
Workshop track - ICLR 2016

SCALABLE GRADIENT-BASED TUNING OF
CONTINUOUS REGULARIZATION HYPERPARAMETERS

Jelena Luketina, Mathias Berglund, Tapani Raiko
Department of Computer Science
Aalto University, Finland
{name.lastname}@aalto.fi

ABSTRACT

Hyperparameter selection generally relies on running multiple full training trials,
with hyperparameter selection based on validation set performance. We propose
a gradient-based approach for locally adjusting hyperparameters during training
of the model. Hyperparameters are adjusted so as to make the model parame-
ter gradients, and hence updates, more advantageous for the validation cost. We
explore the approach for tuning regularization hyperparameters and find that in
experiments on MNIST the resulting regularization levels are within the optimal
regions. The method is significantly less computationally demanding compared
to similar gradient-based approaches to hyperparameter optimization and consis-
tently finds good hyperparameter values, which makes it a useful tool for training
neural network models.

1 INTRODUCTION

Specifying and training neural networks models requires several design choices that are often not
trivial to make. Many of these design choices boil down to selection of hyperparameters. The
process of hyperparameter selection is in practice often based on trial-and-error or search with a
grid or by randomly sampling from an initial guess on possible hyperparameter values (Bergstra and
Bengio, 2012). There is also a number of automated methods (Bergstra et al., 2011; Snoek et al.,
2012), all of which rely on multiple complete training runs with varied fixed hyperparameters, with
the hyperparameter selection based on the validation set performance.

Although effective, these methods are expensive as the user needs to run multiple full training runs.
In the worst case, the number of needed runs also increases exponentially with the number of hy-
perparameters to tune, if an extensive exploration is desired. In many practical applications such an
approach is too tedious and time-consuming, and it would be useful if a method existed that could
automatically find decent hyperparameter values in one training run even if the user did not have a
strong intuition on good values to try for the hyperparameters.

In contrast to these methods, we consider treating hyperparameters as elementary1 parameters during
training, and simultaneously update both sets of parameters using stochastic gradient descent. The
gradient of elementary parameters is computed as in usual training from the cost of the regularized
model on the training set, while the gradient of hyperparameters (hypergradient) comes from the cost
of the unregularized model on the validation set. For simplicity, we will refer to the training set as
T1 and to the validation set (or any other data set used exclusively for training the hyperparameters)
as T2. The method itself will be called T1 − T2, referring to the two simultaneous optimization
processes.

Similar approaches have been proposed since late 1990s; however, these methods either require
computation of inverse Hessian (Larsen et al., 1998; Bengio, 2000; Chen and Hagan, 1999; Foo
and Ng, 2008), or propagating updates through the whole history of elementary parameter updates
Maclaurin et al. (2015). Moreover, these methods make changes to the hyperparameter only once

1Borrowing the expression from Maclaurin et al. (2015), we refer to the model parameters customary trained
with back-propagation as elementary parameters, and to all other parameters as hyperparameters

1



Workshop track - ICLR 2016

the elementary parameter training has ended. This makes them too expensive for the use in modern
neural networks, which often require millions of parameters and large data sets.

Elements distinguishing our approach are:

1. By making some very rough approximations, our method for modifying hyperparameters
avoids using computationally expensive terms, including computation of Hessian or in-
verting the Hessian. This is because with T1 − T2 method, hyperparameter updates are
based on stochastic gradient descent, instead of Newton’s method. Furthermore, any de-
pendency of elementary parameters on hyperparameters beyond the last update is ignored.
The resulting additional computational and memory cost therefore becomes comparable to
back-propagation.

2. Hyperparameters are trained simultaneously with elementary parameters. Feedback and
feedforward passes can be computed simultaneously for the training and validation set,
further reducing the computational cost.

