
DKPROMPT: Domain Knowledge Prompting
Vision-Language Models for Open-World Planning

Xiaohan Zhang1, Zainab Altaweel1, Yohei Hayamizu1, Yan Ding1, Saeid Amiri1,
Hao Yang2, Andy Kaminski2, Chad Esselink2, and Shiqi Zhang1

1State University of New York at Binghamton
2Ford Research

Abstract

Vision-language models (VLMs) have been applied to robot
task planning problems, where the robot receives a task in
natural language and generates plans based on visual in-
puts. While current VLMs have demonstrated strong vision-
language understanding capabilities, their performance is still
far from being satisfactory in planning tasks. At the same
time, although classical task planners, such as PDDL-based,
are strong in planning for long-horizon tasks, they do not
work well in open worlds where unforeseen situations are
common. In this paper, we propose a novel task planning and
execution framework, called DKPROMPT, which automates
VLM prompting using domain knowledge in PDDL for clas-
sical planning in open worlds. Results from quantitative ex-
periments show that DKPROMPToutperforms classical plan-
ning, pure VLM-based and a few other competitive baselines
in task completion rate. 1

1 Introduction
Prompting foundation models such as large language models
(LLMs) and vision-language models (VLMs) require exten-
sive domain knowledge and manual efforts, resulting in the
so-called “prompt engineering” problem. One can provide
examples explicitly (Brown et al. 2020) or implicitly (Lester,
Al-Rfou, and Constant 2021), or encourage intermediate
reasoning steps (Wei et al. 2022; Yao et al. 2024) to im-
prove the performance of foundation models. Those meth-
ods, when applied to LLMs and VLMs, however, still lack
the theoretical guarantee and provable correctness. Our idea
is to leverage the foundation of classical AI, i.e., knowledge
representation and reasoning, to develop a prompting strat-
egy that enables the VLMs to verify the correctness of an
agent’s behavior at execution time in the real world.

Given the natural connection between planning symbols
and human language, this paper investigates how pre-trained
VLMs can assist the robot in realizing symbolic plans gen-
erated by classical planners while avoiding the engineering
efforts of checking the outcomes of each action. Specifically,
we propose a novel closed-loop task planning and execution
framework called DKPROMPT, which prompts VLMs using
domain knowledge in PDDL, generating visually grounded,

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Project webpage: https://dkprompt.github.io/

provably correct task plans. DKPROMPT leverages VLMs to
detect action failures and verify action affordances towards
successful plan execution (Figure 2). We take advantage of
the domain knowledge encoded in classical planners, includ-
ing the actions defined by their effects and preconditions.
By simply querying current observations against the action
knowledge, similar to applying VLMs to Visual Question
Answering (VQA) tasks, DKPROMPT can trigger the robot
to repeat an unsuccessful action recovering from previous
failures or call the symbolic planner to generate a new valid
plan.

We conducted quantitative evaluations in the OmniGib-
son simulator (Li et al. 2023). We assume that robot actions
are imperfect by nature, frequently causing situations 2 dur-
ing execution (1). Results demonstrate that DKPROMPT uti-
lizes domain knowledge to generate task plans adaptively,
recovers from action failures, and re-plans when situations
occur. In addition, we believe that researchers working on
VLMs, robot planning, or both find our evaluation platform
useful for their research. In particular, the open-world situ-
ations and structured world knowledge present a new play-
ground for comparing robot planning and vision-language
understanding using large-scale models.

2 Related Work
This section starts with covering a wide range of down-
stream applications of classical planners in symbolic task
planning. It then explores the role of Large Language Mod-
els (LLMs) in robot planning, discussing their strengths
(e.g., rich in common sense) and limitations (e.g., lack of
correctness guarantee). Finally, it examines the recent ad-
vancements in vision-language models (VLMs) and their
impact on the robotics community.

2.1 Classical Planning for Robots
Automated planning algorithms have a long-standing his-
tory in the literature of symbolic AI and have been widely
used in robot systems. Shakey is the first robot equipped
with a planning component, which was constructed using

2Situation is an unforeseen world state that potentially prevents
an agent from completing a task using a solution that normally
works (Ding et al. 2023a).

The cabinet is half
open and the cup is
not in the robot view

Grasp cup

The cup falls on the
floor and water spills

Fill cup with water

The egg is not cut into
two halves and the
robot drops the knife

Cut egg into half

The wooden stick
rolls off the table

Place wooden stick on
table

Figure 1: A few unforeseen situations during action execution. In the top-left example, the robot “opened” the cabinet door to
get prepared for grasping the cup. It was expected that the cup in white would have been in the robot’s view after the “opening”
action, while a situation occurred, i.e., the cabinet was only half-open. DKPROMPT prompts vision-language models (VLMs)
using domain knowledge to detect and address such situations. The goal is to compute visually grounded, provably correct
plans.

STRIPS (Nilsson et al. 1984). Recent classical planning sys-
tems designed for robotics commonly employ Planning Do-
main Description Language (PDDL) or Answer Set Pro-
gramming (ASP) as the underlying action language for plan-
ners (Jiang et al. 2019b; Brewka, Eiter, and Truszczyński
2011; Lifschitz 2002; Fox and Long 2003; Lagriffoul et al.
2018; Kaelbling and Lozano-Pérez 2013; Zhang et al. 2015;
Ding et al. 2020; Jiang et al. 2019a; Ding et al. 2022).
Most classical planning algorithms designed for robot plan-
ning do not consider perception. Though some recent works
have already shown that training vision-based models from
robot sensory data can be effective in plan feasibility eval-
uation (Zhu et al. 2021; Zhang et al. 2022b; Driess, Ha,
and Toussaint 2020; Driess et al. 2020; Wells et al. 2019),
their methods did not tightly bond with language symbols
which are the state representations for classical planning
systems. The most relevant work to our study is probably
the research by Migimatsu and Bohg, which trained domain-
specific predicate classifiers from webscale data and de-
ployed on a robot planning system (Migimatsu and Bohg
2022). We propose DKPROMPT that investigates how off-
the-shelf VLMs connect perception with symbolic language
used to represent robot knowledge.

2.2 Classical Planning with Large Language
Models for Robots

In the light of the recent advancement in artificial in-
telligence, many LLMs have been developed in recent
years (Devlin et al. 2018; OpenAI 2023a; Chen et al. 2021;
Zhang et al. 2022a). These LLMs can encode a large amount
of common sense (Liu et al. 2023b) and have been widely
applied to robot task planning (Kant et al. 2022; Huang et al.
2022a; Ahn et al. 2022; Huang et al. 2022b; Singh et al.
2022; Zhao, Lee, and Hsu 2023; Liu et al. 2022; Wu et al.

2023; Rana et al. 2023). However, a major drawback of ex-
isting LLMs is their lack of long-horizon reasoning/planning
abilities for complex tasks (Valmeekam et al. 2022, 2023;
OpenAI 2023b). Specifically, output plans LLMs produce
for such tasks are often incomplete or unsatisfiable in solv-
ing the actual tasks. As a result, a wide range of studies have
investigated approaches that combine the classical planning
methodology with LLMs in robotic domains (Silver et al.
2022; Pallagani et al. 2022; Arora and Kambhampati 2023;
Silver et al. 2024; Chen et al. 2023; Wang et al. 2024; Liu
et al. 2023a; Stein and Koller 2023; Guan et al. 2023; Ding
et al. 2023b). However, neither LLMs nor classical planners
are inherently grounded, often necessitating complex inter-
faces to bridge the symbolic-continuous gap between lan-
guage and robot perception. Our approach seeks to ground
classical planners by utilizing pre-trained VLMs through
a novel but straightforward domain knowledge prompting
strategy.

