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ABSTRACT

We propose a simple and practical method for improving the flexibility of the ap-
proximate posterior in variational auto-encoders (VAEs) through a transformation
with autoregressive networks.
Autoregressive networks, such as RNNs and RNADE networks, are very power-
ful models. However, their sequential nature makes them impractical for direct
use with VAEs, as sequentially sampling the latent variables is slow when imple-
mented on a GPU. Fortunately, we find that by inverting autoregressive networks
we can obtain equally powerful data transformations that can be computed in par-
allel. We call these data transformations inverse autoregressive flows (IAF), and
we show that they can be used to transform a simple distribution over the latent
variables into a much more flexible distribution, while still allowing us to compute
the resulting variables’ probability density function. The method is computation-
ally cheap, can be made arbitrarily flexible, and (in contrast with previous work)
is naturally applicable to latent variables that are organized in multidimensional
tensors, such as 2D grids or time series.
The method is applied to a novel deep architecture of variational auto-encoders.
In experiments we demonstrate that autoregressive flow leads to significant per-
formance gains when applied to variational autoencoders for natural images.

1 INTRODUCTION

Stochastic gradient variational inference (SGVI), also called stochastic gradient variational Bayes,
is a method of of variational inference through a latent-variable reparameterization and stochastic
gradient ascent Kingma & Welling (2013); Rezende et al. (2014); Salimans et al. (2014). It can
be used in combination with inference networks to amortize the cost of inference in latent-variable
models, resulting in a highly scalable learning procedure. When using neural networks for both
the inference network and generative model, this results in class of models called variational auto-
encoders (VAEs).

At the core of our proposed method lie autoregressive functions that are normally used for density
estimation: functions that take as input a variable with some specified ordering such as multidi-
mensional tensors, and output a mean and standard deviation for each element of the input variable
conditioned on the previous elements. Examples of such functions are neural density estimators such
as RNNs and RNADE models Uria et al. (2013). We show that such functions can be easily turned
into nonlinear transformations of the input, with a very simple Jacobian determinant: the product of
standard deviations. Since the transformation is flexible and the determinant known, it can be used
to transform a tensor with relatively simple known density, into a new tensor with more complicated
density that is still cheaply computable. In contrast with previous work, this transformation is well
suited to high-dimensional tensor variables, such as spatio-temporally organized variables.

We demonstrate this method by improving inference networks of deep variational auto-encoders.
In particular, we train deep variational auto-encoders with latent variables at multiple levels of the
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hierarchy, where each stochastic variable is a 3D tensor (a stack of featuremaps), and demonstrate
that the method greatly improves performance.

2 VARIATIONAL INFERENCE AND LEARNING

Let x be a (set of) observed variable(s), z a (set of) latent variable(s) and let pθ(x, z) be the model
of their joint distribution, called the generative model defined over the variables. Given a dataset
X = {x1, ...,xN} we typically wish to perform maximum marginal likelihood learning of the
parameters θ, i.e. to maximize

log pθ(X) =

N∑
i=1

log pθ(x
(i)), (1)

but in general this marginal likelihood is intractable to compute or differentiate directly for flexible
generative models, e.g. when components of the generative model are parameterized by neural
networks.

2.1 THE VARIATIONAL BOUND

A solution is to introduce qθ(z|x), an inference model defined over the latent variables, and optimize
the variational lower bound on the marginal log-likelihood of each observation x:

log pθ(x) ≤ Eqθ(z|x) [log pθ(x, z)− log qθ(z|x)] = L(x; θ) (2)

where it’s clear that L(x; θ) is a lower bound on log pθ(x) since it can be written as follows (noting
that Kullback-Leibler divergences DKL(.) are non-negative):

L(x; θ) = log pθ(x)−DKL(qθ(z|x)||pθ(z|x)) (3)

There are various ways to optimize the lower bound L(x; θ); for continuous z it can be done effi-
ciently through a re-parameterization of qθ(z|x), see e.g. Kingma & Welling (2013); Rezende et al.
(2014).