3. Adding batch normalization (Ioffe and Szegedy, 2015) and adaptive learning rates (Kingma
and Ba, 2015) to the process of hyperparameter training, which diminishes some of the
problems of gradient-based hyperparameter optimization. Through batch normalization,
we can counter internal covariate shifts. This eliminates the need for different learning
rates at each layer, as well as speeding up adjustment of the elementary parameters to the
changes in hyperparameters. This is particularly relevant when parametrizing each of the
layers with a separate hyperparameter.

A common assumption is that the choice of hyperparameters affects the whole training trajectory,
i.e. changing a hyperparameter on the fly during training has a significant effect on the training
trajectory. This ”hysteresis effect” implies that in order to measure how a hyperparameter combi-
nation influences the validation set performance, hyperparameter needs to be kept fixed during the
whole training procedure. However, to our knowledge this has not been systematically studied. If
the hysteresis effect is weak enough and changes to the hyperparameter are slow enough, it would
be possible to train the model tuning the hyperparameters on the fly during training, and then use
the final hyperparameter values to retrain the model if a fixed set of hyperparameters is desired. We
also explore this approach.

An important design choice when training neural network models is which regularization strategy
to use in order to ensure that the model generalizes to data not included in the training set. Common
regularization strategies involve adding explicit terms to the model or the cost function during train-
ing, such as penalty terms on the model weights or injecting noise to inputs or neuron activations.
Injecting noise is particularly relevant for denoising autoencoders and related models (Vincent et al.,
2010; Rasmus et al., 2015), where performance strongly depends on the level of noise.

Although the proposed method could work in principle for any continuous hyperparameter, we have
specifically focused on studying tuning of regularization hyperparameters. We have chosen to use
Gaussian noise added to the inputs and hidden layer activations, in addition to L2 weight penalty. A
third often used regularization method that involves a hyperparameter choice is dropout (Srivastava
et al., 2014). However, we have omitted studying dropout as it is not trivial to compute a gradient on
the dropout rate. Moreover, dropout can be seen as a form of multiplicative Gaussian noise (Wang
and Manning, 2013). We also omit study adapting the learning rate, since we expect that the local
gradient information is not sufficient to determine optimal learning rates.

In Section 2 we present details on the proposed method. The method is tested with multiple MLP
network structures and regularization schemes, detailed in Section 3. The results of the experiments
are presented in Section 3.1.

2 PROPOSED METHOD

We propose a method, T1−T2, for tuning continuous hyperparameters of a model using the gradient
of the performance of the model on a separate validation set T2. In essence, we train a neural network
model on a training set T1 as usual. However, for each update of the network weights and biases, i.e.
the elementary parameters of the network, we tune the hyperparameters so as to make the direction
of the weight update as beneficial as possible for the validation cost on a separate dataset T2.

2



Workshop track - ICLR 2016

0.0 0.2 0.4 0.6 0.8 1.0
n0

5.0

4.5

4.0

3.5

3.0

lo
g(

l2
)

test log-likelihood

3.2

4.0

4.8

5.6

6.4

7.2

8.0

8.8

9.6

0.0 0.2 0.4 0.6 0.8 1.0
n0

0.0

0.2

0.4

0.6

0.8

1.0

n1

test log-likelihood

3.2

4.0

4.8

5.6

6.4

7.2

8.0

8.8

9.6

Figure 1: Left: Values of input additive noise and L2 penalty (n0, log(l2)), during training using
T1 − T2 method for hyperparameter tuning. Trajectories are plotted over the grid-search result
for the same regularization pair. Initial hyperparameter values are denoted with a square, final
hyperparameter values are denoted with a star. Right: Similarly constructed trajectories, on a model
regularized with input and hidden layer additive noise (n0, n1).

Formally, when training a neural network model, we try to minimize an objective function that de-
pends on the training set, model weights and hyperparameters that determine the strength of possible
regularization terms. When using gradient descent, we denote the optimization objective function
F1(·) and the corresponding weight update as:

F1(W |λ, T1) = C1(W |λ, T1) + P (W,λ), (1)
Wt+1 =Wt + η1∇WF1(Wt|λt, T1), (2)

where C1(·) and P (·) are cost and regularization penalty terms, T1 = {(xi, yi)} is the training data
set, W = {W l, bl} a set of elementary parameters including weights and biases of each layer, λ
denotes various hyperparameters that determine the strength of regularization, while η1 is a learning
rate. Subscript t refers to the iteration number.