2.3 Vision-language Models in Robotics
VLMs have emerged as powerful methods integrating visual
and linguistic information for complex AI tasks (Zhang et al.
2024; Radford et al. 2021; Achiam et al. 2023; Team et al.
2023; Anthropic 2023). Researchers have started to employ
such models in robot systems (Wake et al. 2023; Lykov et al.
2024; Guan et al. 2024; Majumdar et al. 2024; Sermanet
et al. 2023), where these models have shown effectiveness
in, for example, semantic scene understanding (Ha and Song
2022), open-ended agent learning (Fan et al. 2022), guid-
ing robot navigation (Shafiullah et al. 2022) and manipu-
lation behaviors (Shridhar, Manuelli, and Fox 2021; Stone
et al. 2023). Recent VLMs have also been used for build-
ing planning frameworks (Lv et al. 2024; Zhao et al. 2023).
Adaptive planning significantly improves task performance

Effects not satisfied.
Replan with new world states.

Is cup not inside cabinet?

No

Yes

Is cup not inview agent?

…
open cabinet
grasp cup
goto sink
…

open cabinet
grasp cup
…

Is cup inview agent?

Is cabinet open?

Preconditions not satisfied.
Replan with new world states.

No

Effect MonitoringPrecondition Checking

Robot Vision-Language Model

Domain Knowledge

(:action graspfrom

 :parameters
 (?a - agent

 ?o - object
?r - receptacle)

 :precondition
 (and

 (open ?r)
 (inview ?a ?o)
 (inside ?o ?r)
 (handempty ?a))

 :effect
 (and
 (inhand ?a ?o)
 (not (handempty ?a))
 (not (insides ?o ?r))
 (not (inview ?a ?o)))
)

No

Is cup inside cabinet?

Skip

…
open cabinet
grasp cup
goto sink
…

find cup
grasp cup
…

Figure 2: An overview of DKPROMPT. By simply querying the robot’s current observation against the domain knowledge (i.e.,
action preconditions and effects) as VQA tasks, DKPROMPT can call the classical planner to generate a new valid plan using
updated world states. Note that DKPROMPT only queries about predicates. The left shows how DKPROMPT checks every
precondition of the action to be executed next, and the right shows how it verifies the expected action effects are all in place
after action execution. After updating the planner’s action knowledge, re-planning is triggered when preconditions or effects
are unsatisfied.

through better environment awareness and fault recovery,
and language understanding allows robots to seek human
assistance in handling uncertainty (Ren et al. 2023; Zhi
et al. 2024). There have been recent methods, which are
similar to ours, that query VLMs for action success, fail-
ures, and affordances (Du et al. 2023; Driess et al. 2023;
Guo et al. 2023). Different from those methods that rely on
pre-trained models for planning, DKPROMPT uses classical
planners to generate executable symbolic plans. Addition-
ally, DKPROMPT builds the synergy between classical plan-
ners and VLMs by prompting with domain knowledge. As a
result, DKPROMPT can perceive and handle unforeseen sit-
uations in open worlds while retaining the optimal planning
proficiency of classical planning.

3 DKPROMPT for Planning in Open Worlds
This section presents the implementation details of
DKPROMPT in a robot planning system. Robot actions are
described in Sec. 3.1. We present the action knowledge that
includes each action’s preconditions and effects. These pre-
conditions and effects are further represented as objects and
propositions, i.e., predicates (Sec. 3.2). We then introduce
how DKPROMPT takes advantage of the action knowledge
for state update and online re-planning (Sec. 3.3).

3.1 Robot Actions
Our system considers ten actions (as listed in Table 1), in-
cluding basic navigation and manipulation. Situations can
occur after actions are successfully triggered by the agent,
i.e., an unforeseen world state may be observed after an
agent’s action. Table 1 also provides examples of situations
that happen following specific actions. Some of these situ-
ations impact the world states, while others do not. For ex-
ample, the robot may fail on a “grasp” action, resulting in
the target object, originally on the table, falling on the floor
nearby (changing the state from on(obj, table) to
on(obj, floor)). On the other hand, the object might

also remain on the table, with the world states unchanged. To
quantify the openness of different environments, we created
the simulation platform in such a way that one can easily
adjust the probability of a situation’s occurrence. The source
code of our benchmark system will be made available in our
project website.

Actions are implemented in a discrete manner for sim-
plification purposes since continuous action execution is
not this paper’s focus. For instance, “find” action is imple-
mented by teleporting the agent from its initial position to a
randomly sampled obstacle-free goal position near the tar-
get, and “fill” action is by adding fluid particles directly into
the container that the robot is holding.

Actions are subject to several constraints. For example,
“grasp” action is deemed executable only if the target ob-
ject is in the agent’s view (assuming vision-based manipula-
tion) and the agent’s hand is empty. Similarly, “cut” action
is considered executable only if the object to be cut is in
the agent’s view and the agent is currently holding a knife.
Calling an action with at least one unsatisfied constraint will
result in an action failure, but without any changes to the
world states. Note that such constraints are not made avail-
able to agents, instead, they are partially encoded as domain
(action) knowledge that the agent possesses.

We assume that situations occur only during action execu-
tion and can be observed exclusively by agents either before
or after the action execution phase. This assumption indi-
cates that situations are solely caused by actions, and we
are aware of a few recent robotic research that has started
to consider more generalized situation handling (Ding et al.
2023a). We leave situations that are caused by external en-
vironmental factors (human or other embodiments) to future
work.

3.2 Predicates
A single action is usually defined by multiple preconditions
and effects in the domain knowledge. VLMs, especially

Table 1: Actions, constraints, and their uncertain outcomes.

Actions Constraints Situations

find
(1) The object and the agent
are in the same room.

(1) The robot succeeds in navigation but the object is not inview.
(2) There is no free space near the object so navigation fails.
(3) The object that the robot is holding drops during navigation.

grasp
(1) The object is inview.
(2) The agent’s hand is empty.

(1) The robot fails to grasp, and the object position remains unchanged.
(2) The robot fails to grasp, and the object drops nearby.

placein
(1) The object is inhand.
(2) The receptacle is inview.
(3) The receptacle is not closed.

(1) The robot fails to place, and the object remains in the robot’s hand.
(2) The robot fails to place, and the object drops nearby.

placeon
(1) The object is inhand.
(2) The receptacle is inview.

(1) The robot fails to place, and the object remains in the robot’s hand.
(2) The robot fails to place, and the object drops nearby.

fillsink (1) The sink is inview. (1) The robot fails to open the faucet.

fill
(1) The container is inhand.
(2) The agent is near sink.
(3) The container is empty.

(1) The container is not fully filled.
(2) The container drops nearby.

open (1) The object is inview. (1) The robot fails to open and the object remains closed.

close (1) The object is inview. (1) The robot fails to close and the object remains open.

turnon (1) The object is inview. (1) The robot fails to turn on the switch and the object remains off.

cut
(1) The object is inview.
(2) A knife is inhand.

(1) The object is not cut into half, and the knife is still in the robot’s hand.
(2) The object is not cut into half, and the knife drops nearby.

Table 2: DKPROMPT assumptions for predicates.