As can be seen from equation (3), maximizing L(x; θ) w.r.t. θ will concurrently maximize log p(x)
and minimize DKL(qθ(z|x)||pθ(z|x)). The closer DKL(qθ(z|x)||pθ(z|x)) is to 0, the closer
L(x; θ) will be to log pθ(x), and the better an approximation our optimization objective L(x; θ)
is to our true objective log pθ(x). Also, minimization of DKL(qθ(z|x)||pθ(z|x)) can be a goal in it-
self, if we’re interested in using qθ(z|x) for inference after optimization. In any case, the divergence
DKL(qθ(z|x)||pθ(z|x)) is a function of our parameters through both the inference model and the
generative model, and increasing the flexibility of either is generally helpful towards our objective.

2.2 REQUIREMENTS FOR COMPUTATIONAL TRACTABILITY

Requirements for the inference model, in order to be able to efficiently optimize the bound, are
that it is computationally cheap to (1) compute, (2) differentiate and (3) sample from its probability
density qθ(z|x), since these operations need to be performed for each datapoint in a minibatch at
every iteration of optimization. If z is high-dimensional and want to make efficient use of parallel
computational resources like GPUs, then (4) parallelizability of these operations across dimensions
of z is a large factor towards efficiency. These four requirements restrict the class of approximate
posteriors qθ(z|x) that are practical to use. In practice this often leads to the use of diagonal pos-
teriors, e.g. qθ(z|x) ∼ N (µθ(x), σθ(x)), where µθ(x) and σθ(x) are often nonlinear functions
parameterized by neural networks. However, as explained above, we also need the density qθ(z|x)
to be sufficiently flexible to match the true posterior pθ(z|x).

2.3 NORMALIZING FLOWS

Normalizing Flow (NF), investigated by Rezende & Mohamed (2015) in the context of stochastic
gradient variational inference, is a powerful framework for building flexible posterior distributions
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through an iterative procedure. The general idea is to start off with an initial random variable with a
simple distribution, and then apply a series of invertible parameterized transformations:

z0 ∼ qθ(z0|x) (4)

zK = fKθ ◦ fK−1θ ◦ ... ◦ f1θ (z0), (5)

such that the last iterate zK has a more flexible distribution. As long as the Jacobian determinant
of each of the transformations f iθ can be computed, we can still compute the probability density
function of the last iterate:

log qθ(zK |x) = log qθ(z0|x)−
K∑
i=1

log det

∣∣∣∣ df iθdzi−1

∣∣∣∣ (6)

However, Rezende & Mohamed (2015) experiment with only a very limited family of such invertible
transformation with known Jacobian determinant, namely:

f iθ(zi−1) = zi−1 + uh(wT zi−1 + b) (7)

where u and w are vectors, b is a scalar and h(.) is a nonlinearity, such that uh(wT zi−1 + b)
can be interpreted as an MLP with a bottleneck hidden layer with a single unit. Since information
goes through the single bottleneck, a series of many such transformations is required to capture
high-dimensional dependencies.

Another approach, taken by Dinh et al. (2014), is to transform the data using shearing transforma-
tions, which have a fixed Jacobian matrix determinant of one. Typically, this type of transformations
updates half of the latent variables z1,...,D/2 per step by adding a vector δθ(zD/2+1,...,D) which
is a function of the remaining latent variables zD/2+1,...,D which are kept fixed. Such a transfor-
mation admits completely general transformations δθ(), but the requirement to partition the set of
latent variables is still very limiting. Indeed, Rezende & Mohamed (2015) find that this type of
transformation is generally less powerful than the normalizing flow presented above.

A potentially more powerful transformation is the Hamiltonian flow used in Hamiltonian Variational
Inference Salimans et al. (2014). Here, a transformation is generated by simulating the flow of a
Hamiltonian system consisting of the latent variables z, and a set of auxiliary variables u. This type
of transformation has the additional benefit that it is guided by the exact posterior distribution, and
that it leaves this distribution invariant for small step sizes. Such as transformation could thus take
us arbitrarily close to the exact posterior distribution if we can apply it for a sufficient number of
times. In practice, however, Hamiltonian Variational Inference is very demanding computationally.
Also, it requires an auxiliary variational bound to account for the auxiliary variables u, which can
impede progress if the bound is not sufficiently tight.

