
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Spectral Heterogeneous Graph Convolutions via Positive
Noncommutative Polynomials

Anonymous Author(s)

ABSTRACT
Heterogeneous Graph Neural Networks (HGNNs) have gained sig-

nificant popularity in various heterogeneous graph learning tasks.

However, most existing HGNNs rely on spatial domain-based meth-

ods to aggregate information, i.e., manually selected meta-paths or

some heuristic modules, lacking theoretical guarantees. Further-

more, these methods cannot learn arbitrary valid heterogeneous

graph filters within the spectral domain, which have limited ex-

pressiveness. To tackle these issues, we present a positive spectral

heterogeneous graph convolution via positive noncommutative

polynomials. Then, using this convolution, we propose PSHGCN,

a novel heterogeneous graph convolutional network. PSHGCN of-

fers a simple yet effective method for learning valid heterogeneous

graph filters. Moreover, we demonstrate the rationale of PSHGCN

in the graph optimization framework. We conducted an extensive

experimental study to show that PSHGCN can learn diverse het-

erogeneous graph filters and outperform all baselines on open

benchmarks. Notably, PSHGCN exhibits remarkable scalability, ef-

ficiently handling large real-world graphs comprising millions of

nodes and edges. Our codes are available in the anonymous link:

https://anonymous.4open.science/r/PSHGCN_Code-DFDC.

CCS CONCEPTS
• Mathematics of computing → Graph algorithms; • Com-
puting methodologies→ Neural networks.

KEYWORDS
Heterogenous Graph Neural Networks, Spectral Graph Convolu-

tions, Positive Noncommutative Polynomials.

ACM Reference Format:
Anonymous Author(s). 2018. Spectral Heterogeneous Graph Convolutions

via Positive Noncommutative Polynomials. In Proceedings of Make sure to
enter the correct conference title from your rights confirmation emai (Confer-
ence acronym ’XX). ACM, New York, NY, USA, 12 pages. https://doi.org/

XXXXXXX.XXXXXXX

1 INTRODUCTION
In recent years, there has been a significant surge of interest in

graph neural networks (GNNs) due to their remarkable perfor-

mance in tackling diverse graph learning tasks, including but not

limited to node classification [6, 15, 27], link prediction [3, 41, 45],

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

and graph property prediction [9, 17, 33]. While earlier versions of

GNNs [15, 27] were primarily developed for homogeneous graphs,

which consist of only one type of node and edge, real-world graphs

typically comprise a diverse range of nodes and edges known as

heterogeneous graphs. For instance, an academic graph may in-

clude multiple nodes such as "author," "paper," and "conference,"

as well as several edges such as "cite," "write," and "publish." Due

to the extensive and diverse information in heterogeneous graphs,

specialized models are necessary to analyze them effectively.

In response to the challenge of heterogeneity, numerous Hetero-

geneous Graph Neural Networks (HGNNs) have been proposed,

achieving significant performance [1, 7, 28, 38]. The majority of

these HGNNs depend on spatial domain-based message passing

and attention modules for information propagation and aggrega-

tion. Following [35], we can broadly classify these HGNNs into two

categories based on whether they use manually selected meta-paths

or meta-path-free techniques to aggregate information.

Meta-path-based HGNNs [7, 28, 35, 40] begin by manually select-

ing or predefining specific meta-paths. Then, they perform message

aggregation based on these meta-paths to obtain the final embed-

ding. These message aggregation strategies encompass attention

modules, Transformers, and various other techniques. In contrast,

meta-path-free HGNNs [1, 18, 20, 31, 38, 39] create graph convolu-

tions for heterogeneous graphs to propagate and aggregate mes-

sages. These convolutions are designed from the spatial domain,

leveraging techniques like attention mechanisms and learnable

weights to acquire node representations heuristically.

Although the above HGNNs have shown promising results in

various heterogeneous graph learning tasks, they still have some

significant limitations. First, the effectiveness of meta-path-based

HGNNs relies on the manually selected meta-paths, resulting in

poor theoretical guarantees. For example, SeHGNN [35] uses 41

meta-paths for feature aggregation on the ACM dataset, while

HAN [28] uses only 6. This partly explains why SeHGNN outper-

forms HAN on this dataset. Furthermore, all these HGNNs design

aggregation strategies or graph convolutions in the spatial domain

heuristically, which cannot learn arbitrary graph filters like spectral-

based GNNs [6, 10, 11, 30]. This results in limited expressiveness.

For example, MHGCN [38] directly learns the summation weights

of the adjacency matrix with only one type of edge, rendering it

incapable of learning arbitrary filters. Additionally, these HGNNs

acquire graph filters without any necessary constraints, making

them challenging to learn, especially from a graph optimization

perspective [10, 36, 43, 44], where graph filters should satisfy posi-

tive semidefinite constraints. In Section 6.4 of our experiments, we

show the impact of the positive semidefinite constraint, and under

equivalent conditions, models with this constraint perform better

and exhibit reduced standard errors across multiple runs.

To address these issues, we first introduce the concept of spectral

heterogeneous graph convolution, which is a straightforward and

1

https://anonymous.4open.science/r/PSHGCN_Code-DFDC
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

intuitive extension of spectral graph convolution. Building upon

this, we present a positive spectral heterogeneous graph convolu-

tion, leveraging positive noncommutative polynomials to ensure

that the acquired graph filters maintain positive semidefiniteness.

Using this convolutional approach, we propose a novel heteroge-

neous graph convolutional network named PSHGCN. PSHGCN

offers a simple yet highly effective method for learning hetero-

geneous graph filters. Moreover, we analyze the rationale behind

PSHGCN from the perspective of graph optimization. Our analysis

shows that PSHGCN has the theoretical capacity to express a wide

array of valid heterogeneous graph filters. Finally, we conduct an

extensive experiment, demonstrating that PSHGCN excels in tasks

such as node classification and link prediction. This underscores

PSHGCN’s ability to learn heterogeneous graph filters adeptly. No-

tably, PSHGCN exhibits remarkable scalability, efficiently handling

large real-world heterogeneous graphs comprisingmillions of nodes

and edges. We summarize the contributions of this paper as follows:

(1) We propose PSHGCN, a heterogeneous graph convolutional

network that uses positive spectral heterogeneous graph con-

volution to learn valid heterogeneous graph filters.

(2) We present a generalized heterogeneous graph optimization

framework and demonstrate the rationale of our PSHGCN from

this framework.

(3) Thorough experiments demonstrate that PSHGCN achieves

superior performance in tasks such as node classification and

link prediction, and has desirable scalability.

2 RELATEDWORK
Graph Neural Networks (GNNs) are machine-learning tech-

niques designed specifically for graph data. These methods aim to

find a low-dimensional vector representation for each node, en-

abling efficient processing for various network mining tasks. GNNs

can be broadly classified into two categories: spatial-based and

spectral-based approaches [32]. Spatial-based GNNs directly prop-

agate and aggregate information in the spatial domain. From this

viewpoint, GCN [15] can be interpreted as aggregating one-hop

neighbor information in each layer. GAT [27] leverages attention

mechanisms to learn aggregation weights.

Spectral-based GNNs utilize spectral graph convolutions/filters

designed in the spectral domain. ChebNet [6] employs Chebyshev

polynomials to approximate filters. GCN [15] simplifies the Cheby-

shev filter by utilizing a first-order approximation. APPNP [16] uses

Personalized PageRank (PPR) to determine the filter weights. GPR-

GNN [5] learns polynomial filters by employing gradient descent

on the polynomial weights. BernNet [10] utilizes the Bernstein ba-

sis for approximating graph convolutions, enabling the learning

of arbitrary graph filters. JacobiConv [30] and ChebNetII [11] use

Jacobi polynomials and Chebyshev interpolation, respectively, to

learn filters. OptBasisGNN [8] first computes the optimal polyno-

mial bases and then uses them to learn filters. However, all these

methods are designed for homogeneous graphs and do not perform

optimally on heterogeneous graphs.

Heterogeneous Graph Neural Networks (HGNNs) are ex-
plicitly developed to address the challenges posed by heterogeneous

graphs. HGNNs can be broadly categorized into meta-path-based

and meta-path-free HGNNs [35]. Meta-path-based HGNNs prop-

agate and aggregate neighbor features using selected meta-paths.

HAN [28] uses a hierarchical attention mechanism with multiple

meta-paths for aggregating node features and semantic information.

HetGNN [40] employs random walks to generate node neighbors

and aggregates their features. MAGNN [7] encodes information

from manually selected meta-paths instead of just focusing on

endpoints. SeHGNN [35] utilizes predetermined meta-paths for

neighbor aggregations and applies a transformer-based approach.

Meta-path-free HGNNs propagate and aggregate messages from

neighboring nodes in a manner similar to GNNs, without requiring

a selected meta-path. RGCN [20] extends GCN [15] to heteroge-

neous graphs with edge type-specific graph convolutions. GTN [39]

utilizes soft sub-graph selection and matrix multiplication to gen-

erate meta-path neighbor graphs. SimpleHGN [18] incorporates a

multi-layer GAT network with attention based on node features

and learnable edge-type embeddings. MHGCN [38] directly learns

the summation weights and employs GCN’s convolution for feature

aggregation. EMRGNN [31] and HALO [1] propose optimization

objectives tailored for heterogeneous graphs and design architec-

tures by solving these optimization problems. HINormer [19] uses

the local structure encoder and the relation encoder, with graph

Transformer to learn node embeddings. MGNN [2] uses noncom-

mutative polynomials to create graph convolutions for multigraphs

in the spectral domain. All of these HGNNs are designed within the

spatial domain, except for MGNN. However, MGNN mainly focuses

on multigraphs and has no constraints for learned filters. The lack

of robust theoretical guarantees and expressiveness within spatial-

based HGNNs, coupled with the limited exploration of spectral-

based HGNNs, motivates us to propose the PSHGCN.

