfy a ϕ -mixing or
 953 martingale-difference condition ensuring concentration with geometric weights. The EMA for
 954 task i is

$$955 \quad 956 \quad \tilde{g}_i = \sum_{t=1}^R w_t g_{i,t}, \quad w_t = \frac{(1 - \beta) \beta^{R-t}}{1 - \beta^R}, \quad \beta \in [0, 1). \quad (18)$$

957 Define the effective sample size n_{eff} by
 958

$$959 \quad 960 \quad n_{\text{eff}}^{-1} := \sum_{t=1}^R w_t^2 = \frac{(1 - \beta)^2 (1 - \beta^{2R})}{(1 - \beta^R)^2 (1 - \beta^2)}. \quad (19)$$

961 In particular, as $R \rightarrow \infty$ (with fixed $\beta \in [0, 1)$), we have $n_{\text{eff}} \rightarrow \frac{1 + \beta}{1 - \beta}$.
 962

963 **Assumption 3** (Slow drift within a refresh). Over the refresh window, the changes in μ_i are small
 964 enough to be absorbed in the concentration bounds below (equivalently, one can regard μ_i as constant
 965 within the window by working at the start-of-window iterate and moving any drift into the noise
 966 process).
 967

972 **Assumption 4** (Minimum norm and task inclusion). *There exists $m_0 > 0$ such that $\|\mu_i\| \geq m_0$ for
973 all tasks included in the graph. In our implementation, we make it so that tasks with $\|\tilde{g}_i\| < \nu$ (for a
974 small $\nu \ll m_0$) are temporarily excluded from graph construction until stabilized.*

975 **Assumption 5** (Threshold selection). *The threshold τ is fixed across refreshes or selected using data
976 independent of the probe window used to form $\{\tilde{g}_i\}$ (e.g., via a separate pilot set). The analysis below
977 treats τ as deterministic with respect to the probe sample.*

979 B.3 DETERMINISTIC GROUP RECOVERY FROM THE CONFLICT GRAPH

981 We begin with basic graph-theoretic facts that we will use once we have established that the empirical
982 conflict graph coincides with its population counterpart.

983 **Proposition 1** (Chromatic number of a complete multipartite graph). *If G^* is complete m -partite
984 with parts $\{P_r\}_{r=1}^m$, then $\chi(G^*) = m$.*

986 *Proof.* Picking one vertex from each part yields a clique of size m , hence $\chi(G^*) \geq m$. Coloring
987 each part with a distinct color is proper, hence $\chi(G^*) \leq m$. Therefore $\chi(G^*) = m$. \square

989 **Theorem 1** (Identifiability via optimal coloring under model (B)). *Assume model (B), i.e., G^* is
990 complete m -partite with parts $\{P_r\}_{r=1}^m$. Let $c : V \rightarrow \{1, \dots, m\}$ be a proper coloring of G^* that
991 uses exactly $\chi(G^*)$ colors. Then each color class equals some part P_r (up to relabeling).*

992 *Proof.* In a complete multipartite graph, any two vertices from different parts are adjacent. Thus, no
993 color class can contain vertices from two different parts, so each color class is contained in some P_r .
994 By Proposition 1, $\chi(G^*) = m$, so any optimal coloring uses exactly m colors. Since there are m
995 nonempty parts, none can be split across two colors. Hence, the color classes coincide with $\{P_r\}_{r=1}^m$
996 up to permutation. \square

997 **Proposition 2** (Identifiability via components under model (A)). *Under model (A), the grouping \mathcal{P}^*
998 equals the connected components of G^* . Consequently, any procedure that returns the connected
999 components of the empirical graph recovers \mathcal{P}^* whenever the empirical graph equals G^* .*

1001 B.4 UNIFORM CONTROL OF EMPIRICAL COSINES FROM EMA GRADIENTS

1003 We now quantify the deviation of the empirical cosine matrix \hat{C} formed from $\{\tilde{g}_i\}$ relative to C^* .

1004 **Lemma 1** (EMA vector concentration in directions of interest). *Assume Assumption 2 and Assumption
1005 3. There exists a constant $c > 0$ depending only on the mixing parameters such that for any fixed unit
1006 vector $u \in \mathbb{S}^{d-1}$ and any $\varepsilon > 0$.*

$$1008 \Pr\left(|\langle \tilde{g}_i - \mu_i, u \rangle| > \varepsilon\right) \leq 2 \exp\left(-c n_{\text{eff}} \varepsilon^2 / \sigma^2\right). \quad (20)$$

1011 In particular, for any finite set of unit vectors $\{u_j\}_{j=1}^M$, a union bound yields

$$1013 \Pr\left(\max_{1 \leq j \leq M} |\langle \tilde{g}_i - \mu_i, u_j \rangle| > \varepsilon\right) \leq 2M \exp\left(-c n_{\text{eff}} \varepsilon^2 / \sigma^2\right). \quad (21)$$

1016 *Proof.* The scalar process $\{\langle \xi_{i,t}, u \rangle\}_{t=1}^R$ is sub-Gaussian with variance proxy σ^2 and satisfies the same
1017 mixing condition. Exponential-weighted averages of such sequences obey Hoeffding–Azuma/Berstein-
1018 type tail bounds with variance proxy $\sigma^2 \sum_t w_t^2 = \sigma^2 / n_{\text{eff}}$. The stated inequality follows. \square

1019 **Lemma 2** (Cosine stability under perturbations). *Assume Assumption 4 and let $\epsilon > 0$. If for a pair
1020 (i, j) we have*

$$1023 |\langle \tilde{g}_i - \mu_i, \frac{\mu_j}{\|\mu_j\|} \rangle| \leq \epsilon, \quad |\langle \tilde{g}_j - \mu_j, \frac{\mu_i}{\|\mu_i\|} \rangle| \leq \epsilon, \quad |\langle \tilde{g}_i - \mu_i, \frac{\mu_i}{\|\mu_i\|} \rangle| \leq \epsilon, \quad |\langle \tilde{g}_j - \mu_j, \frac{\mu_j}{\|\mu_j\|} \rangle| \leq \epsilon, \quad (22)$$

1025 then

1026

1027

1028

1029

1030

1031

1032

1033

1034

Proof. Write $\tilde{g}_i = \mu_i + \delta_i$, $\tilde{g}_j = \mu_j + \delta_j$. Decompose the numerator and denominator in the cosine:

1035

1036

1037

1038

1039

$$\langle \tilde{g}_i, \tilde{g}_j \rangle - \langle \mu_i, \mu_j \rangle = \langle \delta_i, \mu_j \rangle + \langle \mu_i, \delta_j \rangle + \langle \delta_i, \delta_j \rangle, \quad (24)$$

and

1037

1038

1039

$$\|\tilde{g}_i\| = \|\mu_i\| \sqrt{1 + 2\langle \delta_i, \mu_i \rangle / \|\mu_i\|^2 + \|\delta_i\|^2 / \|\mu_i\|^2} \quad (25)$$

Using Assumption 4,

1041

1042

1043

1044

$$|\langle \delta_i, \mu_j / \|\mu_j\| \rangle| \leq \epsilon \quad (26)$$

1045

and

1046

1047

1048

$$|\langle \delta_i, \mu_i / \|\mu_i\| \rangle| \leq \epsilon \quad (27)$$

1049

imply

1050

1051

1052

1053

$$|\langle \delta_i, \mu_j \rangle| \leq \epsilon \|\mu_j\| \quad (28)$$

1054

and

1055

1056

1057

1058

$$|\langle \delta_i, \mu_i \rangle| \leq \epsilon \|\mu_i\| \quad (29)$$

1059

A second-order expansion of the cosine in (δ_i, δ_j) with the above controls yields the bound. The constants 6 and 4 arise from collecting the linear and quadratic contributions in ϵ/m_0 . \square

1060

1061

1062

Combining Lemma 1 and Lemma 2 with a union bound over all unordered pairs (i, j) shows that the empirical cosines are uniformly close to their population counterparts.

1063

1064

1065

Proposition 3 (Uniform cosine accuracy with high probability). *Assume Assumption 2, Assumption 3, and Assumption 4. For any $\epsilon > 0$ there exist absolute constants $c, C > 0$ such that if*

1066

1067

1068

1069

1070

$$n_{\text{eff}} \geq C \frac{\sigma^2}{m_0^2 \epsilon^2} \quad (30)$$

1071

then, with probability $1 - \delta$,

1072

1073

1074

1075

1076

1077

1078

1079

$$\max_{i < j} |\widehat{C}_{ij} - C_{ij}^*| \leq \epsilon \quad (31)$$

Proof. For each unordered pair (i, j) , apply Lemma 1 with the four unit vectors $\mu_j / \|\mu_j\|$, $\mu_i / \|\mu_i\|$, and use Lemma 2 to convert these directional deviations into a cosine deviation bound. A union bound over the $O(K^2)$ pairs yields the claimed logarithmic factor. The constants absorb the quadratic term in ϵ by requiring $\epsilon \leq m_0$. \square

1080 B.5 EXACT EDGE RECOVERY AND GROUP RECOVERY
10811082 We first show that a uniform cosine error smaller than the margin γ implies exact equality of empirical
1083 and population conflict graphs.1084 **Theorem 2** (Exact conflict-graph recovery under the margin). *Assume Assumptions 1–5. If*
1085

1086
$$\max_{i < j} |\hat{C}_{ij} - C_{ij}^*| \leq \epsilon \quad \text{with} \quad \epsilon < \gamma, \quad (32)$$

1087

1088 then the empirical conflict graph equals the population graph:

1089
$$\hat{G} = G^*. \quad (33)$$

1090

1091 Equivalently, for every $i \neq j$,

1092
$$C_{ij}^* \leq -(\tau + \gamma) \Rightarrow \hat{C}_{ij} < -\tau \quad \text{and} \quad C_{ij}^* \geq -(\tau - \gamma) \Rightarrow \hat{C}_{ij} > -\tau. \quad (34)$$

1093

1094 *Proof.* For any pair (i, j) , if $C_{ij}^* \leq -(\tau + \gamma)$, then $\hat{C}_{ij} \leq -(\tau + \gamma) + \epsilon < -\tau$, hence $\{i, j\} \in \hat{E}$. If
1095 $C_{ij}^* \geq -(\tau - \gamma)$, then $\hat{C}_{ij} \geq -(\tau - \gamma) - \epsilon > -\tau$, hence $\{i, j\} \notin \hat{E}$. \square

1096 Combining Proposition 3 and Theorem 2 yields a high-probability statement.

1097 **Corollary 1** (High-probability exact recovery of G^*). *Under Assumptions 1–5, there exists a universal
1098 constant $C > 0$ such that if*

1099
$$n_{\text{eff}} \geq C \frac{\sigma^2}{m_0^2 \gamma^2} \log\left(\frac{K^2}{\delta}\right), \quad (35)$$

1100

1101 then $\Pr(\hat{G} = G^*) \geq 1 - \delta$.1102 **Theorem 3** (Group recovery under the component model). *Under model (A) and the conditions of
1103 Corollary 1, with probability at least $1 - \delta$, the connected components of \hat{G} equal \mathcal{P}^* .*1104 *Proof.* Immediate from $\hat{G} = G^*$ and the definition of \mathcal{P}^* . \square 1105 **Theorem 4** (Group recovery under the multipartite model). *Under model (B) and the conditions of
1106 Corollary 1, with probability at least $1 - \delta$, $\chi(\hat{G}) = m$ and any optimal coloring of \hat{G} yields color
1107 classes equal to $\{P_r\}_{r=1}^m$ up to label permutation.*1108 *Proof.* If $\hat{G} = G^*$, then \hat{G} is complete m -partite. Proposition 1 gives $\chi(\hat{G}) = m$. Theorem 1 implies
1109 identifiability up to permutation by any optimal coloring. \square 1110 B.6 QUANTITATIVE PROBE-BUDGET REQUIREMENT
1111

1112 Combining the bounds above yields the following sample-complexity statement.

1113 **Corollary 2.** *Under assumptions 1–5, there exist absolute constants $c, C > 0$ such that the following
1114 holds. If the EMA parameters (R, β) are chosen to ensure*

1115
$$n_{\text{eff}} \geq C \frac{\sigma^2}{m_0^2 \gamma^2} \quad \left(\text{equivalently, } \sum_{t=1}^R w_t^2 \leq c \frac{m_0^2 \gamma^2}{\sigma^2} \frac{1}{\log(K/\delta)} \right) \quad (36)$$

1116

1117 then $\Pr(\hat{G} = G^*) \geq 1 - \delta$, and consequently Theorems 3–4 apply. In particular, for fixed β and
1118 large R , $n_{\text{eff}} \rightarrow \frac{1+\beta}{1-\beta}$ (i.e., it saturates). Thus, to meet the required budget as K grows, one increases
1119 n_{eff} by choosing β closer to 1 (e.g., $1 - \beta \asymp 1/\log(K^2/\delta)$), or by switching to a unnormalized
1120 averaging approach.

1134 B.7 SUMMARY OF THE RECOVERY ARGUMENT
11351136 We summarize the logical flow leading to consistency of the scheduler.
1137

1138 (i) Assumptions: Assumptions 1–5 define the conditions in which across-group
1139 population cosines lie below $-(\tau + \gamma)$, within-group cosines lie above $-(\tau - \gamma)$, EMA
1140 gradients concentrate with effective sample size n_{eff} , and all included tasks have non-
1141 negligible gradient norm.

1142 (ii) Uniform cosine accuracy: Lemmas 1–2 together with Proposition 3 yield a high-probability
1143 uniform cosine approximation:

1144
$$\max_{i < j} |\hat{C}_{ij} - C_{ij}^*| \leq \epsilon, \quad (37)$$

1145
1146

1147 with probability at least $1 - \delta$, where ϵ decreases as n_{eff} increases.
1148

1149 (iii) Exact recovery of edges: If the approximation tolerance satisfies $\epsilon < \gamma$, Theorem 2 converts
1150 the uniform bound into exact edge recovery of the conflict graph:

1151
$$\hat{G} = G^*. \quad (38)$$

1152
1153

1154 (iv) Recovery of the grouping: Given $\hat{G} = G^*$, Theorem 3 implies group recovery under the
1155 component model (groups are the connected components). Under the multipartite model,
1156 Proposition 1 and Theorem 1 yield $\chi(\hat{G}) = m$ and Theorem 4 shows that any optimal
1157 coloring returns the true parts (up to label permutation).

1158 **Quantitative consequence.** Assume Assumptions 1–5 and fix $\delta \in (0, 1)$. Let $m_0 = \min_i \|\mu_i\|$
1159 and let σ^2 be the variance proxy from Assumption 2. If the EMA probe budget satisfies
1160

1162
$$n_{\text{eff}} \geq C \frac{\sigma^2}{m_0^2 \gamma^2} \log\left(\frac{K^2}{\delta}\right) \quad (39)$$

1163
1164

1165 for a universal constant $C > 0$, then with probability at least $1 - \delta$ the empirical conflict graph equals
1166 the population graph: $\hat{G} = G^*$. Consequently:
1167

1168 (i) under the component model (A), the connected components of \hat{G} coincide with \mathcal{P}^* .
1169

1170 (ii) under the multipartite model (B), $\chi(\hat{G}) = m$ and any optimal coloring of \hat{G} recovers \mathcal{P}^* up
1171 to permutation of labels.

1173 C DESCENT BOUNDS FOR SCHEDULED VERSUS AGGREGATED UPDATES
11741176 We compare two update procedures over a single refresh: a scheduled sequence of per-group steps
1177 (i.e., the approach we propose in our paper) and a single aggregated step that combines all groups at
1178 once. Both use the same step size η and the same gradient information measured at the start of the
1179 refresh, and our analysis operates at the level of L -smooth (descent) upper bounds. We identify when
1180 the scheduled bound is strictly tighter and summarize implications under PL / strong convexity.
1181 Throughout, $F : \mathbb{R}^d \rightarrow \mathbb{R}$ is differentiable and L -smooth, i.e.
1182

1183
$$F(y) \leq F(x) + \langle \nabla F(x), y - x \rangle + \frac{L}{2} |y - x|^2, \quad \forall x, y. \quad (40)$$

1184
1185

1186 We write $\nabla F(x) = \sum_{r=1}^m G_r(x)$, where each $G_r(x)$ is the group gradient for color r (any fixed
1187 linear aggregator of task gradients assigned to color r for the current refresh). We use a refresh step
size $\eta \in (0, 1/L]$.

1188 C.1 SINGLE REFRESH BASELINES AND NOTATION
11891190 C.1.1 SINGLE AGGREGATED STEP
11911192 **Definition C.1** (Aggregated step). *Starting from the same point x , with step size $\eta \in (0, 1/L]$ and*
1193 *group gradients $G_r^0 := G_r(x)$ (with $\nabla F(x) = \sum_{r=1}^m G_r^0$), define*

1194
$$x^{\text{agg}} := x - \eta \sum_{r=1}^m G_r^0. \quad (41)$$

1195
1196

1197 **One-shot L -smoothness bound.** Applying L -smoothness with $y = x^{\text{agg}}$ yields
1198

1199
$$F(x^{\text{agg}}) \leq F(x) - \eta \left\langle \nabla F(x), \sum_{r=1}^m G_r^0 \right\rangle + \frac{L\eta^2}{2} \left\| \sum_{r=1}^m G_r^0 \right\|^2. \quad (42)$$

1200
1201

1202 C.1.2 SCHEDULED GROUP SEQUENCE OVER ONE REFRESH
12031204 **Definition C.2** (Scheduled refresh). *Starting from the same point x , define*
1205

1206
$$x_0 := x, \quad x_r := x_{r-1} - \eta G_r(x_{r-1}) \quad (r = 1, \dots, m), \quad x^{\text{sch}} := x_m. \quad (43)$$

1207

1208 **Order and notation.** The within refresh order $(1, \dots, m)$ may be fixed or randomly permuted each
1209 refresh. We write $H(\cdot)$ for the Hessian of F and take $\eta \in (0, 1/L]$.
12101211 Our goal is to compare upper bounds derived from L -smoothness for $F(x^{\text{sch}})$ and $F(x^{\text{agg}})$.
12121213 C.2 TELESCOPING BOUND FOR SCHEDULED UPDATES
12141215 **Lemma 3** (Smoothness Expansion for Two Scheduled Groups). *Let $m = 2$ and $G_r^0 := G_r(x)$. For*
1216 *any $\eta \in (0, 1/L]$,*

1217
$$F(x^{\text{sch}}) \leq F(x) - \eta \langle \nabla F(x), G_1^0 \rangle + \frac{L\eta^2}{2} \|G_1^0\|^2$$

1218
$$- \eta \langle \nabla F(x), G_2(x_1) \rangle + \frac{L\eta^2}{2} \|G_2(x_1)\|^2 + \eta^2 \int_0^1 \langle H(x - t\eta G_1^0) G_1^0, G_2(x_1) \rangle dt. \quad (44)$$

1219
1220
1221

1222 *Proof sketch.* Apply the L -smoothness inequality at the first step to bound $F(x_1)$. For the second
1223 step, use L -smoothness at x_1 and expand
1224

1225
$$\nabla F(x_1) = \nabla F(x) - \int_0^1 H(x - t\eta G_1^0) \eta G_1^0 dt \quad (45)$$

1226
1227
1228

1229 by the fundamental theorem of calculus along the segment $x \rightarrow x_1$. \square
12301231 C.2.1 START-OF-REFRESH REDUCTION UNDER PER-GROUP LIPSCHITZNESS
12321233 We adopt the following assumption whenever we compare bounds solely in terms of start-of-refresh
1234 measurements. It will be used throughout Sections C.3–C.61235 **Assumption 6** (Per-group lipschitzness). *Each group map $G_r(\cdot)$ is L_r -lipschitz:*
1236

1237
$$\|G_r(u) - G_r(v)\| \leq L_r \|u - v\| \quad \text{for all } u, v. \quad (46)$$

1238

1239 Under this assumption, for $m = 2$ we have $G_2(x_1) = G_2^0 + \delta_2$ with $\|\delta_2\| \leq L_2 \eta \|G_1^0\|$, hence
1240

1241
$$\|G_2(x_1)\| \leq \|G_2^0\| + L_2 \eta \|G_1^0\| \quad (47)$$

1242 For general m
 1243

1244
$$\|G_r(x_{r-1})\| \leq \|G_r^0\| + L_r \eta \sum_{p < r} \|G_p^0\| \quad (r = 2, \dots, m) \quad (48)$$

 1245

1246
 1247 When these substitutions are made in scheduled bounds, the induced drift contributions are collected
 1248 into a nonnegative penalty $R_m(x; \eta)$
 1249

1250 C.3 UPPER BOUNDS FOR SCHEDULED AND AGGREGATED UPDATES (GENERAL m)
 1251

1252 Applying L -smoothness m times yields the scheduled upper bound
 1253

1254
$$\begin{aligned} \text{UB}_{\text{sch}}(x; \eta) := F(x) - \eta \sum_{r=1}^m \langle \nabla F(x), G_r(x_{r-1}) \rangle + \frac{L\eta^2}{2} \sum_{r=1}^m \|G_r(x_{r-1})\|^2 \\ + \eta^2 \sum_{1 \leq p < q \leq m} \int_0^1 \langle H(x - t\eta G_p(x_{p-1})) G_p(x_{p-1}), G_q(x_{q-1}) \rangle dt. \end{aligned} \quad (49)$$

 1255
 1256
 1257
 1258
 1259

1260 The aggregated upper bound is the one-shot bound from Equation 42, restated as
 1261

1262
$$\text{UB}_{\text{agg}}(x; \eta) := F(x) - \eta \left\langle \nabla F(x), \sum_{r=1}^m G_r^0 \right\rangle + \frac{L\eta^2}{2} \left\| \sum_{r=1}^m G_r^0 \right\|^2 \quad (50)$$

 1263
 1264
 1265

1266 The integrals in Equation 49 are over ordered pairs $p < q$ along the specific sequence $x_0 \rightarrow x_1 \rightarrow \dots \rightarrow x_m$; the bound therefore depends on the within-refresh order. Randomizing the order yields an
 1267 expected version.
 1268

1269 In Sections C.4–C.6 we express the scheduled bound in terms of $\{G_r^0\}$ under the per-group lipschitz-
 1270 ness assumption. The associated drift terms are aggregated into $R_m(x; \eta)$.
 1271

1272 C.4 SCHEDULED AND AGGREGATED GAP AT A COMMON LINEARIZATION
 1273

1274 Define the shorthand
 1275

1276
$$I_{pq}(x; \eta) := \int_0^1 \langle H(x - t\eta G_p^0) G_p^0, G_q^0 \rangle dt \quad (51)$$

 1277
 1278

1279 By expanding UB_{sch} around $\{G_r^0\}$ and collecting the lipschitz drift penalties into $R_m(x; \eta) \geq 0$, we
 1280 obtain:
 1281

1282 **Theorem 5** (Upper-bound gap under per-group lipschitzness). *Assuming per-group lipschitzness, for
 1283 any partition $\{G_r\}$ and $\eta \in (0, 1/L]$,*
 1284

1285
$$\text{UB}_{\text{sch}}(x; \eta) - \text{UB}_{\text{agg}}(x; \eta) \leq \eta^2 \sum_{1 \leq p < q \leq m} \left(-L \langle G_p^0, G_q^0 \rangle + I_{pq}(x; \eta) \right) + R_m(x; \eta). \quad (52)$$

 1286
 1287

1288 Using $\|H(\cdot)\|_{\text{op}} \leq L$ and Cauchy-Schwarz (Steele, 2004)

1289
$$I_{pq}(x; \eta) \leq L \|G_p^0\| \|G_q^0\| \quad (53)$$

 1290
 1291

1292 which gives the envelope
 1293

1294
$$\text{UB}_{\text{sch}}(x; \eta) - \text{UB}_{\text{agg}}(x; \eta) \leq L\eta^2 \sum_{p < q} (\|G_p^0\| \|G_q^0\| - \langle G_p^0, G_q^0 \rangle) + R_m(x; \eta) \geq 0 \quad (54)$$

 1295

1296 **Interpretation** This shows that without additional structure, the scheduled smoothness bound can
 1297 be looser than the aggregated bound. The gap is governed by Hessian-weighted cross terms I_{pq}
 1298

1299 **Proposition 4** (Drift penalty bound under per-group lipschitzness). *Assume each group map G_r is
 1300 L_r -lipschitz. Then for $r \geq 2$,*

$$1301 \quad \|G_r(x_{r-1})\| \leq \|G_r^0\| + L_r \eta \sum_{p < r} \|G_p^0\| := \|G_r^0\| + L_r \eta S_{r-1}, \quad (55)$$

1303 and the scheduled start substitution error satisfies

$$1305 \quad R_m(x; \eta) \leq \eta^2 \left(\sum_{p=1}^m \|G_p^0\| \right) \sum_{r=2}^m L_r S_{r-1} \\ 1306 \quad + \frac{L\eta^2}{2} \sum_{r=2}^m \left(2 \|G_r^0\| L_r \eta S_{r-1} + (L_r \eta S_{r-1})^2 \right), \quad (56)$$

1311 so $R_m(x; \eta) = O(\eta^2)$ with constants controlled by $\{L_r\}$ and $\{\|G_r^0\|\}$.