Perceptible in vision inview, closed, open, inside, halved, onfloor
ontop, cooked

Perceptible in non-vision handempty, inhand, hot

Imperceptible turnedon, filled, inroom, insource

for those that are not trained using domain-specific data,
frequently produce inaccurate answers that cause disagree-
ments among the given preconditions (or effects). For in-
stance, the VLM might answer “Yes” to both on(apple,
table) and inhand(apple) after the robot picks up
an apple from the table. In this paper, DKPROMPT cate-
gorizes predicates into three: perceptible in vision, percep-
tible in non-vision, and imperceptible, shown in Table 2.
DKPROMPT will only ask about “perceptible in vision”
predicates. Intuitively, we believe VLMs should be and will
be only good at visually-perceptible predicates. The robot
will then have ground truth access to perceptible in non-
vision predicates (this assumption also applies to all other
baselines). We leave identifying these predicates using more
advanced Multimodal Language Models to future work. As
for the remaining imperceptible predicates, the DKPROMPT
agent maintains a positive attitude and assumes they are al-
ways True. This suggests that DKPROMPT believes these
predicates will never be affected by any situation.

3.3 DKPROMPT

Before every action execution, DKPROMPT extracts knowl-
edge about action preconditions from the planner’s domain
description. For instance, as indicated in Figure 2, action
graspfrom(a, o, r) has preconditions of open(r),

inview(a, o), inside(o, r), and handempty(a),
meaning that to grasp an object o from a receptacle r, r
should be open (not closed), o should be in the agent’s cur-
rent first person view, o should be inside r, and the agent’s
hand should be empty. Then, we convert each action pre-
condition into a natural language query by using manually
defined templates, though it has been evident that LLMs can
be used to translate PDDL and natural language (Liu et al.
2023a). Examples include “Is ⟨o⟩ inview agent?” and “Is
⟨o⟩ inside ⟨r⟩?” Paring each natural language query with
the current observation from the robot’s first-person view,
we call the VLM to get answers indicating if the precondi-
tion is satisfied. The answers are either “yes”, “no”, or “skip”
if unsure.

According to the answers from the VLM, DKPROMPT
updates the current state information in the classical plan-
ning system. Figure 2 (Left) shows an example where the
robot wants to execute graspfrom(cup, cabinet)
but fails to detect “cabinet is open”, “cup is inview of
agent”, and is suspicious about if “cup is in the cab-
inet” (i.e., the VLM answers “skip” to this question)
given the current observation. As a result, DKPROMPT
updates the current state by changing open(cabinet)
to closed(cabinet), and removing inview(agent,
cup). inside(cup, cabinet) remains the same be-
cause we do not update the state if the VLM answers “skip”,
indicating the agent holds a positive attitude that situa-
tions will not commonly occur. We then provide the up-
dated world state to the classical planner as the “new” ini-
tial state to re-generate a plan. In the above example, in-
stead of graspfrom(cup, cabinet), the robot takes
the action of open(cabinet) again according to the
newly-generated action plan. After every action execution,
DKPROMPT extracts knowledge about action effects from

Table 3: Task descriptions and initial plan length.

Name Descriptions Initial plan length

boil water in
the microwave Pick up an empty cup in a closed cabinet, fill it with water using a sink, and boil it in a microwave. 12

bring in
empty bottle Find two empty bottles in the garden and bring them inside. 8

cook a
frozen pie Take an apple pie out of the fridge and heat it using an oven. 8

halve
an egg Find a knife in the kitchen and use it to cut a hard-boiled egg into half. 4

store
firewood Collect two wooden sticks and place them on a table. 8

the planner’s domain description, illustrated in Figure 2
(Right). It queries action effects by using the VLM. If the
effects are not satisfied, the robot will update its belief on
the current states and re-plan accordingly. The knowledge-
based automated prompting strategy of VLMs enables our
planning system to adaptively capture and handle unfore-
seen situations at execution time.

We show the prompt template that was used to query the
VLMs. The prompt includes three components: “System,”
“DKPROMPT,” and an image. All prompts share the “Sys-
tem” part to contextualize the interaction with the VLMs and
specify the output format. The “DKPROMPT” part lists the
questions that are translated from the domain knowledge in
PDDL format using the manually defined templates. Each
VLM prompt includes a 256x256 image taken from the cur-
rent robot’s observation (“a cup in an open cabinet” in the
following example).

DKPROMPT

System: Imagine you are an intelligent agent that
can answer questions based on what you see. You
will be given a single image as the agent’s current
view, and one or more yes/no question(s) asking
about the image. Questions will be separated by
semicolon. For each question, you should answer
”yes”, ”no”, or ”skip” without any explanation.
Answer ”yes” or ”no” only if you are pretty sure
about what you see in the image. It’s fine to answer
”skip” to skip the question if you are not confident
about your answer. Answers should be separated by
semicolon (e.g., ”yes;no;skip” for three questions).

DKPROMPT: Is cup inview agent?;Is cup in-
side cabinet?;Is cabinet open?

4 Experiments
We conducted extensive experiments to evaluate the perfor-
mance of DKPROMPT comparing with baselines from the
literature. Our hypothesis is DKPROMPT produces the high-
est task completion rate because of its effectiveness in plan

monitoring and online re-planning using domain knowledge
and perception.

4.1 Experiment Setup
Quantitative evaluation results are collected in the Omni-
Gibson simulator (Li et al. 2023). The agent is equipped
with a set of skills, and aims to use its skills to interact
with the environment, completing long-horizon tasks au-
tonomously. In the experiment, we consider five everyday
tasks that are “boil water in the microwave”, “bring in empty
bottle”,“cook a frozen pie”, “halve an egg”, and “store fire-
wood”. Their detailed descriptions are shown in Table 3.
These five tasks are originally from the Behavior 1K bench-
mark (Li et al. 2023) that are accompanied with the simu-
lator. Task descriptions including initial and goal states are
written in PDDL and symbolic plans are generated using the
fast-downward planner (Helmert 2006).

4.2 Results
Comparisons with Baselines. Figure 3 presents the main
experimental results and details the comparative success
rates of DKPROMPT and five methods from the literature.
The baseline methods include:
• VLM-planner, which uses the VLM as a planner to gen-

erate task plans, similar to (Huang et al. 2022a). For fair
comparisons, we also provide domain knowledge (as nat-
ural language) in the prompts for the VLM.

• Classical-planner, which is a typical classical planning
approach without perception, assuming all action execu-
tions are successful;

• Suc.-QA, which uses a classical planner to generate
plans, and asks about action success after each action ex-
ecution. This baseline is inspired by (Du et al. 2023), and
we use the same query provided in their paper, which is
“Did the robot successfully <action>?” Suc.-QA does
not consider if the next action is executable;

• Aff.-QA, which uses a classical planner to generate
plans, and asks about action affordance before each ac-
tion execution. This baseline is designed with prompts
provided in the original PaLM-E paper (Driess et al.
2023), which are “Is it possible to <action> here?” and

store firewood
cook a frozen pie

boil water in

the microwave halve an egg
bring in

empty bottle

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
ra

te

0.00 0.00

0.05

0.00

0.06
0.04

0.13 0.14

0.27 0.27

0.20

0.50

0.39

0.60

0.90

0.25

0.35

0.14

0.50

0.55

0.35

0.55

0.40

0.65

0.75

0.40

0.61

0.67

0.75

0.90VLM-planner

Classical-planner

Suc.-QA

Aff.-QA

Suc.Aff.-QA

DKPrompt (ours)

Figure 3: DKPROMPT v.s. baselines in success rate over five everyday tasks. The most competitive baseline is “Suc.Aff.-QA”
that includes a classical planning component and reasons about both action affordances and action effects.