3 PRELIMINARIES
3.1 Spectral Graph Convolution
Recent studies suggest that many popular spectral-based GNNs

utilize a polynomial of the Laplacian matrix to approximate spectral

graph convolutions [6, 10, 11, 15, 30]. In particular, we denote an

undirected homogeneous graph with node set 𝑉 and edge set 𝐸

as 𝐺 (𝑉 , 𝐸), whose adjacency matrix is A. Let L = I − Â = I −
D−1/2AD−1/2 denote the normalized Laplacian matrix, where Â =

D−1/2AD−1/2 denotes the normalized adjacency matrix and D is

the diagonal degree matrix of A, i.e., D[𝑖, 𝑖] = ∑
𝑗 A[𝑖, 𝑗]. We use

L = UΛU⊤ to represent the eigendecomposition of L, where U
denotes the matrix of eigenvectors and Λ = diag[_1, ..., _ |𝑉 |] is
the diagonal matrix of eigenvalues. Given a graph signal vector

x ∈ R |𝑉 | , the spectral graph convolution is defined as

y = ℎ(L)x = Uℎ (Λ) U⊤x = Udiag
[
ℎ(_1), ..., ℎ(_ |𝑉 |)

]
U⊤x. (1)

The function ℎ(L) (or, equivalently, ℎ(_)) is the spectral graph
filter and y denotes the output of graph convolution. To learn

filters while avoiding the expansive eigendecomposition, existing

methods use polynomials to approximate ℎ(L) [6, 11].

y = ℎ(L)x ≈
𝐾∑︁
𝑘=0

𝑤𝑘L𝑘x, (2)

where𝑤𝑘 are the polynomial filter weights. We can obtain different

filters by setting or learning the weights𝑤𝑘 .

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Spectral Heterogeneous Graph Convolutions via Positive Noncommutative Polynomials Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

3.2 Graph Optimization Framework
We can obtain the spectral graph convolution through the lens of a

classical graph optimization problem [10, 44].

min

y
𝑓 (y) = (1 − 𝛼)y⊤𝛾 (L)y + 𝛼 ∥ y − x ∥2

2
, (3)

where the first term is a smooth operation of the signals based

on the graph structure and 𝛾 (·) is an energy function [22]. The

second term is a regularization that maintains the original signals.

The parameter 𝛼 ∈ (0, 1) is a trade-off parameter. We can get the

closed-form solution of the problem (3) by setting
𝜕𝑓 (y)
𝜕y = 0.

y = ℎ(L)x = 𝛼 (𝛼I + (1 − 𝛼)𝛾 (L))−1x. (4)

Equation (4) can express some specific convolution by setting dif-

ferent functions 𝛾 (L) [10, 44]. For example, if we set 𝛾 (L) = L, then
y = 𝛼 (𝛼I + (1 − 𝛼)L)−1x = 𝛼 (I − (1 − 𝛼)Â)−1x, corresponding
the graph convolution of PPNP/APPNP [16]. We can obtain more

existing GNNs’ convolutions using Equation (4). For the details,

please refer to papers [10, 44].

Importantly, in Equation (3), the output of function 𝛾 (L) has to
be positive semidefinite. If 𝛾 (L) fail to satisfy this condition, the

optimization function 𝑓 (y) becomes non-convex, and the solution

to
𝜕𝑓 (y)
𝜕y = 0 may lead to a saddle point. When 𝛾 (L) is positive

semidefinite, we can derive that the spectral graph filter ℎ(L) =
𝛼 (𝛼I + (1 − 𝛼)𝛾 (L))−1 is positive semidefinite, i.e., ℎ(_) ≥ 0 [10].

Therefore, based on the graph optimization framework, a spectral

graph filter ℎ(L) should be positive semidefinite.

3.3 Heterogeneous Graph
A heterogeneous graph [25] is defined as 𝐺 = (𝑉 , 𝐸, 𝜙,𝜓), where
𝑉 is the set of nodes and 𝐸 is the set of edges. Let 𝑛 = |𝑉 | denote
the number of nodes. Each node 𝑣 ∈ 𝑉 is attached with a node type

𝜙 (𝑣) and each edge 𝑒 ∈ 𝐸 is attached with an edge type𝜓 (𝑒). We

use T𝑣 = {𝜙 (𝑣) : ∀𝑣 ∈ 𝑉 } to denote the set of possible node types

and T𝑒 = {𝜓 (𝑒) : ∀𝑒 ∈ 𝐸} to denote the set of possible edge types.

When |T𝑣 | = |T𝑒 | = 1, the graph becomes an ordinary homogeneous

graph. For convenience, we use 𝑅 = |T𝑒 | to denote the number of

edge types.

For a heterogeneous graph𝐺 , we denote the sub-graph generated

by differentiating the types of edges between all nodes as {𝐺𝑟 |𝑟 =
1, 2, . . . , 𝑅}. Each 𝐺𝑟 includes 𝑛 nodes but only contains one type

of edge. Let A𝑟 denote the adjacency matrix of the sub-graph 𝐺𝑟 ,

where A𝑟 [𝑖, 𝑗] is non-zero if there exists an 𝑟 -th type edge from

𝑖 to 𝑗 . Notably, in the general case of heterogeneous graphs, the

sub-graph𝐺𝑟 is a directed graph. Hence, we use D𝑟 to represent the
diagonal out-degree matrix of A𝑟 , i.e., D𝑟 [𝑖, 𝑖] =

∑𝑛
𝑗 A𝑟 [𝑖, 𝑗]. We use

Â𝑟 = D−1𝑟 A𝑟 to denote the normalized adjacency matrix and use

L𝑟 = I − Â𝑟 to denote the normalized Laplacian matrix. For brevity,

we assume that all nodes possess the same dimensional features

and denote the node features as X ∈ R𝑛×𝑑 , where 𝑑 represents the

dimensionality of the node features.

4 THE PROPOSED METHOD: PSHGCN
In this section, we will begin by introducing the concept of spectral

heterogeneous graph convolution. Subsequently, we will propose

a positive spectral heterogeneous graph convolution, ensuring its

Table 1: Existing HGNNs that attempt to design the spectral
heterogeneous graph convolution.

Method Shift P𝑟 Graph Convolution

GTN [39] A𝑟 D−1
∏𝐾
𝑘=0

∑𝑅
𝑟=0 𝛼

(𝑘)
𝑟 A𝑟x

EMRGNN [31] Ã𝑟
∑𝐾
𝑘=0

𝛼 (1 − 𝛼)𝑘
(∑𝑅

𝑟=1 `𝑟 Ã𝑟
)𝑘

x

MHGCN [38] A𝑟
(∑𝑅

𝑟=1 𝛽𝑟A𝑟
)𝐾

x

positive semidefinite nature. Finally, we will provide a compre-

hensive overview of the implementation of the Positive Spectral

Heterogeneous Graph Convolutional Network (PSHGCN).

4.1 Spectral Heterogeneous Graph Convolution
Expanding spectral graph convolution, i.e., Equation (2), to hetero-

geneous graphs is a straightforward and intuitive process.MGNN [2],

in this context, has introduced a method for defining graph convo-

lution on multigraphs through the utilization of noncommutative

polynomials. This approach can be readily applied to heterogeneous

graphs. Specifically,We use P𝑟 to denote either the adjacencymatrix

Â𝑟 or the Laplacian matrix L𝑟 of sub-graph𝐺𝑟 . This P𝑟 is commonly

recognized as the shift operator in graph signal processing [23].

Definition 4.1. (Spectral Heterogeneous Graph Convolution).

Consider a heterogeneous graph 𝐺 = (𝑉 , 𝐸, 𝜙,𝜓) with shift operators
{P𝑟 }𝑅𝑟=1. A spectral heterogeneous graph convolution of a graph signal
x ∈ R𝑛 on 𝐺 is defined as ℎ(P1, P2, . . . , P𝑅)x, where ℎ denotes a
noncommutative polynomial function that takes the shift operators
{P𝑟 }𝑅𝑟=1 as independent variables.

Here, we call ℎ(P1, P2, . . . , P𝑅) the heterogeneous graph filter

and formalize it as𝑤0I+∑𝐾
𝑘=1

∑
𝑟1,𝑟2,...,𝑟𝑘

𝑤𝑟1,𝑟2,...,𝑟𝑘
(
P𝑟1P𝑟2 . . . P𝑟𝑘

)
,

where 𝑤𝑟1,𝑟2,...,𝑟𝑘 ∈ R denote the polynomial coefficients, 𝐾 ∈
Z+ is the order of the polynomial, and 𝑟𝑖 ∈ {1, 2, . . . , 𝑅} for each
𝑖 ∈ {1, 2, . . . , 𝑘}. For example, a 2-order polynomial filter ℎ with

two variables can be denoted as ℎ(P1, P2) = 𝑤0I +𝑤1P1 +𝑤2P2 +
𝑤1,1P1P1 +𝑤1,2P1P2 +𝑤2,1P2P1 +𝑤2,2P2P2.