1313 C.5 SUFFICIENT CONDITIONS FOR A TIGHTER SCHEDULED BOUND

1315 The terms $I_{pq}(x; \eta)$ encode Hessian-weighted interactions between groups and determine when
 1316 scheduling is advantageous at the bound level.

1317 **Assumption 7** (Hessian-weighted negative cross-terms). *There exist nonnegative margins $\{\Gamma_{pq}\}_{p < q}$
 1318 such that*

$$1320 \quad I_{pq}(x; \eta) = \int_0^1 \langle H(x - t\eta G_p^0) G_p^0, G_q^0 \rangle dt \leq -\Gamma_{pq} \|G_p^0\| \|G_q^0\| \quad \text{for all } p < q \quad (57)$$

1323 **Theorem 6** (Strict upper-bound improvement under per-group lipschitzness and negative Hes-
 1324 sian-weighted cross-terms). *Assuming per-group lipschitzness and 57, for any $\eta \in (0, 1/L]$,*

$$1326 \quad \text{UB}_{sch}(x; \eta) - \text{UB}_{agg}(x; \eta) \leq \eta^2 \sum_{p < q} \left(-L \langle G_p^0, G_q^0 \rangle - \Gamma_{pq} \|G_p^0\| \|G_q^0\| \right) + R_m(x; \eta) \quad (58)$$

1329 In particular, if

$$1332 \quad \sum_{p < q} \left(\Gamma_{pq} \|G_p^0\| \|G_q^0\| + L \langle G_p^0, G_q^0 \rangle \right) > \frac{R_m(x; \eta)}{\eta^2} \quad (59)$$

1334 then $\text{UB}_{sch}(x; \eta) < \text{UB}_{agg}(x; \eta)$

1336 C.6 PL OR STRONG CONVEXITY: STANDARD RATE AND UPPER-BOUND GAINS FOR 1337 SCHEDULING

1339 Assume F satisfies the Polyak–Łojasiewicz (PL) inequality with parameter $\mu > 0$:

$$1341 \quad \frac{1}{2} |\nabla F(x)|^2 \geq \mu (F(x) - F^*), \quad \forall x \quad (60)$$

1343 For any $\eta \in (0, 1/L]$, the single aggregated update satisfies the standard GD bound

$$1346 \quad F(x^{\text{agg}}) \leq F(x) - \eta \left(1 - \frac{L\eta}{2} \right) |\nabla F(x)|^2 \leq \left(1 - 2\mu\eta \left(1 - \frac{L\eta}{2} \right) \right) (F(x) - F^*) \quad (61)$$

1348 Define the upper-bound gain (under per-group lipschitzness, so both bounds are expressed at start-of-
 1349 refresh):

$$1350 \quad \Delta \text{UB}(x; \eta) := \text{UB}_{agg}(x; \eta) - \text{UB}_{sch}(x; \eta) \geq 0 \quad (62)$$

1350 whenever 59 holds. Since $F(x^{\text{sch}}) \leq \text{UB}_{\text{sch}}(x; \eta)$ and $\text{UB}_{\text{agg}}(x; \eta)$ upper-bounds the one-shot
 1351 decrease term in 61, we obtain the bound-level contraction
 1352

$$1353 \quad 1354 \quad F(x^{\text{sch}}) - F^* \leq \left(1 - 2\mu\eta\left(1 - \frac{L\eta}{2}\right)\right) (F(x) - F^*) - \Delta_{\text{UB}}(x; \eta). \quad (63)$$

1355 Consequently, under per-group lipschitzness and 59, the scheduled refresh satisfies the standard
 1356 gradient-descent contraction and, in addition, achieves an extra nonnegative decrement $\Delta_{\text{UB}}(x; \eta)$ in
 1357 the upper bound.
 1358

1359 C.7 WHY THE ASSUMPTIONS ARE MILD

1360 The assumptions we use are mild. They are standard and naturally align with our training pipeline.
 1361

1362 C.7.1 L -SMOOTHNESS

1363 This is the same regularity used throughout the main paper and in our baselines. Each task loss we
 1364 optimize is L_i -smooth, so the overall objective is L -smooth. We only use this to apply the standard
 1365 smoothness (descent) inequality (Nesterov, 2004; Beck, 2017).
 1366

1367 C.7.2 PER-GROUP LIPSCHITZNESS OF G_r

1368 Each G_r is a fixed linear combination of the task gradients assigned to group r . If each task gradient
 1369 is L_i -lipschitz, then G_r is lipschitz with constant $L_r \leq \sum_{i \in r} L_i$. In other words, this property falls
 1370 out of task-level smoothness. The same smoothness estimates we already use for step-size selection
 1371 upper-bound the L_r .
 1372

1373 C.7.3 NEGATIVE HESSIAN-WEIGHTED CROSS-TERMS

1374 The condition we use asks that, over the short moves we actually take ($\eta \leq 1/L$), groups that are
 1375 separated by the scheduler continue to exhibit negative interaction under the local Hessian (i.e.,
 1376 the Hessian-weighted cross-terms remain negative). This aligns with how the scheduler is built. It
 1377 separates tasks that exhibit sustained negative interactions and it periodically refreshes assignments
 1378 so the local geometry does not drift far. Thus the assumption matches the mechanism we deploy.
 1379

1380 C.7.4 PL AND STRONG CONVEXITY

1381 We invoke PL only to convert a per-refresh decrease into a standard contraction factor. We do
 1382 not require global strong convexity. A local PL inequality around the iterates is enough, which is
 1383 commonly observed after warm-up and annealing we already use (Karimi et al., 2016; Zhou et al.,
 1384 2021; Liu, 2025).
 1385

1386 C.8 CONCLUDING REMARKS

1387 This appendix formalizes a bound-level comparison between scheduled and aggregated updates.
 1388 Without additional structure the scheduled bound need not be tighter, but under per-group lipschitzness
 1389 and negative Hessian-weighted cross-terms it becomes strictly tighter, and under PL the scheduled
 1390 refresh inherits the standard GD contraction with an additional nonnegative decrement. In practice,
 1391 these conditions arise naturally once the task-group assignments stabilize, so the scheduler will
 1392 typically achieve tighter descent bounds without changing step sizes or gradient information.
 1393

1394 D COMPUTATIONAL COMPLEXITY OF ONE REFRESH (AND AMORTIZED 1395 OVER TRAINING)

1396 We analyze the computational and memory complexity of the proposed interference-aware scheduler
 1397 per refresh and its amortized cost over training. The former accounts for the cost of a single
 1398 refresh operation while the latter represents the average cost distributed across all training steps. We
 1399 distinguish the work required by the underlying multi-task training objective (e.g., backpropagation
 1400

1404 to obtain gradients) from the scheduler overhead (EMA maintenance, cosine computation, conflict
 1405 graph construction, and color).

1406
 1407 **D.1 NOTATION**

- 1408 • $K \in \mathbb{N}$ – *number of tasks*
- 1409 • $d \in \mathbb{N}$ – *dimension of the gradient EMA vector per task*
- 1410 • $R \in \mathbb{N}$ – *refresh period (number of training steps between graph rebuilds)*
- 1411 • $\beta \in [0, 1)$ – *exponential moving average (EMA) parameter*
- 1412 • $T \in \mathbb{N}$ – *total number of training steps*
- 1413 • $G > 0$ – *time to compute one backward pass to obtain a task gradient at a refresh*
- 1414 • $\tau \in (0, 1)$ – *conflict threshold; an undirected edge $\{i, j\}$ is present iff $\hat{C}_{ij} < -\tau$*
- 1415 • $T_{\text{refresh}} > 0$ – *time cost of a single scheduler refresh*
- 1416 • $S_{\text{refresh}} > 0$ – *peak additional memory used during a refresh*
- 1417 • $N_{\text{refresh}} \in \mathbb{N}$ – *number of refreshes over T steps with period R (satisfies $N_{\text{refresh}} \in \{[T/R], \lceil T/R \rceil\}$ and $N_{\text{refresh}} \leq T/R + 1$)*
- 1418 • $r \in \mathbb{N}$ – *dimension of the sketch space used for cosine computation (number of columns of*
 1419 *the random projection matrix)*

1420
 1421 **D.2 PER-REFRESH COMPLEXITY**

1422 At a refresh, the scheduler performs a finite sequence of deterministic operations on the current
 1423 collection of task-wise exponential moving averages (EMAs) of gradients. Let

$$1424 M \in \mathbb{R}^{K \times d} \quad (64)$$

1425 denote the matrix whose i -th row m_i^\top is the EMA for task i . We fix a random matrix $R \in \mathbb{R}^{d \times r}$ with
 1426 $r \ll d$ and form a lower dimensional sketch

$$1427 M_f := MR \in \mathbb{R}^{K \times r}. \quad (65)$$

1428 A refresh first updates these rows through a scalar EMA rule

$$1429 m_i \leftarrow \beta m_i + (1 - \beta) g_i \quad (66)$$

1430 using the most recent probe (or reused) gradient g_i . It then constructs the cosine-similarity matrix in
 1431 the sketch space

$$1432 \hat{C} = \widetilde{M}_f \widetilde{M}_f^\top \quad (67)$$

1433 where \widetilde{M}_f is the row-normalized version of M_f . It thresholds \hat{C} at $-\tau$ to obtain the conflict adjacency.
 1434 Finally, it applies a graph-coloring routine to the resulting simple graph (Welsh & Powell, 1967).

1435 EMA maintenance uses a constant number of vector operations per task: one multiply-add on each of
 1436 the d coordinates of m_i . Aggregating over all K tasks gives a time proportional to Kd . The storage
 1437 required to hold all EMAs is the $K \times d$ array M , so the working set devoted to EMAs is $\Theta(Kd)$
 1438 numbers.

1439 The construction of \hat{C} in the sketched space proceeds in three stages: (i) forming the sketch $M_f =$
 1440 MR , (ii) normalizing each row of M_f , and (iii) multiplying \widetilde{M}_f by its transpose. The sketching
 1441 touches every entry of M and R and therefore costs $\tilde{O}(Kdr)$ time. Row normalization
 1442 touches each entry of M_f exactly once and therefore costs $\Theta(Kr)$ time. The Gram product $\widetilde{M}_f \widetilde{M}_f^\top$
 1443 consists of K^2 dot products of length r , which is $O(K^2r)$ time (Kågström et al., 1998). The cosine
 1444 matrix itself occupies K^2 entries. If it is retained after thresholding, it uses $\Theta(K^2)$ space. If dropped
 1445 right after graph construction, that $\Theta(K^2)$ storage is only temporary.

1458 Thresholding linearly scans the off-diagonal of \widehat{C} , adding an undirected edge when $\widehat{C}_{ij} < -\tau$; this
 1459 costs $\Theta(K^2)$ time. The result is either a dense $K \times K$ boolean array requiring $\Theta(K^2)$ space, or a
 1460 sparse adjacency whose size depends on the number of conflicts (e.g., $\Theta(kK)$ when retaining the k
 1461 most negative entries per row).

1462 Putting these pieces together yields the following statement.

1463 **Proposition 5** (Per-refresh scheduler overhead with random projections). *Under the standard RAM
 1464 model with dense matrix multiplication in the sketch space costed as $O(K^2r)$, the time required by a
 1465 single scheduler refresh is*

$$1468 T_{\text{refresh}} = \Theta(Kd) + O(Kdr) + O(K^2r) + O(K^2) = O(Kdr + K^2r), \quad (68)$$

1469 and the additional space required by the scheduler during the refresh is

$$1471 S_{\text{refresh}} = \Theta(Kd) + \Theta(Kr) + \Theta(K^2), \quad (69)$$

1472 where the $\Theta(K^2)$ term is transient if C is not retained after coloring and the $\Theta(Kr)$ term is transient
 1473 if the sketch M_f is discarded between refreshes and recomputed from M .

1474 *Proof.* The EMA update costs $\Theta(Kd)$ by a direct count of coordinate-wise multiplication and
 1475 addition. Forming the random projection sketch $M_f = MR$ touches each entry of M and R , and
 1476 therefore costs $O(Kdr)$. Row-normalizing M_f then costs $\Theta(Kr)$, since it processes all Kr entries
 1477 once.

1478 In the sketched space, the Gram matrix $\widehat{C} = \widehat{M}_f \widehat{M}_f^\top$ requires K^2 inner products of length r , which
 1479 is $O(K^2r)$ time. Thresholding scans $O(K^2)$ entries and is therefore $\Theta(K^2)$. The greedy coloring
 1480 performs a sort of K keys and then assigns at most one color per edge incident on the current vertex,
 1481 which is $O(K^2)$ in the worst case. These $\Theta(K^2)$ terms are dominated by the $O(Kdr)$ and $O(K^2r)$
 1482 contributions once $r \geq 1$ and K is nontrivial.

1483 Summing these contributions and absorbing lower-order terms yields $T_{\text{refresh}} = \Theta(Kd) + O(Kdr) +
 1484 O(K^2r) + O(K^2) = O(Kdr + K^2r)$. \square

1487 D.3 AMORTIZED COST OVER TRAINING

1488 Let $R \in \mathbb{N}$ denote the refresh period as the scheduler executes a refresh once every R training
 1489 steps. Consider a training run of length T steps. The number of refreshes executed is $\lfloor T/R \rfloor$ or
 1490 $\lceil T/R \rceil$ depending on whether one refresh occurs at step 0. In either case it is bounded by $T/R + 1$.
 1491 Multiplying the per-refresh time T_{refresh} by the number of refreshes and dividing by T shows that the
 1492 amortized scheduler time per training step satisfies

$$1495 \frac{1}{T} N_{\text{refresh}} T_{\text{refresh}} \leq \frac{1}{T} \left(\frac{T}{R} + 1 \right) T_{\text{refresh}} = \frac{1}{R} T_{\text{refresh}} + \frac{1}{T} T_{\text{refresh}} \quad (70)$$

1496 Letting $T \rightarrow \infty$ (or simply taking T large compared to one refresh) eliminates the $T^{-1}T_{\text{refresh}}$
 1497 boundary term, yielding the asymptotic amortized bound

$$1501 \frac{1}{R} T_{\text{refresh}} = \frac{1}{R} O(Kdr + K^2r) = O\left(\frac{Kdr + K^2r}{R}\right). \quad (71)$$

1502 If probe gradients are computed only at refreshes, their contribution KG per refresh adds $\frac{1}{R}\Theta(KG)$
 1503 to the amortized time per step. If, instead, the training loop already computes task-wise gradients
 1504 each step and these are reused to update the EMAs, then the probe term is absent and the amortized
 1505 scheduler overhead remains $O((Kdr + K^2r)/R)$.

1506 The amortized space usage is simpler. The EMA matrix M must be retained throughout training and
 1507 therefore contributes $\Theta(Kd)$ at all times. The cosine matrix \widehat{C} and the adjacency are constructed only
 1508 during the refresh. They're released after coloring, so the $\Theta(K^2)$ space does not persist. Consequently,
 1509 the persistent memory overhead attributable to the scheduler is $\Theta(Kd)$, while the peak overhead
 1510 during a refresh is $\Theta(Kd) + \Theta(K^2)$.

1512 D.4 CONDITIONS FOR NEGLIGIBLE OVERHEAD
15131514 Let the amortized per-step costs be
1515

1516
$$C_{\text{sched}} = \frac{a}{R} (Kdr + K^2r), \quad C_{\text{probe}} = \frac{b}{R} KG, \quad (72)$$

1517

1518 where $a, b > 0$ are platform-dependent constants and G denotes the per-task backpropagation cost of
1519 the optional probe at a refresh. For fixed R ,
1520

1521
$$\frac{C_{\text{sched}}}{C_{\text{probe}}} = \frac{a}{b} \frac{Kdr + K^2r}{KG} = \frac{ar}{b} \frac{d + K}{G}. \quad (73)$$

1522

1523 Hence C_{sched} is negligible relative to C_{probe} whenever
1524

1525
$$\frac{C_{\text{sched}}}{C_{\text{probe}}} \leq \varepsilon \iff r(d + K) \leq \frac{b}{a} \varepsilon G. \quad (74)$$

1526

1528 D.5 REDUCING TIME COMPLEXITY
15291530 In this section, we detail approaches that can be taken under certain circumstances to optimize time
1531 complexity.
15321533 D.5.1 RANDOM PROJECTIONS
15341535 We replace the EMA matrix $M \in \mathbb{R}^{K \times d}$ by a lower-dimensional sketch $\widetilde{M} = MR$ with $R \in \mathbb{R}^{d \times r}$
1536 and $r \ll d$ (Dasgupta & Gupta, 2003). The sketching multiply costs $O(Kdr)$ and the cosine Gram
1537 becomes $O(K^2r)$ instead of $\Theta(K^2d)$. Storage for the sketched EMAs is $O(Kr)$. By the Johnson-
1538 Lindenstrauss (JL) random projection guarantee, if we map the K task-EMA vectors from \mathbb{R}^d to \mathbb{R}^r
1539 using a suitable random matrix with $r = \Theta(\epsilon^{-2} \log K)$, then after row normalization all pairwise
1540 inner products (hence cosines) are preserved within $\pm\epsilon$ with high probability. We assume a uniform
1541 row-norm floor $\min_i \|m_i\| \geq m_0 > 0$ (which can be enforced in practice by skipping tasks with
1542 $\|m_i\| < \nu \ll m_0$) so cosine errors remain controlled. Choosing $\epsilon < \gamma$, where γ is the cosine margin
1543 from the recovery analysis, ensures that every pair remains on the same side of the threshold $-\tau$.
1544 Therefore the set $\{(i, j) : \widehat{C}_{ij} < -\tau\}$ and the resulting coloring are unchanged with high probability.
15451546 In short, dimensionality drops from d to r , the refresh cost drops from $\Theta(K^2d)$ to $O(Kdr + K^2r)$,
1547 and decisions are preserved as long as the chosen r makes the embedding error smaller than the
1548 margin.
1549

D.5.2 DETERMINISTIC COVARIANCE SKETCHING VIA FREQUENT DIRECTIONS

1550 We maintain a deterministic sketch $B \in \mathbb{R}^{\ell \times d}$ of the row space of M using Frequent Directions
1551 and either project rows onto $\text{span}(B)$ or form an approximate Gram from the sketch (Liberty, 2013;
1552 Ghashami et al., 2016a). Maintaining the sketch costs $O(Kd\ell)$, the cosine Gram in the sketch space
1553 costs $O(K^2\ell)$, and storage for the sketch is $O(\ell d)$. Frequent Directions gives a spectral-norm bound
1554

1555
$$\|MM^\top - \widehat{MM}^\top\|_2 \leq \epsilon \|M\|_F^2 \quad (75)$$

1556

1557 when $\ell = \Theta(\epsilon^{-2})$, which yields a uniform bound on inner-product and squared-norm errors. Assuming
1558 a row-norm floor $\min_i \|m_i\| \geq m_0 > 0$ and applying a standard cosine perturbation bound after
1559 row normalization, one obtains
1560

1561
$$|\cos(m_i, m_j) - \widehat{\cos}(m_i, m_j)| \leq \frac{2\epsilon \|M\|_F^2}{m_0^2} + O\left(\frac{\epsilon^2 \|M\|_F^4}{m_0^4}\right) \quad (76)$$

1562

1563 Taking ϵ small enough so that the right-hand side is $< \gamma$ ensures that all threshold decisions and the
1564 resulting coloring are preserved deterministically. Thus the effective dimension drops from d to ℓ in
1565 the worst case, and the refresh cost becomes $O(Kd\ell + K^2\ell)$.
1566

1566 **Table 3: Runtime and Taskonomy Tiny validation metrics for SON-GOKU scheduling variants.**
1567

Family	Variant	Runtime			Taskonomy Tiny			
		Elapsed (s) \downarrow	Imgs/s \uparrow	Refresh (ms) \downarrow	Depth Eucl. RMSE \downarrow	Depth Eucl. MAE \downarrow	Normal mean (deg) \downarrow	Reshading MAE \downarrow
Baseline	FD (conservative)	76.37 \pm 1.84	50.28 \pm 1.21	488.94 \pm 27.35	25.58 \pm 0.92	7.98 \pm 0.41	56.63 \pm 1.87	0.238 \pm 0.018
Random proj.	128 random dim.	72.32 \pm 2.76	53.10 \pm 1.95	366.70 \pm 34.12	26.19 \pm 1.37	9.05 \pm 0.63	70.37 \pm 3.91	0.334 \pm 0.039
Freq. Directions	128 FD width r	73.85 \pm 1.57	52.00 \pm 1.33	391.15 \pm 29.44	27.49 \pm 1.68	9.82 \pm 0.71	70.97 \pm 4.22	0.490 \pm 0.065
	256 FD width r	75.11 \pm 1.23	51.13 \pm 1.09	440.05 \pm 23.08	26.34 \pm 1.05	8.72 \pm 0.52	62.37 \pm 2.98	0.339 \pm 0.033
Edge sampling	25% sampling rate	72.38 \pm 3.41	53.05 \pm 2.37	342.26 \pm 48.73	126.01 \pm 18.92	49.50 \pm 7.31	77.48 \pm 6.85	5.959 \pm 0.821
Incremental Gram	1e-3 threshold ϵ	70.07 \pm 2.04	54.80 \pm 2.11	293.36 \pm 31.29	34.41 \pm 4.67	15.36 \pm 1.88	93.86 \pm 9.73	0.621 \pm 0.079

1573

D.5.3 EDGE SAMPLING FOR CONFLICT GRAPHS WITH ADAPTIVE REFINEMENT

1574
1575 We reduce the number of cosine evaluations by computing \hat{C}_{ij} for only $\tilde{O}(K \log K)$ randomly chosen
1576 task pairs to build a provisional conflict graph and then refining by evaluating additional pairs that
1577 are near the threshold or needed to certify connectivity and chromatic structure. We still compute
1578 all K row norms once in $O(Kd)$ time for normalization, and the first pass costs $O(Kd \log K)$ for
1579 the sampled dot products. The total cost adds only the refinement work, which remains small when
1580 only few pairs are ambiguous. Under a planted separation model with margin γ and reasonably dense
1581 cross-group conflicts, one can show with high probability that the sampled graph already captures
1582 the correct inter-group connectivity, so the coloring or component structure is recovered after the
1583 first pass and only boundary pairs need refinement. This reduces the pairwise work from K^2 to near
1584 $K \log K$ while preserving the final decisions under stated assumptions (Erdős & Rényi, 1960).
1585

1586

D.5.4 INCREMENTAL GRAM UPDATES

1587
1588 We avoid rebuilding the full cosine matrix when only a small subset of tasks has meaningfully
1589 changed since the last refresh. If s rows of M cross a chosen change threshold, we first renormalize
1590 these rows and then recompute both the corresponding s rows and s columns of the Gram by taking
1591 dot products against all K rows, which costs $O(sKd)$, with an additional $O(sd)$ to update norms,
1592 instead of $\Theta(K^2d)$, and we leave all unchanged entries as they are. This update is exact for the
1593 affected entries, so conflict edges and coloring decisions are preserved by construction, and the
1594 reduction is deterministic whenever $s \ll K$. To prevent slow drift in the unchanged entries, we can
1595 periodically force a full rebuild and reset the change counters.
1596

1597

D.5.5 EXPERIMENTAL ANALYSIS

1598
1599 We evaluated each optimizations’ speed and relative impact on performance on the Taskonomy Tiny
1600 subset. We use the Tiny subset here as this experiment does not require large-scale training for valid
1601 results.

1602 Results are presented in Table 3. We can see that, in practice, every approach actually does improve
1603 speed over the SON-GOKU baseline (Frequent Directions with high r , note that we use r in the
1604 same way that Ghashami et al. 2016b use ℓ). However, every approach also degrades performance
1605 (by performance we are referring the main objective metric, like loss or accuracy, not speed) to
1606 varying extents¹. Edge sampling and incremental gram updates have an extremely negative impact on
1607 performance. Such approaches may need additional fine-tuning or may only be practical in specific
1608 settings. Interestingly, we observe a slight decrease in performance when using lower width for
1609 Frequent Directions, demonstrating the tradeoffs between speed and performance that come with
1610 such an approach.

1611 Overall, every approach achieves the desired effect of increasing speed, but does so at varying costs
1612 in performance. Each approach will require careful fine tuning and usage in real-world deployment
1613 to properly weigh this tradeoff. Based on our experimentation, it appears that Frequent Directions
1614 offers the most consistent and reasonable tradeoff that clearly scales with the FD width.

1615
1616 ¹Please note that varying performance for the SON-GOKU baseline across experiments is due to changes in
1617 the backbone model architecture and the Taskonomy subset.