Assuming T2 = {(xi, yi)} is a separate validation data set, the generalization performance of
the model is measured with a validation cost C2(Wt+1, T2), which is usually a function of the
unregularized model. Hence the value of the cost function of the actual performance of the model
does not depend on the regularizer directly, but only on the elementary parameter updates. The
gradient of the validation cost with respect to λ is:

∇λC2 = ∇C2
∂Wt+1

∂λt
We only consider the influence of the regularization hyperparameter on the current elementary pa-
rameter update, ∂Wt+1

∂λ = η1
∂2F1

∂λ∂W based on Eq. (2). The hyperparameter update is therefore:

λt+1 = λt + η2∇WC2
∂2F1

∂λ∂W
(3)

where η2 is a learning rate.

The method is greedy in the sense that it only depends on one parameter update, and hence rests on
the assumption that a good hyperparameter choice can be evaluated based on the local information
within only one elementary parameter update.

2.1 MOTIVATION AND ANALYSIS

The most similar previously proposed model is the incremental gradient version of hyperparameter
update from (Chen and Hagan, 1999). However their derivation of the hypergradient assumes a

3



Workshop track - ICLR 2016

Gauss-Newton update of the elementary parameters, making computation of gradient and the hyper-
gradient significantly more expensive.

A well justified closed form of the hypergradient is available once the elementary gradient has
converged (Foo and Ng, 2008), with the update of the form (4). Comparing this expression with
the T1 − T2 update, (3) can be considered as approximating (4) in the case when gradient is near
convergence and the Hessian can be well approximated by identity∇2

WF1 = I:

λt+1 = λt +∇WC2(∇2
WF1)

−1 ∂2F1

∂λ∂W
. (4)

Another approach to hypergradient computation is given in Maclaurin et al. (2015). There, the term
∂WT

∂λ (T denoting final iteration number) considers effect of the hyperparameter on the entire history
of updates WT =

∑
0<k<T 4Wk,k+1((Wk(λ), λ, Tk, ηk) +W0. Update of a hyperparameter is

formed by collecting the elements from the entire training procedure:

λt+1 = λt +∇WC2
d

dλ

∑
0<k<T

4Wk,k+1(Wk(λt), λt, Tk, ηk) +W0 (5)

λt+1 = λt +
∑

0<k<T

g′t[∇2
WF1,k(

∂Wk

∂λ
+
∂∇WF1,k

∂λ
) +∇2

WF1,k−1(
∂Wk−1

∂λ
+
∂∇WF1,k−1

∂λ
)].

(6)

Eq. (3) can therefore be considered as an approximation of (6), where we consider only the last
update instead of backpropagating through the whole weight update history and updating the hyper-
parameters without resetting the weights.

In theory, approximating the Hessian with identity leads into difficulties. From Equation (3), it fol-
lows that the method converges when ∇WC2

∂2F1

∂λ∂W = 0, or in other words, for all components i
of the hyperparameter vector λ, ∇WC2 is orthogonal to ∂2F1

∂λi∂W
. This is in contrast to the standard

optimization processes that converge when the gradient is zero. In fact, we cannot guarantee con-
vergence at all. Furthermore, if we replace the global (scalar) learning rate η1 in Equation (2) with
individual learning rates η1,j for each elementary-parameter Wj,t, the point of convergence could
change.

It is clear that the identity Hessian assumption is an approximation that will not hold exactly. How-
ever, arguably, batch normalization (Ioffe and Szegedy, 2015) is eliminating part of the problem, by
making the Hessian closer to identity (Vatanen et al., 2013; Raiko et al., 2012), making the approxi-
mation more justified. Another step towards making even closer approximation are transformations
that further whiten the hidden representations (Desjardins et al., 2015).