Some existing HGNNs can be perceived as attempts to design

the spectral heterogeneous graph convolution. We show the details

in Table 1. Specifically, GTN [39] introduces a Graph Transformer

layer to perform the graph convolution, which can be represented

as D−1
∏𝐾
𝑘=0

∑𝑅
𝑟=0 𝛼

(𝑘)
𝑟 A𝑟x. In this expression, 𝛼

(𝑘)
𝑟 are learnable

weights, D is the degree matrix for normalization, and A0 is the

identity matrix. EMRGNN [31] utilizes the multi-relational Person-

alized PageRank [16] to design the graph convolutions, which can

be expressed as

∑𝐾
𝑘=0

𝛼 (1 − 𝛼)𝑘
(∑𝑅

𝑟=1 `𝑟 Ã𝑟
)𝑘

x. Here, Ã𝑟 is the

normalized adjacency matrix with self-loops. EMRGNN approxi-

mates a graph filter by learning the weight `𝑟 and setting 𝛼 as a

non-negative trade-off parameter. MHGCN [38] applies a straight-

forward approach by aggregating the adjacency matrix A𝑟 with
learnable weights 𝛽𝑟 , and uses 𝐾 GCN-layers to achieve the graph

convolution. This can be expressed as

(∑𝑅
𝑟=1 𝛽𝑟A𝑟

)𝐾
x.

We can observe that the above methods try to approximate the

heterogeneous graph filter by learning different weights. How-

ever, these methods constitute specific instances of the graph filter

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

P! P"

P#

A!
A# C!

C#

Paper

Author

Conference

Write/Written by

Publish/Published in

0011100
0001100
0000000
0000000
0000000
0000000
0000000

0000000
0000000
0000011
0000011
0000001
0000000
0000000

0000000
0000000
0000000
0000000
0000000
0011000
0010100

0000000
0000000
1000000
0100000
1100000
0000000
0000000

write

written by

publish

published in

𝐀"!

𝐀""

𝐀"#

𝐀"$

𝑔 𝐀#! ,𝐀#" , 𝐀## ,𝐀#$

𝑔 𝐀#! ,𝐀#" , 𝐀## ,𝐀#$
%

𝑔 … %𝑔(…)

𝐗

Figure 1: An illustration of the proposed PSHGCN.

ℎ(P1, P2, . . . , P𝑅), i.e., they cannot be equivalent to this noncommu-

tative polynomial ℎ, which limits their expressiveness. In fact, the

polynomial graph filter ℎ possesses the capacity to approximate

arbitrary filter functions, given that the order 𝐾 is sufficiently high.

4.2 Positive Spectral Heterogeneous Graph
Convolution

Although employing the spectral heterogeneous graph convolution,

as defined in Definition 4.1, seems promising, it does not inherently

guarantee the learned graph filters are positive semidefinite. As

discussed in Section 3.2, the valid spectral graph filter on homoge-

neous graphs should satisfy the positive semidefinite constraint.

Furthermore, we will provide both theoretical and empirical evi-

dence to support the assertion that graph filters on heterogeneous

graphs should also conform to the positive semidefinite constraint

in forthcoming sections.

To ensure the learned graph filters are positive semidefinite,

spectral-based GNNs on homogeneous graphs have employed vari-

ous techniques, such as Bernstein Approximation [10] and Polyno-

mial Interpolation [11]. However, directly extending these methods

to the heterogeneous filter ℎ(P1, P2, . . . , P𝑅) is infeasible since the
shift operators {P𝑟 }𝑅𝑟=1 are noncommucative and share different

eigenspace. Consequently, ensuring that heterogeneous filter ℎ

meets the positive semidefinite constraint becomes a nontrivial
and challenging problem. To address this problem, we propose to

use the positive noncommutative polynomials [12], characterized

by a Sum of Squares form, to redefine the spectral heterogeneous

graph convolution.

Definition 4.2. (Sum of Squares).Anoncommutative polynomial
ℎ(P1, P2, . . . , P𝑅) is a Sum of Squares if it satisfiesℎ(P1, P2, . . . , P𝑅) =∑
𝑖 𝑔𝑖 (P1, P2, . . . , P𝑅)⊤𝑔𝑖 (P1, P2, . . . , P𝑅), where each 𝑔𝑖 is an arbi-

trary polynomial and 𝑔⊤
𝑖
denotes its transpose.

If a noncommutative polynomial conforms to the Sum of Squares

form, it must exhibit positive semidefinite properties, and the op-

posite also holds. Specifically, we have the following theorem.

Theorem 4.1. [12] Let ℎ(P1, P2, . . . , P𝑅) denote a noncommuta-
tive polynomial. If ℎ(P1, P2, . . . , P𝑅) conforms to the Sum of Squares
form, then ℎ(P1, P2, . . . , P𝑅) is positive semidefinite. Conversely, If
the ℎ(P1, P2, . . . , P𝑅) is positive semidefinite, then ℎ(P1, P2, . . . , P𝑅)
meets the Sum of Squares form.

Theorem 4.1 shows the necessity of using a Sum of Squares to

ensure that ℎ(P1, P2, . . . , P𝑅) is positive semidefinite. Based on this,

we propose the positive spectral heterogeneous graph convolution.

Definition 4.3. (Positive Spectral Heterogeneous Graph Convo-

lution). Consider a heterogeneous graph𝐺 = (𝑉 , 𝐸, 𝜙,𝜓) with shift op-
erators {P𝑟 }𝑅𝑟=1. A positive spectral heterogeneous graph convolution
of a signal x is defined as

∑
𝑖 𝑔𝑖 (P1, P2, . . . , P𝑅)⊤𝑔𝑖 (P1, P2, . . . , P𝑅)x,

where each 𝑔𝑖 denotes an arbitrary polynomial and 𝑔⊤
𝑖
is its transpose.

4.3 Implementation of PSHGCN
According to Definition 4.3, it is possible to acquire arbitrary filters

that satisfy positive semidefinite constraints by learning various

polynomial functions 𝑔𝑖 . However, learning multiple functions 𝑔𝑖 is

challenging in practice. Therefore, we simplify the Sum of Squares

form by utilizing a single polynomial 𝑔. It is essentially an arbi-

trary monomial noncommutative polynomial. Remarkably, despite

focusing solely on learning a single polynomial function, the exper-

iments in Section 6 demonstrate that this approach shows excellent

performance. Additionally, in the implementation of PSHGCN, we

opt for P𝑟 = Â𝑟 . As a result, the convolution of PSHGCN is

y = 𝑔(Â1, Â2, . . . , Â𝑅)⊤𝑔(Â1, Â2, . . . , Â𝑅)x, (5)

where x ∈ R𝑛 represents a graph signal and we treat it as a column

of the node features X. As illustrated in Figure 1, PSHGCN acquires

a heterogeneous graph filter by learning the polynomial 𝑔.

In practice, many heterogeneous graphs exhibit varying dimen-

sional features for different node types. To address this, we em-

ploy multiple Multi-layer Perceptrons (MLPs) for feature projec-

tion, aligning them into a common dimensional space, a strategy

commonly employed by many existing HGNNs [18, 31, 35]. Subse-

quently, we apply the graph convolution as specified in Equation (5),

and 𝑔 is a noncommutative polynomial. That is 𝑔(Â1, Â2, . . . , Â𝑅) =
𝑤0I+∑𝐾

𝑘=1

∑
𝑤𝑟1,𝑟2,...,𝑟𝑘

(
Â𝑟1 Â𝑟2 · · · Â𝑟𝑘

)
, where𝑤0 and𝑤𝑟1,𝑟2,...,𝑟𝑘

are learnable coefficients. Finally, we use an MLP for downstream

tasks. More precisely, the model structure of PSHGCN can be for-

mulated as

H = MLP𝑖𝑛 (X),
Y = 𝑔(Â1, Â2, . . . , Â𝑅)⊤𝑔(Â1, Â2, . . . , Â𝑅)H,
Z = MLP𝑜𝑢𝑡 (Y) .

(6)

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Spectral Heterogeneous Graph Convolutions via Positive Noncommutative Polynomials Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Notably, the original node features may span diverse dimensions,

resulting in the existence of multiple MLP𝑖𝑛 modules. For the sake

of clarity and simplicity, we opt for a simplified form. For a more

detailed description, please refer to Algorithm 1 in Appendix C.

Decoupled PSHGCN. Similar to many spectral-based GNNs [8,

11, 16], our PSHGCN can be extended to large-scale graphs by

decoupling the feature transformation and propagation processes.

In particular, we first calculate and store Â𝑟1 Â𝑟2 · · · Â𝑟𝑘X for the

original feature X in the preprocessing. Then we perform graph

convolution operations. We have the following special process.

Y = 𝑐0X +
𝐾∑︁
𝑘=1

∑︁
𝑐𝑟1,𝑟2,...,𝑟𝑘 Â𝑟1 Â𝑟2 · · · Â𝑟𝑘X,

Z = MLP𝑜𝑢𝑡 (Y) .
(7)

Here, 𝑐𝑟1,𝑟2,...,𝑟𝑘 denote the coefficients of the Â𝑟1 Â𝑟2 · · · Â𝑟𝑘 term

in the expansion of 𝑔(Â1, Â2, . . . , Â𝑅)⊤𝑔(Â1, Â2, . . . , Â𝑅) . The pre-
computed Â𝑟1 Â𝑟2 · · · Â𝑟𝑘X allows us to train PSHGCN in a mini-

batch manner. For more details, please check Algorithm 2 in Ap-

pendix C. In our experiments, we assess the scalability of PSHGCN

on ogbn-mag and find that PSHGCN achieves a new SOTA result.

5 MODEL ANALYSIS
In this section, we will demonstrate the necessity of the positive

semidefinite constraint from the graph optimization perspective

for heterogeneous graph filters. Meanwhile, we will elaborate on

the rationale behind using PSHGCN and the theoretical guarantees

of its effectiveness. Finally, we will analyze the complexity.