1620 **E DESCENT PRESERVATION UNDER τ -COMPATIBILITY**
 1621

1622 **E.1 PROOF OF PROPOSITION 6**
 1623

1624 **Proposition 6.** *Let $S \subseteq \{1, \dots, K\}$ be a τ -compatible task set. That is, every pair of gradients
 1625 satisfies*

$$1626 \quad \langle g_i, g_j \rangle \geq -\tau \|g_i\| \|g_j\|, \quad \forall i \neq j \in S, \quad 0 \leq \tau < 1 \quad (77)$$

1627 *Then*

$$1628 \quad \left\| \sum_{k \in S} g_k \right\|^2 \geq (1 - \tau(|S| - 1)) \sum_{k \in S} \|g_k\|^2. \quad (78)$$

1631 *Proof.* We begin with the polarization identity for any finite set of vectors:
 1632

$$1633 \quad \left\| \sum_{k \in S} g_k \right\|^2 = \sum_{k \in S} \|g_k\|^2 + 2 \sum_{\substack{i, j \in S \\ i < j}} \langle g_i, g_j \rangle. \quad (79)$$

1636 **E.1.1 LOWER-BOUNDING THE CROSS TERMS**
 1637

1638 Because S is τ -compatible, inequality (77) gives
 1639

$$1640 \quad \langle g_i, g_j \rangle \geq -\tau \|g_i\| \|g_j\|. \quad (80)$$

1641 Insert this bound into (79) to obtain
 1642

$$1643 \quad \left\| \sum_k g_k \right\|^2 \geq \sum_k \|g_k\|^2 - 2\tau \sum_{i < j} \|g_i\| \|g_j\|. \quad (81)$$

1645 **E.1.2 SYMMETRIZING THE MIXED SUM**
 1646

1647 Observe that

$$1649 \quad \sum_{i < j} \|g_i\| \|g_j\| = \frac{1}{2} \sum_{\substack{i, j \\ i \neq j}} \|g_i\| \|g_j\|. \quad (82)$$

1651 Substituting (82) into (81) yields
 1652

$$1653 \quad \left\| \sum_k g_k \right\|^2 \geq \sum_k \|g_k\|^2 - \tau \sum_{\substack{i, j \\ i \neq j}} \|g_i\| \|g_j\|. \quad (83)$$

1656 **E.1.3 BOUNDING THE MIXED SUM VIA CAUCHY-SCHWARZ**
 1657

1658 Apply the Cauchy-Schwarz inequality in $\mathbb{R}^{|S|}$ to the vectors $a = (\|g_1\|, \dots, \|g_{|S|}\|)$ and $\mathbf{1} = (1, \dots, 1)$:
 1659

$$1661 \quad \sum_k \|g_k\| = \langle a, \mathbf{1} \rangle \leq \|a\| \|\mathbf{1}\| = \left(\sum_k \|g_k\|^2 \right)^{1/2} \sqrt{|S|}. \quad (84)$$

1663 Using $(\sum_k a_k)^2 \leq |S| \sum_k a_k^2$ and (85),
 1664

$$1665 \quad \sum_{i \neq j} \|g_i\| \|g_j\| = \left(\sum_k \|g_k\| \right)^2 - \sum_k \|g_k\|^2, \quad (85)$$

1667 we obtain the standard estimate

$$1669 \quad \sum_{i \neq j} \|g_i\| \|g_j\| \leq (|S| - 1) \sum_k \|g_k\|^2. \quad (86)$$

1672 Hence,

$$1673 \quad \tau \sum_{i \neq j} \|g_i\| \|g_j\| \leq \tau (|S| - 1) \sum_k \|g_k\|^2. \quad (87)$$

1674 E.1.4 COMBINING BOUNDS
16751676 Insert (87) into (83):
1677

1678
$$\left\| \sum_k g_k \right\|^2 \geq \sum_k \|g_k\|^2 - \tau(|S| - 1) \sum_k \|g_k\|^2 = (1 - \tau(|S| - 1)) \sum_k \|g_k\|^2, \quad (88)$$

1679

1680 which is (78). \square 1681 E.2 INTERPRETATION AND PRACTICAL IMPLICATIONS
16821683 Equation (78) guarantees that whenever we restrict an SGD step to a τ -compatible group (i.e., a
1684 set of tasks whose gradients are not too conflicting) the resulting joint update preserves at least a
1685 $(1 - \tau(|S| - 1))$ fraction of the summed squared step lengths.
1686

1687 Below, we provide a strictly stronger version that is assumption free.

1688 **Proposition 7** (Data-Dependent Lower Bound via the Aggregate Conflict Ratio). *Define the aggregate
1689 conflict ratio*

1690
$$\tau_{\text{eff}}(S) := \frac{\sum_{i \neq j} (-\langle g_i, g_j \rangle)_+}{\sum_k \|g_k\|^2}, \quad (x)_+ := \max\{x, 0\}. \quad (89)$$

1691
1692
1693

1694 Then, without additional assumptions,

1695
$$\left\| \sum_{k \in S} g_k \right\|^2 \geq (1 - \tau_{\text{eff}}(S)) \sum_{k \in S} \|g_k\|^2, \quad (90)$$

1696
1697

1698 and under τ -compatibility we always have $\tau_{\text{eff}}(S) \leq \tau(|S| - 1)$, so (90) is never weaker than (78).1699 Our takeaways from this are as follows:
17001701 (i) *Descent direction safety.* The aggregated step is guaranteed to be a descent direction
1702 whenever $\tau_{\text{eff}}(S) < 1$ (data-dependent) and, in particular, whenever $\tau(|S| - 1) < 1$ (worst-
1703 case).
1704 (ii) *Convergence-rate constant.* In analyses for smooth SGD, one may replace $\|g_t\|^2$ by the
1705 right-hand side of either (90) (which is tighter) or (78) (worst-case), leading respectively to
1706 constants involving $\tau_{\text{eff}}(S_t)$ or $\tau(|S_t| - 1)$.
17071708 F CONVERGENCE RATE WITH τ -DEPENDENT CONSTANT
17091710 **Theorem 7** (Baseline $O(1/\sqrt{T})$ convergence of the full gradient). *Let $F(\theta) = \sum_{k=1}^K \mathcal{L}_k(\theta, \phi_k)$
1711 be L -smooth in the shared parameters θ . Assume the stochastic gradient g_t obtained at step t
1712 satisfies $\mathbb{E}[g_t | \theta_t] = \nabla F(\theta_t)$ and $\mathbb{E}[\|g_t - \nabla F(\theta_t)\|^2 | \theta_t] \leq \sigma^2$. Let the step size be $\eta = \frac{c}{\sqrt{T}}$ with
1713 $0 < c \leq \frac{1}{L}$, and suppose the scheduler selects a τ -compatible task set S_t at each step (this will be
1714 used below for a refinement). Then*

1715
$$\min_{1 \leq t \leq T} \mathbb{E}[\|\nabla F(\theta_t)\|^2] \leq \frac{2(F_0 - F^*)}{c\sqrt{T}} + \frac{cL\sigma^2}{\sqrt{T}}. \quad (91)$$

1716
1717

1718 *Proof.* Because F is L -smooth, for any $\eta \leq \frac{1}{L}$ the standard non-convex SGD inequality (Ghadimi &
1719 Lan 2013, Lemma 3.2) gives
1720

1721
$$\mathbb{E}[F(\theta_{t+1})] \leq \mathbb{E}[F(\theta_t)] - \frac{\eta}{2} \mathbb{E}[\|\nabla F(\theta_t)\|^2] + \frac{\eta^2 L \sigma^2}{2}. \quad (92)$$

1722

1723 Summing equation 92 over $t = 0, \dots, T - 1$ and using $\mathbb{E}[F(\theta_T)] \geq F^*$ yields
1724

1725
$$\frac{\eta}{2} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla F(\theta_t)\|^2] \leq F_0 - F^* + \frac{\eta^2 L \sigma^2 T}{2}. \quad (93)$$

1726
1727

1728 Dividing by T , using $\min_t x_t \leq \frac{1}{T} \sum_t x_t$, and substituting $\eta = \frac{c}{\sqrt{T}}$ gives equation 91. \square

1728
 1729 **Data-dependent τ -refinement for the scheduled gradient energy.** For a finite set S , define the
 1730 aggregate conflict ratio

$$1731 \quad \tau_{\text{eff}}(S) := \frac{\sum_{i \neq j \in S} (-\langle g_i, g_j \rangle)_+}{\sum_{k \in S} \|g_k\|^2} \in [0, \infty), \quad (x)_+ = \max\{x, 0\}. \quad (94)$$

1733 Then for every step t ,

$$1735 \quad \left\| \sum_{k \in S_t} g_{k,t} \right\|^2 \geq \left(1 - \tau_{\text{eff}}(S_t)\right) \sum_{k \in S_t} \|g_{k,t}\|^2. \quad (95)$$

1737 Consequently,

$$1739 \quad \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left[\sum_{k \in S_t} \|g_{k,t}\|^2 \right] \leq \underbrace{\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left[\frac{1}{1 - \tau_{\text{eff}}(S_t)} \right]}_{=: \Gamma_T} \cdot \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} [\|g_t\|^2]. \quad (96)$$

1743 Using $\mathbb{E} \|g_t\|^2 = \mathbb{E} \|\nabla F(\theta_t)\|^2 + \mathbb{E} \|g_t - \nabla F(\theta_t)\|^2 \leq \mathbb{E} \|\nabla F(\theta_t)\|^2 + \sigma^2$ and the average version
 1744 of equation 92,

$$1745 \quad \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} [\|\nabla F(\theta_t)\|^2] \leq \frac{2(F_0 - F^*)}{\eta T} + L\eta\sigma^2, \quad (97)$$

1748 we obtain the τ -dependent, data-driven control

$$1750 \quad \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left[\sum_{k \in S_t} \|g_{k,t}\|^2 \right] \leq \Gamma_T \left(\frac{2(F_0 - F^*)}{\eta T} + L\eta\sigma^2 + \sigma^2 \right). \quad (98)$$

1753 If, in addition, each S_t is pairwise τ -compatible with $|S_t| = s_t$ and $\tau(s_t - 1) \leq \rho < 1$ uniformly in
 1754 t , then $\tau_{\text{eff}}(S_t) \leq \tau(s_t - 1) \leq \rho$ and hence $\Gamma_T \leq \frac{1}{1-\rho}$. With $\eta = \frac{c}{\sqrt{T}}$, equation 98 becomes

$$1756 \quad \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left[\sum_{k \in S_t} \|g_{k,t}\|^2 \right] \leq \frac{1}{1-\rho} \left(\frac{2(F_0 - F^*)}{c\sqrt{T}} + \frac{cL\sigma^2}{\sqrt{T}} + \sigma^2 \right). \quad (99)$$

1759 F.1 DISCUSSION AND INTUITION

1761 Equation equation 91 is the classical $O(1/\sqrt{T})$ rate for non-convex SGD with unbiased and bounded
 1762 variance gradients and constant-over-time step size $\eta = c/\sqrt{T}$. Under these conditions, the con-
 1763 vergence rate in terms of the full gradient norm $\|\nabla F(\theta_t)\|^2$ does not depend on τ . However, the
 1764 scheduler's τ structure does control the per step energy of the scheduled gradient through equation 96–
 1765 equation 99. Less cross-task conflict (smaller Γ_T) results in a tighter bound on $\frac{1}{T} \sum_t \sum_{k \in S_t} \|g_{k,t}\|^2$,
 1766 which is the quantity governed by the descent preservation inequalities used throughout the analysis.

1768 G BOUNDED STALENESS VIA GREEDY GRAPH COLORING

1770 **Proposition 8** (Staleness Bound). *Let $G = (\mathcal{T}, E)$ be the task–conflict graph whose vertices are
 1771 tasks and whose edges connect pairs with interference coefficient exceeding the threshold τ . Denote
 1772 by Δ its maximum degree. Greedy graph coloring produces a proper coloring C_1, \dots, C_m with*

$$1773 \quad m \leq \Delta + 1. \quad (100)$$

1775 *If the scheduler activates the color classes in the cyclic order $C_1 \rightarrow C_2 \rightarrow \dots \rightarrow C_m \rightarrow C_1 \rightarrow \dots$,
 1776 then every task is updated at least once every*

$$1777 \quad s_{\max} = m - 1 \leq \Delta \quad (101)$$

1779 *iterations. In particular, the schedule enforces a bounded inter-update delay of at most Δ iterations
 1780 per task, consistent with the bounded-delay assumption of Recht et al. (Niu et al., 2011).*

1781 *Proof.* We proceed in two parts.

1782 **Part A: Color count bound.** A greedy algorithm scans vertices in some order and assigns to each
 1783 vertex the smallest available color not used by its already colored neighbors. When the i -th vertex v is
 1784 reached, at most $\deg(v) \leq \Delta$ of its neighbors are already colored, so at most Δ colors are unavailable.
 1785 Therefore one of the first $\Delta + 1$ colors is always free, implying $m \leq \Delta + 1$ (Lovász, 2006).

1787 **Part B: Staleness of cyclic execution.** Fix any task $T \in \mathcal{T}$ and let it belong to color C_j for some
 1788 $1 \leq j \leq m$. Under cyclic scheduling, C_j is executed at steps $t = j, j + m, j + 2m, \dots$. The
 1789 number of intervening steps between two consecutive executions of C_j is exactly $m - 1$. Hence task
 1790 T never waits more than $s_{\max} = m - 1$ iterations for an update. Combining with Equation 8 yields
 1791 $s_{\max} \leq \Delta$. \square

1792 G.1 INTERPRETATION

1793 The bound (Equation 101) guarantees that the shared parameters used by any task are refreshed
 1794 at least once every Δ iterations in the worst case (e.g., when the conflict graph is a clique of size
 1795 $\Delta + 1$). This aligns with the bounded-delay assumption common in analyses of asynchronous SGD
 1796 and lock-free training, so convergence proofs built under that assumption apply to our cyclic schedule
 1797 with delay parameter at most Δ when iterations are used as the unit of delay (Niu et al., 2011; Lian
 1798 et al., 2015). In practice Δ is often much smaller than the total number of tasks, so the scheduler
 1799 achieves low interference and low parameter staleness simultaneously.

1802 H GREEDY GRAPH-COLORING USES AT MOST $\Delta + 1$ COLORS

1804 H.1 PROOF OF PROPOSITION 9

1805 **Proposition 9** (Coloring Period Bound). *Let $G = (V, E)$ be a finite, simple, undirected graph with
 1806 maximum degree $\Delta := \max_{v \in V} \deg(v)$. The greedy (first-fit) coloring algorithm (e.g., Welsh–Powell
 1807 order)² produces a proper vertex coloring with no more than*

$$1808 \chi_{\text{greedy}}(G) \leq \Delta + 1 \quad (102)$$

1809 *distinct colors. Consequently, when the scheduler activates the color classes in a cyclic order, the
 1810 cycle length is bounded by $\Delta + 1$. This is a quantity depending only on the structure of the conflict
 1811 graph.*

1812 *Proof.* Let the vertices be processed in the chosen order $v_1, v_2, \dots, v_{|V|}$ (e.g., Welsh-Powell).
 1813 Assume inductively that after coloring the first $k - 1$ vertices the algorithm has used at most $\Delta + 1$
 1814 colors. Consider vertex v_k . Since $\deg(v_k) \leq \Delta$, at most Δ neighbors of v_k can appear before v_k in
 1815 the ordering. Hence, at the moment of coloring v_k , at most Δ colors are forbidden (one for each
 1816 previously colored neighbor). Among the palette $\{1, 2, \dots, \Delta + 1\}$ there is therefore at least one
 1817 color still available. Assigning the smallest such color to v_k maintains a proper coloring and never
 1818 introduces a new color beyond $\Delta + 1$.

1819 Proceeding vertex-by-vertex, no step ever requires more than $\Delta + 1$ colors, establishing equation 102.
 1820 \square

1825 H.2 IMPLICATIONS FOR THE SCHEDULER

1826 A coloring with at most $\Delta + 1$ classes means the scheduler’s cycle period (the number of batches
 1827 needed before every task reappears) is bounded by a graph invariant independent of the number
 1828 of tasks. Even if thousands of tasks exist, as long as each one conflicts with at most Δ others, the
 1829 memory footprint (one shared backbone plus $\Delta + 1$ sets of head activations) and the maximum
 1830 waiting time between successive updates for any task (bounded by Δ , see Proposition 8) remain
 1831 predictable and small. This guarantee is essential for scaling the scheduler to large, heterogeneous
 1832 tasks.

1833 ²Order the vertices in non-increasing degree and assign to each the smallest positive integer (color) not used
 1834 by its previously colored neighbors.

1836 **I BASELINE NON-CONVEX SGD CONVERGENCE RATE**

1838 **I.1 PROOF OF THEOREM 8**

1840 **Theorem 8** (Classical $O(1/\sqrt{T})$ bound). *Let $F : \mathbb{R}^d \rightarrow \mathbb{R}$ be an L -smooth, possibly non-convex*

1841 *objective and suppose the stochastic gradient g_t computed at iteration t satisfies*

1842
$$\mathbb{E}[g_t \mid \theta_t] = \nabla F(\theta_t), \quad \mathbb{E}[\|g_t - \nabla F(\theta_t)\|^2 \mid \theta_t] \leq \sigma^2. \quad (103)$$

1844 *Run SGD with the constant step size $\eta = \frac{c}{\sqrt{T}}$, $0 < c \leq \frac{1}{L}$, for T iterations starting from θ_0 . Then*

1846
$$\min_{0 \leq t < T} \mathbb{E}[\|\nabla F(\theta_t)\|^2] \leq \frac{2(F_0 - F^*)}{c\sqrt{T}} + \frac{cL\sigma^2}{\sqrt{T}}, \quad (104)$$

1848 *where $F^* = \inf_{\theta} F(\theta)$.*

1850 *Proof.* The proof is a streamlined restatement of ((Ghadimi & Lan, 2013; Nemirovski et al., 2009)).
1851 By L -smoothness,

1853
$$F(\theta_{t+1}) \leq F(\theta_t) + \langle \nabla F(\theta_t), \theta_{t+1} - \theta_t \rangle + \frac{L}{2} \|\theta_{t+1} - \theta_t\|^2. \quad (105)$$

1855 With $\theta_{t+1} = \theta_t - \eta g_t$ and taking conditional expectation,

1857
$$\mathbb{E}[F(\theta_{t+1})] \leq \mathbb{E}[F(\theta_t)] - \eta \mathbb{E}[\|\nabla F(\theta_t)\|^2] + \frac{\eta^2 L}{2} \mathbb{E}[\|g_t\|^2]. \quad (106)$$

1859 Decompose the squared stochastic gradient:

1860
$$\mathbb{E}[\|g_t\|^2] = \mathbb{E}[\|\nabla F(\theta_t)\|^2] + \mathbb{E}[\|g_t - \nabla F(\theta_t)\|^2] \leq \mathbb{E}[\|\nabla F(\theta_t)\|^2] + \sigma^2 \quad (107)$$

1862 Thus, and using $\eta \leq 1/L$ so that $\eta - \frac{L\eta^2}{2} \geq \frac{\eta}{2}$,

1864
$$\mathbb{E}[F(\theta_{t+1})] \leq \mathbb{E}[F(\theta_t)] - \frac{\eta}{2} \mathbb{E}[\|\nabla F(\theta_t)\|^2] + \frac{\eta^2 L\sigma^2}{2}. \quad (108)$$

1866 Summing from $t = 0$ to $T - 1$ and telescoping gives

1868
$$\frac{\eta}{2} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla F(\theta_t)\|^2] \leq F_0 - F^* + \frac{\eta^2 L\sigma^2 T}{2}. \quad (109)$$

1871 Dividing by ηT and inserting $\eta = c/\sqrt{T}$ yields equation 104. \square

1872 **I.2 CONNECTION TO THE SCHEDULER**

1874 At $\tau = 0$, pairs with negative inner product are incompatible, so the conflict graph on tasks can be
1875 colored into m classes $\{C_1, \dots, C_m\}$, and a simple policy activates one color class per step. Under a
1876 deterministic (cyclic) activation order, the update $g_t = \sum_{k \in S_t} g_{k,t}$ generally satisfies

1878
$$\mathbb{E}[g_t \mid \theta_t] = \sum_{k \in S_t} \nabla \mathcal{L}_k(\theta_t, \phi_{k,t}) \neq \sum_{k=1}^K \nabla \mathcal{L}_k(\theta_t, \phi_{k,t}), \quad (110)$$

1881 so it is biased for the full gradient.

1883 **I.2.1 CONSISTENCY WITH THE UNBIASED SGD ASSUMPTION**

1885 The analysis in Theorem 8 assumes an unbiased stochastic gradient, $\mathbb{E}[g_t \mid \theta_t] = \nabla F(\theta_t)$. This
1886 assumption is met under either of the following implementations.

1887 (i) *Randomized class sampling with scaling.* Draw $J_t \sim \text{Unif}\{1, \dots, m\}$ independently each step
1888 and set

1889
$$\tilde{g}_t = m \sum_{k \in C_{J_t}} g_{k,t}. \quad (111)$$

1890
1891 Table 4: Information on the datasets utilized in experimentation. (*Some samples were removed
1892 during preprocessing)

Dataset	Main Tasks	(+) Aux. Tasks	(-) Aux Tasks	Modalities	Samples
NYUv2	Semantic Segmentation Depth Estimation Surface Normal Prediction	–	Color Temp. Estimation	Image	250*
CIFAR-10	Image Classification	Quadrant Localization Texture Classification	Corruption-Type Prediction Rotation Angle Prediction	Image	2,500*
AV-MNIST	Digit Classification	Digit Parity		Audio, Image	56.0k
MM-IMDb	Genre Classification	Release Decade	Title-Initial Classification	Image, Text	25.9k
STOCKS-F&B	4 × Stock Return Prediction	Five-Day Rolling Volatility Sector-Average Next-Day Return	Day of the Week Prediction Lag-0 Reconstruction of Today's Open-Price	Timeseries × 18	75.5k
STOCKS-HEALTH	7 × Stock Return Prediction	Five-Day Rolling Volatility Sector-Average Next-Day Return	Day of the Week Prediction Lag-0 Reconstruction of Today's Open-Price	Timeseries × 63	75.5k

1903 Then $\mathbb{E}[\tilde{g}_t \mid \theta_t] = \sum_{k=1}^K \nabla \mathcal{L}_k(\theta_t, \phi_{k,t}) = \nabla F(\theta_t)$, so Theorem 8 applies (with the variance bound
1904 adjusted for the scaled estimator). Equivalently, one may keep $g_t = \sum_{k \in C_{J_t}} g_{k,t}$ and use an effective
1905 step size $m\eta$.

1906
1907 (ii) *Deterministic cyclic schedule*. If the classes are visited in a fixed periodic order, then generally
1908 $\mathbb{E}[g_t \mid \theta_t] \neq \nabla F(\theta_t)$ at the per-step level. Nonetheless, standard analyses of nonconvex smooth
1909 cyclic block updates yield an $O(1/\sqrt{T})$ decay of the average gradient norm under usual step-size
1910 conditions, with constants depending on the number of blocks.

1911 Either implementation delivers an $O(1/\sqrt{T})$ convergence guarantee.

1914 J EXPERIMENTAL SETUP FOR DATASETS

1915
1916 We evaluate the proposed scheduler alongside numerous baselines and state-of-the-art models across
1917 multiple datasets to reliably assess its general performance relative to other approaches. In total, it is
1918 evaluated across 6 datasets.

1919
1920 Across all datasets, we incorporate positive and/or negative auxiliary tasks into training. Positive
1921 auxiliary tasks share structure or predictive signals with the main tasks (e.g., common features or
1922 correlated outputs) and so can improve the learned representations by providing relevant supervision.
1923 In contrast, negative auxiliary tasks are uncorrelated or directly conflicting with the main objectives,
1924 inducing gradient interference that can slow or degrade primary performance. Including both creates
1925 controlled variation in task alignment, letting us test whether SON-GOKU (1) groups compatible
1926 tasks, (2) separates conflicting tasks, and (3) maintains main-task performance under interference
1927 created by auxiliary tasks.

1928 J.1 NYUv2

1929
1930 The NYU Depth Dataset v2 (NYUv2) (Silberman et al., 2012) consists of RGB-D indoor scenes
1931 with 1,449 densely labeled pairs of RGB and depth images. To demonstrate auxiliary task value
1932 in data-scarce conditions, we employ a subset of 250 training samples randomly selected from the
1933 original training set.

1934
1935 We formulate a multi-main-task setup with three primary objectives: (1) semantic segmentation (14
1936 classes), (2) depth estimation where the model predicts per-pixel depth values from RGB images, and
1937 (3) surface normal prediction where 3-channel surface normals are estimated from RGB input. The
1938 negative auxiliary task is color temperature estimation, a synthetically generated task that predicts
1939 global color temperature properties designed to interfere with the main tasks by emphasizing global
1940 color distribution rather than local semantic and geometric features.