So far, no single method has been proposed that is both powerful and computationally cheap, and
that satisfies all four of the computational tractibility criteria of section 2.2.

3 WHITENING OF DATA GENERATED BY AUTOREGRESSIVE GAUSSIAN
MODELS

In order to find a type of normalizing flow that is both powerful and computationally cheap, we
consider a conceptually simple family of autoregressive Gaussian generative models which we will
now briefly introduce. Let y = {yi}Di=1 be some random vector (or tensor) with some ordering on
its elements. On this vector we define an autoregressive Gaussian generative model:

y0 = µ0 + σ0 · z0,
yi = µiθ(y

1:i−1) + σiθ(y
1:i−1) · zi,

zi ∼ N (0, 1)∀i, (8)

where µiθ(y
1:i−1) and σiθ(y

1:i−1) are general functions, e.g. neural networks with parameters θ, that
take the previous elements of y as input and map them to a predicted mean and standard deviation
for each element of y. Models of this type include LSTMs Hochreiter & Schmidhuber (1997)
predicting a mean and/or variance over input data, and (locally connected or fully connected) real-
valued Gaussian RNADE models Uria et al. (2013). This is a rich class of very powerful models,
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but the disadvantage of using autoregressive models for variational inference is that the elements yi
have to be generated sequentially, which is slow when implemented on a GPU.

The autoregressive model effectively transforms the vector z ∼ N (0, I) to a vector y with a more
complicated distribution. As long as we have σi > 0∀i, this type of transformation is one-to-one,
and can be inverted using

zi =
yi − µiθ(y1:i−1)

σiθ(y
1:i−1)

. (9)

This inverse transformation whitens the data, turning the vector y with complicated distribution
back into a vector z where each element is independently identically distributed according to the
standard normal distribution. This inverse transformation is equally powerful as the autoregressive
transformation above, but it has the crucial advantage that the individual elements zi can now be
calculated in parallel, as the zi do not depend on each other given y. The transformation y→ z can
thus be completely vectorized:

z = (y − µθ(y))/σθ(y), (10)
where the subtraction and division are elementwise. Unlike when using the autoregressive models
naively, the inverse autoregressive transformation is thus both powerful and computationally cheap.
Therefore, this type of transformation is a strong condidate for use with variational inference.

4 INVERSE AUTOREGRESSIVE FLOW (IAF)

A key observation, important for variational inference, is that the autoregressive whitening operation
explained above has a lower triangular Jacobian matrix, whose diagonal elements are the elements
of σθ(y). Therefore, the log-determinant of the transformation is simply minus the sum of the
log-standard deviations used by the autoregressive Gaussian generative model:

log det

∣∣∣∣ dzdy
∣∣∣∣ = − D∑

i=1

log σiθ(y) (11)

which is computationally cheap to compute, and allows us to evaluate the variational lower bound.
As a result, we can use inverse autoregressive transformations (eq. (10)) as a type of normalizing
flow (eq. (6)) for variational inference, which we call inverse autoregressive flow (IAF). If this trans-
formation is used to match samples from an approximate posterior to a prior p(z) that is standard
normal, the transformation will indeed whiten, but otherwise the transformation can produce very
general output distributions.

When using inverse autoregressive flow in our posterior approximation, we first map x→ µ0
θ, σ

0
θ , c,

where c is an optional context variable used as additional input to the autoregressive functions, and
we sample the first iterate of the latent variables as z0 ∼ qθ(z0|x) through:

z0 = µ0
θ + σ0

θ � ε0 (12)

where ε0 ∼ N (0, I). Subsequently we apply K steps of IAF:

for i = 1...K : zi = (zi−1 − µiθ(zi−1, c))/σiθ(zi−1, c), (13)

where at every step we use a differently parameterized autoregressive model (µiθ, σ
i
θ). If these mod-

els are sufficiently powerful, the final iterate zK will have a flexible distribution that can be closely
fitted to the true posterior. Some examples are given below.

4.1 LINEAR IAF

Perhaps the simplest special case of IAF is the transformation of a Gaussian variable with diagonal
covariance to one with linear dependencies.