5.1 Understanding PSHGCN from the Graph
Optimization Perspective

Generalized Heterogeneous Graph Optimization Framework.
The utilization of graph optimization in designing GNNs for ho-

mogeneous graphs has been extensively explored and has led to

remarkable performance [10, 36, 43, 44]. However, there have been

limited efforts to extend the graph optimization framework to het-

erogeneous graphs. Based on the graph optimization framework

for homogeneous graphs discussed in Section 3.2, we introduce a

generalized heterogeneous graph optimization problem

min

y
𝑓 (y) = (1 − 𝛼)y⊤𝛾 (P1, P2, . . . , P𝑅)y + 𝛼 ∥ y − x ∥2

2
, (8)

where 𝛼 ∈ (0, 1) is a trade-off parameter, y denotes the resulting rep-

resentation of the input signal x, and 𝛾 (P1, P2, . . . , P𝑅) is an energy

function determining the rate of propagation [22]. Generally, 𝛾 (·)
takes the shift operators {P𝑟 }𝑅𝑟=1 as inputs and produces a real 𝑛×𝑛
matrix. Similar to Equation (3), we require that 𝛾 (P1, P2, . . . , P𝑅)
must be positive semidefinite, so that the optimization problem (8)

has a closed-form solution. By setting the derivative
𝜕𝑓 (y)
𝜕y = 0, we

can obtain this solution as

y = 𝛼 [𝛼I + (1 − 𝛼)𝛾 (P1, P2, . . . , P𝑅)]−1 x. (9)

We can set up specific 𝛾 functions to get some of the existing

HGNNs within this generalized graph optimization framework.

For example, if we set P𝑟 = L̃𝑟 , where L̃𝑟 is the normalized Lapla-

cian matrix with self-loops, and 𝛾 (L̃1, L̃2, . . . , L̃𝑅) =
∑𝑅
𝑟=1 `𝑟 L̃𝑟 sub-

ject to

∑𝑅
𝑟=1 `𝑟 = 1 and `𝑟 ≥ 0, then we can get the solution

y = 𝛼

(
I − (1 − 𝛼)∑𝑅𝑟=1 `𝑟 Ã𝑟

)−1
x, which is the heterogeneous

graph convolution used in EMRGNN [31].

Positive semidefinite constraint. We can observe that the

𝛼 [𝛼I + (1 − 𝛼)𝛾 (P1, P2, . . . , P𝑅)]−1 in Equation (9) denotes the het-

erogeneous graph filter, and the ℎ(P1, P2, . . . , P𝑅) defined in Defini-

tion 4.1 is its polynomial approximation. This is consistent with the

concepts discussed on homogeneous graphs in Section 3.1. Within

this graph optimization framework, we can deduce that the hetero-

geneous graph filter has to satisfy a positive semidefinite constraint.

Specifically, we have the following lemma, the proof of which can

be found in Appendix B.

Lemma 5.1. Consider an arbitrary function 𝛾 (P1, P2, . . . , P𝑅) that
produces a real positive semidefinite 𝑛 × 𝑛 matrix and let 𝛼 be in the
interval (0, 1). Then the matrix 𝛼 [𝛼I + (1 − 𝛼)𝛾 (P1, P2, . . . , P𝑅)]−1
is also a real positive semidefinite matrix.

A heterogeneous graph filter must satisfy the requirement of

a positive semidefinite constraint. This fact motivates us to intro-

duce the positive spectral heterogeneous graph convolution and

the PSHGCN based on it. According to Theorem 4.1, the Sum of

Squares form is a necessary and sufficient condition for ensuring

the positive semidefinite constraint of heterogeneous graph fil-

ter ℎ(P1, P2, . . . , P𝑅). In other words, PSHGCN can approximate

any valid heterogeneous graph filter. Conversely, any valid hetero-

geneous graph filter can be expressed by PSHGCN, theoretically

guaranteeing the effectiveness of PSHGCN.

5.2 Complexity
In Equation (6), 𝑔 is a 𝐾-order noncommutative polynomial. In

theory, the number of terms in 𝑔 grows exponentially with the

order 𝐾 , i.e., 𝑅
𝐾+1−1
𝑅−1 terms. However, in real-world heterogeneous

graphs, many types of nodes have no direct edges between them,

e.g., such as authors and conferences in DBLP, which means that

many terms Â𝑖 Â𝑗 in 𝑔 are zero matrices. Therefore, we can ignore

these terms in practice. Remarkably, these non-zero polynomial

terms are analogous to the meta-paths commonly employed in most

existing HGNNs [18, 28]. In other words, for heterogeneous graphs

where all types of nodes are interconnected, the neighbors aggre-

gated by these HGNNs also experience exponential growth with the

length of the meta-paths. We can derive that the time complexity

of PSHGCN in Equation (6) is 𝑂 (𝐿𝐾𝑚𝑑 + 𝑛𝑑2), where 𝐿 denotes

the number of non-zero terms in the polynomial 𝑔 with order 𝐾 ,𝑚

denotes the maximum number of edges among {Â1, Â2, . . . , Â𝑅},
𝑑 is the feature dimension, and 𝑂 (𝑛𝑑2) is the time complexity of

the MLP. This complexity is expected to outperform many existing

HGNNs, like HAN [28]. The difference is that PSHGCN doesn’t

need an attention mechanism for aggregation, and it learns the filter

weights instead. In HAN, 𝐿 can be interpreted as the number of

selected meta-paths, while 𝐾 can be seen as their maximum length.

For decoupled PSHGCN in Equation (7), its preprocessing time

complexity is𝑂 (𝐿𝐾𝑚𝑑), and the time complexity for training using

mini-batch is 𝑂 (𝐵𝑑2), where 𝐵 denotes the batch size. This train-

ing complexity is significantly lower than that of SeHGNN [35],

which is 𝑂 (𝐵𝐿2𝑑2), where 𝐿 denotes the number of selected meta-

paths. This reduction is primarily because SeHGNN needs to use a

Transformer for feature fusion.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 2: Node classification performance (Mean F1 scores ± standard errors) comparison of different methods on four datasets.
Tabular results are presented in percentages, with the best result highlighted in bold and the runner-up underlined.

DBLP ACM IMDB AMiner

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

GCN 90.84±0.32 91.47±0.34 92.17±0.24 92.12±0.23 57.88±1.18 64.82±0.64 75.63±1.08 85.77±0.43
GAT 93.83±0.27 93.39±0.30 92.26±0.94 92.19±0.93 58.94±1.35 64.86±0.43 75.23±0.60 85.56±0.65
GPRGNN 91.66±1.01 92.45±0.76 92.36±0.28 92.28±0.27 58.90±1.15 64.84±0.81 75.32±0.67 86.13±0.58
ChebNetII 92.05±0.53 92.97±0.48 92.45±0.37 92.33±0.38 58.07±1.34 64.79±0.89 75.59±0.73 85.82±0.52

RGCN 91.52±0.50 92.07±0.50 91.55±0.74 91.41±0.75 58.85±0.26 62.05±0.15 63.03±2.27 82.79±1.12
HAN 91.67±0.49 92.05±0.62 90.89±0.43 90.79±0.43 57.74±0.96 64.63±0.58 63.86±2.15 82.95±1.33
GTN 93.52±0.55 93.97±0.54 91.31±0.70 91.20±0.71 60.47±0.98 65.14±0.45 72.39±1.79 84.74±1.24
MAGNN 93.28±0.51 93.76±0.45 90.88±0.64 90.77±0.65 56.49±3.20 64.67±1.67 71.56±1.63 83.48±1.37
EMRGNN 92.19±0.38 92.57±0.37 92.93±0.34 93.85±0.33 61.87±2.03 65.86±0.81 73.74±1.25 85.46±0.74
MHGCN 93.56±0.41 94.03±0.43 92.12±0.66 91.97±0.68 62.85±1.11 66.57±0.63 73.56±1.75 85.18±1.28
SimpleHGN 94.01±0.24 94.46±0.22 93.42±0.44 93.35±0.45 63.53±1.36 67.36±0.57 75.43±0.88 86.52±0.73
HALO 92.37±0.32 92.84±0.34 93.05±0.31 92.96±0.33 71.63±0.77 73.81±0.72 74.91±1.23 87.25±0.89
SeHGNN 95.06±0.17 95.42±0.17 94.05±0.35 93.98±0.36 67.11±0.25 69.17±0.43 76.83±0.57 86.96±0.64
PSHGCN 95.27±0.13 95.61±0.12 94.35±0.23 94.27±0.23 72.33±0.57 74.46±0.32 77.26±0.75 88.21±0.31

6 EXPERIMENTS
In this section, we conduct extensive experiments to assess the

performance of PSHGCN against the state-of-the-art HGNNs for

tasks involving node classification and link prediction. Furthermore,

we evaluate the scalability of PSHGCN by employing the Open

Graph Benchmark (OGB). Finally, we provide an in-depth model

analysis from various perspectives. All the experiments are carried

out on a machine with an NVIDIA Tesla A100 GPU (80 GBmemory),

Intel Xeon CPU (2.30 GHz) with 64 cores, and 512 GB of RAM.

6.1 Node Classification
Datasets and Setting. For the node classification task, we evalu-

ate PSHGCN on four widely used heterogeneous graphs, including

three academic citation heterogeneous graphs DBLP [18], ACM [18]

and AMiner [29], and a movie rating graph IMDB [18]. Due to

limited space, we provide dataset statistics in Table 6 within Ap-

pendix D.1 and offer a detailed introduction. For baselines, we

first compare PSHGCN to four popular homogeneous GNNs, in-

cluding GCN[15], GAT [27], GPRGNN [5] and ChebNetII [11],

where GPRGNN and ChebNetII are two competitive spectral-based

GNNs. Additionally, we compare PSHGCN to nine competitive

HGNNs, including RGCN [20], HAN [28], GTN [39], MAGNN [7],

EMRGNN [31], MHGCN [38], SimpleHGN [18], HALO [1] and Se-

HGNN [35]. To ensure a fair comparison, we adopt the experimental

setup used in the Heterogeneous Graph Benchmark (HGB) [18],

and follow its standard split with the training/validation/test sets

accounting for 24%/6%/70%. We use the existing baseline results

provided by HGB [18]. For results that are not available, we use the

officially released code and conduct a hyperparameter search based

on the guidelines presented in their respective paper. For PSHGCN,

we use Equation (6) as the propagation process and search the order

𝐾 from 1 to 5 in the polynomial 𝑔. We use a uniform distribution to

Table 3: Link prediction performance (ROC-AUC/MRR ±
standard errors). Results are presented in percent, with the
best result highlighted in bold and the runner-up underlined.