1941
1942 All tasks utilize RGB images as the sole input modality, with depth maps and surface normals serving
1943 as prediction targets rather than input features. A ResNet-18 (He et al., 2015) backbone trained
from scratch processes the RGB input, with task-specific decoder heads for segmentation (with $32 \times$
upsampling), depth regression, surface normal regression, and color temperature estimation.

1944
1945

J.2 CIFAR-10

1946
1947
1948
1949

The CIFAR-10 (Krizhevsky et al., 2009) dataset contains 60,000 32×32 color images across 10 generic classes. To evaluate our interference-aware scheduler in a data-scarce environment where auxiliary tasks provide maximum benefit, we employ a subset of 2,500 training samples (250 per class) from the original 50,000 training images.

1950
1951
1952
1953
1954
1955
1956
1957

For the multi-task learning setup, we set image classification as the main task and construct three auxiliary tasks synthetically from the RGB images. The positive auxiliary tasks include: (1) quadrant localization, where the model predicts which quadrant contains the primary object, and (2) texture classification using Gabor filter responses clustered into 8 texture categories via k-means clustering. The negative auxiliary tasks consist of: (3) corruption-type prediction, where images are artificially corrupted using 15 different corruption types from the ImageNet-C corruption suite (Hendrycks & Dietterich, 2019), and (4) rotation angle prediction, where images are rotated by 0° , 90° , 180° , or 270° and the model predicts the rotation angle.

1958
1959

All tasks share a ResNet-18 (He et al., 2015) backbone trained from scratch without pretraining, with task-specific heads for each auxiliary task.

1960
1961
1962

J.3 AV-MNIST

1963
1964
1965
1966
1967

The AV-MNIST benchmark (Vielzeuf et al., 2018) pairs MNIST images (Lecun et al., 1998) with a log-mel spectrogram of the corresponding spoken digit from TIDIGITS (Leonard & Doddington, 1993). It is a synthetic benchmark that has significant noise applied to audio and feature reduction applied to images, making it far more difficult than the original MNIST.

1968
1969
1970
1971
1972
1973
1974
1975

We use all paired samples in our experiments. Our primary task is 10-way digit classification. Following (Vielzeuf et al., 2018), we encode images with a small 4-layer convolutional network and spectrograms with a 2-layer CNN, both built and trained from scratch. These embeddings are projected and fused for processing by a simple MLP in intermediate fusion (Boulahia et al., 2021; Guerrasi et al., 2025), as are the models trained on MM-IMDb and STOCKS. We include only one positive auxiliary class, Digital Parity. This task aims to identify the digits as either even or odd, which has been shown to be a positive auxiliary task for improving representations on MNIST-like datasets (Tacchetti et al., 2018; Mohammadi et al., 2020).

1976
1977

J.4 MM-IMDb

1978
1979
1980

The MM-IMDb dataset (Arevalo et al., 2017) contains 25,959 movies with genre annotations over 23 categories. We extract poster images and plot summaries for every movie in the dataset.

1981
1982
1983
1984

The images and summaries are encoded by a frozen VGG16 (Simonyan & Zisserman, 2014) and Google word2vec (Mikolov et al., 2013) model, respectively. Our main task is movie genre prediction. We add one positive auxiliary task, Release Decade, and one negative auxiliary task, the classification of the title’s first word as either a vowel or consonant.

1985
1986
1987

J.5 STOCKS

1988
1989
1990
1991
1992

The STOCKS datasets we use, introduced in (Liang et al., 2021), contain stock market timeseries data across two categories. Specifically: (1) STOCKS-F&B, which has 14 input and 4 output stocks in the GICS Restaurants or Packaged Food & Meats category (MSCI Inc. & S&P Dow Jones Indices, 2024), and (2) STOCKS-HEALTH, which contains 56 input and 7 output stocks in the Health Care category.

1993
1994
1995
1996
1997

Every input stock consists of 500 trading days, with the goal of predicting returns over the next day. We discretize the continuous return variable R into three non-overlapping categories: (1) *Low*, where $0 \leq R < 0.1$, (2) *Medium*, where $0.1 \leq R < 0.5$, and (3) *High*, where $R \geq 0.5$. Mean Absolute Error (MAE) is calculated by mapping the three classes to numbers (*Low* $\rightarrow 0$, *Medium* $\rightarrow 1$, *High* $\rightarrow 2$) and then deriving MAE as usual. Each input series is encoded by the same CNN-BiLSTM network. This consists of 3 CNNs and 1 BiLSTM (Cui et al., 2018).

1998 We augment the main prediction task with two positive auxiliaries and two negative auxiliaries. The
 1999 first positive task, Five-Day Rolling Volatility, is calculated as the standard deviation of daily loga-
 2000 rithmic returns over a sliding five-trading-day window. This feature captures short-term fluctuations
 2001 in a stock’s price. In Sector-Average Next-Day Return, for each date we compute the mean of the
 2002 actual next-day returns of all stocks within the same GICS sector, providing a simple measure of
 2003 sector-level momentum and drift

2004 The negative tasks focus on useless information that is meant to distract the model. Namely, day of
 2005 the week prediction (in the range of Monday to Friday) and Lag-0 Open-Price Reconstruction, which
 2006 requires the model to reproduce the same day’s opening price verbatim. The first is information that
 2007 contains little to no signals that would contribute to overall performance, and the second is a trivial
 2008 identity mapping that contributes no real predictive challenge.

K MODELS USED FOR COMPARISON

K.1 BASELINE MODELS

1. *Uniform*. This baseline assigns equal weights to all tasks throughout training, representing the simplest approach where all task losses are weighted equally.
2. *Gradnorm* (Chen et al., 2018). Balances task learning rates by normalizing gradient magnitudes relative to target loss ratios. This maintains consistent training dynamics across tasks.
3. *MGDA* (Sener & Koltun, 2018). Formulates multi-task learning as a multi-objective optimization problem, finding Pareto-optimal solutions (Lockwood, 2008; Pareto, 2014) through gradient descent in the convex hull of gradients (Fliege & Svaiter, 2000; Miettinen, 1999).

K.2 STATE-OF-THE-ART MODELS

1. *PCGrad* (Yu et al., 2020). Projects conflicting gradients onto orthogonal subspaces when negative cosine similarity is detected, eliminating destructive interference between task gradients.
2. *CAGrad* (Liu et al., 2021). Extends PCGrad by adaptively adjusting gradient magnitudes based on conflict severity. This proves more nuanced modifications to gradients than binary projection.
3. *Adatask* (Yang et al., 2023). Dynamically reweights task losses using relative loss changes, adapting to varying task learning rates during training.
4. *FAMO* (Liu et al., 2023). Fast Adaptive Multitask Optimization dynamically adjusts task weights to equalize each task’s rate of loss improvement. It uses an online, per-step rule (no pairwise gradient ops), adding negligible overhead while remaining robust to loss-scale differences.
5. *Fair Resource Allocation in MTL (FairGrad)* (Ban & Ji, 2024). Views the shared update as a limited resource and chooses it to maximize an α -fair utility of per-task improvements. The parameter α controls the trade-off between average performance and fairness.
6. *Nash-MTL* (Navon et al., 2022). Frames multitask training as a bargaining game and computes a scale-invariant weighted combination of task gradients given by the Nash bargaining solution. Weights are obtained by solving a small inner problem (e.g., via CCP) using the gradient Gram matrix. Updates are balanced across tasks.

K.3 ABLATION STUDY MODELS

1. *Static One-Shot Coloring*. We run the greedy graph coloring once at the start of training, freeze the resulting task groups, and never recompute the conflict graph. All other hyperparameters (τ , history length H , and update interval R) match the full scheduler. As training progresses we expect the fixed coloring to grow stale, mixing tasks whose interference relationships have changed. This ablation isolates the benefit of dynamic recoloring, showing how much performance depends on adapting the schedule to evolving gradient conflicts.

2052
 2053 2. *Single-Step Conflict Estimation.* Here, we set the history length to $H = 1$, so every
 2054 recoloring step relies on only the most recent mini-batch gradients to estimate interference.
 2055 Without aggregation over many past steps, the conflict graph should become highly noisy,
 2056 causing unstable task groupings from one update window to the next. This variant tests the
 2057 importance of historical conflict statistics in the scheduler. **Threshold Graph (baseline).**
 2058 We connect tasks i and j whenever the smoothed cosine $\hat{s}_{ij}(t)$ falls below a global threshold
 2059 $-\tau(t)$. This is the rule used in the main method and analyzed in our recovery and scheduling
 2060 theory. It prioritizes the most strongly conflicting pairs globally and serves as the reference
 2061 against which the other graph rules are compared.

2062 3. *kNN-Symmetric Graph.* For each task we identify its m most conflicting neighbors (those
 2063 with the smallest smoothed cosine values) and add edges to those neighbors. We then
 2064 symmetrize the graph by including an undirected edge if either endpoint selects the other.
 2065 This construction roughly fixes the degree of each node and spreads edges more evenly
 2066 across tasks. It tests whether enforcing local degree control can outperform or match the
 2067 global threshold rule when conflict is heterogeneous across tasks.

2068 4. *Signed-Only Graph.* Here we connect two tasks only if their smoothed cosine is strictly
 2069 negative, $\hat{s}_{ij}(t) < 0$, ignoring the magnitude of the conflict. This yields a much sparser
 2070 graph that only records clearly antagonistic pairs. This ablation explores an extreme notion
 2071 of conflict and allows us to test whether discarding moderately conflicting (but still harmful)
 2072 interactions degrades performance.

2073 5. *Quantile Threshold Graph.* Instead of fixing τ by hand, we set $\tau(t)$ at each refresh so
 2074 that only the worst $p\%$ of smoothed cosine values are treated as conflicting. This behaves
 2075 like an adaptive threshold that tracks how the similarity distribution drifts over training,
 2076 keeping the graph density approximately stable over time. This variant tests whether such
 2077 an automatically tuned cutoff provides an advantage over the fixed global threshold.

2078 We evaluate each graph rule under two settings. In the *fixed τ* setting, all rules share the same $\tau(t)$
 2079 schedule used in the main experiments, and we simply observe the induced edge density, number of
 2080 colors, and validation performance. In the *density-matched* setting, we adjust the hyperparameters of
 2081 each rule (e.g., m for kNN, percentile p for quantile) so that all graphs have approximately the same
 2082 edge density at each refresh. This isolates the effect of which pairs are marked as conflicting, rather
 2083 than how many edges are present.

2084 L EXPANDED WALL-CLOCK TIME STUDY

2085 We provide more results from our wall-clock time study. The expanded table includes results from
 2086 testing refresh rates $R \in \{4, 32, 256\}$ for scheduler-based methods.

2087 L.1 EXPERIMENTAL SETUP FOR WALL-CLOCK TIME STUDY

2088 We benchmark wall-clock time with a controlled synthetic workload to remove the effects of data
 2089 loading and I/O. For each configuration (number of tasks K and scheduler refresh rates R), we
 2090 pre-generate a fixed sequence of per-task gradient vectors and loss values directly on the target device,
 2091 and then feed the same exact tensors, in the same exact order, to every method. We set the gradient
 2092 dimensionality to 1024. Timing uses a high-resolution clock with a device synchronize before starting
 2093 and after finishing to capture only on-device compute. We also accumulate the norm of the combined
 2094 gradient into a scalar accumulator (also known as a scalar sink) so the backend must realize the
 2095 computation, avoiding lazy evaluation. Each MTL approach is run for 900 steps and repeated 10
 2096 times.

2097 M EXTENDED RELATED WORK

2098 Multi-task learning (MTL) methods have evolved from simple loss-weighting approaches to larger
 2099 and more sophisticated optimization techniques that manage task conflict and cooperation (Yang et al.,
 2100 2023). Early adaptive-weighting approaches sought to balance losses automatically (Vandenende
 2101 et al., 2022; Fan et al., 2023), while more recent work modifies gradients directly (Yu et al., 2020).

2106 Table 5: We present wall-clock time (seconds \pm standard deviation) across all K and scheduler
 2107 refresh rates $R \in \{4, 32, 256\}$. We split results into sub-tables by R for readability. Non-scheduler
 2108 methods do not depend on R , so they are shown in the $R = 4$ sub-table and omitted in the $R = 32, 256$
 2109 subtables to avoid redundancy.

2110 (a) $R=4$ (all methods)

Method	K=3	K=6	K=16	K=40
Uniform	0.2656 \pm 0.1201	0.3240 \pm 0.0629	0.3798 \pm 0.1050	0.4054 \pm 0.1190
GradNorm	5.4714 \pm 0.7137	5.1201 \pm 0.6112	4.9042 \pm 0.5869	4.7372 \pm 0.9286
MGDA	97.1081 \pm 5.4645	121.4371 \pm 9.0923	132.4913 \pm 3.1752	134.0878 \pm 2.2621
PCGrad	3.6212 \pm 0.3517	23.1266 \pm 0.8773	176.7566 \pm 2.8171	1127.1337 \pm 34.2603
CAGrad	102.8651 \pm 18.3422	136.1034 \pm 2.4218	134.3585 \pm 4.0791	132.7034 \pm 1.2412
AdaTask	2.1816 \pm 0.0934	2.1032 \pm 0.1012	2.2853 \pm 0.0718	2.2278 \pm 0.1370
FAMO	2.0725 \pm 0.2073	1.9980 \pm 0.1998	2.1710 \pm 0.2171	2.1164 \pm 0.2116
FairGrad	3.8020 \pm 0.5703	15.2079 \pm 2.2812	108.1450 \pm 16.2218	675.9065 \pm 101.3860
Nash-MTL	5.7030 \pm 1.1406	22.8118 \pm 4.5624	162.2176 \pm 32.4435	1013.8598 \pm 202.7720
SON-GOKU	2.0904 \pm 0.3506	3.6770 \pm 0.4974	6.3225 \pm 0.7895	14.3280 \pm 1.4073
SON-GOKU + AdaTask	4.1011 \pm 0.4174	5.2126 \pm 0.6066	7.6798 \pm 0.7107	14.7528 \pm 1.8671
SON-GOKU + GradNorm	7.3223 \pm 0.4994	8.5898 \pm 0.8203	12.1065 \pm 2.5850	16.8329 \pm 1.9803
SON-GOKU + PCGrad	2.3489 \pm 0.3258	3.5925 \pm 0.4100	6.1549 \pm 0.8461	12.5729 \pm 1.2657

(b) $R=32$ (scheduler-based approaches)

Method	K=3	K=6	K=16	K=40
SON-GOKU	1.9896 \pm 0.3651	3.3202 \pm 0.5745	6.0897 \pm 0.9425	12.1432 \pm 1.2044
SON-GOKU + AdaTask	3.7718 \pm 0.9654	5.0511 \pm 0.6531	7.5903 \pm 1.1920	14.5182 \pm 2.0660
SON-GOKU + GradNorm	7.0202 \pm 1.0711	8.1661 \pm 0.9355	10.7227 \pm 2.2088	16.5760 \pm 1.8418
SON-GOKU + PCGrad	1.9834 \pm 0.3586	3.4971 \pm 0.3840	6.1395 \pm 0.9425	10.9097 \pm 1.5263

(c) $R=256$ (scheduler-based approaches)

Method	K=3	K=6	K=16	K=40
SON-GOKU	1.7593 \pm 0.2280	3.0024 \pm 0.3942	4.8411 \pm 0.7302	11.4162 \pm 1.6076
SON-GOKU + AdaTask	3.7224 \pm 0.2696	4.4548 \pm 0.5837	7.5276 \pm 0.6230	13.0608 \pm 3.2925
SON-GOKU + GradNorm	6.0221 \pm 1.0418	7.8659 \pm 0.7917	9.5029 \pm 1.2168	15.6860 \pm 2.3680
SON-GOKU + PCGrad	1.6776 \pm 0.4104	3.0189 \pm 0.7854	5.9893 \pm 1.3797	7.1915 \pm 0.2021

2138 Task scheduling and grouping methods, though far less popular than adaptive weighting techniques
 2139 (Torbarina et al., 2023), have contributed to the field by controlling the timing of updates.

2141 M.1 TUNED LOSS WEIGHTING

2143 From early MTL work it became clear that simply summing task losses often favors one objective at
 2144 the expense of others (Kurin et al., 2022; Zhao et al., 2024; Mueller et al., 2022), especially when
 2145 losses have different scales or noise levels. To address this, practitioners manually tuned per-task
 2146 weight coefficients (λ -values) to rebalance learning (Argyriou et al., 2007; Ando & Zhang, 2005;
 2147 Evgeniou et al., 2005; Kang et al., 2011; Liang & Zhang, 2020; Lin et al., 2022; Yu et al., 2021),
 2148 but this process was laborious and dataset-specific. Thus, researchers began to develop automated
 2149 methods.

2151 M.2 ADAPTIVE LOSS WEIGHTING

2153 (Kendall et al., 2018) introduced uncertainty weighting, learning each task’s homoscedastic
 2154 (constant-variance) (Bishop, 2006) noise to scale losses automatically and improve depth and seman-
 2155 tics on NYUv2 (Silberman et al., 2012).

2156 GradNorm automatically balances multiple loss functions by tuning each task’s gradient magnitude
 2157 so that all tasks train at comparable speeds (Chen et al., 2018). It does this by introducing a single
 2158 asymmetry hyperparameter α that governs how much each task’s loss is scaled. This eliminates the
 2159 need for expensive grid searches over manual weights. GradNorm was also a major leap empirically
 as it surpassed exhaustive search baselines on both regression and classification tasks. Dynamic

2160 Weight Averaging (DWA) extended this idea by adjusting weights based on loss rate of change,
 2161 reducing oscillations between tasks (Liu et al., 2019).

2162 More recently AdaTask applies task-specific learning rates that adapt to each head’s gradient norm,
 2163 yielding significant gains on multi-label classification benchmarks (Yang et al., 2023).

2165 M.3 GRADIENT-LEVEL CONFLICT MITIGATION

2166 Rather than rescaling losses, gradient surgery methods alter update directions. PCGrad projects
 2167 gradients that conflict (negative cosine) onto each other’s normal plane, significantly boosting
 2168 efficiency on supervised vision and RL problems (Yu et al., 2020). CAGrad frames task balance
 2169 as a min-max optimization, finding updates that maximize the worst-case task improvement (Liu
 2170 et al., 2021). The Multiple Gradient Descent Algorithm (MGDA) computes a Pareto-optimal convex
 2171 combination of task gradients, ensuring no task is harmed (Sener & Koltun, 2018). More recent
 2172 variants such as SAM-GS incorporate momentum into conflict detection, smoothing gradient estimates
 2173 while preserving the benefits of surgery (Borsani et al., 2025).

2175 M.4 EMPIRICAL TASK GROUPING

2176 Task grouping aims to decide which tasks should train together so that helpful transfer is amplified
 2177 and harmful interference is limited. It typically groups tasks into subsets that update jointly, rather
 2178 than updating all tasks at once. This is different from approaches that keep all tasks active or reweight
 2179 the joint gradient (adaptive loss weighting, gradient surgery).

2180 Early approaches under this category used round-robin and random sampling-based approaches that
 2181 ignored any task relationships (McCann et al., 2018; Zamir et al., 2020). Standley et al. (2020)
 2182 exhaustively searches over small subsets to identify beneficial groupings, demonstrating the potential
 2183 of selective updates but failing to scale beyond eight tasks due to computational complexity.

2184 Task Affinity Groupings (TAG) (Fifty et al., 2021) performs one joint training run to measure inter-
 2185 task ‘affinity’. It quantifies how an update for task i (its gradient) would change task j ’s loss, and it
 2186 uses these cross-effects to select partitions of tasks that should share updates. The key idea is to treat
 2187 grouping as an outcome of measured gradient interactions.

2188 Ayman et al. (Ayman et al., 2023) train a predictor that maps single-task statistics and dataset features
 2189 to an estimate of whether two or more tasks should be grouped. They then use that predictor to guide
 2190 a randomized search over groups, which dramatically reduces the number of multi-task trainings (or
 2191 ‘MTL trials’) needed to find a good partition.

2192 Using a completely different approach, Towards Principled Task Grouping (PTG) (Wang et al., 2024)
 2193 formulates grouping as a mathematical program with a theoretically motivated objective capturing
 2194 beneficial transfer while respecting resource constraints (e.g., compute budgets). It builds a principled
 2195 optimization over candidate groups that is meant to generalize across application domains.

2196 Scalable Task Grouping via Training Dynamics (STG-MLT) (Sherif et al., 2024) avoids expensive
 2197 affinity estimation by extracting Data Maps (Swayamdipta et al., 2020) (simple summaries of training
 2198 dynamics per task) and then clustering tasks using those features. The clusters are intended to push
 2199 for positive transfer at larger scale. This approach essentially replaces gradient cross-effects with
 2200 more compact trajectory features that are cheap to compute and easy to cluster.

2204 N SPACE COMPLEXITY AND MEMORY USAGE

2206 We analyze the space complexity (and in relation, memory usage) of SON-GOKU during both refresh
 2207 and non-refresh steps. In our analysis, we distinguish memory usage from other components of
 2208 training (e.g., parameters, optimizer state, activations) from the memory of the multi-task algorithm.
 2209 The memory usage of the backbone model is irrelevant in assessing SON-GOKU’s space complexity,
 2210 so our following analysis focuses only on the incremental cost added by the scheduler or MTL
 2211 optimizer.

2212 SON-GOKU maintains Exponential Moving Averages (EMAs) of gradients within a refresh window
 2213 for each task. It periodically recomputes pairwise interactions before recoloring and scheduling

2214	Method	Incremental Space Complexity
2215	Uniform (equal weights)	$O(1)$
2216	GradNorm	$O(K)$
2217	AdaTask	$O(Kd)$
2218	FAMO	$O(1)$
2219	PCGrad	$O(Kd) + O(K^2)$
2220	MGDA	$O(Kd) + O(K^2)$
2221	CAGrad	$O(Kd) + O(K^2)$
2222	FairGrad	$O(Kd) + O(K^2)$
2223	Nash-MTL	$O(Kd) + O(K^2)$

2224 Table 6: Incremental space complexity (i.e., focused only on method itself) of baseline and state-of-
 2225 the-art multi-task learning methods. SON-GOKU scales better than the majority of existing methods
 2226 in terms of space complexity while still faithfully modeling task interference. K represents the
 2227 number of tasks, d represents the number of shared parameters. "Peak" refers to space complexity at
 2228 a refresh step, while "persistent" is the space complexity between refreshes.