“Was <action> successful?” Aff.-QA does not consider
whether the previous action is successful;

• Suc.Aff.-QA, which uses a classical planner, asks about
both action affordance (before each action execution)
and action success (after each action execution), similar
to (Huang et al. 2022b). 3

When using VLM itself as the planner, the agent fre-
quently fails in finding an executable plan, resulting in the
lowest success rate. This finding is consistent with recent
work (Valmeekam et al. 2022) and motivates the develop-
ment of other research that combines classical planning with
large models (Liu et al. 2023a). Classical-planner, which op-
erates without visual feedback during task execution, shows
the second lowest success rate across five tasks compared to
other evaluated methods, highlighting its limited effective-
ness in handling situations and recovering from potential ac-
tion failures. In contrast, methods that involve querying for
action affordances, success probabilities, or both, acheive
much higher success rates as compared to the “blind” clas-
sical planning approach. This improvement demonstrates
the general advantage of incorporating visual feedback and
high-level reasoning in task planning systems. While it is
always a good practice to verify both before and after an
action (like Suc.Aff.-QA), we found that Suc.-QA also sur-
passes the performance of Aff.-QA, indicating that there is a
greater positive impact on task completion from action fail-
ure recovery, and VLMs have better zero-shot reasoning ca-
pabilities on the direct effects caused by actions.

We observed that DKPROMPT consistently outperforms
baselines in task completion rates, which supports our hy-
pothesis. By incorporating domain knowledge (i.e., action
preconditions and effects) for prompting, DKPROMPT is

3We use the same VLM as ours (GPT4) for implementing all
baselines that require a VLM.

0.0 0.2 0.4 0.6 0.8

Success rate

DKPrompt
(w/ GPT-4)

DKPrompt
(w/ Gemini)

DKPrompt
(w/ Claude)

store firewood

halve an egg

cook a frozen pie

bring in
empty bottle

boil water in
the microwave

Figure 4: Three implementations of DKPROMPT using dif-
ferent off-the-shelf VLMs (in five tasks).

significantly better than other methods, including Suc.Aff.-
QA that also cares about affordance prediction and fail-
ure detection. However, Suc.Aff.-QA queries about actions
solely by their names, which provides less information than
the detailed domain knowledge used by DKPROMPT, indi-
cating that action knowledge is more informative for pre-
trained VLMs to reason over.

Ablation Study on Preconditions and Effects. Table 4
presents an ablation study comparing the performance of
different versions of our approach across the same set of

Table 4: Ablation study on preconditions and effects. The results justify the necessity of prompting VLMs with both action
preconditions and effects, where the knowledge is extracted from classical planners.

Tasks

Methods
boil water in

the microwave
bring in

empty bottle
cook a

frozen pie
halve
an egg

store
firewood

avg. (%)

Ours
1 DKPROMPT 66.7 90.0 60.9 75.0 40.0 66.5

Ablation
2 Eff.-only 50.0 93.8 26.7 66.7 28.0 53.0
3 Pre.-only 17.6 75.0 35.0 55.0 20.0 41.5

Real robot demonstration for DKPrompt

Initial State Goal State

(a) Find container (b) Pick up container (c) The container
“accidentally” drops

(d) Replan. New action:
Find container

(e) Pick up container (f) Place container into
the goal area

(g) Pick up toy_eggplant
(fail)

(h) Repeat. Pick up
toy_eggplant

(i) Collect toy_eggplant with
container

Figure 5: Screenshots showing the full demonstration trial of DKPROMPT as applied to a real robot.

tasks. DKPROMPT integrates both action effects and ac-
tion preconditions, while we are also curious to know
how they affect the overall task completion independently.
DKPROMPT achieves an average success rate of 66.5%. For
ablation methods where only action effects are considered
(Eff.-only), the average success rate drops to 53.0%, and for
methods considering only preconditions (Pre.-only), it fur-
ther decreases to 41.5%. This suggests that the integration of
both effects and preconditions in DKPROMPT significantly
enhances task performance compared to considering these
components separately.

Performance of Other VLMs. We also run experiments
on various VLMs, including GPT-4 (as being used in
the original implementation of DKPROMPT) from Ope-
nAI (OpenAI 2023b), Gemini 1.5 from Google (Reid et al.
2024), and Claude 3 from Anthropic. Figure 4 shows that

GPT-4 consistently performs better than Gemini and Claude.
By looking at the highest accuracy among all the VLMs
(i.e., less than 65%), our evaluation benchmark (designed
with challenging open-world situations and rich domain
knowledge) presents a simulation platform, dataset and suc-
cess criteria that other researchers working on AI planning,
VLMs or both might find useful. We will open source the
benchmark including software and data to the public after
the anonymous review phase.

4.3 Real-Robot Deployment
We also deployed DKPROMPT on real robot hardware to
perform object rearrangement tasks (Figure 5), where the
goal is to “collect” toys using a container and place them
in the middle of the table (i.e., goal area). Our real-robot
setup includes a UR5e Arm with a Hand-E gripper mounted
on a Segway base, and an overhead RGB-D camera (rela-

tively fixed to the robot) for perception. We assume that the
robot has a predefined set of skills, including pick, place,
and find. Pick and place actions are implemented using
GG-CNN (Morrison, Corke, and Leitner 2018), and find
action simply uses base rotation for capturing tabletop im-
ages from different angles.

Given the task description, the robot first decided to
execute “find container” and “pick up container”. These
two actions were successfully executed as shown in Fig-
ure 5(a), 5(b). When the robot was preparing for the next
action (i.e., “Place container into the goal area”), the blue
container accidentally dropped from the robot’s gripper to
the ground (Figure 5(c)). Instead of directly executing the
next action, DKPROMPT enabled the robot to check pre-
conditions by querying the VLM “Is the container in a
robot’s hand?” After receiving negative feedback from the
VLM, DKPROMPT updated the world state by removing
in hand(container) and called the planner to gener-
ate a new plan that started the task again by finding another
container (Figure 5(d)). Then the robot picked up the cyan
container and placed it in the middle of the table as shown
in Figure 5(e), 5(f). The subsequent actions in the plan were
to find and pick up a toy, but the pick action failed (Fig-
ure 5(g)). DKPROMPT managed to detect the failure by
querying 1) “Is there a toy eggplant on the table?”, and 2)
“Is the toy eggplant in a robot’s hand?”, and receiving Yes
and No answers respectively. As a result, our system sug-
gested the robot repeat the pick action again (Figure 5(h)).
Finally, the robot successfully collected the toy by putting
it into the cyan container that was previously placed in the
goal area (Figure 5(i)).

5 Conclusion
In this paper, we built the synergy between classical plan-
ners and vision-language models (VLMs). We propose
DKPROMPT which is unique in prompting VLMs with do-
main knowledge in PDDL and leveraging the VLM output
for plan monitoring. DKPROMPT is able to perceive and
handle unforeseen situations in open worlds while retaining
the optimal planning proficiency of classical planning. Ex-
perimental results demonstrate that DKPROMPT adaptively
generates visually-grounded task plans, recovers from action
failures and re-plans when situations occur, outperforming
classical planning, pure VLM-based and a few other com-
petitive baselines.