Amazon LastFM

ROC-AUC MRR ROC-AUC MRR

GCN 92.84±0.34 97.05±0.12 59.17±0.31 79.38±0.65
GAT 91.65±0.80 96.58±0.26 58.56±0.66 77.04±2.11
RGCN 86.32±0.28 93.92±0.16 57.21±0.09 77.68±0.17
GATNE 77.39±0.50 92.04±0.36 66.87±0.16 85.93±0.63
HetGNN 77.74±0.24 91.79±0.03 62.09±0.01 83.56±0.14
HGT 88.26±2.06 93.87±0.65 54.99±0.28 74.96±1.46
SeHGNN 91.67±0.94 95.83±0.58 66.59±0.62 88.61±1.25
SimpleHGN 93.40±0.62 96.94±0.29 67.59±0.23 90.81±0.32
PSHGCN 94.12±0.58 97.93±0.46 69.25±0.63 91.19±0.51

randomly initialize the weights𝑤 in 𝑔 and optimize them using gra-

dient descent, consistent with spectral-based GNNs [5, 10, 11]. More

details of hyper-parameters and settings are listed in Appnedix D.2.

Results.We use the mean F1 scores with standard errors over

five runs as the evaluation metric. The results are presented in Ta-

ble 2, with the top two performing results highlighted in bold and

underlined, respectively. We first observe that the spectral-based

GNNs, specially designed for homogeneous graphs, outperform

certain HGNNs, like HAN. This suggests spectral-based GNNs’

promising effectiveness even on heterogeneous graphs. Further-

more, PSHGCN outperforms other methods on all datasets, attrib-

uted to its capability of learning various valid heterogeneous graph

filters. Notably, when compared to SeHGNN, PSHGCN achieves su-

perior performance without relying on tricks like label propagation

to enhance features. Instead, it directly learns the coefficients of the

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Spectral Heterogeneous Graph Convolutions via Positive Noncommutative Polynomials Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

DBLP ACM IMDB
65

70

75

80

85

90

95

100
M

ac
ro

-F
1(

%
)

MGNN
MGNN(Sparse)
PSHGCN(Variant)
PSHGCN

DBLP ACM IMDB
65

70

75

80

85

90

95

100

M
icr

o-
F1

(%
)

MGNN
MGNN(Sparse)
PSHGCN(Variant)
PSHGCN

Figure 2: Comparison of MGNN [2], PSHGCN, and its variant on node classification.

polynomial 𝑔 in Equation (6). Nevertheless, PSHGCN outperforms

SeHGNN on all datasets, with a significant advantage on IMDB

and AMiner. These results highlight PSHGCN’s effectiveness for

heterogeneous graphs and its strong ability to learn filters.

6.2 Link Prediction
Datasets and Setting. For the link prediction task, we use two

datasets Amazon and LastFM from HGB [18] to evaluate the per-

formance of PSHGCN. We compare PSHGCN with eight methods,

including two famous GNNs: GCN [15] and GAT [27], six compet-

itive HGNNs: RCGN [20], GATNE [4], HetGNN [40], HGT [14],

SeHGNN [35] and SimpleHGN [18]. We follow the experimental

setup provided by HGB. The task of link prediction is cast as a

binary classification problem, with the splitting of edges as follows:

81% for training, 9% for validation, and 10% for testing. Then the

graph is reconstructed solely using the edges from the training set.

We use randomly sampled 2-hop neighbors as the negative test set,

as suggested by HGB. For baselines, we use the results provided in

HGB, with the exception of SeHGNN. For SeHGNN, we use their

publicly available code and conduct a hyperparameter search in

accordance with the details in their paper. It’s worth noting that due

to the challenge of applying SeHGNN’s label propagation technique

directly to link prediction, we have excluded this component from

our implementation. For PSHGCN, we employ the same implemen-

tation as utilized for the node classification task described in the

previous subsection. We explore both dot product and DistMult [34]

decoders, following the approach of SimpleHGN [18]. For more

specific hyperparameter settings, please refer to Appendix D.3.

Results. We evaluate link prediction using mean ROC-AUC

(area under the ROC curve) and MRR (mean reciprocal rank) with

standard errors, over five repeated runs. The results are presented

in Table 3. We observe that PSHGCN consistently outperforms

other methods on both datasets. This underscores the effectiveness

of PSHGCN in the link prediction task and demonstrates the fea-

sibility of designing heterogeneous graph convolutions from the

spectral domain. Notably, PSHGCN exhibits a significant advantage

over SeHGNN, which we attribute to its enhanced expressiveness

and flexibility. PSHGCN can derive diverse heterogeneous graph

filters by directly learning coefficients, whereas SeHGNN relies

on manually selected meta-paths and incorporates techniques like

label propagation to boost its performance.

Table 4: Node classification performance (Mean accuracies ±
standard errors) on ogbn-mag, where the symbol "∗" denotes
the usage of extra embeddings and multi-stage training. The
best results are highlighted in bold.

Methods Validation accuracy Test accuracy

RGCN 48.35±0.36 47.37±0.48
HGT 49.89±0.47 49.27±0.61
NARS 51.85±0.08 50.88±0.12
SAGN 52.25±0.30 51.17±0.32
GAMLP 53.23±0.41 51.63±0.22
SeHGNN 55.95±0.11 53.99±0.18
PSHGCN 56.16±0.21 54.57±0.16
SAGN

∗
55.91±0.17 54.40±0.15

GAMLP
∗

57.02±0.41 55.90± 0.27

SeHGNN
∗

59.17±0.09 57.19±0.12
PSHGCN

∗ 59.43±0.15 57.52±0.11

6.3 Scalability
To evaluate the scalability of PSHGCN, we conduct a node clas-

sification task on the large-scale heterogeneous graph ogbn-mag

from the Open Graph Benchmark (OGB). We compare six baselines

listed on the OGB leaderboard: RGCN [20], HGT [14], NARS [37],

SAGN [24], GAMLP [42] and SeHGNN [35]. We use results on the

leaderboard for these baselines. For PSHGCN, we use the decou-

pled version described in Equation (7), and more hyperparameter

settings are listed in Appendix D.4.

Table 4 shows the mean accuracies with standard errors over

five runs. We use the symbol
∗
to denote the usage of extra embed-

dings (e.g., ComplEx embedding) and multi-stage training, which

are commonly used in the baselines. We observe that PSHGCN

has achieved a new SOTA result on ogbn-mag, underscoring the

effectiveness and scalability of decoupled PSHGCN. Compared to

the non-decoupled PSHGCN, the decoupled version relies more on

the original node features since it does not utilize encoders like

MLPs to transform the features before filtering. In fact, it is worth

further exploration to investigate how to extend the non-decoupled

PSHGCN to large-scale datasets using techniques such as sampling,

and this also holds true for Spectral-based GNNs.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

1 2 3 4 5
K

93.0

93.5

94.0

94.5

95.0
F1

 S
co

re
(%

)
Macro-F1
Micro-F1

(a) ACM

1 2 3 4 5
K

70

75

80

85

90

F1
 S

co
re

(%
)

Macro-F1
Micro-F1

(b) AMiner

Figure 3: Node classification performance of PSHGCN with respect to the order 𝐾 .

6.4 Model Analysis
Impact of the positive semidefinite. To investigate the impact

of the positive semidefinite constraint, we compared PSHGCN and

its variant without this constraint, as well as MGNN [2], the only

method attempting to design heterogeneous graph convolution

in the spectral domain. Specifically, MGNN uses noncommutative

polynomials to create convolutions for multigraphs, which can be

expressed as XW0 +
∑𝐾
𝑘=1

∑
Â𝑟1 Â𝑟2 · · · Â𝑟𝑘XW𝑟1,𝑟2,...,𝑟𝑘 , where W

are learnable weight matrices. These weight matrices implicitly de-

fine the polynomial coefficients. For the variant of PSHGCNwithout

the positive semidefinite constraint, we achieve it by removing𝑔⊤in
Equation (6). In the implementation, we used the code provided by

the authors for MGNN. Unfortunately, this code stores the adja-

cency matrices in dense form, limiting the choice of higher-order

𝐾 . So, we developed a sparse version based on the original code,

denoted as MGNN (Sparse). For both MGNN (Sparse) and PSHGCN

(Variant), our experiments followed the same settings as PSHGCN,

with a search for polynomial orders ranging from 2 to 10. Fig-

ure 2 presents the results of our comparison. First, we observe that

PSHGCN and its variants outperform MGNN and MGNN (Sparse),

highlighting the effectiveness of directly learning polynomial coef-

ficients, a finding consistent with research in spectral-based GNNs.

Additionally, PSHGCN outperforms PSHGCN (Variant), especially

with smaller standard errors over multiple repeated runs. This result

underscores the significance of the positive semidefinite constraint

in learning heterogeneous graph filters. It enhances learning ability

and stability in practice while also ensuring the learned filters are

always theoretically valid.

Time comparison. We conduct node classification on DBLP

to evaluate the time cost (per epoch) and memory cost for several

representative models, including GTN, MAGNN, HAN, MHGCN,

EMRGNN, RGCN, HALO, SimpleHGN, SeHGNN, and PSHGCN.