2229
 2230 (Section 4). We refresh the schedule every R steps, update EMAs continuously, and then rebuild the
 2231 interference structure at each refresh and proceed with the new groups.
 2232

2233 N.1 SPACE USAGE ACROSS A REFRESH CYCLE

2234 **Between refreshes (persistent memory).** The scheduler keeps (i) an EMA-based similarity struc-
 2235 ture and (ii) the current conflict graph and color assignments. With sketched EMAs, based on
 2236 Ghashami et al. (2016a) of width $r \ll d$, the persistent memory footprint is:
 2237

$$2239 \quad \text{persistent memory} = O(K^2)$$

2240 dominated by the smoothed similarity matrix and graph coloring metadata.
 2241

2242 **At refresh (peak).** Every R steps we form the dense matrix of task–task interactions and recolor.
 2243 With sketched EMAs, the peak incremental memory during each refresh is
 2244

$$2245 \quad \text{peak (refresh) memory} = O(K^2 + Kr)$$

2246 for the $K \times K$ interference matrix plus K sketch vectors of width r . These are released immediately
 2247 after recoloring. We do not retain K full gradients persistently.
 2248

2249 **After refresh.** Only the updated smoothed similarities $K \times K$ and graph coloring metadata remain,
 2250 returning to the persistent $O(K^2)$ footprint until the next refresh.
 2251

2252 N.2 BASELINES FOR COMPARISON

2253 Below, we summarize the incremental space complexity of common MTL optimizers:

- 2254 • **Loss reweighting** (e.g., GradNorm, AdaTask): Maintain a few scalars, so $O(K)$
- 2255 • **Gradient-level Conflict Mitigation and Multi-Objective Solvers** (e.g., PCGrad, CAGrad,
 2256 MGDA, Nash-MTL): Usually retain K task gradients in the shared parameter space during
 2257 update calculation, so they usually have a space complexity of $O(Kd)$

2258 We describe the space complexity of SON-GOKU alongside several other baselines and state-of-the-
 2259 art methods in Table 6.
 2260

2261 We can see that many state-of-the-art methods' space complexity scales with d . Gradient manipulation
 2262 and multi-objective methods often incur $O(Kd)$ extra memory because they retain K gradients per
 2263 each task. As the backbone size d grows, their memory footprint scales linearly with d , making them
 2264

2268 more computationally expensive to use with larger models. This contrasts SON-GOKU, which has a
 2269 space complexity that grows mainly with the task count K rather than the model size.
 2270

2271 Methods like FAMO, which have lower space complexity than SON-GOKU, keep their memory
 2272 overhead low by adjusting a single set of task weights rather than modeling *which* tasks should
 2273 (or should not) be updated together. They do not build a conflict graph or schedule incompatible
 2274 tasks apart, so strongly interfering tasks are still co-updated and can only be down-weighted. This
 2275 makes methods like FAMO fast and light on memory, but it provides less structure for avoiding
 2276 negative transfer, among a plethora of other issues. In settings with strong (and potentially changing)
 2277 interference, this can yield weaker accuracy than approaches like SON-GOKU that explicitly detect
 2278 conflicts and adapt over time.
 2279

2280 N.3 EXAMPLE

2281 To illustrate the importance of utilizing projections (among other optimizations) and scaling space
 2282 complexity without d , we describe an example.
 2283

2284 N.3.1 SETUP

2285 Consider fine-tuning a large shared backbone with d parameters (e.g., a billion parameter encoder) on
 2286 K downstream tasks. Methods such as PCGrad, MGDA, CAGrad, FairGrad, or Nash-MTL typically
 2287 form and retain K full task gradients in the shared parameter space at each update. Their incremental
 2288 memory cost therefore scales as $O(Kd)$, on top of the memory already required by the backbone
 2289 parameters, optimizer states, and activations.
 2290

2291 N.3.2 MEMORY USAGE

2292 As d grows, this $O(Kd)$ term rapidly dominates the memory budget. For instance, with a backbone of
 2293 $d \approx 10^9$ parameters and $K = 20$ tasks, storing K full-precision gradients requires tens of gigabytes
 2294 of additional memory. In practice, this can make gradient-based conflict mitigation or multi objective
 2295 solvers difficult to deploy. Practitioners would either shrink the model, reduce K , or aggressively
 2296 trade off batch size and activation memory to stay within device limits.
 2297

2298 In contrast, SON-GOKU maintains only (i) EMA-based sketches of each task gradient of width
 2299 $r \ll d$ and (ii) a $K \times K$ conflict structure and its graph coloring. Between refreshes, the incremental
 2300 memory is therefore $O(K^2)$ (for smoothed similarities and coloring metadata). At a refresh step,
 2301 SON-GOKU briefly incurs a peak space complexity of $O(K^2 + Kr)$ to rebuild the interference
 2302 structure from the sketches, and then immediately releases the data. Importantly, all of these terms
 2303 depend on K and r , but not directly on d .
 2304

2305 N.3.3 TAKEAWAY

2306 In setups with large backbones and many tasks, the extra $O(Kd)$ memory required by some other
 2307 methods can easily exceed available device memory. This would force practitioners to either simplify
 2308 the model or abandon conflict-aware MTL altogether. SON-GOKU’s space complexity instead
 2309 grows mainly with the number of tasks and the sketch dimension, allowing it to scale to much larger
 2310 backbones under the same hardware budget while still modeling task interference and adapting the
 2311 schedule over time.
 2312

2313 N.4 EXPERIMENTAL VALIDATION

2314 We evaluated throughput and memory usage on an isolated environment with the Taskonomy Tiny
 2315 subset using a U-Net backbone. Our testing included SON-GOKU against other baselines and
 2316 state-of-the-art methods.
 2317

2318 SON-GOKU is clearly the most resource-efficient option in this comparison. It achieves the highest
 2319 throughput (processing around 68 images per second on the dataset) while also using the lowest
 2320 GPU memory, several gigabytes less than other methods. The only methods that slightly outperform
 2321 it in reserved memory is CAGrad, but that comes at a substantial cost in speed, demonstrating that
 SON-GOKU’s graph based scheduling adds far less overhead than other methods. As we’ve stated

2322 Table 7: Throughput and memory usage per training step for SON-GOKU versus other baselines and
 2323 state-of-the-art methods. Throughput is measured in images per second and memory statistics are in
 2324 MB. Results and standard deviation presented from five complete trials

Method	Throughput (imgs/s) \uparrow	Peak mem. (MB) \downarrow	Reserved mem. (MB) \downarrow
SON-GOKU	68.5 \pm 1.1	1959 \pm 47	2332 \pm 62
FAMO	47.6 \pm 2.6	4740 \pm 188	5152 \pm 143
CAGrad	42.1 \pm 1.9	2008 \pm 33	2284 \pm 97
AdaTask	41.6 \pm 3.4	5108 \pm 121	5544 \pm 214
PCGrad	40.0 \pm 1.5	5108 \pm 173	5614 \pm 129
MGDA	36.4 \pm 4.2	5065 \pm 142	5308 \pm 201
GradNorm	25.5 \pm 2.1	5034 \pm 77	5542 \pm 178

2334
 2335
 2336 previously, methods that repeatedly solve multi-objective or projection subproblems face huge caveats
 2337 in terms of time and space complexity. SON-GOKU’s advantages over other methods will scale with
 2338 larger datasets and backbone models.

O ON THE CHOICE OF REFRESH RATE

2343 Let $R \in \mathbb{N}$ denote the *refresh period* (we refresh once every R steps), so the refresh *rate* is $1/R$. A
 2344 full refresh costs $\Theta(K^2d)$ time to (re)build the cosine Gram from K EMA vectors in \mathbb{R}^d . The EMA
 2345 matrix uses $\Theta(Kd)$ memory persistently (between refreshes). Peak memory usage during a refresh is
 2346 $\Theta(Kd) + \Theta(K^2)$. From this, it is clear that increasing R reduces overhead (in terms of both speed
 2347 and memory usage) linearly.

2348 The conflict graph is built from EMAs accumulated over the refresh window. Longer windows (larger
 2349 R) average out gradient noise and stabilize $\hat{\rho}$, reducing spurious edges. Shorter windows (smaller
 2350 R) can adapt to changing patterns faster but use fewer effective samples, so $\hat{\rho}$ can be noisier and the
 2351 schedule can fluctuate. In our analysis (see Appendix F), global $O(1/\sqrt{T})$ nonconvex convergence
 2352 does not depend on τ , while the gradient energy for each step is controlled by the effective conflict
 2353 level τ_{eff} of the active set. Reducing conflict between tasks (a byproduct of a well-constructed graph)
 2354 helps to tighten the bounds of our earlier theoretical analysis. This means that we should pick a value
 2355 of R large enough for stable estimation but not so large that the graph becomes obsolete.

O.1 TRAINING DYNAMICS

2358 Early in training, both model parameters and task relations typically evolve very rapidly. A faster
 2359 refresh rate (small R) lets SON-GOKU quickly track and exploit the evolving structure of tasks.
 2360 This means that SON-GOKU’s constructed conflict graphs will lag less behind the true nature of
 2361 task relationships. Later in training, however, the dynamics slow down and a slower refresh rate
 2362 will allow EMAs to more effectively average out over time. A slower refresh rate essentially makes
 2363 SON-GOKU more robust to noisy gradients later in training.

O.2 STRATEGIES FOR ADJUSTING THE REFRESH RATE

2365 To put it simply, three factors matter most when selecting a refresh rate:

- 2369 **1. Rate of change in task relations.** If edges in the conflict grpah change often, using a higher
 2370 refresh rate can help to reduce staleness of the conflict graph and color groups. If relations
 2371 are stable, a lower refresh rate can suffice.
- 2373 **2. Noise in EMA estimates.** If gradients are noisy at each step, a larger R value is preferred to
 2374 stabilize the cosine estimates by calculating EMA over a longer range. If there is little noise
 2375 (or if there is an excess of available compute), a smaller R value can help to more accurately
 2376 track the structure of task conflicts.

2376 3. **Overhead budget.** If the scheduler’s cost needs to be negligible relative to each task’s
 2377 backpropagation, it is best to select an R to satisfy $C_{\text{sched}}/C_{\text{probe}} \leq \varepsilon$, where $C_{\text{sched}} =$
 2378 $\frac{a}{R} K^2 d$ and $C_{\text{probe}} = \frac{b}{R} K G$. Equivalently $Kd \leq \frac{b}{a} \varepsilon G$.

2380 We discuss two simple strategies that can be used to select an appropriate R value.

2382 O.2.1 ANNEAL THE REFRESH RATE

2384 Start with a relatively high rate (small R) and increase R over time. This prevents SON-GOKU’s
 2385 graphs from lagging behind the conflict structure early on in training (as task relationships and
 2386 parameters are changing rapidly). Later on, larger values of R average out noise in \hat{p} and stabilizes
 2387 the schedule.

2388 O.2.2 ADAPT THE REFRESH RATE BASED ON TASK CONFLICT VARIABILITY

2390 Use the observable variability in task conflicts to adjust the refresh rate accordingly. Increase the
 2391 refresh rate (shrink R) if a large fraction of edges in G_τ flip between consecutive refreshes. Decrease
 2392 the refresh rate (grow R) when edge flips in the graph are rare and EMA rows are stable.

2393 A less computationally expensive alternative is to partially update only the affected rows and
 2394 columns of the Gram matrix when a small number of EMA rows cross a certain thresholds. This
 2395 would have a time complexity of $O(sKd)$ for $s \ll K$. Incorporating such an approach with the
 2396 existing scheduler could help preserve edges and coloring decisions while reducing refresh costs.

2398 P INCORPORATING SON-GOKU WITH OTHER TASK AFFINITY MEASURES

2400 P.1 THEORETICAL ANALYSIS AND DISCUSSION

2402 We instantiate SON-GOKU’s conflict score using EMA smoothed gradient cosines. We define an
 2403 interference coefficient $\rho_{ij} = -\frac{\langle \hat{g}_i, \hat{g}_j \rangle}{\|\hat{g}_i\|, \|\hat{g}_j\|}$ and build a conflict graph G_τ by thresholding at a tolerance τ .
 2404 We then color this graph and schedule one color class at a time. This particular choice is appealing
 2405 because it is cheap to maintain online and aligns directly with cosine based gradient surgery methods
 2406 such as PCGrad. At the same time, the SON-GOKU pipeline itself is more general. It only requires
 2407 *some* symmetric pairwise “conflict score” that can be thresholded to form a graph. In this section we
 2408 formalize this modular perspective and explain how richer task affinity measures such as TAG’s (Fifty
 2409 et al., 2021) lookahead loss can be used in place of gradient cosine, without changing the scheduling
 2410 or convergence guarantees that are important to our theoretical analysis.

2412 P.1.1 SON-GOKU AS A MODULAR CONFLICT GRAPH BASED SCHEDULER

2413 Recall that SON-GOKU operates in four stages:

- 2415 1. Estimate pairwise interference. For each pair of tasks (i, j) , compute a symmetric score ρ_{ij}
 2416 that is large when i and j are “in conflict” and small (or negative) when they are aligned or
 2417 neutral. ρ_{ij} is the negative cosine of EMA smoothed gradients.
- 2418 2. Build a conflict graph. For a threshold $\tau \in (0, 1)$, define an undirected graph

$$2420 G_\tau = (V, E_\tau), \quad V = 1, \dots, K, \quad E_\tau = (i, j) : \rho_{ij} > \tau, \quad (112)$$

2421 so that edges mark pairs we do *not* want to update together.

- 2423 3. Color the graph. Apply Welsh-Powell greedy coloring to obtain color classes $\mathcal{C}_1, \dots, \mathcal{C}_m$,
 2424 each of which contains no edge. I.e., no pair with $\rho_{ij} > \tau$.
- 2425 4. Schedule color classes. Cycle through color classes over a refresh window, activating exactly
 2426 one color class per step.

2428 Crucially, all of the scheduling and convergence results (in Section 5) depend only on the active sets
 2429 S_t that SON-GOKU chooses at each step, and the actual gradients of tasks within those sets, not on
 the particular formula used to compute ρ_{ij} . Below, we provide a few examples.

2430 **Descent within low conflict groups (Section 5.1).** The key inequality
 2431

$$2432 \quad \left| \sum_{k \in S_t} g_{k,t} \right|^2 \geq (1 - \tau(|S_t| - 1)) \sum_{k \in S_t} |g_{k,t}|^2. \quad (113)$$

2433 only assumes that gradients inside S_t are pairwise " τ compatible" in cosine space. It does not require
 2434 that S_t came from EMA cosine in any specific way.
 2435

2436 **Nonconvex convergence (Section 5.2).** The rate
 2437

$$2438 \quad \min_{t < T} \mathbb{E}[\|\nabla F(\theta_t)\|^2] \lesssim \frac{1 + \tau}{\sqrt{T}} \quad (114)$$

2439 uses the same compatibility assumption and is agnostic to how the groups were found.
 2440

2441 **Scheduling properties (Section 5.5).** The bound that SON-GOKU uses at most $\Delta + 1$ colors and
 2442 thus updates each task at least once every $\Delta + 1$ steps depends only on the graph degree Δ , not on
 2443 the origin of the edges.
 2444

2445 From this viewpoint, SON-GOKU is a modular scheduler that takes any symmetric conflict matrix
 2446 (ρ_{ij}) as input and returns (i) a conflict-based partition of tasks, and (ii) a schedule with bounded
 2447 staleness. Our cosine based construction is just one concrete approach for this interface.
 2448

2449 **P.1.2 TAG AND OTHER TASK AFFINITY MEASURES AS CONFLICT SCORES**

2450 TAG (Fifty et al., 2021) defines an affinity at each step between tasks i and j by measuring how an
 2451 update for task i affects task j 's loss. Formally, TAG trains all tasks together once, and during this
 2452 time it repeatedly: (i) takes a gradient step on task i with $\theta' = \theta - \eta g_i$, (ii) evaluates task j 's loss at
 2453 θ' , and (iii) uses the change in loss
 2454

$$2455 \quad \Delta L_j^{(i)} \approx L_j(\theta') - L_j(\theta) \quad (115)$$

2456 as a measure of how much i helps or hurts j .
 2457

2458 Averaging this quantity over training results in an affinity matrix A_{ij} , with positive values meaning
 2459 that updates on i tend to improve j , and negative values indicating harmful transfer between tasks.
 2460 TAG then clusters tasks based on this matrix to decide which tasks should share a network.
 2461

2462 Other recent grouping methods construct alternative affinity matrices from training. For example,
 2463 STG-MTL uses data maps that summarize each task's example-wise training trajectory and then
 2464 clusters tasks based on these representations, yielding a similarity or affinity between tasks that can
 2465 be used for grouping (Sherif et al., 2024).
 2466

2467 All of these approaches (TAG, STG-MTL, meta grouping, and others) produce symmetric pairwise
 2468 scores that can be interpreted as how much task i helps task j . SON-GOKU can treat any such affinity
 2469 as a replacement for the cosine-based interference score.
 2470

2471 Now, we will provide a more formal analysis. Suppose we have a symmetric affinity matrix A_{ij}
 2472 where larger values represent more beneficial relationships and smaller values mean more harmful
 2473 relationships. We can define a conflict score $\rho_{ij} = f(A_{ij})$ for any monotone decreasing function f
 2474 (so that more harmful pairs get larger ρ_{ij}). The conflict graph is then
 2475

$$2476 \quad G_\tau = \{(i, j) : \rho_{ij} > \tau\} = \{(i, j) : A_{ij} < f^{-1}(\tau)\}. \quad (116)$$

2477 All subsequent SON-GOKU steps (graph coloring, cyclic scheduling, and the use of Δ in the bounded
 2478 staleness theory) operate purely on G_τ and are therefore unchanged.
 2479

2480 **P.1.3 TAG AS A LOSS LEVEL PROXY FOR GRADIENT CONFLICT**

2481 TAG's lookahead loss has a natural connection to SON-GOKU's cosine base dinterference. Consider
 2482 a small gradient step on task i with $\theta' = \theta - \eta g_i(\theta)$ and examine task j 's loss
 2483

$$2484 \quad \Delta L_j^{(i)} := L_j(\theta') - L_j(\theta) \quad (117)$$

2484 A first order Taylor expansion gives
 2485

$$2486 \Delta L_j^{(i)} \approx -\eta \langle g_i(\theta), g_j(\theta) \rangle + O(\eta^2). \quad (118)$$

2488 Thus, up to higher order terms, TAG’s affinity at each step is proportional to the negative inner
 2489 product between gradients.

2490 If $\langle g_i, g_j \rangle > 0$ (aligned gradients), then a step on i decreases L_j , so $\Delta L_j^{(i)} < 0$. This means TAG
 2491 observes positive affinity. On the other hand, if $\langle g_i, g_j \rangle < 0$ (conflicting gradients), then a step on i
 2492 increases L_j , so $\Delta L_j^{(i)} > 0$. So, TAG observes negative affinity.

2493

2494 In contrast, SON-GOKU’s default interference coefficient

$$2495 \rho_{ij}^{\cos} = -\frac{\langle \tilde{g}_i, \tilde{g}_j \rangle}{|\tilde{g}_i| |\tilde{g}_j|} \quad (119)$$

2496 is a normalized version of this inner product, averaged via EMA over recent steps. To compare the
 2497 two, TAG’s score is a loss-level, unnormalized directional derivative. Meanwhile, SON-GOKU’s ρ_{ij}^{\cos}
 2498 is a gradient-level, normalized first order approximation.

2499 For small η and when we average over enough steps to approximate population quantities, both
 2500 measure are monotone transforms of the same underlying signal. That is, the sign and magnitude of
 2501 $\langle g_i, g_j \rangle$. Using TAG’s affinity as ρ_{ij} therefore replaces SON-GOKU’s simple cosine with a richer but
 2502 more expensive signal that directly reflects loss changes.

2503 This interpretation also clarifies why TAG and SON-GOKU are compatible. TAG’s lookahead loss is
 2504 simply a more expressive estimator of the same quantity that gradient cosine is trying to capture
 2505 (i.e., how much does i help or hurt j).

2506

2507 P.1.4 CHANGES TO SON-GOKU’S GUARANTEES BY DIFFERENT AFFINITY MEASURES

2508 We have discussed which arguments presented in our theoretical analysis (particularly, Sections 5.1,
 2509 5.2, 5.4) are unaffected by the use of different affinity measures like TAG. However, the one part of
 2510 the theory that *does* depend on the specific cosine-based construction is the graph recovery analysis,
 2511 where we prove that EMA cosines concentrate around population cosines and that thresholding them
 2512 recovers the “true” conflict graph with high probability.

2513

2514 If we replace cosine with TAG’s affinity (or with other training dynamics-based approaches such as
 2515 STG-MTL) the structure of our proof would remain similar but the technical details change. For
 2516 one, instead of bounding the deviation of empirical cosines from population cosines, we would need
 2517 concentration bounds for the chosen affinity measure. We would again assume a margin around the
 2518 threshold (e.g., conflicting pairs have $A_{ij} \leq c^* - \gamma$, aligned pairs have $A_{ij} \geq c^* + \gamma$). Finally, we
 2519 would show that, with enough effective samples per pair we can ensure the uniform estimation error
 2520 is below γ , so that the estimated graph matches the population one.

2521

2522 TAG already averages loss changes for each step across changes, and Fifty et al. 2021’s own analysis
 2523 shows that this averaged affinity is stable enough to create grouping decisions in practice. Deriving a
 2524 formal concentration result for TAG’s affinity would be an interesting extension for future works. But
 2525 it is of course orthogonal to the core contribution of SON-GOKU. Once any affinity measure yields a
 2526 reliable conflict graph, our earlier graph coloring and scheduling theory applies without any changes.

2527

2528 P.1.5 COMPUTATIONAL CONSIDERATIONS AND REFRESH WINDOWS

2529

2530

2531 Using TAG style scores as ρ_{ij} changes the cost profile of the scheduler but not its structure. TAG
 2532 requires extra forward and backward passes to evaluate lookahead losses, or a preliminary joint
 2533 training run whose logs are replayed to compute affinities (Fifty et al., 2021). Our cosine-based
 2534 approach, by contrast, is fully online. It maintains EMA gradients and sketches and refreshes the
 2535 conflict graph periodically with amortized overhead $O\left(\frac{K r (d+K)}{R}\right)$ per step. However, SON-GOKU
 2536 already separates measurement from scheduling via the refresh window R . We only rebuild the
 2537 conflict graph every R steps and reuse the coloring in between. This design is naturally compatible
 2538 with more expensive.

2538 Table 8: Validation performance on Taskonomy for SON-GOKU with cosine-based affinities versus
 2539 SON-GOKU with TAG-based affinities using a U-Net backbone.

Metric	SON-GOKU (cosine)	SON-GOKU + TAG
Depth (Euclidean)		
AbsRel ↓	0.5432 ± 0.0068	0.5351 ± 0.0115
MAE ↓	4.0787 ± 0.071	4.0052 ± 0.110
RMSE ↓	18.6199 ± 0.29	18.3034 ± 0.38
Depth (Z-buffer)		
AbsRel ↓	0.5731 ± 0.0074	0.5622 ± 0.0129
MAE ↓	4.0494 ± 0.069	3.9685 ± 0.115
RMSE ↓	18.5378 ± 0.27	18.1485 ± 0.41
Edge Occlusion		
BCE ↓	0.0995 ± 0.0032	0.0990 ± 0.0071
F1 ↑	0.1466 ± 0.010	0.1532 ± 0.019
Precision ↑	0.5399 ± 0.021	0.5324 ± 0.038
Recall ↑	0.0870 ± 0.0065	0.0957 ± 0.0127
Edge Texture		
BCE ↓	0.0779 ± 0.0010	0.0781 ± 0.0018
F1 ↑	0.9734 ± 0.0007	0.9729 ± 0.0015
Precision ↑	0.9772 ± 0.0008	0.9766 ± 0.0016
Recall ↑	0.9768 ± 0.0007	0.9762 ± 0.0014
Keypoints2D		
MSE ↓	0.0039 ± 0.0002	0.0038 ± 0.0000
Surface Normals		
11.25° within ↑	0.4262 ± 0.0079	0.4364 ± 0.0135
22.5° within ↑	0.6432 ± 0.0068	0.6535 ± 0.0111
30° within ↑	0.7340 ± 0.0059	0.7428 ± 0.0094
Mean angle (deg) ↓	22.9079 ± 0.31	22.3352 ± 0.48
Median angle (deg) ↓	14.5397 ± 0.27	14.1300 ± 0.44
Principal Curvature		
L1 ↓	0.0691 ± 0.0014	0.0672 ± 0.0026
Reshading		
MAE ↓	0.1352 ± 0.0023	0.1330 ± 0.0039

2574 One can run a TAG-like procedure periodically (or once at a few milestones), obtain A_{ij} , map it
 2575 to ρ_{ij} , and then reuse the resulting graph and coloring for many steps. As long as the underlying
 2576 task relationships do not drift too quickly between these TAG refreshes, the assumptions used in
 2577 our analysis (bounded drift, concentration within a refresh window) remain reasonable. We provide
 2578 further justification for the assumptions in their respective appendices.

2579
 2580 In this sense SON-GOKU can be viewed as a scheduler that amortizes the cost of any affinity
 2581 estimator (TAG, STG-MTL, meta grouping, etc.) over many optimization steps, while preserving its
 2582 descent, convergence, and bounded staleness guarantees.

2583 P.2 EXPERIMENTAL ANALYSIS

2584 We benchmark SON-GOKU with TAG-style affinities on the Taskonomy dataset (focusing on NN
 2585 tasks). For TAG lookahead loss, we apply a 0.1 step size when probing inter-task effects. Training
 2586 and test was repeated across two random seeds, and results are compared against a baseline of
 2587 SON-GOKU with its default cosine-based approach. Results are presented in Table 8

2588 Across almost all metrics, SON-GOKU with TAG matches or slightly improves on the cosine-based
 2589 version. The gains are greatest for depth and surface normal prediction, where using TAG-based
 2590 affinities leads to consistently lower errors and higher within angle scores, while performance on the

2592 Table 9: Base SON-GOKU versus SON-GOKU + TAG in terms of speed. Amortized runtime per
 2593 training step (ms) averaged across 10 trials.

Method	Amortized ms / step ↓
No Refresh (Baseline)	149.28 ± 1.63
SON-GOKU (cosine)	193.41 ± 6.27
SON-GOKU + TAG	255.29 ± 17.84

2600
 2601 remaining tasks is either similar or shows small improvements. There are a few cases (such as edge
 2602 texture) where the cosine version does very slightly better, but the differences are extremely small.
 2603 Overall, this shows that using TAG’s more in-depth lookahead loss into SON-GOKU preserves the
 2604 benefits of the scheduler and can provide small improvements in performance across many tasks.
 2605 This is due to TAG providing a more detailed estimate of how tasks help or hurt eachother, which lets
 2606 SON-GOKU separate conflicting pairs more accurately, as discussed in Section P.1.3.

2607 We also measured the amortized speed of training with TAG loss. As seen in Table 9, it is significantly
 2608 slower than training using our standard cosine-based approach. This supports the theoretical analysis
 2609 we presented previously. This gap in speed comes from the extra forward and backward passes
 2610 needed to measure TAG’s lookahead loss, while cosine-based SON-GOKU only reuses gradients
 2611 it has already computed. This means that using TAG (and similar affinities) might provide a bit
 2612 more performance at a very big cost in speed, while the cosine version keeps most of the benefit of
 2613 scheduling with much lower runtime overhead.