Any full-covariance multivariate Gaussian distribution with mean m and covariance matrix C can
be expressed as an autoregressive model with

yi = µiθ(y
1:i−1) + σiθ(y

1:i−1) · zi, with

µiθ(y
1:i−1) = mi +C[i, 1 : i− 1]C[1 : i− 1, 1 : i− 1]−1(y1:i−1 −m1:i−1), and

σiθ(y
1:i−1) = C[i, i]−C[i, 1 : i− 1]C[1 : i− 1, 1 : i− 1]−1C[1 : i− 1, i].
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Inverting the autoregressive model then gives

z = (y − µθ(y))/σθ(y) = L(y −m), (14)

with L the inverse Cholesky factorization of the covariance matrix C.

By making Lθ(x) and mθ(x) part of our variational encoder we can then use this inverse flow to
form a posterior approximation. In experiments, we do this by starting our with a fully-factorized
Gaussian approximate posterior as in e.g. Kingma & Welling (2013): y = µθ(x)+σθ(x)� ε where
ε ∼ N (0, I), and where µθ(x) and σθ(x) are vectors produced by our inference network. However,
in this case we have the inference network produce an extra output Lθ(x), the lower triangular
inverse Cholesky matrix of (14), which we then use to update the approximation using inverse
autoregressive flow. With this setup, the problem is overparameterized, so we define the mean vector
m of (14) to be the zero vector, and we restrict L to have ones on the diagonal. We then turn the
fully-factorized distribution of y into an arbitrary multivariate Gaussian distribution by applying one
iteration of inverse autoregressive flow: z = Lθ(x) ·y. This results in a simple and computationally
efficient posterior approximation, with scalar density function given by qθ(z|x) = qθ(y|x). By
optimizing the variational lower bound with respect to θ we then fit this conditional multivariate
Gaussian approximation to the true posterior distribution.

4.2 NONLINEAR IAF THROUGH MASKED (CONVOLUTIONAL) AUTOENCODERS

For introducing nonlinear dependencies between the elements of z, we specify the autoregressive
Gaussian model µθ, σθ using the family of deep masked autoencoders Germain et al. (2015). These
models are arbitrarily flexible neural networks, where masks are applied to the weight matrices in
such a way that the output µθ(y), σθ(y) is autoregressive, i.e. ∂µi(y)/∂yj = 0, ∂σi(y)/∂yj = 0
for j ≥ i. Such models can implement very flexible autoregressive Gaussian densities, while still
being computionally efficient, and they can be specified in either a fully connected Germain et al.
(2015), or convolutional way van den Oord et al. (2016).

In experiments, we use two iterations of IAF (K = 2) with masked autoencoders, with reverse
variable ordering in each iteration. The initial iterate, z0, is the sample from a diagonal Gaussian
posterior (like in Kingma & Welling (2013)). In each iteration of IAF, we then compute the mean
and standard deviation through its masked autoencoder, and apply the transformation of equation
(13). The final variable z2 will have a highly flexible distribution q(z2|x), which we use as our
variational posterior.

4.3 NONLINEAR IAF THROUGH RECURRENT NEURAL NETWORKS

Another method of parameterizing the µθ, σθ that define our inverse autoregressive flow are LSTMs
and other recurrent neural networks. These are generally more powerful than the masked models,
as they have an unbounded context window in computing the conditional means and variances. The
downside of this is that these models cause us to lose part of our speed-up: The application of the
inverse flow could still be computed in parallel, but the computation is dominated by the last element
µnθ , σ

n
θ of the recursion, which is much more expensive than the early elements. New methods have

recently been developed to ameliorate these difficulties van den Oord et al. (2016), and such methods
could also be useful for the application we consider here.