The results are shown in Figure 4. We found that PSHGCN is com-

parable to the advanced methods but significantly outperforms

early methods such as HAN and RGCN. This is due to PSHGCN

having a simple structure and no attention mechanism or other

modules. In addition, we provide a comparison between decoupled

PSHGCN and SeHGNN on ogbn-mag in Appendix D.5. As analyzed

in Section 5.2, decoupled PSHGCN is more efficient than SeHGNN.

Sensitivity of the order 𝐾 . We investigate the impact of the

order𝐾 in the polynomial 𝑔 on the performance of PSGCN. Figure 3

displays the node classification F1 scores with respect to the order

𝐾 on ACM and AMiner (more results are listed in Appendix D.5).

We find that the performance of PSHGCN increases gradually with

increasing 𝐾 , which is consistent with the theory of polynomial

approximation in graph convolution.

10 1 100 101 102 103

Time(s/epoch)

91.5

92.0

92.5

93.0

93.5

94.0

94.5

95.0

95.5

96.0

M
icr

o-
F1

(%
)

SeHGNN

SimpleHGN

HALO

MHGCN

RGCN HAN

GTN
MAGNN

EMRGNN

PSHGCN

Figure 4: Time andMemoryComparison forHGNNs onDBLP.
The area of the circles corresponds to the (relative) memory
consumption of the respective models.

7 DISCUSSION & CONCLUSION
This paper introduces PSHGCN, a novel heterogeneous convolu-

tional network that creates heterogeneous graph convolutions in

the spectral domain. Through the utilization of positive noncommu-

tative polynomials, PSHGCN enables effective learning of diverse

valid heterogeneous graph filters. Experimental results demonstrate

that PSHGCN achieves superior performance in node classification

and link prediction tasks compared to existing methods. Notably,

to our knowledge, this paper is the first attempt to obtain graph

convolutions by directly learning the weights of spectral graph fil-

ters on heterogeneous graphs. Extensive experiments demonstrate

the effectiveness of our proposed methods. Consequently, it opens

up several directions for future research. (1) As mentioned in Sec-

tion 6.3, it would be meaningful to explore alternative approaches,

such as sampling or graph sparsification, to improve the scalability

of PSHGCN. (2) Further investigation into the spectral analysis of

PSHGCN makes sense. This involves defining the Fourier trans-

form on heterogeneous graphs. Although some methods have been

attempted with techniques like joint block diagonalization [2] or

Jordan decomposition [21], these methods are not as intuitive or

effective as those in homogeneous graphs.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Spectral Heterogeneous Graph Convolutions via Positive Noncommutative Polynomials Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] HongjoonAhn, Youngyi Yang, QuanGan, DavidWipf, and TaesupMoon. Descent

steps of a relation-aware energy produce heterogeneous graph neural networks.

In 36th Conference on Neural Information Processing Systems, 2022.
[2] Landon Butler, Alejandro Parada-Mayorga, and Alejandro Ribeiro. Convolutional

learning on multigraphs. IEEE Transactions on Signal Processing, 71:933–946,
2023.

[3] Lei Cai, Jundong Li, Jie Wang, and Shuiwang Ji. Line graph neural networks for

link prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2021.

[4] Yukuo Cen, Xu Zou, Jianwei Zhang, Hongxia Yang, Jingren Zhou, and Jie Tang.

Representation learning for attributed multiplex heterogeneous network. In

Proceedings of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining, pages 1358–1368, 2019.

[5] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal

generalized pagerank graph neural network. In International Conference on
Learning Representations, 2021.

[6] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional

neural networks on graphswith fast localized spectral filtering. In 30th Conference
on Neural Information Processing Systems, pages 3844–3852, 2016.

[7] Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. Magnn: Metapath aggre-

gated graph neural network for heterogeneous graph embedding. In The world
wide web conference, pages 2331–2341, 2020.

[8] Yuhe Guo and Zhewei Wei. Graph neural networks with learnable and optimal

polynomial bases. In International Conference on Machine Learning, volume 202,

pages 12077–12097. PMLR, 2023.

[9] Zhongkai Hao, Chengqiang Lu, Zhenya Huang, Hao Wang, Zheyuan Hu, Qi Liu,

Enhong Chen, and Cheekong Lee. Asgn: An active semi-supervised graph neural

network for molecular property prediction. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages
731–752, 2020.

[10] MingguoHe, ZheweiWei, ZengfengHuang, andHongteng Xu. Bernnet: Learning

arbitrary graph spectral filters via bernstein approximation. InAdvances in neural
information processing systems, 2021.

[11] Mingguo He, Zhewei Wei, and Ji-Rong Wen. Convolutional neural networks

on graphs with chebyshev approximation, revisited. In Advances in neural
information processing systems, 2022.

[12] J William Helton. " positive" noncommutative polynomials are sums of squares.

Annals of Mathematics, pages 675–694, 2002.
[13] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen

Liu, Michele Catasta, and Jure Leskovec. Open graph benchmark: Datasets for

machine learning on graphs. Advances in neural information processing systems,
33:22118–22133, 2020.

[14] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph

transformer. In The world wide web conference, pages 2704–2710, 2020.
[15] Thomas N Kipf and Max Welling. Semi-supervised classification with graph

convolutional networks. In International Conference on Learning Representations,
2017.

[16] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict

then propagate: Graph neural networks meet personalized pagerank. In Interna-
tional Conference on Learning Representations, 2019.

[17] Qi Liu, Maximilian Nickel, and Douwe Kiela. Hyperbolic graph neural networks.

Advances in Neural Information Processing Systems, 32, 2019.
[18] Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng, Siming

He, Chang Zhou, Jianguo Jiang, Yuxiao Dong, and Jie Tang. Are we really

making much progress? revisiting, benchmarking and refining heterogeneous

graph neural networks. In Proceedings of the 27th ACM SIGKDD conference on
knowledge discovery & data mining, pages 1150–1160, 2021.

[19] Qiheng Mao, Zemin Liu, Chenghao Liu, and Jianling Sun. Hinormer: Represen-

tation learning on heterogeneous information networks with graph transformer.

In Proceedings of the ACM Web Conference 2023, pages 599–610, 2023.
[20] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan

Titov, and Max Welling. Modeling relational data with graph convolutional

networks. In European semantic web conference, pages 593–607. Springer, 2018.
[21] Rahul Singh, Abhishek Chakraborty, and BS Manoj. Graph fourier transform

based on directed laplacian. In 2016 International Conference on Signal Processing
and Communications (SPCOM), pages 1–5. IEEE, 2016.

[22] Daniel Spielman. Spectral and algebraic graph theory. Yale lecture notes, draft of
December, 4, 2019.

[23] Ljubisa Stankovic, Danilo Mandic, Milos Dakovic, Milos Brajovic, Bruno Scalzo,

and Tony Constantinides. Graph signal processing–part i: Graphs, graph spectra,

and spectral clustering. arXiv preprint arXiv:1907.03467, 2019.
[24] Chuxiong Sun, Hongming Gu, and Jie Hu. Scalable and adaptive graph neural

networks with self-label-enhanced training. arXiv preprint arXiv:2104.09376,
2021.

[25] Yizhou Sun and Jiawei Han. Mining heterogeneous information networks:

principles and methodologies. Synthesis Lectures on Data Mining and Knowledge

Discovery, 3(2):1–159, 2012.
[26] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume

Bouchard. Complex embeddings for simple link prediction. In International
conference on machine learning, pages 2071–2080. PMLR, 2016.

[27] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. Graph attention networks. In International Conference
on Learning Representations, 2018.

[28] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S

Yu. Heterogeneous graph attention network. In The world wide web conference,
pages 2022–2032, 2019.

[29] Xiao Wang, Nian Liu, Hui Han, and Chuan Shi. Self-supervised heterogeneous

graph neural network with co-contrastive learning. In Proceedings of the 27th
ACM SIGKDD conference on knowledge discovery & data mining, pages 1726–1736,
2021.

[30] Xiyuan Wang and Muhan Zhang. How powerful are spectral graph neural

networks. In International conference on machine learning, 2022.
[31] Yuling Wang, Hao Xu, Yanhua Yu, Mengdi Zhang, Zhenhao Li, Yuji Yang, and

Wei Wu. Ensemble multi-relational graph neural networks. In Proceedings of
the Thirty-First International Joint Conference on Artificial Intelligence, pages
2298–2304, 2022.

[32] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

S Yu Philip. A comprehensive survey on graph neural networks. IEEE transactions
on neural networks and learning systems, 2020.

[33] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are

graph neural networks? In International Conference on Learning Representations,
2018.

[34] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding

entities and relations for learning and inference in knowledge bases. arXiv
preprint arXiv:1412.6575, 2014.

[35] Xiaocheng Yang, Mingyu Yan, Shirui Pan, Xiaochun Ye, and Dongrui Fan. Simple

and efficient heterogeneous graph neural network. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2022.

[36] Yongyi Yang, Tang Liu, Yangkun Wang, Jinjing Zhou, Quan Gan, Zhewei Wei,

Zheng Zhang, ZengfengHuang, and DavidWipf. Graph neural networks inspired

by classical iterative algorithms. In International conference on machine learning.
PMLR, 2021.

[37] Lingfan Yu, Jiajun Shen, Jinyang Li, and Adam Lerer. Scalable graph neural

networks for heterogeneous graphs. arXiv preprint arXiv:2011.09679, 2020.
[38] Pengyang Yu, Chaofan Fu, Yanwei Yu, Chao Huang, Zhongying Zhao, and Junyu

Dong. Multiplex heterogeneous graph convolutional network. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pages 2377–2387, 2022.