2614 Q ADDITIONAL ANALYSIS OF BENEFITS FROM NON-CONFLICT GROUPING

2615 Q.1 RELATED WORK

2616 A consistent theme in the multi-task learning (MTL) literature is that not all task should be trained
 2617 together in a single shared model, and that grouping compatible tasks while separating incompatible
 2618 ones tends to improve performance. This directly supports the idea that non-conflict groups (sets of
 2619 tasks whose gradients or transfer effects are mutually aligned) are beneficial.

2620 Standley et al. 2020 systematically study which tasks should be learned together by exhaustively
 2621 evaluating subsets of vision tasks and measuring cross-task transfer. They show that some task pairs
 2622 consistently help each other, while others consistently harm each other when trained jointly, even
 2623 with strong backbones. Their proposed framework assigns tasks to a small number of networks so
 2624 that cooperating tasks share a network and competing tasks are separated, achieving better accuracy
 2625 versus a single model that uses all tasks and versus purely single-task baselines. This is a direct
 2626 empirical demonstration that forming groups of mutually beneficial tasks, rather than mixing all tasks,
 2627 leads to better generalization.

2628 Fifty et al. 2021 (TAG) push this further by defining a gradient-based task affinity. They measure
 2629 how a small gradient step for task i changes task j ’s loss, and average these “look ahead” effects
 2630 over training. Tasks with positive mutual influence (updates on i tend to reduce j ’s loss) are grouped
 2631 together, while tasks with negative or weak influence are separated. TAG shows that such affinity
 2632 based groupings yield lower test loss than joint training and random groupings, while being far
 2633 cheaper than brute-force search over subsets. Conceptually, TAG’s groups are exactly non-conflict
 2634 groups at the loss level. Inside a group, most cross-task updates help or at least do not hurt eachother.

2635 Earlier theoretical work on clustered MTL also supports our work. Jacob et al. 2008 assume that tasks
 2636 are partitioned into latent clusters with similar linear predictors, and they design a convex penalty
 2637 that encourages such clustering. Tasks within a cluster are forced to share parameters, while different
 2638 clusters are only weakly coupled. They show that, when the clustering assumption is approximately
 2639 correct, this clustered sharing outperforms both fully shared and fully independent models. Although
 2640 this is formulated at the level of parameters rather than gradients, it encodes the same idea. Tasks that
 2641 point in similar directions should be grouped, and others should not (Jacob et al., 2008). Results from
 2642 multi-task feature learning architectures (e.g., Argyriou et al. 2007) provide related generalization
 2643 bounds that improve when tasks share a low-dimensional subspace, again matching the intuition that
 2644 aligned tasks should be grouped in a shared representation.

2646 More recently, work on inter-task gradient noise provides an optimization-based justification for
 2647 separating conflicting tasks. Fan et al. 2023 identifies inter-task gradient noise (ITGN) as a key factor
 2648 behind insufficient training in MTL. Gradients from other tasks can behave like noise for a given task,
 2649 degrading its effective signal. By defining a gradient-to-noise ratio (GNR) and maximizing it per
 2650 task, MaxGNR shows that reducing ITGN improves test performance on standard MTL benchmarks.
 2651 While MaxGNR does not explicitly form task groups, its analysis supports the same idea. Mixing
 2652 strongly conflicting gradients is harmful, and methods that avoid such mixtures (either by reweighting
 2653 or by grouping) should see optimization and generalization benefits.

2654 Overall, these works collectively support the central premise of Appendix Q and the focus of SON-
 2655 GOKU as a whole. Identifying and grouping tasks that do not conflict (and separating those that
 2656 do) is a key factor of both optimization stability and generalization performance. SON-GOKU’s
 2657 non-conflict groups can be seen as an explicit, gradient level realization of the kind of beneficial
 2658 groupings that these prior methods either search for or implicitly encode.

2659

2660 Q.2 THEORETICAL ANALYSIS

2661
 2662 We briefly summarize the aspects of SON-GOKU’s theory that are most relevant to non-conflict
 2663 grouping, and then add a simple calculation that makes the benefit of grouping more explicit.
 2664

2665

2666 Q.2.1 EXISTING GUARANTEES FOR NON-CONFLICT GROUPS

2667

2668 Let $g_k, t = \nabla \ell_k(\theta_t)$ denote the gradient of task k at step t . SON-GOKU defines a conflict graph
 2669 by thresholding an interference coefficient (based on EMA cosine similarity) and schedules one
 2670 τ -compatible group S_t at a time, where τ -compatability means that pairwise cosines within S_t are
 2671 bounded by below $-\tau$. Under this condition, we prove the following important inequality (Section 5.1,
 2672 Appendix E). If $\tau(|S_t| - 1) < 1$, then

2673

2674

$$2675 \left| \sum_{k \in S_t} g_{k,t} \right|^2 \geq (1 - \tau(|S_t| - 1)) \sum_{k \in S_t} |g_{k,t}|^2. \quad (120)$$

2676

2677

2678

2679 This shows that within a non-conflict group, destructive cancellation is quantitatively bounded. The
 2680 aggregate gradient cannot flip to ascent, and its norm remains comparable to the total gradient energy
 2681 of the group.

2682

2683 Using this property, SON-GOKU’s convergence analysis establishes that (i) the algorithm preserves
 2684 the standard $O(1/\sqrt{T})$ non-convex rate of SGD (up to a constant depending on τ), and (ii) a scheduled
 2685 sequence of group updates over a refresh window achieves a descent bound that is never worse than
 2686 a single mixed update using all tasks at once, and strictly better when cross-group interactions are
 2687 sufficiently negative. Appendix F further connects the structure of conflicts to the average gradient
 2688 energy

2689

2690

2691

2692

2693

2694

2695

2696 showing that lower cumulative interference yields tighter bounds on this quantity and thus moves us
 2697 toward updates with higher effective signal-to-noise ratio.

2698

2699

2699 The recovery analysis in Appendix B then guarantees that, under mild assumptions on drift and
 margin around the threshold, SON-GOKU’s EMA-based conflict estimates recover the underlying
 2698 low-conflict structure with high probability. This means that the non-conflict groups SON-GOKU
 2699 uses in practice are a statistically grounded approximation to the true alignment structure of tasks,
 rather than arbitrary partitions.

2700 Q.2.2 SIGNAL-TO-NOISE GUARANTEES FOR NON-CONFLICT GROUPS
27012702 To complement these results, consider a simple toy model for two tasks that mirrors the gradient
2703 noise perspective in MaxGNR (Fan et al., 2023). Suppose
2704

2705
$$g_1 = \mu_1 + \xi_1, \quad g_2 = \mu_2 + \xi_2, \quad (122)$$

2706

2707 where $\mu_k = \mathbb{E}[g_k]$ is the mean descent direction for task k , and ξ_k is zero mean isotropic noise with
2708 covariance $\sigma^2 I$, independent across tasks. Define the signal-to-noise ratio (SNR) at each step of a
2709 gradient g as

2710
$$\text{SNR}(g) := \frac{|\mathbb{E}[g]|^2}{\mathbb{E}[|g - \mathbb{E}[g]|^2]}. \quad (123)$$

2711

2712 We consider the following approaches:
27132714 1. Single mixed update (all tasks at once). Let $g_{\text{mix}} = g_1 + g_2$. Then
2715

2716
$$\mathbb{E}[g_{\text{mix}}] = \mu_1 + \mu_2, \quad \mathbb{E}[|g_{\text{mix}} - \mathbb{E}[g_{\text{mix}}]|^2] = 2\sigma^2 d, \quad (124)$$

2717

2718 where d is the dimension. The SNR of the mixed update is proportional to
2719

2720
$$|\mu_1 + \mu_2|^2 = |\mu_1|^2 + |\mu_2|^2 + 2|\mu_1| |\mu_2| \cos \theta \quad (125)$$

2721

2722 2. Sequential non-conflict updates (update one group at a time). If we perform two sequential
2723 updates, first with g_1 and then with g_2 , the average per-step SNR is proportional to $|\mu_1|^2 +$
2724 $|\mu_2|^2$, since each step sees noise of variance $\sigma^2 d$.
27252726 Comparing the two,
2727

2728
$$\text{SNR}_{\text{mix}} \leq \text{SNR}_{\text{seq}} \iff |\mu_1|^2 + |\mu_2|^2 + 2|\mu_1| |\mu_2| \cos \theta \leq |\mu_1|^2 + |\mu_2|^2. \quad (126)$$

2729

2730 Thus, whenever the mean descent directions of two tasks are non-positively aligned ($\cos \theta \leq 0$), a
2731 single mixed update has no better signal-to-noise ratio than sequential updates, and in the genuinely
2732 conflicting case ($\cos \theta < 0$) it is strictly worse.
27332734 SON-GOKU’s non-conflict groups are precisely designed so that within each group, pairwise cosines
2735 are bounded away from strongly negative values. This ensures that inside a group, the aggregate
2736 gradient faces limited cancellation (by the group-level inequality above), and across groups, strongly
2737 negative interactions are never mixed in the same update, so we avoid exactly the SNR degradation
2738 shown by this toy model.
27392740 This simple argument is fully consistent with the empirical and theoretical trends in the literature.
2741 Standley et al. 2020 and TAG show that grouping compatible tasks and separating incompatible
2742 ones improves test performance while Fan et al. 2023 connects inter-task gradient noise to under-
2743 optimization in MTL. SON-GOKU’s non-conflict groups give a principled way to implement this
2744 insight.
27452746 R SCALING OF SON-GOKU TO LARGER BACKBONES
27472748 R.1 THEORETICAL ANALYSIS AND REASONING
27492750 In this subsection we study how SON-GOKU behaves when we increase the capacity of the shared
2751 backbone (e.g., by widening or deepening the network). Intuitively, a larger backbone gives the
2752 model more representational degrees of freedom, which can make it easier for different tasks to
2753 carve out partially separate feature subspaces. This has two important consequences. For one, task
2754 interference can genuinely shrink as capacity grows, so the absolute room for improvement of any
2755 multi-task learning (MTL) method, including SON-GOKU, may decrease. At the same time, task
2756 gradients are still coupled through shared optimization, data, and regularization, so interference does
2757 not necessarily vanish, especially with many tasks or mismatched objectives.
27582759 Below we formalize this picture and explain why SON-GOKU is designed to (i) reduce to joint
2760 training when interference is negligible and (ii) remain robust and useful when conflicts persist, even
2761 on large backbones.
2762

2754 R.1.1 EFFECT OF MODEL CAPACITY ON TASK INTERFERENCE
27552756 Consider K tasks trained on a shared backbone, with (stochastic) per-task gradients $g_{i,t} \in \mathbb{R}^d$ at step
2757 t . SON-GOKU summarizes interference via cosine-based interference coefficients

2758
2759
$$\rho_{ij,t} := -\frac{\langle \tilde{g}_{i,t}, \tilde{g}_{j,t} \rangle}{\|\tilde{g}_{i,t}\| \|\tilde{g}_{j,t}\|} \quad (127)$$

2760
2761

2762 Increasing the backbone size changes the geometry of these gradients. A wider or deeper network
2763 can essentially allocate separate channels or subspaces to different tasks, so that conflicting updates
2764 get placed into distinct parts of the representation. In this overparameterized setting, the model may
2765 approximate each task extremely well, allowing gradients for different tasks to decouple and align
2766 more often. Empirically and theoretically, interference is very well known to depend strongly on the
2767 match between tasks and the shared representation. Some tasks cooperate, others compete, and this
2768 structure does not disappear just because we add parameters (Standley et al., 2020).2769 Even with a large backbone, there are several reasons why negative interactions can persist. One big
2770 issue comes down to shared optimization and finite resources. The backbone is still trained with a
2771 single optimizer on a finite dataset with finite training steps and explicit or implicit regularization. The
2772 optimization path couples tasks through shared layers, so gradients remain misaligned for objectives
2773 with different inductive biases (e.g., geometric versus semantic, short-term versus long-term goals).
2774 Additionally, when the number of tasks K is large, increasing capacity is not enough to give each
2775 task a completely separate "subnetwork." Some features must be reused, so there is competition
2776 over shared directions, and conflicts can reappear as tasks compete for the same representational
2777 dimensions (Pascal et al., 2021). Furthermore, if some tasks are over-represented in the data or have
2778 larger losses, their gradients dominate updates and push shared features toward their own optima,
2779 potentially harming less frequent or harder tasks, regardless of the backbone's absolute size.2780 Looking at this from the lens of gradient geometry, larger backbones often shift the cosine distribution
2781 between tasks toward zero and reduce variance, but they do not guarantee that all cosines become
2782 small and nonnegative. SON-GOKU is designed to exploit whatever conflict structure remains while
2783 not overreacting when conflicts are rarer.2784 R.1.2 SON-GOKU UNDER SCENARIOS WITH LOW INTERFERENCE
27852786 Suppose we are in a scenario with almost no interference where, for most pairs (i, j) ,

2787
2788
$$\mathbb{E}[\cos(g_{i,t}, g_{j,t})] \geq -\varepsilon, \quad (128)$$

2789

2790 with ε small and cosines concentrated near zero or positive values. For a reasonable threshold $\tau > 0$,
2791 the probability that the EMA-based $\rho_{ij,t}$ exceeds τ becomes very small. In this limit, (i) the conflict
2792 graph G_τ would become very sparse or even empty; (ii) Welsh-Powell coloring produces one or
2793 very few color classes. In the extreme case of no edges, all tasks share a single color; and (iii)
2794 SON-GOKU's scheduler then activates all tasks together at each step, so the update coincides with
2795 standard joint training.2796 If $E_\tau = \emptyset$, the active set at every step is
2797

2798
$$S_t = 1, \dots, K \quad (129)$$

2799

2800 and the update rule is identical to vanilla MTL with a shared backbone and summed (or weighted
2801 summed) loss. The only remaining overhead is maintaining EMA statistics and coloring a graph with
2802 no edges.2803 This clearly shows that SON-GOKU will do no harm at larger backbones, given that τ is properly
2804 configured. If the gradient geometry exhibits no strongly negative cosines (for the chosen τ), SON-
2805 GOKU reduces to joint training and does not introduce artificial conflicts or distortions. As previously
2806 mentioned, the only configurable parameter in this setting is the threshold τ . As capacity grows and
2807 cosines shift closer to zero, it can be sensible to use a slightly more conservative threshold (e.g.,
2808 larger τ) so that we still isolate genuinely harmful pairs without splitting tasks unnecessarily. As long

2808 as there is a margin separating truly conflicting pairs from near-conflicting pairs, such a choice of τ
 2809 exists.

2811 R.1.3 COMPARISON TO METHODS THAT ALWAYS MODIFY GRADIENTS

2813 Many existing MTL methods *always* modify gradients, regardless of whether conflicts are present.
 2814 Gradient surgery and multi-objective methods such as PCGrad and CAGrad change the direction of
 2815 the update by projecting or optimizing over gradients at every step, to avoid negative inner products or
 2816 approximate optimal directions (Sener & Koltun, 2018; Yu et al., 2020; Liu et al., 2021; Navon et al.,
 2817 2022; Ban & Ji, 2024; Shi et al., 2023; Borsani et al., 2025). Methods like GradNorm automatically
 2818 rescale task losses or gradients (Chen et al., 2018; Kendall et al., 2018; Liu et al., 2019; Yang et al.,
 2819 2023; Liu et al., 2023; Fan et al., 2023; Liang & Zhang, 2020; Lin et al., 2022). There exist a plethora
 2820 of other methods that similarly modify gradients or other parameters at all times (Caruana, 1997;
 2821 Ando & Zhang, 2005; Evgeniou et al., 2005; Argyriou et al., 2007; Kang et al., 2011; Ruder, 2017;
 2822 Pascal et al., 2021).

2823 These approaches can be very effective when conflicts and imbalances are strong, but in settings
 2824 with low interference and high capacity they can become unstable. For example, when cosines
 2825 are small and positive, the true conflict is near zero. However, stochastic noise can make some
 2826 cosines appear slightly negative. A surgery method like PCGrad sees these as "conflicts" and projects
 2827 away components that were actually harmless, adding noise to the optimization path. Methods that
 2828 explicitly solve a multi-objective problem at each step optimize a combination of gradients whose
 2829 directions become almost collinear when interference is low. In that case the optimization can become
 2830 counterproductive. Basically, tiny numerical differences in gradients can lead to large changes in the
 2831 chosen combination, creating unstable trajectories that are not justified by any genuine underlying
 2832 conflict (Sener & Koltun, 2018; Yu et al., 2020; Liu et al., 2021; Navon et al., 2022; Shi et al., 2023;
 2833 Ban & Ji, 2024; Borsani et al., 2025). Finally, as backbones get larger, gradient norms often shrink
 2834 and their distribution shifts. Methods that rely heavily on relative magnitudes must then be retuned or
 2835 recalibrated, and may continue to reweight tasks even when they would naturally co-exist without
 2836 interference (Chen et al., 2018)

2837 By contrast, SON-GOKU's design is deliberately based on events. It monitors normalized cosines
 2838 which are invariant to global rescaling of gradients and less sensitive to noise at each step. It only
 2839 introduces edges in the conflict graph once cosines cross a threshold and stay there consistently
 2840 enough to not be erased by smoothing. And in the case when cosines are all near zero or positive, the
 2841 conflict graph simply goes away, and scheduling essentially becomes joint training.

2842 In other words, as we scale up the backbone and genuine conflicts no longer exist, SON-GOKU turns
 2843 itself off, while many other methods continue to adjust gradients based on weak and noisy signals.

2844 R.1.4 LARGER BACKBONES AND CONFLICT GRAPH ESTIMATION

2846 The graph theory part of SON-GOKU (graph construction, coloring, and scheduling) depends on
 2847 the actual interference structure, not on the specific estimator used. In Appendix B.4 of the main
 2848 paper we show that, under mild assumptions, EMA cosines naturally concentrate around the true
 2849 (or "population") cosines and that thresholding them recovers the true conflict graph with high
 2850 probability.

2852 Increasing model capacity typically helps this estimation step, for two reasons. Firstly, it enables
 2853 higher signal-to-noise ratio in cosines. As the backbone gets larger and representations become more
 2854 structured, gradients for each task often become more stable across steps. This reduces the variance
 2855 of cosine estimates and makes it easier to distinguish pairs that are persistently conflicting (true
 2856 gradient cosine is strongly negative) from pairs that are truly neutral or cooperative (true gradient
 2857 cosine is near zero or positive). Under the same number of samples per pair, the probability that
 2858 an EMA cosine is misclassified relative to the threshold τ decreases. This effectively improves the
 2859 sample complexity of graph recovery. The second reason that increasing model capacity actually
 2860 helps SON-GOKU is that it enables sparser conflict graphs and better scheduling guarantees. When
 2861 capacity pushes more task pairs into the non-conflicting regime, the conflict graph becomes sparser
 2862 and its maximum degree Δ decreases. By standard graph-coloring results, any proper coloring uses
 2863 at most $\Delta + 1$ colors. A smaller Δ thus implies there are fewer groups, so each group is larger and

2862 Table 10: Validation loss averaged across tasks on Taskonomy Tiny for different encoder widths
 2863 (UNet-style encoder).

Encoder width	Joint	SON-GOKU
64	5.232 ± 0.020	5.203 ± 0.018
128	5.050 ± 0.018	4.940 ± 0.017
256	4.900 ± 0.015	4.830 ± 0.015

2871 more similar to joint training. It also implies each task is updated at least once every $\Delta + 1$ steps, so
 2872 smaller Δ directly improves guarantees about how fresh the graph is.
 2873

2874 From the standpoint of our theoretical analysis (Section 5), this means that larger backbones either
 2875 make the conflict graph easier to estimate for the same number of refreshes, or make the graph
 2876 itself simpler (low degree), which directly improves scheduling properties. In the setting where
 2877 conflicts still exist but are less noisy, SON-GOKU benefits greatly. We get cleaner separation between
 2878 conflicting and non-conflicting pairs, and we need fewer colors to isolate those conflicts.
 2879

2880 R.1.5 PERSISTENT INTERFERENCE FOR HIGH CAPACITY MODELS WITH MANY TASKS

2881 While the extreme case of no interference is conceptually simple, many realistic scenarios with
 2882 large backbones still exhibit substantial negative transfer. When K is large and tasks optimize for
 2883 different invariances or focus on different aspects of the input, some gradients remain fundamentally
 2884 incompatible, no matter how wide the backbone is. This is reflected in persistent clusters of negative
 2885 cosines and in empirical studies showing that some tasks should not be learned together even when
 2886 using fairly powerful models (Standley et al., 2020). With a single optimizer and a finite number
 2887 of steps, training is a multi-objective problem in the sense of Sener and Koltun. There is a Pareto
 2888 front of trade-offs that cannot be simultaneously optimized, independent of capacity (Sener & Koltun,
 2889 2018). In such cases, conflicts will persist despite over parameterization. Finally, when some tasks
 2890 see more data or larger losses, their gradients dominate shared layers. This can lead to a behavior
 2891 where dominant tasks dictate the representation, harming others even in high-capacity networks.
 2892

2893 In these settings, our earlier theoretical results continue to apply. The point is, nothing in our analysis
 2894 assumes a small backbone. What matters is the geometry of gradients, not the absolute size of the
 2895 parameter space. As we discuss in Appendices R.1.2 and R.1.4, SON-GOKU will either do no harm
 2896 or continue to provide the same theoretical benefits we discussed previously.
 2897

2898 R.2 EXPERIMENTAL ANALYSIS

2899 For the experimental analysis we evaluate SON-GOKU against a joint training baseline on the
 2900 Taskonomy dataset. Specifically, we test each approach on a UNet-style encoder across three different
 2901 settings, where each setting sets a different backbone size for the encoder (64 vs 128 vs 256 neurons).
 2902 We also evaluate the speed of SON-GOKU across R values of 8, 16, 32, and 64 with these different
 2903 backbone sizes.
 2904

2905 Table 10 contains the results (in terms of loss) for SON-GOKU against joint training averaged across
 2906 five trials. We observe that, as we widen the encoder from 64 to 128 and 256 channels, both joint
 2907 training and SON-GOKU improve, but SON-GOKU consistently does better, and the size of the gap
 2908 follows the qualitative behavior predicted in our earlier analysis. At 64 channels, the backbone is
 2909 clearly limited in its capacity, so even though there is interference, the model cannot fully exploit
 2910 cleaner updates. At 128 channels, the backbone is expressive enough that separating conflicting tasks
 2911 in time and space actually pays off. This is where we see the largest improvement over joint training.
 2912 At 256 channels, performance improves again for both methods, but the gap shrinks. As model
 2913 capacity grows, many conflicts are resolved by the large available representation, and SON-GOKU
 2914 approaches behavior like joint training while still having a small benefit when there are remaining
 2915 conflicts (Appendix R.1.2). The training setup employed here only used 4 tasks. In setups with
 2916 tens (or even hundreds) of tasks, it would of course take a much larger backbone for conflicts to be
 2917 resolved by the larger parameter space alone.

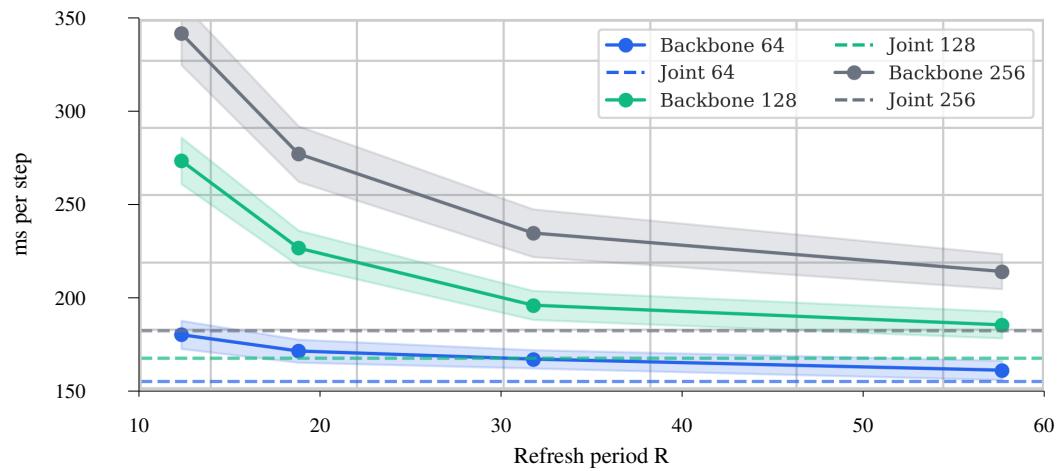


Figure 2: Evaluation of SON-GOKU’s speed with varying R (8, 16, 32, 64) on different backbone widths. Plotted against the joint training baseline ($R = \infty$). Highlighted regions represent standard deviation from 15 separate trials. This data was collected during training on Taskonomy Tiny subset.