2.2 COMPUTATIONAL COST

In terms of computational complexity, the most expensive term is ∇WC2
∂2F1

∂λ∂W , with the exact
complexity depending on the details of implementation and the hyperparameters. One cheap imple-
mentation is through finite difference method, which is by Clairaut’s theorem on equality of mixed
partial derivatives:

∇WC2 · ∇λ∇WF1 = ∇WC2 · ∇W∇λF1 ≈
∇λF1(W + ε∇WC2)−∇λF1(W )

ε
. (7)

Gradient of cost with respect to noise hyperparameter at layer i, σi, can be computed as ∂F1

∂σi
=

∂F1

∂hi

∂hi

∂σi
, where hi is hidden layer i activation. In case of additive Gaussian noise, where noise is

added as hi → hi + σiE, where E is a random matrix sampled from the standard normal distri-
bution with the same dimensionality as hi, the derivative becomes ∂F1

∂σi
= ∂F1

∂hi
E. Hence equation

(7) requires one additional feedforward and feedback pass per batch, to compute F1(W + εg2) and
∂F1(W+εg2)

∂hi
. The exact computation of the term also scales comparably to backpropagation (Pearl-

mutter, 1994; Schraudolph, 2002). In our experiments, cost of computing exact hypergradients in
this setting was at most 3 times that of backpropagation. Furthermore, cost of computing exact
hypergradients for L2 regularizers P (W ) =

∑
k λkw

2
k is negligible, since ∂2F1

∂λk∂wl
= wkδk,l.

4



Workshop track - ICLR 2016

3 EXPERIMENTS

The goal of the experimental section is to address the following questions:

• Will the method find new hyperparameters which improve the performance of the model,
compared to the initial set of hyperparameters?

• Can we observe hysteresis effects, i.e. will the model obtained, while simultaneously mod-
ifying parameters and hyperparameters, perform the same as a model trained with a hyper-
parameter fixed to the final value?

• Can we observe overfitting on the validation set T2? When hyperparameters are tuned
for validation performance, is the performance on the validation set still indicative of the
performance on the test set?

1 2 3 4 5 6 7 8 9
test: before T1-T2

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

te
st

: 
re

ru
n
 a

ft
e
r 

T
1
-T

2

% error

Figure 2: Comparison of test performances before and after tuning the hyperparameters with T1−T2.
Points are generated on a variety of network configurations.

We test the method on the various configurations of multilayer perceptrons (MLPs) with ReLU
activation functions (Dahl et al., 2013), trained on the MNIST data set. We tried networks up to
the depth of 8 layers, with the layer breadth between 100 and 1000 neurons. Training set T1 had 55
000 samples, and validation T2 had 5 000 samples. The split between T1 and T2 was made using a
different random seed in each of the experiments, to avoid biasing results towards a particular subset
of the training set. Data preprocessing consisted of only centering each feature. The model was
implemented with the Theano package (Bastien et al., 2012; Bergstra et al., 2010).

Model complexity was further limited by additive Gaussian noise to the input with standard deviation
n0 and each hidden layer with standard deviation n1; or a combination of additive noise to the input
layer and L2 penalty with strength multiplier l2 for weights in each of the layers. Because L2 penalty
matters less in models using batch normalization, in experiments using L2 penalty we did not use
batch normalization. We tried both tied regularization levels (one hyperparameter for all hidden
layers) and having separate regularization parameters for each layer. As a cost function, we use
cross-entropy for both T1 and T2.

Each of the runs had 150 epochs, using the batch size 100 for both elementary and hyperparam-
eter training. To speed up elementary parameter training, we use the annealed ADAM learning
rate schedule (Kingma and Ba, 2015); with the basic step size of 0.001. For tuning noise hyper-
parameters, we use step sizes [0.01, 0.001]; while for L2 hyperparameters, optimal step sizes were
significantly smaller, [10−4, 10−6]. We found that while the learning rate did not significantly in-
fluence the general area of convergence for a hyperparameter, too high learning rates did cause too
noisy and sudden hyperparameter changes, while too low learning rates resulted in no significant
changes of hyperparameters. General rule of thumb is to use larger learning rates if there is no prior
knowledge of the optimal hyperparameter values and hence starting with the hyperparameters set to
zero; or if one suspects initial hyperparameters are far from the optimal values.