References
Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.; Akkaya, I.;
Aleman, F. L.; Almeida, D.; Altenschmidt, J.; Altman, S.;
Anadkat, S.; et al. 2023. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774.
Ahn, M.; Brohan, A.; Brown, N.; Chebotar, Y.; Cortes,
O.; David, B.; Finn, C.; Gopalakrishnan, K.; Hausman,
K.; Herzog, A.; et al. 2022. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint
arXiv:2204.01691.
Anthropic. 2023. Claude 3 Family. Accessed: 2024-05-21.

Arora, D.; and Kambhampati, S. 2023. Learning
and Leveraging Verifiers to Improve Planning Capabil-
ities of Pre-trained Language Models. arXiv preprint
arXiv:2305.17077.

Brewka, G.; Eiter, T.; and Truszczyński, M. 2011. Answer
set programming at a glance. Communications of the ACM,
54(12): 92–103.

Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J. D.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; et al. 2020. Language models are few-shot learners. Ad-
vances in neural information processing systems, 33: 1877–
1901.

Chen, M.; Tworek, J.; Jun, H.; Yuan, Q.; Pinto, H. P. d. O.;
Kaplan, J.; Edwards, H.; Burda, Y.; Joseph, N.; Brockman,
G.; et al. 2021. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374.

Chen, Y.; Arkin, J.; Zhang, Y.; Roy, N.; and Fan, C.
2023. Autotamp: Autoregressive task and motion plan-
ning with llms as translators and checkers. arXiv preprint
arXiv:2306.06531.

Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018.
Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805.

Ding, Y.; Zhang, X.; Amiri, S.; Cao, N.; Yang, H.; Kamin-
ski, A.; Esselink, C.; and Zhang, S. 2023a. Integrating action
knowledge and LLMs for task planning and situation han-
dling in open worlds. Autonomous Robots, 47(8): 981–997.

Ding, Y.; Zhang, X.; Paxton, C.; and Zhang, S. 2023b. Task
and Motion Planning with Large Language Models for Ob-
ject Rearrangement. arXiv preprint arXiv:2303.06247.

Ding, Y.; Zhang, X.; Zhan, X.; and Zhang, S. 2020. Task-
Motion Planning for Safe and Efficient Urban Driving.
In 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS).

Ding, Y.; Zhang, X.; Zhan, X.; and Zhang, S. 2022. Learning
to ground objects for robot task and motion planning. IEEE
Robotics and Automation Letters, 7(2): 5536–5543.

Driess, D.; Ha, J.-S.; and Toussaint, M. 2020. Deep visual
reasoning: Learning to predict action sequences for task and
motion planning from an initial scene image. arXiv preprint
arXiv:2006.05398.

Driess, D.; Oguz, O.; Ha, J.-S.; and Toussaint, M. 2020.
Deep visual heuristics: Learning feasibility of mixed-integer
programs for manipulation planning. In 2020 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
9563–9569. IEEE.

Driess, D.; Xia, F.; Sajjadi, M. S.; Lynch, C.; Chowdhery,
A.; Ichter, B.; Wahid, A.; Tompson, J.; Vuong, Q.; Yu, T.;
et al. 2023. PaLM-E: An Embodied Multimodal Language
Model. arXiv preprint arXiv:2303.03378.

Du, Y.; Konyushkova, K.; Denil, M.; Raju, A.; Landon,
J.; Hill, F.; de Freitas, N.; and Cabi, S. 2023. Vision-
Language Models as Success Detectors. arXiv preprint
arXiv:2303.07280.

Fan, L.; Wang, G.; Jiang, Y.; Mandlekar, A.; Yang, Y.;
Zhu, H.; Tang, A.; Huang, D.-A.; Zhu, Y.; and Anandku-
mar, A. 2022. Minedojo: Building open-ended embod-
ied agents with internet-scale knowledge. arXiv preprint
arXiv:2206.08853.
Fox, M.; and Long, D. 2003. PDDL2. 1: An extension to
PDDL for expressing temporal planning domains. Journal
of artificial intelligence research, 20: 61–124.
Guan, L.; Valmeekam, K.; Sreedharan, S.; and Kambham-
pati, S. 2023. Leveraging pre-trained large language models
to construct and utilize world models for model-based task
planning. Advances in Neural Information Processing Sys-
tems, 36: 79081–79094.
Guan, L.; Zhou, Y.; Liu, D.; Zha, Y.; Amor, H. B.; and
Kambhampati, S. 2024. ” Task Success” is not Enough: In-
vestigating the Use of Video-Language Models as Behavior
Critics for Catching Undesirable Agent Behaviors. arXiv
preprint arXiv:2402.04210.
Guo, Y.; Wang, Y.-J.; Zha, L.; Jiang, Z.; and Chen, J. 2023.
Doremi: Grounding language model by detecting and re-
covering from plan-execution misalignment. arXiv preprint
arXiv:2307.00329.
Ha, H.; and Song, S. 2022. Semantic abstraction: Open-
world 3d scene understanding from 2d vision-language
models. In Conference on Robot Learning.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research, 26: 191–246.
Huang, W.; Abbeel, P.; Pathak, D.; and Mordatch, I. 2022a.
Language models as zero-shot planners: Extracting action-
able knowledge for embodied agents. In International Con-
ference on Machine Learning, 9118–9147. PMLR.
Huang, W.; Xia, F.; Xiao, T.; Chan, H.; Liang, J.; Flo-
rence, P.; Zeng, A.; Tompson, J.; Mordatch, I.; Chebotar,
Y.; et al. 2022b. Inner monologue: Embodied reasoning
through planning with language models. arXiv preprint
arXiv:2207.05608.
Jiang, Y.; Yedidsion, H.; Zhang, S.; Sharon, G.; and Stone,
P. 2019a. Multi-robot planning with conflicts and synergies.
Autonomous Robots, 43(8): 2011–2032.
Jiang, Y.-q.; Zhang, S.-q.; Khandelwal, P.; and Stone, P.
2019b. Task planning in robotics: an empirical compari-
son of pddl-and asp-based systems. Frontiers of Information
Technology & Electronic Engineering, 20: 363–373.
Kaelbling, L. P.; and Lozano-Pérez, T. 2013. Integrated task
and motion planning in belief space. The International Jour-
nal of Robotics Research, 32(9-10): 1194–1227.
Kant, Y.; Ramachandran, A.; Yenamandra, S.; Gilitschenski,
I.; Batra, D.; Szot, A.; and Agrawal, H. 2022. Housekeep:
Tidying virtual households using commonsense reasoning.
In Computer Vision–ECCV 2022: 17th European Confer-
ence, Tel Aviv, Israel, October 23–27, 2022, Proceedings,
Part XXXIX, 355–373. Springer.
Lagriffoul, F.; Dantam, N. T.; Garrett, C.; Akbari, A.; Sri-
vastava, S.; and Kavraki, L. E. 2018. Platform-independent
benchmarks for task and motion planning. IEEE Robotics
and Automation Letters, 3(4): 3765–3772.