[39] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim.

Graph transformer networks. Advances in neural information processing systems,
32, 2019.

[40] Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V

Chawla. Heterogeneous graph neural network. In KDD, pages 793–803, 2019.
[41] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks.

Advances in neural information processing systems, 31, 2018.
[42] Wentao Zhang, Ziqi Yin, Zeang Sheng, Yang Li, Wen Ouyang, Xiaosen Li, Yangyu

Tao, Zhi Yang, and Bin Cui. Graph attention multi-layer perceptron. In Pro-
ceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, pages 4560–4570, 2022.

[43] Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason Weston, and Bernhard

Schölkopf. Learning with local and global consistency. Advances in neural
information processing systems, 16, 2003.

[44] Meiqi Zhu, Xiao Wang, Chuan Shi, Houye Ji, and Peng Cui. Interpreting and

unifying graph neural networks with an optimization framework. In The world
wide web conference, pages 1215–1226, 2021.

[45] Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural

bellman-ford networks: A general graph neural network framework for link

prediction. Advances in Neural Information Processing Systems, 34:29476–29490,
2021.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A NOTATIONS

Table 5: Summation of main notations in this paper.

Notation Description

𝐺 = (𝑉 , 𝐸) undirected homogeneous graph with node

and edge sets 𝑉 and 𝐸

Â, L the normalized adjacency and Laplacian ma-

trix of graph 𝐺 = (𝑉 , 𝐸)
ℎ(L) the spectral graph filter of graph 𝐺 = (𝑉 , 𝐸)
𝐺 = (𝑉 , 𝐸, 𝜙,𝜓) heterogeneous graph with node and edge

sets 𝑉 and 𝐸, node type 𝜙 and edge type𝜓

𝑛 the node number of graph 𝐺 = (𝑉 , 𝐸, 𝜙,𝜓)
𝑅 the number of edge types of𝐺 = (𝑉 , 𝐸, 𝜙,𝜓)
𝐺𝑟 the sub-graph with only type of edge of

graph 𝐺 = (𝑉 , 𝐸, 𝜙,𝜓)

Â𝑟 , L𝑟 the normalized adjacency and Laplacian ma-

trix of sub-graph 𝐺𝑟

P𝑟 refers to either Â𝑟 or L𝑟

X, x node feature matrix and graph signal vector

ℎ(P1, P2, . . . , P𝑟) the spectral heterogeneous graph filter

B PROOF OF LEMMA 4.1
Proof. We assume that the output of function 𝛾 (P1, P2, · · · , P𝑅)

is represented by the matrix N. According to Lemma 5.1, N is a

real symmetric positive semidefinite matrix. We perform an eigen-

decomposition of N and express it as N = QΣQ⊤, where Q is the

matrix of eigenvectors and Σ = diag[𝜎1, 𝜎2, · · · , 𝜎𝑛] is the matrix

of eigenvalues. Notably, the eigenvalues 𝜎𝑖 satisfy 𝜎𝑖 ≥ 0. Then, we

have

𝛼 [𝛼I + (1 − 𝛼)𝛾 (P1, P2, · · · , P𝑅)]−1 = 𝛼 [𝛼I + (1 − 𝛼)N]−1 .
We find that the matrix 𝛼 [𝛼I + (1 − 𝛼)N]−1 is real and symmetric.

Its eigenvalues are given by
𝛼

𝛼+(1−𝛼)𝜎𝑖 for 𝑖 = 1, 2, · · · , 𝑛. It is
evident that

𝛼
𝛼+(1−𝛼)𝜎𝑖 > 0 for 𝛼 ∈ (0, 1) and 𝜎𝑖 ≥ 0. Consequently,

thematrix𝛼 [𝛼I + (1 − 𝛼)N]−1 is a real positive semidefinite matrix.

□

C PSEUDOCODE
Algorithm 1 presents the pseudocode for PSHGCN. In this context,

{X𝜙𝑖 |𝑖 = 1, 2, . . . , |T 𝑣 |} represents a collection of node feature

matrices of different types. For example, X𝜙𝑖 corresponds to the

feature matrix of a node with node type 𝜙𝑖 . The dimension of the

feature matrix X𝜙𝑖 is |𝜙𝑖 | × 𝑑𝜙𝑖 , and following the concatenation

operation in step 5, H will have dimensions of 𝑛 × 𝑑 , where 𝑑 is the

hidden dimension.

Algorithm 2 presents the pseudocode for decoupled PSHGCN. In

step 16, 𝑐𝑟1,𝑟2,...,𝑟𝑘 are the coefficients of the Â𝑟1 Â𝑟2 · · · Â𝑟𝑘 term in

the expansion of 𝑔(Â1, Â2, . . . , Â𝑅)⊤𝑔(Â1, Â2, . . . , Â𝑅) and 𝑐0 = 𝑤2

0
.

Algorithm 1: Pseudocode of PSHGCN
Input: heterogeneous graph 𝐺 = (𝑉 , 𝐸, 𝜙,𝜓), raw node

feature matrices {X𝜙𝑖 |𝑖 = 1, 2, . . . , |T𝑣 |}, order 𝐾 .
Parameter :polynomial coefficients𝑤0 and𝑤𝑟1,𝑟2,...,𝑟𝑘 ,

MLP
𝜙𝑖
𝑖𝑛

for feature projection,

MLP𝑜𝑢𝑡 for downstream task.

Output: The node embedding Z of graph 𝐺 .

1 Get the normalized adjacency matrices {Â𝑟 |𝑟 = 1, 2, . . . , 𝑅};
2 Randomly initialize coefficients𝑤0 and𝑤𝑟1,𝑟2,...,𝑟𝑘 ;

3 for 𝑖 = 1 to |T𝑣 | do
4 H𝜙𝑖 ← MLP

𝜙𝑖
𝑖𝑛
(X𝜙𝑖);

5 H← concatenate

(
{H𝜙𝑖 |𝑖 = 1, 2, . . . , |T𝑣 |}

)
;

6 Y′ ←
(
𝑤0I +∑𝐾

𝑘=1

∑
𝑤𝑟1,𝑟2,...,𝑟𝑘

(
Â𝑟1 Â𝑟2 · · · Â𝑟𝑘

))
H;

7 Y←
(
𝑤0I +∑𝐾

𝑘=1

∑
𝑤𝑟1,𝑟2,...,𝑟𝑘

(
Â𝑟1 Â𝑟2 · · · Â𝑟𝑘

))⊤
Y′;

8 Z← MLP𝑜𝑢𝑡 (Y);
9 return Z;

Algorithm 2: Pseudocode of decoupled PSHGCN

Input: heterogeneous graph 𝐺 = (𝑉 , 𝐸, 𝜙,𝜓), raw node

feature matrices {X𝜙𝑖 |𝑖 = 1, 2, . . . , |T𝑣 |}, order 𝐾 .
Parameter :polynomial coefficients𝑤0 and𝑤𝑟1,𝑟2,...,𝑟𝑘 , W𝜙𝑖

for feature transformation,

MLP𝑜𝑢𝑡 for downstream task.

Output: The node embedding Z of graph 𝐺 .

1 Get the normalized adjacency matrices {Â𝑟 |𝑟 = 1, 2, . . . , 𝑅};
2 Randomly initialize coefficients𝑤0 and𝑤𝑟1,𝑟2,...,𝑟𝑘 ;

3 % Preprocessing
4 for 𝑖 = 1 to |T𝑣 | do
5 X̃𝜙𝑖 ← Convert the dimension of X𝜙𝑖 to 𝑛 × 𝑑𝜙𝑖 ;
6 for 𝑖 = 1 to |T𝑣 | do
7 H𝜙𝑖

0
← X̃𝜙𝑖 ;

8 for each 𝑟1, 𝑟2, . . . , 𝑟𝑘 do
9 H𝜙𝑖𝑟1,𝑟2,...,𝑟𝑘 ← Â𝑟1 Â𝑟2 · · · Â𝑟𝑘 X̃𝜙𝑖 ;

10 % Training
11 for 𝑖 = 1 to |T𝑣 | do
12 H̃𝜙𝑖

0
← H𝜙𝑖

0
W𝜙𝑖

;

13 H̃𝜙𝑖𝑟1,𝑟2,...,𝑟𝑘 ← H𝜙𝑖𝑟1,𝑟2,...,𝑟𝑘W𝜙𝑖
;

14 H0 ←
∑ | T𝑣 |
𝑖=1

H̃𝜙𝑖
0
;

15 H𝑟1,𝑟2,...,𝑟𝑘 ←
∑ | T𝑣 |
𝑖=1

H̃𝜙𝑖𝑟1,𝑟2,...,𝑟𝑘 ;
16 Y = 𝑐0H0 +

∑𝐾
𝑘=1

∑
𝑐𝑟1,𝑟2,...,𝑟𝑘H𝑟1,𝑟2,...,𝑟𝑘 ;

17 Z = MLP𝑜𝑢𝑡 (Y);
18 return Z;

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Spectral Heterogeneous Graph Convolutions via Positive Noncommutative Polynomials Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Table 6: Statistics of datasets on the node classification task.

Dataset #Nodes

#Node

Types

#Edges

#Edges

Types

Target #Classes

DBLP 26,128 4 239,566 6 author 4

ACM 10,942 4 547,872 8 paper 3

IMDB 21,420 4 86,642 6 movie 5

AMiner 55,783 3 153,676 4 paper 4

Ogbn-mag 1,939,743 4 21,111,007 4 paper 349

D ADDITIONAL EXPERIMENTAL DETAILS
D.1 Datasets and Baselines
Datasets.We use five common real-world heterogeneous datasets

for node classification, including three academic citation hetero-

geneous graphs: DBLP [18], ACM [18], and AMiner [29], as well

as a heterogeneous graph based on movie ratings, IMDB [18], and

a large-scale academic citation heterogeneous graph known as

ogbn-mag [13]. The statistics for these datasets can be found in

Table 6. Additionally, we utilize two prevalent real-world hetero-

geneous datasets for link prediction: one stemming from product

purchase data, Amazon [18], and the other from online music data,

LastFM [18]. You can refer to Table 7 for the statistics of these two

datasets. Further details about each of these datasets are provided

below.