5



Workshop track - ICLR 2016

In most experiments, we first measure the performance of the model trained using some fixed, ran-
dom hyperparameters sampled from a reasonable interval. Next, we train the model with T1 − T2
from that random hyperparameter initialization, measuring the final performance. Finally, we rerun
the training procedure with the fixed hyperparameter set to the final hyperparameter values found by
T1 − T2. Note in all the scatter plots, points with the same color indicate the same model configu-
ration: same number of neurons and layers, learning rates, use of batch normalization, and the same
types of hyperparameters tuned just with different initializations.

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
validation: after T1-T2

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

te
st

: 
a
ft

e
r 

T
1

-T
2

% error

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
test: after T1-T2

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

te
st

: 
re

ru
n
 a

ft
e
r 

T
1
-T

2

% error

Figure 3: Left: Classification error of validation set T2 and test set, at the end of T1 − T2 training.
The results correlate strongly. While we can observe weak overfitting on T2, it has not significantly
hampered performance. Right: Test error after one run with T1 − T2 compared to a rerun where we
use the final values of the hyperparameters at the end of T1 − T2 training as fixed hyperparameters
for a new run. The results indicate that there is a strong correlation, which renders T1 − T2 useful
also for finding approximate hyperparameter values for training without an adaptive hyperparameter
method.

3.1 RESULTS

Figure 1 illustrates resulting hyperparameters changes during T1 − T2 training. To see how the
T1 − T2 method behaves, we visualized trajectories of hyperparameter values during training in
the hyperparameter cost space. For each point in the two dimensional hyperparameter space, we
compute the corresponding test cost without T1 − T2. In other words, the background of the figures
corresponds to grid search on the two dimensional hyperparameter interval. Initial regularization
hyperparameter value is denoted with a star, while the final value is marked with a square.

As can be seen from the figure, all runs converge to a reasonable set of hyperparameters irrespective
of the starting value, gradually moving to the point with lower log-likelihood. Note that because
the optimal values of learning rates for each hyperparameter direction are unknown, hyperparameter
will change the most along the direction corresponding to either the local gradient or the higher
relative learning rate.

One way to use the proposed method is to tune the hyperparameters, and then rerun the training
from the start using the final values of the hyperparameters. Figure 2 illustrates how much can
T1−T2 improve initial hyperparameters. Each point in the grid corresponds to the test performance
of a model fully trained with two different fixed hyperparameters: one is the initial hyperparameter
before being tuned with T1 − T2 (x-axis), the other is final hyperparameter found after tuning initial
hyperparameter with T1−T2 (y-axis). As can be seen from the plot, none of the models trained with
hyperparameters found by T1 − T2 performed poorly, regardless of how poor was the performance
with the initial hyperparameters.

6



Workshop track - ICLR 2016

Method Test error
Dropout (Srivastava et al., 2014) 1.25 %
Averaged T1 − T2 1.04 % ± .11
Additive noise + L2 (Raiko et al., 2012) 1.03 %
Dropout + max-norm (Srivastava et al., 2014) 0.94 %
Additive noise + BN (Rasmus et al., 2015) 0.80 %

Table 1: A collection of previously reported MNIST test errors in permutation-invariant setting.
Averaged performance of various models (varying in number of layers, hidden units, regularization
type) with regularization hyperparameters tuned using T1 − T2 is comparable.