Lester, B.; Al-Rfou, R.; and Constant, N. 2021. The
power of scale for parameter-efficient prompt tuning. arXiv
preprint arXiv:2104.08691.
Li, C.; Zhang, R.; Wong, J.; Gokmen, C.; Srivastava, S.;
Martı́n-Martı́n, R.; Wang, C.; Levine, G.; Lingelbach, M.;
Sun, J.; et al. 2023. Behavior-1k: A benchmark for embod-
ied ai with 1,000 everyday activities and realistic simulation.
In Conference on Robot Learning, 80–93. PMLR.
Lifschitz, V. 2002. Answer set programming and plan gen-
eration. Artificial Intelligence, 138(1-2): 39–54.
Liu, B.; Jiang, Y.; Zhang, X.; Liu, Q.; Zhang, S.; Biswas, J.;
and Stone, P. 2023a. Llm+ p: Empowering large language
models with optimal planning proficiency. arXiv preprint
arXiv:2304.11477.
Liu, P.; Yuan, W.; Fu, J.; Jiang, Z.; Hayashi, H.; and Neubig,
G. 2023b. Pre-train, prompt, and predict: A systematic sur-
vey of prompting methods in natural language processing.
ACM Computing Surveys, 55(9): 1–35.
Liu, W.; Hermans, T.; Chernova, S.; and Paxton, C. 2022.
Structdiffusion: Object-centric diffusion for semantic rear-
rangement of novel objects. In Workshop on Language and
Robotics at CoRL 2022.
Lv, Q.; Li, H.; Deng, X.; Shao, R.; Wang, M. Y.; and Nie,
L. 2024. RoboMP2: A Robotic Multimodal Perception-
Planning Framework with Mutlimodal Large Language
Models. In International Conference on Machine Learning.
Lykov, A.; Litvinov, M.; Konenkov, M.; Prochii, R.; Burtsev,
N.; Abdulkarim, A. A.; Bazhenov, A.; Berman, V.; and Tset-
serukou, D. 2024. Cognitivedog: Large multimodal model
based system to translate vision and language into action of
quadruped robot. In Companion of the 2024 ACM/IEEE In-
ternational Conference on Human-Robot Interaction, 712–
716.
Majumdar, A.; Ajay, A.; Zhang, X.; Putta, P.; Yenaman-
dra, S.; Henaff, M.; Silwal, S.; Mcvay, P.; Maksymets, O.;
Arnaud, S.; et al. 2024. Openeqa: Embodied question an-
swering in the era of foundation models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 16488–16498.
Migimatsu, T.; and Bohg, J. 2022. Grounding predicates
through actions. In 2022 International Conference on
Robotics and Automation (ICRA), 3498–3504. IEEE.
Morrison, D.; Corke, P.; and Leitner, J. 2018. Closing the
loop for robotic grasping: A real-time, generative grasp syn-
thesis approach. arXiv preprint arXiv:1804.05172.
Nilsson, N. J.; et al. 1984. Shakey the robot.
OpenAI. 2023a. ChatGPT. Accessed: 2023-02-08. Cit. on
pp. 1, 16.
OpenAI. 2023b. GPT-4 Technical Report.
arXiv:2303.08774.
Pallagani, V.; Muppasani, B.; Murugesan, K.; Rossi, F.;
Horesh, L.; Srivastava, B.; Fabiano, F.; and Loreggia, A.
2022. Plansformer: Generating symbolic plans using trans-
formers. arXiv preprint arXiv:2212.08681.
Radford, A.; Kim, J. W.; Hallacy, C.; Ramesh, A.; Goh, G.;
Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.;

et al. 2021. Learning transferable visual models from nat-
ural language supervision. In International conference on
machine learning, 8748–8763. PMLR.
Rana, K.; Haviland, J.; Garg, S.; Abou-Chakra, J.; Reid, I.;
and Suenderhauf, N. 2023. Sayplan: Grounding large lan-
guage models using 3d scene graphs for scalable task plan-
ning. arXiv preprint arXiv:2307.06135.
Reid, M.; Savinov, N.; Teplyashin, D.; Lepikhin, D.; Lilli-
crap, T.; Alayrac, J.-b.; Soricut, R.; Lazaridou, A.; Firat, O.;
Schrittwieser, J.; et al. 2024. Gemini 1.5: Unlocking mul-
timodal understanding across millions of tokens of context.
arXiv preprint arXiv:2403.05530.
Ren, A. Z.; Dixit, A.; Bodrova, A.; Singh, S.; Tu, S.; Brown,
N.; Xu, P.; Takayama, L.; Xia, F.; Varley, J.; et al. 2023.
Robots that ask for help: Uncertainty alignment for large
language model planners. arXiv preprint arXiv:2307.01928.
Sermanet, P.; Ding, T.; Zhao, J.; Xia, F.; Dwibedi, D.;
Gopalakrishnan, K.; Chan, C.; Dulac-Arnold, G.; Maddi-
neni, S.; Joshi, N. J.; et al. 2023. RoboVQA: Multimodal
Long-Horizon Reasoning for Robotics. arXiv preprint
arXiv:2311.00899.
Shafiullah, N. M. M.; Paxton, C.; Pinto, L.; Chintala, S.; and
Szlam, A. 2022. CLIP-Fields: Weakly Supervised Semantic
Fields for Robotic Memory. arXiv preprint arXiv: Arxiv-
2210.05663.
Shridhar, M.; Manuelli, L.; and Fox, D. 2021. CLI-
Port: What and Where Pathways for Robotic Manipulation.
In Proceedings of the 5th Conference on Robot Learning
(CoRL).
Silver, T.; Dan, S.; Srinivas, K.; Tenenbaum, J. B.; Kael-
bling, L.; and Katz, M. 2024. Generalized planning in pddl
domains with pretrained large language models. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 38, 20256–20264.
Silver, T.; Hariprasad, V.; Shuttleworth, R. S.; Kumar, N.;
Lozano-Pérez, T.; and Kaelbling, L. P. 2022. PDDL plan-
ning with pretrained large language models. In NeurIPS
2022 foundation models for decision making workshop.
Singh, I.; Blukis, V.; Mousavian, A.; Goyal, A.; Xu, D.;
Tremblay, J.; Fox, D.; Thomason, J.; and Garg, A. 2022.
Progprompt: Generating situated robot task plans using large
language models. arXiv preprint arXiv:2209.11302.
Stein, K.; and Koller, A. 2023. AutoPlanBench:: Automati-
cally generating benchmarks for LLM planners from PDDL.
arXiv preprint arXiv:2311.09830.
Stone, A.; Xiao, T.; Lu, Y.; Gopalakrishnan, K.; Lee, K.-H.;
Vuong, Q.; Wohlhart, P.; Zitkovich, B.; Xia, F.; Finn, C.; and
Hausman, K. 2023. Open-World Object Manipulation using
Pre-Trained Vision-Language Model. In arXiv preprint.
Team, G.; Anil, R.; Borgeaud, S.; Wu, Y.; Alayrac, J.-B.;
Yu, J.; Soricut, R.; Schalkwyk, J.; Dai, A. M.; Hauth, A.;
et al. 2023. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805.
Valmeekam, K.; Marquez, M.; Sreedharan, S.; and Kamb-
hampati, S. 2023. On the planning abilities of large lan-
guage models-a critical investigation. Advances in Neural
Information Processing Systems, 36: 75993–76005.