• DBLP is a computer science bibliography website that contains

papers published between 1994 and 2014 from 20 conferences

across four research fields. The dataset comprises four types of

nodes: authors (A), papers (P), terms (T), and venues (V), as well

as six types of edges: A-P, P-A, P-V, V-P, P-T, and T-P. For meta-

path-based HGNNs, the utilized meta-paths are APA, APTPA,

and APVPA.

• ACM is an academic citation network that encompasses papers

from three classes: Database, Wireless Communication, and Data

Mining. The dataset consists of four types of nodes: authors (A),

papers (P), subjects (S), and fields (F), along with eight types

of edges: A-P, P-A, P-c-P, P-r-P, P-S, S-P, P-K, and K-P (where

’c’ denotes citation relation and ’r’ denotes reference relation).

For meta-path-based HGNNs, the used meta-paths are PAP, PSP,

PcPAP, PcPSP, PrPAP, and PrPSP.

• IMDB is an online platform that provides information about

movies and their associated details. The movies are categorized

into five classes: action, comedy, drama, romance, and thriller.

The dataset encompasses four types of nodes: movies (M), di-

rectors (D), actors (A), and keywords (K), and includes six types

of edges: M-A, A-M, M-D, D-M, M-K, and K-M. For meta-path-

based HGNNs, the utilized meta-paths include MDM, MAM,

DMD, DMAMD, AMA, and AMDMA.

• AMiner is also an academic citation network that includes four

types of papers. The dataset includes three types of nodes: au-

thors (A), papers (P), and references (R), with four types of edges:

A-P, P-A, R-P, and P-R. For meta-path-based HGNNs, the used

meta-paths are PAP and PRP.

• Ogbn-mag is a large-scale heterogeneous network derived from
a subset of the Microsoft Academic Graph. It includes types

Table 7: Statistics of datasets on the link prediction task.

Dataset #Nodes

#Node

Types

#Edges

#Edges

Types

Target

Amazon 10,099 1 148,659 2 product-product

LastFM 20,612 3 141,521 3 user-artist

of nodes: papers (P), authors (A), institutions (I), and fields of

study (F), along with four types of directed relations. For more

detailed information, please refer to the Open Graph Benchmark

(OGB) [13].

• Amazon is an online retail platform containing a vast array of

electronic products within its network, interconnected by co-

viewing and co-purchasing links. The dataset consists of a single

node type, products (P), accompanied by two distinct types of

edges: viewing and purchasing.

• LastFM is an online music website. The dataset comprises three

node categories: users (U), artists (A), and tags (T), interconnected

by three types of edges: U-U, U-A, and A-T. For meta-path-based

HGNNs, the employed meta-paths encompass UU, UAU, UATAU,

AUA, ATA, and AUUA.

Baseline Implementations. For GCN, GAT, RGCN, HAN, GTN,
MAGNN, GATNE, HetGNN, HGT, and SimpleHGN, we use the

Heterogeneous Graph Benchmark (HGB) implementations [18].

For other baselines, we use the implementation released by the

authors.

• HGB: https://github.com/THUDM/HGB

• GPR-GNN: https://github.com/jianhao2016/GPRGNN

• ChebNetII: https://github.com/ivam-he/ChebNetII

• EMRGNN: https://github.com/tuzibupt/EMR

• MHGCN: https://github.com/NSSSJSS/MHGCN

• HALO: https://github.com/hongjoon0805/HALO

• SeHGNN: https://github.com/ICT-GIMLab/SeHGNN

• MGNN: https://github.com/landonbutler/MultigraphNN

D.2 Node classification in Section 6.1
We follow the experimental setup provided by the Heterogeneous

Graph Benchmark (HGB) [18] and utilize the baseline results al-

ready available in their paper. In cases where baseline results are

not accessible, we rely on the officially released code and perform

a hyperparameter search following the guidelines outlined in the

respective paper.

For our PSHGCN model, we first apply a feature projection layer

to align node features, ensuring that different types of nodes share

the same dimensional feature space. This feature projection layer

is commonly employed by various popular HGNNs [1, 18, 31, 35].

For the MLPs in PSHGCN, we search the hidden dimension from

the set {32, 64, 128, 256}. Similarly to many popular spectral-based

GNNs [10, 11, 30], we train the linear and convolutional layers

using distinct learning rates and weight decays. Specifically, we

employ lr
mlp

and 𝐿2
mlp

to represent the learning rate and weight

decay for the linear layers, while lrconv and 𝐿2conv are used for the

convolutional layers. The hyperparameters of PSHGCN for the

node classification task are presented in Table 8.

11

https://github.com/THUDM/HGB
https://github.com/jianhao2016/GPRGNN
https://github.com/ivam-he/ChebNetII
https://github.com/tuzibupt/EMR
https://github.com/NSSSJSS/MHGCN
https://github.com/hongjoon0805/HALO
https://github.com/ICT-GIMLab/SeHGNN
https://github.com/landonbutler/MultigraphNN

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1 2 3 4 5
K

92

93

94

95

96

F1
 S

co
re

(%
)

Macro-F1
Micro-F1

(a) DBLP

1 2 3 4 5
K

70

72

74

76

78

80

F1
 S

co
re

(%
)

Macro-F1
Micro-F1

(b) IMDB

Figure 5: Node classification performance of PSHGCN with respect to the order 𝐾 .

Table 8: The hyper-parameters of PSHGCN for node classifi-
cation in Section 6.1.

Dataset hidden 𝐾 dropout lr
mlp

𝐿2
mlp

lrconv 𝐿2conv

DBLP 64 5 0.10 0.006 0.0 0.002 0.8

ACM 256 5 0.25 0.004 0.0 0.004 0.8

IMDB 256 1 0.70 0.0005 5e-4 0.008 0.0

AMiner 32 5 0.35 0.008 5e-4 0.008 0.3

Table 9: Comparison of PSHGCN and SeHGNN on ogbn-mag.

Method Accuracy (%) #Params Time (s/epoch)

SeHGNN 57.19±0.12 8,371,231 7.8218

PSHGCN 57.52±0.11 4,852,434 5.8989

D.3 Link prediction in Section 6.2
For the link prediction task, we follow the experimental setup

provided by HGB. The task of link prediction is cast as a binary

classification problem, with the splitting of edges as follows: 81%

for training, 9% for validation, and 10% for testing. Then the graph

is reconstructed solely using the edges from the training set. For

PSHGCN, we use the same implementation as used for the node

classification task. we search the hidden dimension of MLPs from

the set {32, 64, 128, 256}, learn rating from the set {0.0005, 0.001,

0.005, 0.01, 0.05}, weight decays from the set {0.0, 4e-5, 3e-5, 0.001,

0.05, 0.1, 0.5 }, and dropout from {0.1, 0.2, 0.5,0.8}.

D.4 Node classification on ogbn-mag
For the larger-scale dataset ogbn-mag, we use the leaderboard

results provided by the Open Graph Benchmark (OGB)[13] for

the baselines. Regarding PSHGCN, we set the value of 𝐾 to 4

in Equation(7) and perform the preprocessing step to calculate

Â𝑟1 , Â𝑟2 , · · · , Â𝑟𝑘X. In cases where certain node types lack raw fea-

tures, we initialize their features randomly. As for PSHGCN
∗
, we

employ the ComplEx algorithm [26] to generate additional embed-

dings and adopt multi-stage learning. In the multi-stage learning

process, we select test nodes with confident predictions in the last

training stage, incorporate them into the training set, and retrain

the model in a new stage [35, 42]. Since the most advanced meth-

ods [35, 42] on ogbn-mag currently utilize label propagation to

enhance training, we also include the label propagation module. Re-

garding the hyperparameters, the hidden dimension is set to 1024,

the dropout rate is 0.5, the learning rate is 0.001, and the weight

decay is 0.0. Further implementation details are available in the

code repository.

D.5 More Experimental Results
Table 9 shows the comparison between decoupled PSHGCN and

SeHGNN on ogbn-mag. As analyzed in Section 5.2, decoupled

PSHGCN is more efficient than SeHGNN. Figure 5 displays the node

classification F1 scores with respect to the order 𝐾 on DBLP and

IMDB datasets. Notably, we observe either a gradual improvement

or stabilization in the performance of PSHGCN as𝐾 increases, align-

ing with the findings discussed in the ablation study Section 6.4.

12

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Spectral Graph Convolution
	3.2 Graph Optimization Framework
	3.3 Heterogeneous Graph

	4 The Proposed Method: PSHGCN
	4.1 Spectral Heterogeneous Graph Convolution
	4.2 Positive Spectral Heterogeneous Graph Convolution
	4.3 Implementation of PSHGCN

	5 Model Analysis
	5.1 Understanding PSHGCN from the Graph Optimization Perspective
	5.2 Complexity

	6 Experiments
	6.1 Node Classification
	6.2 Link Prediction
	6.3 Scalability
	6.4 Model Analysis

	7 Discussion & Conclusion
	References
	A Notations
	B Proof of Lemma 4.1
	C Pseudocode
	D Additional experimental details
	D.1 Datasets and Baselines
	D.2 Node classification in Section 6.1
	D.3 Link prediction in Section 6.2
	D.4 Node classification on ogbn-mag
	D.5 More Experimental Results