4.4 EQUIVALENCE WITH AUTOREGRESSIVE PRIORS

Earlier work on improving variational auto-encoders has often focused on improving the prior p(z)
of the latent variables in our generative model. For example, Gregor et al. (2013) use a variational
auto-encoder where both the prior and inference network have recursion. It is therefore worth noting
that our method of improving the fully-factorized posterior approximation with inverse autoregres-
sive flow, in combination with a factorized prior p(z), is equivalent to estimating a model where
the prior p(z) is autoregressive and our posterior approximation is factorized. This result follows
directly from the analysis of section 3: We can consider the latent variables y to be our target for
inference, in which case our prior is autoregressive. Equivalently, we can consider the whitened
representation z to be the variables of interest, in which case our prior is fully-factorized and our
posterior approximation is formed through the inverse autoregressive flow that whitens the data
(equation 10).
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5 EXPERIMENTS

We empirically demonstrate the usefulness of inverse autoregressive flow for variational inference
by training variational auto-encoders for the MNIST data set of handwritten digits and the CIFAR-10
data set of small natural images.

5.1 MNIST

Table 1: Generative modeling results on binarized MNIST. Shown are averages; the number between
brackets are standard deviations across different optimization runs. The right column shows an
importance sampled estimate of the marginal likelihood for each model.

Posterior s/epoch log p(x) ≥ log p(x) ≈

Diagonal covariance 25.5 -85.6 (± 0.04) -82.2 (± 0.03)
Full covariance 30.0 -84.3 (± 0.03) -81.4 (± 0.03)
Autoregressive network 27.8 -84.0 (± 0.15) -81.4 (± 0.14)

We follow a similar implementation of the CVAE as in Salimans et al. (2014) with some modifica-
tions, mainly that the encoder and decoder are parameterized with ResNet He et al. (2015) blocks.
For MNIST, the encoder consists of 3 sequences of two ResNet blocks each, the first sequence act-
ing on 16 feature maps, the others on 32 feature maps. The first two sequences are followed by a
2-times subsampling operation implemented using 2× 2 stride, while the third sequence is followed
by a fully connected layer with 450 units. The decoder has a similar architecture, but with reversed
direction.

For optimization we use Adamax Kingma & Ba (2014) with α = 0.002 for optimization, in com-
bination with Polyak averaging Polyak & Juditsky (1992) in the form of an exponential moving
average that averages parameters over approximately 10 epochs.

We compared three forms of posteriors: a diagonal Gaussian, a full-covariance Gaussian 4.1, and
nonlinear autoregressive flow through masked MLPs; see section 4.2.

Result: Table 1 shows results on MNIST for these types of posteriors. As clear from these results,
the full covariance Gaussian greatly improves upon the diagonal Gaussian. The nonlinear autore-
gressive flow slightly improves upon this result in terms of the lower bound, but not in terms of the
marginal likelihood.

5.2 CIFAR-10

For CIFAR-10, we used a neural architecture with ResNet units and multiple stochastic layers. The
architecture can be understood as follows. First, take the architecture from MNIST above, and
replace the 1D latent space with 3D latent tensor, such that both the encoder and decoder map from
a 3D tensor to a distribution over another 3D tensor. Next, ’stack’ multiple of such models, each
acting on latent space of the layer below instead of the data space. We used 128 featuremaps at every
layer encoder and decoder layer, except the input.

In this experiment we compared a diagonal Gaussian posterior with nonlinear autoregressive flow
through masked CNNs; see section 4.2.

Result: See table 2 for results.

6 CONCLUSION

We presented inverse autoregressive flow (IAF), a method to make the posterior approximation of a
variational auto-encoder more flexible, and thereby improve the variational lower bound. By invert-
ing the sequential data generating process of an autoregressive Gaussian model, inverse autoregres-
sive flow gives us a data transformation that is both very powerful and computationally efficient:
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Figure 1: Random samples from learned generative model of CIFAR-10

Table 2: Generative modeling results on CIFAR-10 images.

Method s/epoch bits/dim ≤

Ours (diagonal covariance) 638 3.86
Ours (nonlinear autoregressive flow) 869 3.57

The transformation has a tractable Jacobian determinant, and it can be vectorized for implementa-
tion on a GPU. By applying this transformation to the samples from our approximate posterior we
can move their distribution closer to the exact posterior.

We empirically demonstrated the usefulness of inverse autoregressive flow for variational inference
by training a novel deep architecture of variational auto-encoders. In experiments we demonstrated
that autoregressive flow leads to significant performance gains compared to similar models with
diagonal Gaussian approximate posteriors.
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