Valmeekam, K.; Olmo, A.; Sreedharan, S.; and Kambham-
pati, S. 2022. Large Language Models Still Can’t Plan
(A Benchmark for LLMs on Planning and Reasoning about
Change). arXiv preprint arXiv:2206.10498.
Wake, N.; Kanehira, A.; Sasabuchi, K.; Takamatsu, J.; and
Ikeuchi, K. 2023. GPT-4V (ision) for robotics: Multimodal
task planning from human demonstration. arXiv preprint
arXiv:2311.12015.
Wang, S.; Han, M.; Jiao, Z.; Zhang, Z.; Wu, Y. N.; Zhu, S.-
C.; and Liu, H. 2024. LLMˆ 3: Large Language Model-
based Task and Motion Planning with Motion Failure Rea-
soning. arXiv preprint arXiv:2403.11552.
Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; Xia, F.;
Chi, E.; Le, Q. V.; Zhou, D.; et al. 2022. Chain-of-
thought prompting elicits reasoning in large language mod-
els. Advances in neural information processing systems, 35:
24824–24837.
Wells, A. M.; Dantam, N. T.; Shrivastava, A.; and Kavraki,
L. E. 2019. Learning feasibility for task and motion planning
in tabletop environments. IEEE robotics and automation
letters, 4(2): 1255–1262.
Wu, J.; Antonova, R.; Kan, A.; Lepert, M.; Zeng, A.; Song,
S.; Bohg, J.; Rusinkiewicz, S.; and Funkhouser, T. 2023.
Tidybot: Personalized robot assistance with large language
models. Autonomous Robots, 47(8): 1087–1102.
Yao, S.; Yu, D.; Zhao, J.; Shafran, I.; Griffiths, T.; Cao,
Y.; and Narasimhan, K. 2024. Tree of thoughts: Deliber-
ate problem solving with large language models. Advances
in Neural Information Processing Systems, 36.
Zhang, D.; Yu, Y.; Li, C.; Dong, J.; Su, D.; Chu, C.; and Yu,
D. 2024. Mm-llms: Recent advances in multimodal large
language models. arXiv preprint arXiv:2401.13601.
Zhang, S.; Roller, S.; Goyal, N.; Artetxe, M.; Chen, M.;
Chen, S.; Dewan, C.; Diab, M.; Li, X.; Lin, X. V.; et al.
2022a. Opt: Open pre-trained transformer language mod-
els. arXiv preprint arXiv:2205.01068.
Zhang, S.; Yang, F.; Khandelwal, P.; and Stone, P. 2015.
Mobile Robot Planning Using Action Language BC with
an Abstraction Hierarchy. In International Conference on
Logic Programming and Nonmonotonic Reasoning, 502–
516. Springer.
Zhang, X.; Zhu, Y.; Ding, Y.; Zhu, Y.; Stone, P.; and Zhang,
S. 2022b. Visually grounded task and motion planning for
mobile manipulation. In 2022 International Conference on
Robotics and Automation (ICRA), 1925–1931. IEEE.
Zhao, X.; Li, M.; Weber, C.; Hafez, M. B.; and Wermter,
S. 2023. Chat with the environment: Interactive multimodal
perception using large language models. In 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), 3590–3596. IEEE.
Zhao, Z.; Lee, W. S.; and Hsu, D. 2023. Large Language
Models as Commonsense Knowledge for Large-Scale Task
Planning. In Thirty-seventh Conference on Neural Informa-
tion Processing Systems.
Zhi, P.; Zhang, Z.; Han, M.; Zhang, Z.; Li, Z.; Jiao, Z.; Jia,
B.; and Huang, S. 2024. Closed-Loop Open-Vocabulary
Mobile Manipulation with GPT-4V. arXiv:2404.10220.

Zhu, Y.; Tremblay, J.; Birchfield, S.; and Zhu, Y. 2021. Hi-
erarchical planning for long-horizon manipulation with ge-
ometric and symbolic scene graphs. In 2021 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
6541–6548. IEEE.

Appendix

This appendix document presents additional information
about our DKPROMPT work. DKPROMPT assists robots
in open-world planning tasks by leveraging domain knowl-
edge to automate vision-language model (VLM) prompt-
ing. In this appendix document, we present our domain
knowledge in PDDL format, environment settings of open-
world planning, and additional experiment results. The main
goal of this appendix is to improve the reproducibility of
this research and we hope robot learning practitioners finds
it useful. Note that other than this appendix, we have a
webpage (https://dkprompt.github.io/) that serves as a cen-
tral place where people can find relevant documents about
DKPROMPT.

We show Table 5 that presents the parameters for spec-
ifying the openness of the simulation environments used
for experiments. This table overlaps with Table 1 in the
main paper on the list of actions and situations. Beyond that,
we present the probability of each individual situation tak-
ing place in the execution of the corresponding action. One
can realize testing domains with different levels of openness
by adjusting those probabilities. There are situations whose
probabilities are out of our control, which are labeled “N/A”
in the table. For instance, the occurrence of “object is not
inview” depends on the robot’s motion planner used for nav-
igation. As a result, we are sure that there exist such situa-
tions in the experiments but the chance cannot be specified.
We also present the checkpoints of the VLMs used in the
experiments of this research (Table 6). We tried our best to
use the state-of-the-art VLMs when the experiments were
conducted.

Next, we present Table 7 that includes the complete re-
sults of a number of methods, where each column corre-
sponds to a different task. The table includes four parts: ours,
baselines, ablations and other VLMs. The “Baseline in Liter-
ature” part corresponds to the results presented in Figure 3.
The “Ablations” part corresponds to the results presented in
Table 4. The “Other VLMs” part corresponds to the results
presented in Figure 4. Overall, we do not see a huge vari-
ance in those methods’ performance in different tasks, indi-
cating that our claims about the superiority of DKPROMPT
are valid in different tasks.

Finally, the set of PDDL-formatted domain knowledge
provided for the robot to perform task planning and VLM
prompting is shown in Figures 6 through 9. In line with all
PDDL-based planning systems, the domain knowledge in-
cludes a complete description of the robot’s actions (e.g.,
“find” and “graspon”), where each action is specified by
its preconditions and effects. Note that we only present the
domain description file here. A complete planning problem
would further require a problem description that includes a
description of the current and goal states. Since the prob-
lem description file changes in each trial, please refer to our
GitHub page (link available on the project page shared at the
beginning of this appendix) on the instructions of extracting
it from the simulator.

Table 5: Actions and their situation parameters.

Uncertaint outcomes

Actions Situations Prob

find
(1) The robot succeeds in navigation but the object is not inview.
(2) There is no free space near the object so navigation fails.
(3) The object that the robot is holding drops during navigation.

N/A
N/A
0.1

grasp
(1) The robot fails to grasp, and the object position remains unchanged.
(2) The robot fails to grasp, and the object drops nearby.

0.25
0.25

placein
(1) The robot fails to place, and the object remains in the robot’s hand.
(2) The robot fails to place, and the object drops nearby.

0.1
0.1

placeon
(1) The robot fails to place, and the object remains in the robot’s hand.
(2) The robot fails to place, and the object drops nearby.

0.1
0.1

fillsink (1) The robot fails to open the faucet. 0.1

fill
(1) The container is not fully filled.
(2) The container drops nearby.

0.05
0.05

open (1) The robot fails to open and the object remains closed. 0.1

close (1) The robot fails to close and the object remains open. 0.1

turnon (1) The robot fails to turn on the switch and the object remains off. 0.1

cut
(1) The object is not cut into half, and the knife is still in the robot’s hand.
(2) The object is not cut into half, and the knife drops nearby.

0.25
0.25

Table 6: Model checkpoints we used for off-the-shelf VLMs.

VLM Model
GPT-4 gpt-4-turbo

Gemini gemini-1.5-pro

Claude claude-3-opus-20240229

Table 7: Full results with the total numbers of trials and successful trials. The very right column (“avg.”) reports the average
success rates over all tasks, which are already reported in the main paper. The other columns present a breakdown over different
tasks.