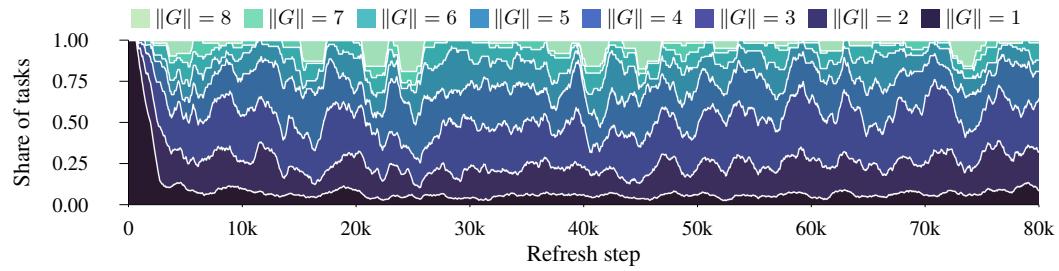
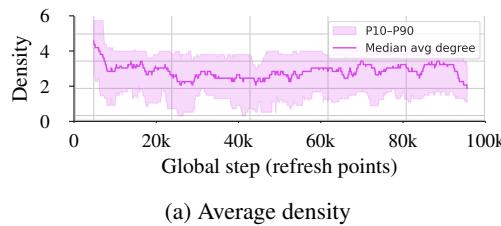
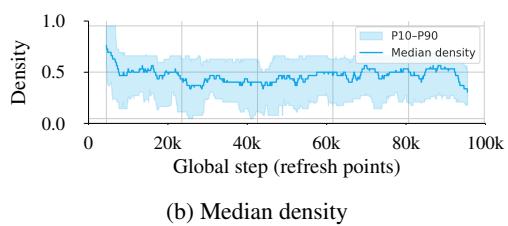


Figure 3: How the fraction of tasks assigned to each group size evolves over the refresh steps in training. This is a stacked area plot showing how the proportion of tasks in each group size $\|G\|$ evolves during training.

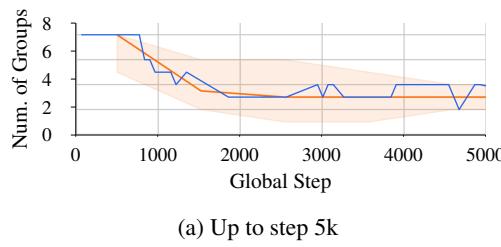
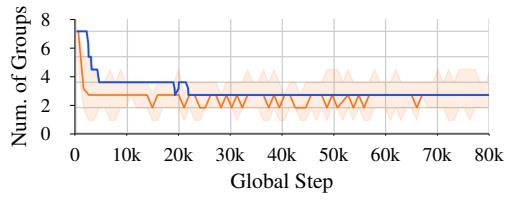
For $R = 32$ or 64 , the time for each step is close to the joint training baseline (where R is essentially ∞) for all backbone widths, matching our analysis that the extra work scales like $O(Kr(d + K)/R)$ and shrinks as R grows. This demonstrates that SON-GOKU can effectively track interference while adding negligible runtime cost, even for larger backbones.

S TRENDS OF SON-GOKU THROUGHOUT TRAINING

In this section we provide detailed visualizations of how SON-GOKU and its components evolve throughout the training process. We train a U-Net model with SON-GOKU on the Taskonomy dataset to gain deeper insight into its behavior, especially in many-task settings. We train for three epochs with a batch size of 64.

2970 S.1 TASK GROUPING AND CONFLICT TRENDS
2971
2972

2980 Figure 4: Conflict sparsity during training. Subfigure (a) plots the median average node degree
2981 (magenta line) with its 10th–90th percentile band (magenta). Subfigure (b) shows the median edge
2982 density of the task conflict graph at each refresh step (blue line) with the 10th–90th percentile range
2983 across runs (blue band)..



2984
2985
2986 Figure 5: Grouping behavior throughout training. The blue line represents the number of active
2987 color groups at each training step. The orange line represents the median number of groups observed
2988 during each refresh period, with the shading showing the full range for that period. Subfigure (a)
2989 shows more details from step 0 to step 5,000 in the training process, and Subfigure (b) shows the data
2990 from step 0 to step 80,000. Both plots have been lightly smoothed based on moving medians to make
2991 them easier to interpret.

3000 S.1.1 EVOLUTION OF TASK GROUP SIZES
3001
3002

3003 Figure 3 shows that SON-GOKU quickly moves away from the trivial approach of training all
3004 tasks in one group ($\|G\| = 8$) and instead allocates most stakes to small- and medium-sized groups
3005 ($\|G\| \in \{3, 4, 5\}$), with only a small fraction ever isolated on their own. The smooth but continually
3006 shifting bands indicate that the scheduler keeps adjusting the granularity of groups over training. It
3007 continues to refine task partitions as patterns in task interference change, rather than committing to a
3008 fixed grouping of tasks.

3009 S.1.2 CONFLICT SPARSITY IN THE TASK GRAPH
3010
3011

3012 Both plots in Figure 4 show that, after an initial phase of dense conflict, SON-GOKU’s conflict
3013 graph rapidly becomes more and more sparse. Both the node degree and overall edge density drop
3014 significantly and then fluctuate around a low level. This indicates that the scheduler quickly resolves
3015 most cross-task conflicts and then maintains a partition of tasks into predominantly non-conflicting
3016 groups for the rest of training. This idea is supported by our graph visualizations in Appendix S.3.

3017 S.1.3 GROUP COUNT AND SCHEDULE STABILITY
3018
3019

3020 Figure 5 shows that SON-GOKU starts with many groups but soon settles to consistently using three
3021 to four groups for most of training. The blue and orange lines across both plots stay close together,
3022 meaning the number of groups at each step stays relatively consistent (with slight oscillations, as we
3023 see in our graph visualizations in Appendix S.3) with what we see across refresh periods. So the
grouping behavior is not fully stable, but converges within a range over time in which it is able to
adapt to evolving task relationships. Tuning the SON-GOKU hyperparameters to achieve more stable

3024 Table 11: Validation performance on Taskonomy for SON-GOKU using a U-Net backbone.
3025

Metric	SON-GOKU
Depth (Euclidean)	
AbsRel ↓	0.5432 ± 0.0068
MAE ↓	4.0787 ± 0.071
RMSE ↓	18.6199 ± 0.29
Depth (Z-buffer)	
AbsRel ↓	0.5731 ± 0.0074
MAE ↓	4.0494 ± 0.069
RMSE ↓	18.5378 ± 0.27
Edge Occlusion	
BCE ↓	0.0995 ± 0.0032
F1 ↑	0.1466 ± 0.010
Precision ↑	0.5399 ± 0.021
Recall ↑	0.0870 ± 0.0065
Edge Texture	
BCE ↓	0.0779 ± 0.0010
F1 ↑	0.9734 ± 0.0007
Precision ↑	0.9772 ± 0.0008
Recall ↑	0.9768 ± 0.0007
Keypoints2D	
MSE ↓	0.0039 ± 0.0002
Surface Normals	
11.25° within ↑	0.4262 ± 0.0079
22.5° within ↑	0.6432 ± 0.0068
30° within ↑	0.7340 ± 0.0059
Mean angle (deg) ↓	22.9079 ± 0.31
Median angle (deg) ↓	14.5397 ± 0.27
Principal Curvature	
L1 ↓	0.0691 ± 0.0014
Reshading	
MAE ↓	0.1352 ± 0.0023

3059 grouping is possible, but in theory may lead to worse responsiveness to evolving task relationships
3060 (see Appendix O and Section 5).

3062 S.2 CONVERGENCE AND LOSS

3064 To enhance the transparency of our work, we plot the convergence of the SON-GOKU based model
3065 across various tasks from the Taskonomy dataset. We plot each metric’s changing value against
3066 the step number. Across most metrics, we can see a clear pattern of improvement early in training
3067 followed by a slower and more stable plateau. However, there are some other metrics where the graph
3068 oscillates throughout the training process, demonstrating the difficulty (or perhaps impossibility) of
3069 finding a global minima that satisfies all tasks and metrics. This is consistent with a clear pattern
3070 established by the literature around the Taskonomy dataset.

3071 To further improve transparency and clarity, we plot the exact final performance values of SON-GOKU
3072 on Taskonomy in Table 11 (identical to data and results of cosine-based SON-GOKU presented in
3073 Table 8).

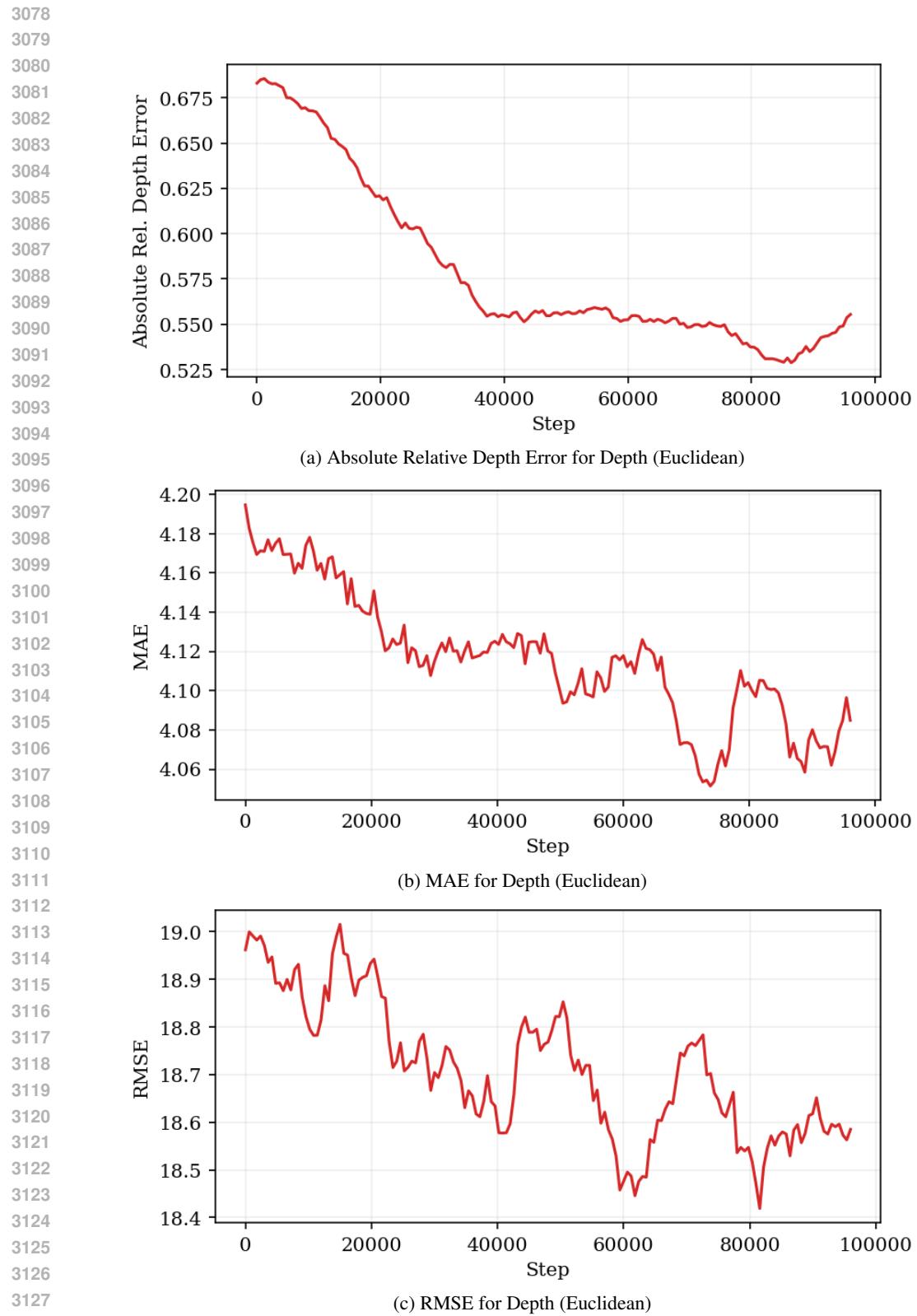


Figure 6: Convergence curves across all the used Taskonomy tasks and metrics.

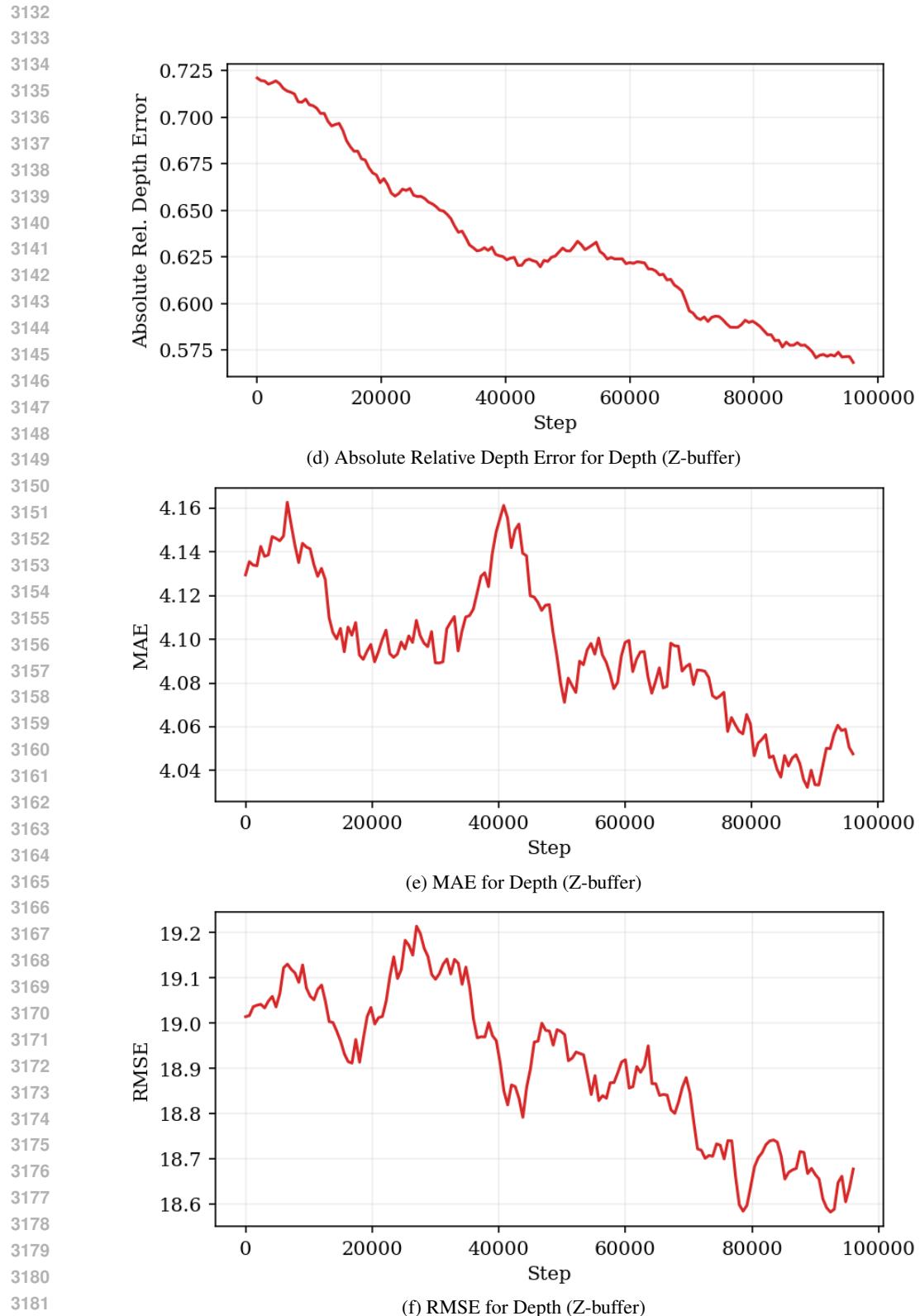


Figure 6: Convergence curves across all the used Taskonomy tasks and metrics (continued).

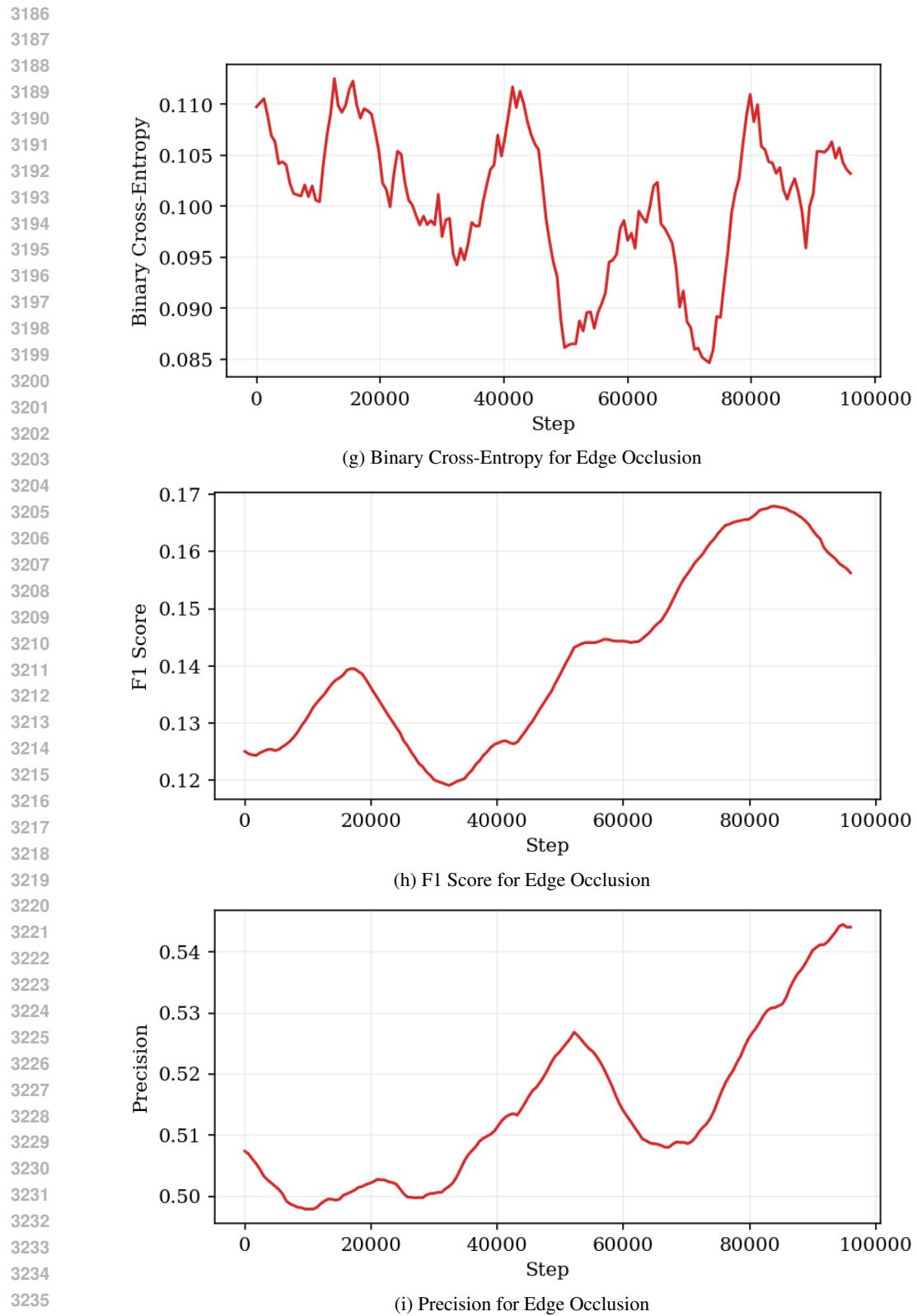


Figure 6: Convergence curves across all the used Taskonomy tasks and metrics (continued).

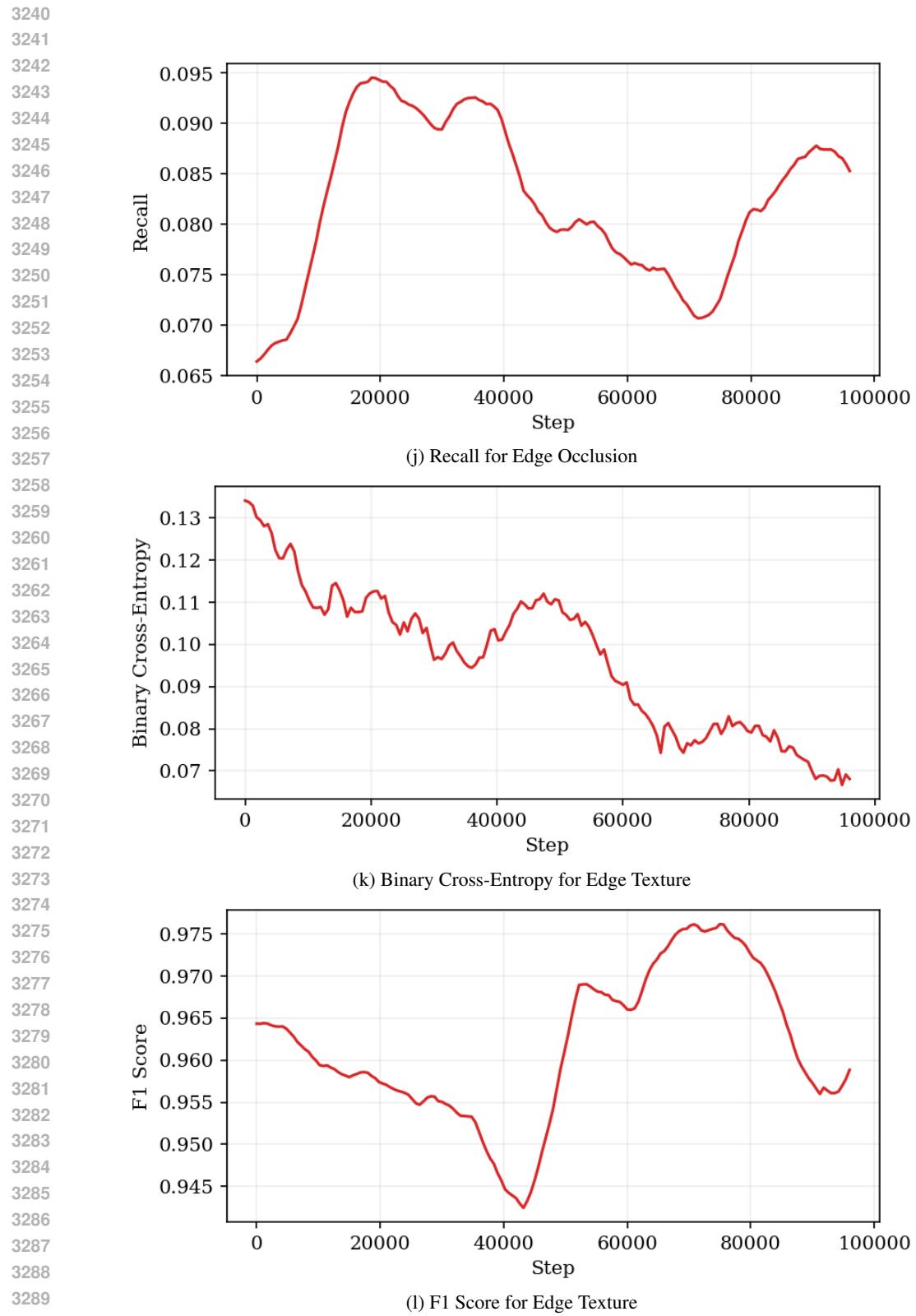


Figure 6: Convergence curves across all the used Taskonomy tasks and metrics (continued).