Next we explore the strength of the hysteresis effect, i.e. how does the performance of a model with
a different hyperparameter history compare to the performance of a model with a fixed hyperpa-
rameter? Is the performance somehow dependent on the regularization schedule? In Figure 3 (left)
we plot the error after a run using T1 − T2, compared to the test error if the model is rerun with
the hyperparameters fixed to the values at the end of T1 − T2 training. The results indicate that
there is a strong correlation, with in most cases, reruns performing somewhat better. The method
can therefore be used for training models with fixed hyperparameters, or as a baseline for further
hyperparameter finetuning. In fact, retraining the model with the final hyperparameter fixed is likely
to produce better results.

We explore the possibility of overfitting on the validation set. Figure 3 (right) shows the validation
error compared to the final test error of a model trained with T1 − T2. While the results indicate
some overfitting with the validation set performing mostly better, the two are still strongly correlated.
Better validation performance strongly indicates better test performance. It should be noted though,
that in these experiments we had at most 20 hyperparameters, making overfitting to validation set
unlikely.

Finally we can compare performance of models tuned with T1 − T2, to some other purely super-
vised models on permutation invariant MNIST in Table 1. Without doing throughout hyperparameter
search of learning rates or network configurations, just rerunning the models with the hyperparame-
ters found by T1 − T2, on average we get comparable performance.

4 DISCUSSION AND CONCLUSION

We have proposed a method called T1 − T2 for gradient-based automatic tuning of continuous
hyperparameters during training, based on the performance of the model on a separate validation set.
We experimented on tuning regularization hyperparameters when training different model structures
on the MNIST dataset.The T1 − T2 model always managed to find levels of additive noise and L2
weight penalty that yielded decent test set performance even if the initial guess of the regularization
hyperparameter values was orders of magnitudes from the optimal value.

Although T1 − T2 is unlikely to find the best set of hyperparameters compared to an exhaustive
search where the model is trained repeatedly with a large number of hyperparameter proposals; it is
significantly less computationally demanding and capable of quickly finding values fairly close to
the optimum. This is useful in situations where the user does not have a prior knowledge on good
intervals for regularization selection, or the time to explore the full hyperparameter space.

While the T1 − T2 method does a decent job at minimizing the objective function of validation set,
as illustrated in 4, hyperparameters minimizing a continuous objective like cross-entropy, might not
be optimal for the classification error. It might be worthwhile trying objectives which approximate
the classification error better, as well as trying the method on unsupervised objectives.

As a separate validation set is used for tuning of hyperparameters, it is in theory possible to overfit
to the validation set. However, our experiments indicated that this effect is not practically very
significant in the settings tested in this paper, which is at most 10-20 hyperparameters.

The encouraging results open a number of fruitful avenues for further research. While T1 − T2 is
computationally cheap compared to other methods used for hyperparameter selection, there is poten-

7



Workshop track - ICLR 2016

0.0 0.2 0.4 0.6 0.8 1.0
n0

0.0

0.2

0.4

0.6

0.8

1.0

n
1

test error

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

0.0 0.2 0.4 0.6 0.8 1.0
n0

0.0

0.2

0.4

0.6

0.8

1.0

n
1

test log-likelihood

3.2

4.0

4.8

5.6

6.4

7.2

8.0

8.8

9.6

0.0 0.2 0.4 0.6 0.8 1.0
n0

5.0

4.5

4.0

3.5

3.0

lo
g
(l

2
)

test error

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

0.0 0.2 0.4 0.6 0.8 1.0
n0

5.0

4.5

4.0

3.5

3.0

lo
g
(l

2
)

test log-likelihood

3.2

4.0

4.8

5.6

6.4

7.2

8.0

8.8

9.6

Figure 4: Grid search results on a pair of hyperparameters (no tuning with T1 − T2). Figures on
the right, represent test error at the end of training as a function of hyperparameters. Figures on
the left represent test log-likelihood at the end of training as a function of training. Note that the
set of hyperparameters minimizing test log-likelihood is different from the set of hyperparameters
minimizing test classification error.

tial to speed it up even further by updating the hyperparameters less frequently than the elementary
parameters.