Tasks

Methods boil water in
the microwave

bring in
empty bottle

cook a
frozen pie

halve
an egg

store
firewood avg. (%)

Ours
1 DKPROMPT (w/ GPT-4) 12/18 18/20 14/23 15/20 8/20 66.5

Baselines in Literature
2 VLM-planner 1/20 2/34 0/20 0/19 0/22 2.2
3 Classical-planner 5/35 3/11 4/30 8/30 1/25 17.1
4 Aff.-QA 4/28 11/20 7/20 10/20 5/20 35.9
5 Suc.-QA 7/18 18/20 10/20 12/20 4/20 51.8
6 Suc.Aff.-QA 8/20 12/16 11/20 13/20 7/20 54.0

Ablations
7 Eff.-only 15/30 15/16 4/15 10/15 7/25 53.0
8 Pre.-only 3/17 15/20 7/20 11/20 5/20 41.5

Other VLMs
9 DKPROMPT (w/ Gemini-1.5) 7/20 14/20 6/20 9/20 8/20 44.0

10 DKPROMPT (w/ Claude-3) 5/20 12/28 4/14 10/20 3/13 33.9

1 (define (domain omnigibson)
2
3 (:requirements :strips :typing :

negative-preconditions :
conditional-effects)

4
5 (:types
6 movable liquid furniture room

agent - object
7
8 wooden_stick tupperware brownie

beer_bottle water_bottle mug
pie carving_knife
hard__boiled_egg - movable

9 water - liquid
10 countertop electric_refrigerator

oven cabinet sink floor
microwave table - furniture

11
12 kitchen living_room - room
13
14 water-n-06 - water
15 mug-n-04 - mug
16 cabinet-n-01 - cabinet
17 sink-n-01 - sink
18 floor-n-01 - floor
19 microwave-n-02 - microwave
20 pie-n-01 - pie
21 oven-n-01 - oven
22 electric_refrigerator-n-01 -

electric_refrigerator
23 carving_knife-n-01 -

carving_knife
24 countertop-n-01 - countertop
25 hard__boiled_egg-n-01 -

hard__boiled_egg
26 water_bottle-n-01 - water_bottle
27 beer_bottle-n-01 - beer_bottle
28 brownie-n-03 - brownie
29 tupperware-n-01 - tupperware
30 wooden_stick-n-01 - wooden_stick
31 table-n-02 - table
32
33 agent-n-01 - agent
34)

Figure 6: Domain knowledge in PDDL format (Part 1/4).

1 (:predicates
2 (inside ?o1 - object ?o2 -

object)
3 (insource ?s - sink ?w - liquid)
4 (inroom ?o - object ?r - room)
5 (inhand ?a - agent ?o - object)
6 (inview ?a - agent ?o - object)
7 (handempty ?a - agent)
8 (closed ?o - object)
9 (filled ?o - movable ?w - liquid

)
10 (filledsink ?s - sink ?w -

liquid)
11 (turnedon ?o - object)
12 (cooked ?o - object)
13 (found ?a - agent ?o - object)
14 (frozen ?o - object)
15 (hot ?o - object)
16 (halved ?o - object)
17 (onfloor ?o - object ?f - floor)
18 (ontop ?o1 - object ?o2 - object

)
19)
20
21 (:action find
22 :parameters (?a - agent ?o -

object ?r - room)
23 :precondition (and (inroom ?a ?r

) (inroom ?o ?r))
24 :effect (and (inview ?a ?o) (

found ?a ?o) (forall
25 (?oo - object)
26 (when
27 (found ?a ?oo)
28 (not (found ?a ?oo))

)))
29)
30
31 (:action graspon
32 :parameters (?a - agent ?o1 -

movable ?o2 - object)
33 :precondition (and (inview ?a ?

o1) (found ?a ?o1) (handempty
?a) (ontop ?o1 ?o2))

34 :effect (and (not (inview ?a ?o1
)) (not (handempty ?a)) (
inhand ?a ?o1) (not (ontop ?
o1 ?o2)))

35)
36
37 (:action graspin
38 :parameters (?a - agent ?o1 -

movable ?o2 - object)
39 :precondition (and (inview ?a ?

o1) (found ?a ?o1) (handempty
?a) (inside ?o1 ?o2))

40 :effect (and (not (inview ?a ?o1
)) (not (handempty ?a)) (
inhand ?a ?o1) (not (inside ?
o1 ?o2)))

41)

Figure 7: Domain knowledge in PDDL format (Part 2/4).

1 (:action placein
2 :parameters (?a - agent ?o1 -

movable ?o2 - object)
3 :precondition (and (not (

handempty ?a)) (inhand ?a ?o1
) (inview ?a ?o2) (found ?a ?
o2) (not (closed ?o2)))

4 :effect (and (handempty ?a) (not
(inhand ?a ?o1)) (inside ?o1
?o2) (forall

5 (?oo - object)
6 (when
7 (inside ?oo ?o1)
8 (inside ?oo ?o2))
9))

10)
11
12 (:action placeon
13 :parameters (?a - agent ?o1 -

movable ?o2 - object)
14 :precondition (and (not (

handempty ?a)) (inhand ?a ?o1
) (inview ?a ?o2) (found ?a ?
o2))

15 :effect (and (handempty ?a) (not
(inhand ?a ?o1)) (ontop ?o1

?o2))
16)
17
18 (:action fillsink
19 :parameters (?a - agent ?s -

sink ?w - liquid)
20 :precondition (and (inview ?a ?s

) (found ?a ?s) (insource ?s
?w))

21 :effect (filledsink ?s ?w)
22)
23
24 (:action fill
25 :parameters (?a - agent ?o -

movable ?s - sink ?w - liquid
)

26 :precondition (and (inhand ?a ?o
) (not (handempty ?a)) (
filledsink ?s ?w) (inview ?a
?s) (found ?a ?s))

27 :effect (and (filled ?o ?w) (not
(filledsink ?s ?w)))

28)
29
30 (:action microwave_water
31 :parameters (?a - agent ?m -

microwave ?o - movable ?w -
water)

32 :precondition (and (inview ?a ?m
) (found ?a ?m) (closed ?m) (
inside ?o ?m) (filled ?o ?w))

33 :effect (and (turnedon ?m) (
cooked ?w))

34)

Figure 8: Domain knowledge in PDDL format (Part 3/4).

1 (:action openit
2 :parameters (?a - agent ?o -

object ?r - room)
3 :precondition (and (inview ?a ?o

) (found ?a ?o) (inroom ?o ?r
))

4 :effect (and (not (closed ?o)) (
forall

5 (?oo - object)
6 (when
7 (inside ?oo ?o)
8 (inroom ?oo ?r))
9))

10)
11
12 (:action closeit
13 :parameters (?a - agent ?o -

object ?r - room)
14 :precondition (and (inview ?a ?o

) (found ?a ?o) (inroom ?o ?r
))

15 :effect (and (closed ?o) (forall
16 (?oo - object)
17 (when
18 (inside ?oo ?o)
19 (not (inroom ?oo ?r)

))
20))
21)
22
23 (:action heat_food_with_oven
24 :parameters (?a - agent ?v -

oven ?f - object)
25 :precondition (and (inview ?a ?v

) (found ?a ?v) (inside ?f ?v
))

26 :effect (and (hot ?f) (turnedon
?v))

27)
28
29 (:action cut_into_half
30 :parameters (?a - agent ?k -

carving_knife ?o - object)
31 :precondition (and (inview ?a ?o

) (found ?a ?o) (not (
handempty ?a)) (inhand ?a ?k)
)

32 :effect (halved ?o)
33)
34)

Figure 9: Domain knowledge in PDDL format (Part 4/4).