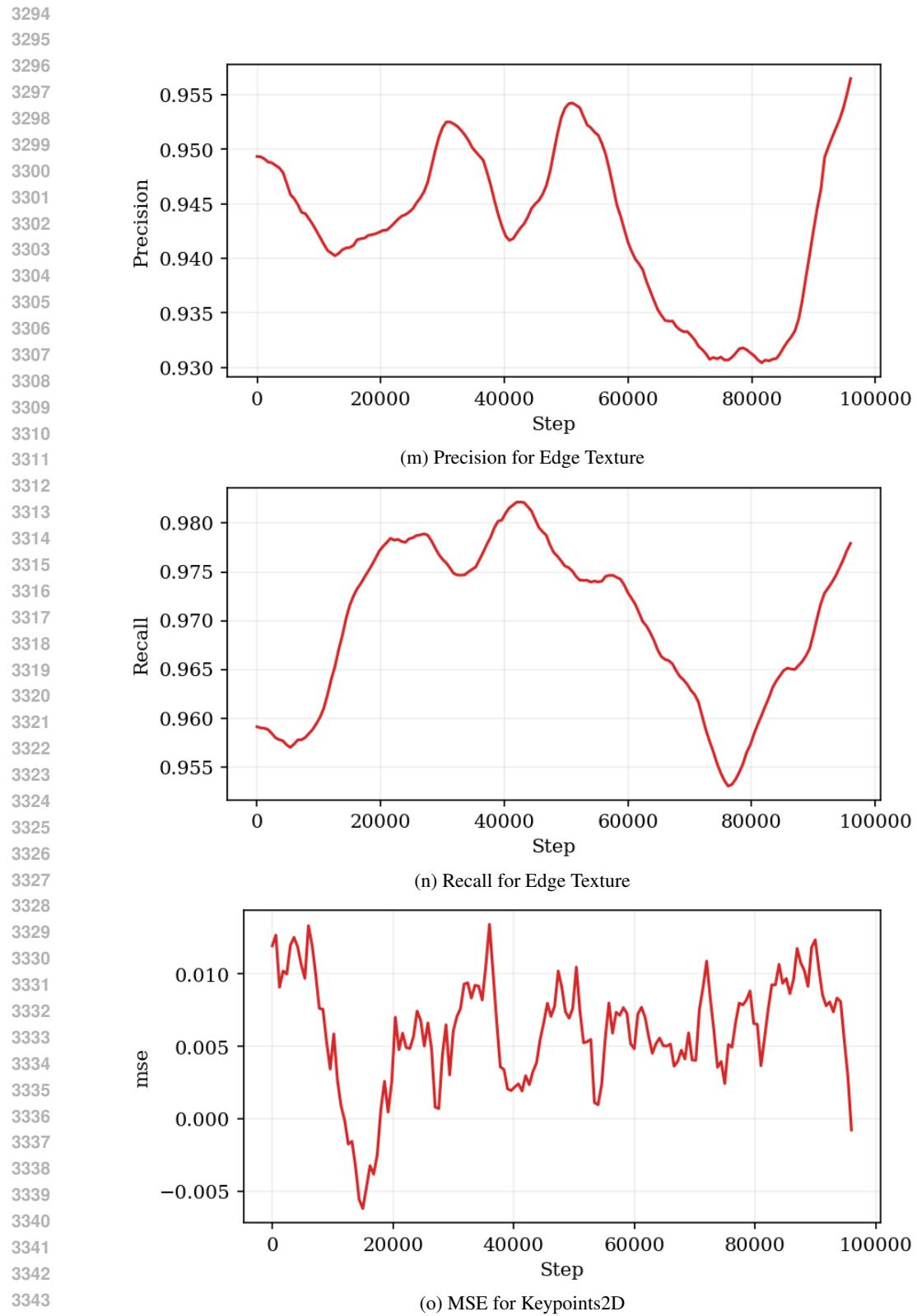


Figure 6: Convergence curves across all the used Taskonomy tasks and metrics (continued).

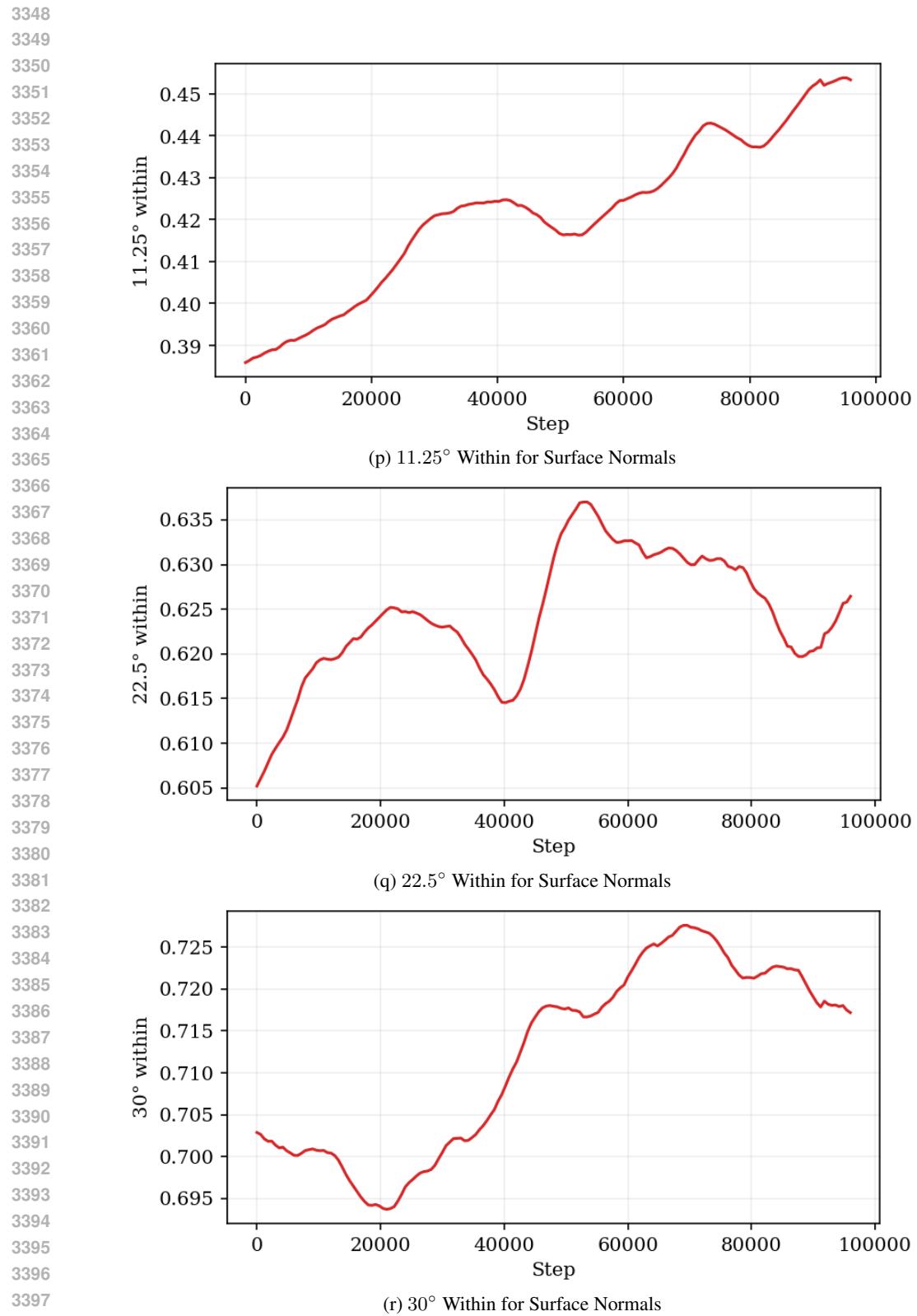


Figure 6: Convergence curves across all the used Taskonomy tasks and metrics (continued).

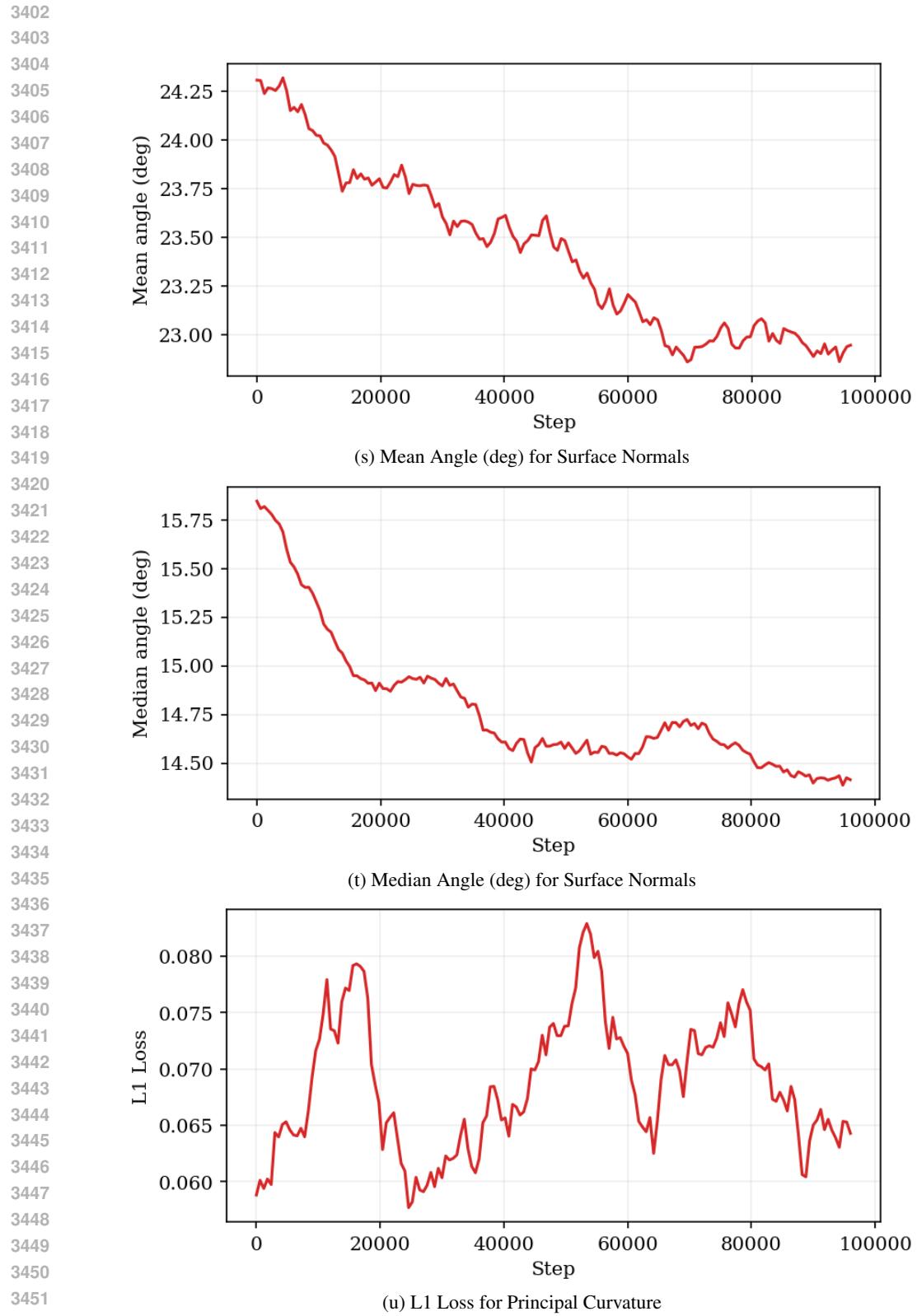


Figure 6: Convergence curves across all the used Taskonomy tasks and metrics (continued).

3456 S.3 GRAPH EVOLUTION
3457

3458 SON-GOKU captures relationships between tasks and groups them accordingly throughout training.
3459 It does so online, meaning that it is able to adapt to the constantly changing relationships between
3460 tasks. In this instance, SON-GOKU is able to capture a clear consistent relationship between separate
3461 tasks, but it still constantly regroups tasks throughout the training process to adapt at different points
3462 (Figure 7). Overall, this constantly changing grouping, despite SON-GOKU having identified a
3463 somewhat consistent underlying task structure, indicates that SON-GOKU is highly adaptive to
3464 evolving cross-task relationships. For more consistent grouping that still optimizes performance, one
3465 would need to adjust the scheduler hyperparameters that control the refresh period and EMA history
3466 length. Essentially, one would trade off stability against responsiveness.

3467

3468

3469

3470

3471

3472

3473

3474

3475

3476

3477

3478

3479

3480

3481

3482

3483

3484

3485

3486

3487

3488

3489

3490

3491

3492

3493

3494

3495

3496

3497

3498

3499

3500

3501

3502

3503

3504

3505

3506

3507

3508

3509

3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

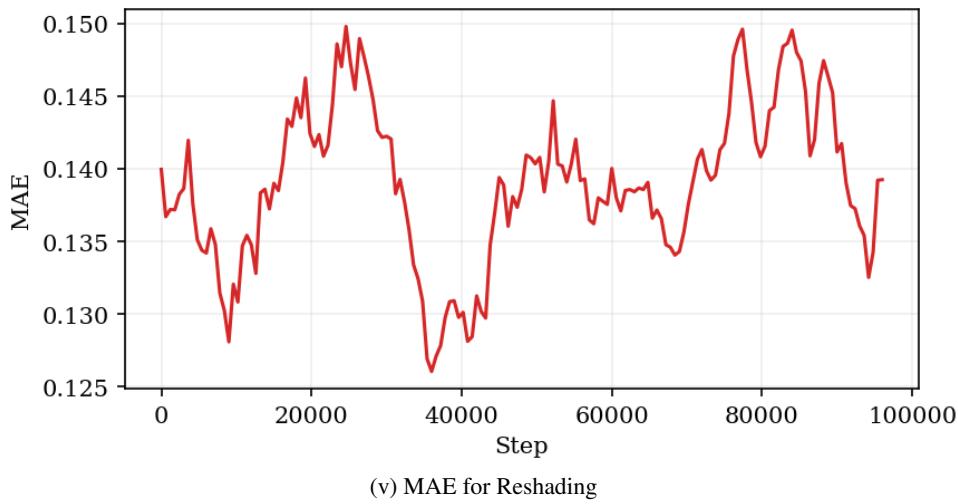


Figure 6: Convergence curves across all the used Taskonomy tasks and metrics (continued).

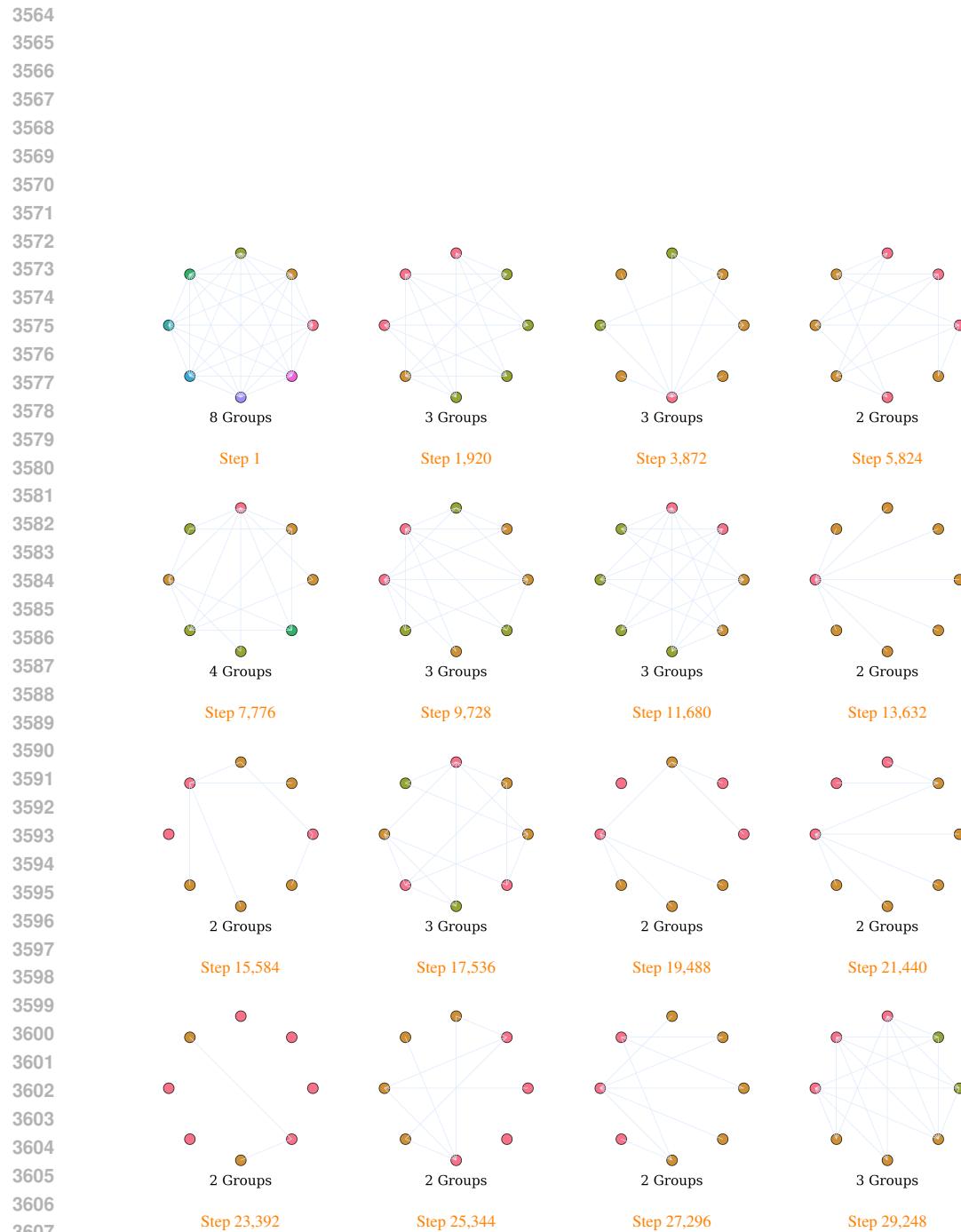


Figure 7: Task-graph evolution during training. Starting with the top node and rotating clockwise, the tasks represented are: Edge Occlusion, Depth Z-Buffer, Depth Euclidean, Reshading, Principal Curvature, Normal, Keypoints 2D, and Edge Texture.

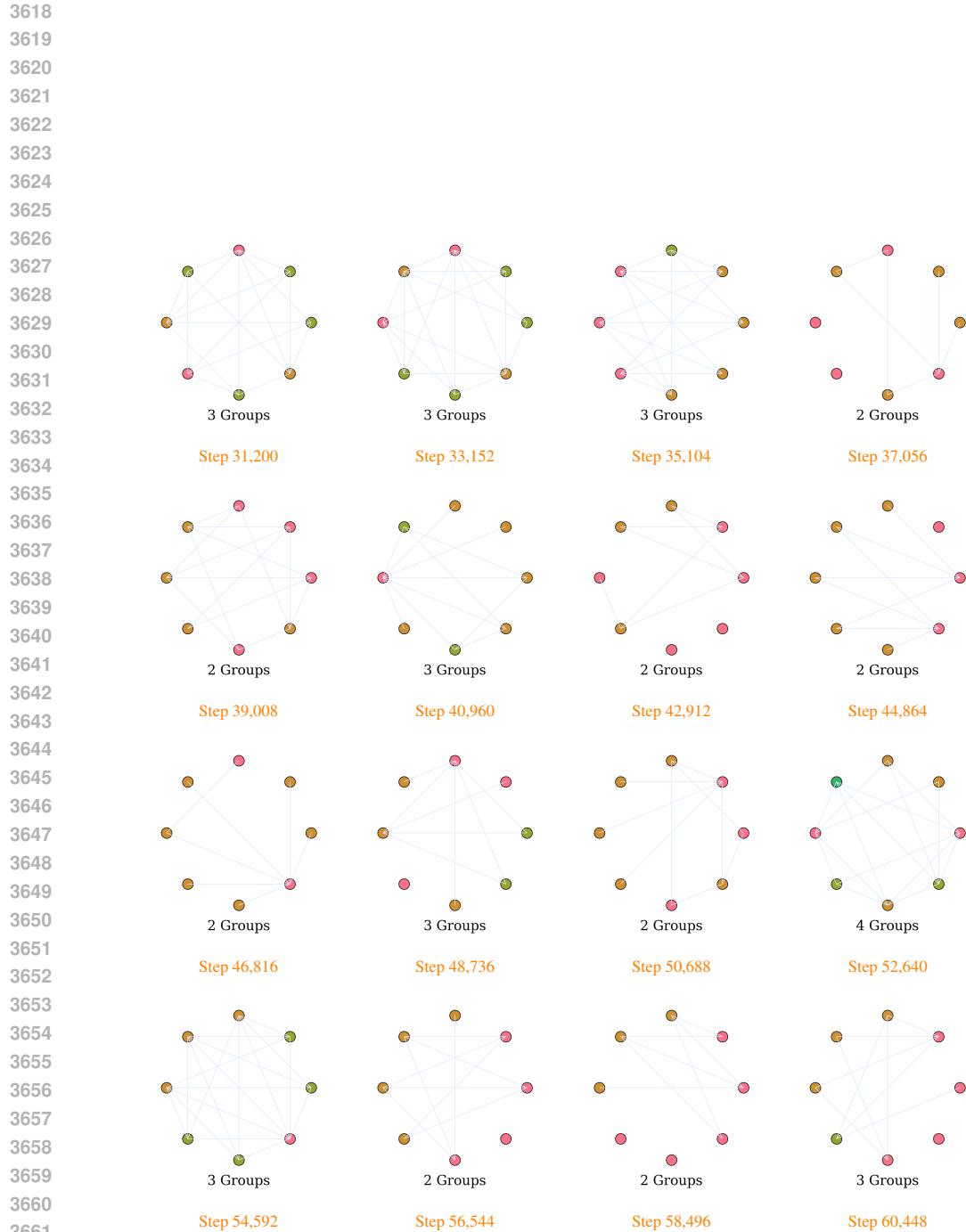


Figure 7: Task-graph evolution during training (continued). Starting with the top node and rotating clockwise, the tasks represented are: Edge Occlusion, Depth Z-Buffer, Depth Euclidean, Reshading, Principal Curvature, Normal, Keypoints 2D, and Edge Texture.

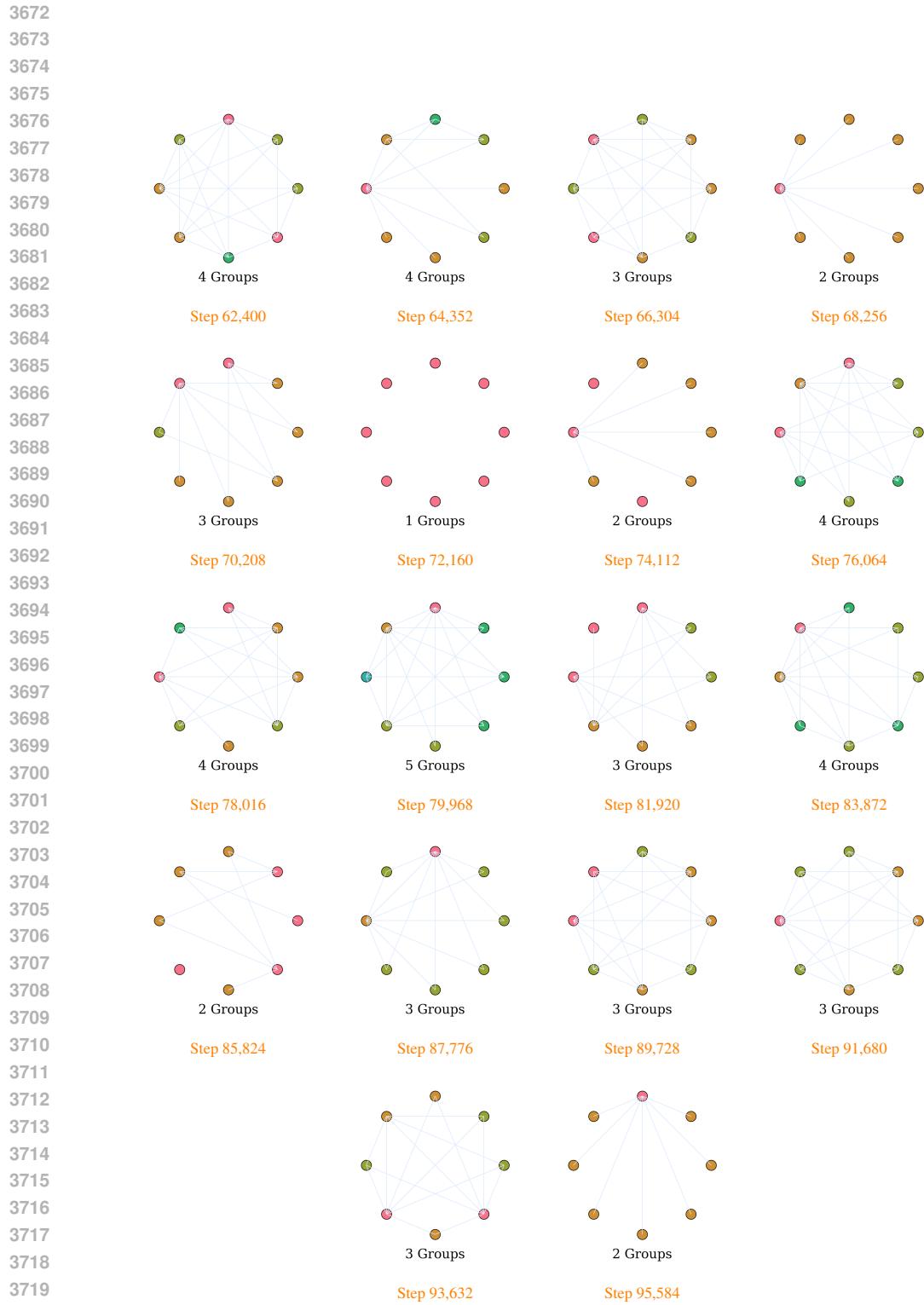


Figure 7: Task-graph evolution during training (continued). Starting with the top node and rotating clockwise, the tasks represented are: Edge Occlusion, Depth Z-Buffer, Depth Euclidean, Reshading, Principal Curvature, Normal, Keypoints 2D, and Edge Texture.