The method could be used to tune a much larger number of hyperparameters than what was com-
putationally feasible before. It could also be used to tune other hyperparameters than continous
regularization hyperparameters: E.g. the number of layers and units could be tuned using contin-
uous versions of those hyperparameters. In addition, T1 − T2 could be tested for other continuous
hyperparameters.

REFERENCES

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I. J., Bergeron, A., Bouchard, N.,
Warde-Farley, D., and Bengio, Y. (2012). Theano: new features and speed improvements. CoRR,
abs/1211.5590.

Bengio, Y. (2000). Gradient-based optimization of hyperparameters. Neural computation, 12(8),
1889–1900.

Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimization. J. Mach.
Learn. Res., 13, 281–305.

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-
Farley, D., and Bengio, Y. (2010). Theano: a CPU and GPU math expression compiler. In
Proceedings of the Python for Scientific Computing Conference (SciPy).

Bergstra, J. S., Bardenet, R., Bengio, Y., and Kégl, B. (2011). Algorithms for hyper-parameter
optimization. In Advances in Neural Information Processing Systems 24, pages 2546–2554.

8



Workshop track - ICLR 2016

Chen, D. and Hagan, M. T. (1999). Optimal use of regularization and cross-validation in neural
network modeling. In International Joint Conference on Neural Networks, pages 1275–1289.

Dahl, G. E., Sainath, T. N., and Hinton, G. E. (2013). Improving deep neural networks for LVCSR
using rectified linear units and dropout. In ICASSP, pages 8609–8613.

Desjardins, G., Simonyan, K., Pascanu, R., and Kavukcuoglu, K. (2015). Natural neural networks.
In Advances in Neural Information Processing Systems.

Foo, Chuan-sheng, D. C. B. and Ng, A. (2008). Efficient multiple hyperparameter learning for
log-linear models. In Advances in neural information processing systems (NIPS), pages 377–384.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

Kingma, D. and Ba, J. (2015). Adam: A method for stochastic optimization. In the International
Conference on Learning Representations (ICLR), San Diego. arXiv:1412.6980.

Larsen, J., Svarer, C., Andersen, L. N., and Hansen, L. K. (1998). Adaptive regularization in neural
network modeling. In Neural Networks: Tricks of the Trade, pages 113–132. Springer.

Maclaurin, D., Duvenaud, D., and Adams, R. P. (2015). Gradient-based hyperparameter optimiza-
tion through reversible learning. In International Conference on Machine Learning.

Pearlmutter, B. A. (1994). Fast Exact Multiplication by the Hessian. Neural Computation, pages
147–160.

Raiko, T., Valpola, H., and LeCun, Y. (2012). Deep learning made easier by linear transformations in
perceptrons. In International Conference on Artificial Intelligence and Statistics, pages 924–932.

Rasmus, A., Valpola, H., Honkala, M., Berglund, M., and Raiko, T. (2015). Semi-supervised learn-
ing with ladder network. Neural Information Processing Systems.

Schraudolph, N. N. (2002). Fast curvature matrix-vector products for second-order gradient descent.
Neural Computation, 14(7), 1723–1738.

Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical Bayesian Optimization of Machine
Learning Algorithms. ArXiv e-prints.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout:
A simple way to prevent neural networks from overfitting. The Journal of Machine Learning
Research, 15(1), 1929–1958.

Vatanen, T., Raiko, T., Valpola, H., and LeCun, Y. (2013). Pushing stochastic gradient towards
second-order methods–backpropagation learning with transformations in nonlinearities. In Neural
Information Processing, pages 442–449. Springer.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and antoine Manzagol, P. (2010). Stacked de-
noising autoencoders: learning useful representations in a deep network with a local denoising
criterion. Journal of Machine Learning Research.

Wang, S. I. and Manning, C. D. (2013). Fast dropout training. In In Proceedings of the 30th
International Conference on Machine Learning (ICML.

9


	Introduction
	Proposed Method
	Motivation and analysis
	Computational cost

	Experiments
	Results

	Discussion and Conclusion

